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This paper grew out of an attempt of understanding group-theoretically the
consequences of Hodge theory which are explained in Deligne [D2] II 4, with an
eye towards applications to algebraic independence.

After some preliminaries about representations of linear algebraic groups, we
define and study Mumford-Tate groups of mixed Hodge structures over
noetherian subrings R of the fields of real numbers. Though in the sequel we
restrict ourselves to the crucial case R = Z, we refer to the appendix for a study
of some pathologies which may occur in the case of other ground rings. We then
turn to a more precise study of Mumford-Tate groups arising from 1-motives
(see [D2] III 10).

In Section 4 a mild generalization of a result by Deligne about the

monodromy of variation of Hodge structure is given; we also present our main
object of study, that is Steenbrink-Zucker’s notion of a good variation of mixed
Hodge structure.

In Section 5, we give a group-theoretic formulation of the theorem of the fixed
part proved in [SZ]: for almost all stalks of a given polarizable good variation of
mixed Hodge structure, the connected monodromy group Hx is a normal

subgroup of the derived Mumford-Tate group !0Gx. We then state straightfor-
ward consequences about monodromy groups. In the next paragraph, we study
how big can Hx be in Gx; we end by applying these considerations to the study
of algebraic independence of abelian integrals depending on some parameters.

1. Some facts about linear algebraic groups

Let K be a field of characteristic 0, and V éé KN some K-vector space. We shall
consider a closed algebraic subgroup G of GL(V) = GLN. For non-negative
integers m, n, we set Tm,n = Tm,n(v) = V@m (D j1@n, where j1 denotes the dual
space of V (with the contragredient action of GLN). By ’representation of G’ or
’G-module’, we shall always mean a finite-dimensional rational one. The

following two properties are well-known [W] 3.5, §16.1, [DM] 1, 3.1:
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(1) every representation of G is a subquotient representation of a finite direct
sum of Tm,ns,

(2) G is the stabilizer of some one-dimensional L in some finite direct sum
0153 Tmi,ni: G = Stab L.

For any representation W of G, and any character x E XK(G) of G over K, we
denote by WG the fixed part of W under G and by WX the submodule of W on
which G acts according to x. We write EndG W for the endomorphisms of the G-
module W, so that EndG W = (EndK W)G, and we denote by Z(EndG W) its center.

LEMMA 1. Assume that G is connected, and let H c G be a closed subgroup. The
following conditions are equivalent:

(i) H a G, that is, H is normal in G,
(ii) for every tensor space T m’n, and for every X E X K (H), (Tm,n)x is stable under G,

(iii) every H-isotypical component of any representation of G is stable under G.

If moreover G is reductive, these conditions imply that Z(EndH V) c Z(EndGV).

Proof. (iii)=&#x3E;(ii) is obvious, and we shall first prove that (ii)=&#x3E;(i), independently
of the connectedness assumption on G. We know by (2) that there exists some
one-dimensional L in some 0153 T"‘l’"1 such that H = Stab L. Let W be the G-
module spanned by L. The line L defines a character X EX K(H); we have
L c W x, and WX = W n (OE) Tmi,n1)~ = W, according to the hypothesis (ii). Let ç be
the natural morphism G ~ GL(End W); it is clear that H c ker 9. Conversely if
g E ker 9, g commutes with any endomorphism of W, that is, g is scalar; this

implies that g stabilizes L, so that g E H. Hence H = ker ç is a normal subgroup.

We now prove (i)=&#x3E;(iii). Let W be a G-module, and W’ the G-submodule of the
sum of its irreducible submodules. It suffices to prove that the H-isotypical
components of W’ are G-stable. Let H’, G’ denote the natural images of H and G
respectively in GL(W’), so that H’ r&#x3E; G’. The normality property implies that
(End W,)H’ is stable under G’, inside the G’-module End W’. For w E EndH, W’, let
Cw be the kernel of the commutator map [w,.] in EndH’W’. It is easy to derive
the formula gCw = Cgw, so that Z(EndHW) = nWEEndH’W’ Cw is again a G’-

module. But Z(EndH’W’) is a finite-dimensional semi-simple algebra over K.
Moreover G’ acts on EndH- W’ by gç(x) = g~(g-1x), hence g(~ 03C8) = g~° g03C8, and
this gives rise to a morphism from G’ to the étale group scheme

AutK(Z(EndH’W’)). By the connectedness of G’, this morphism has trivial target,
that is, Z(EndH’W’) is a trivial G’-module. Now the H-isotypical components of
W’ are given by p. W’, where p runs among the minimal indempotents of
Z(EndH’W’). We just proved that p commutes with the action of G’ on W’, and
this implies that p. W’ is stable under G’.
When G is reductive, we have V’ = V, and the above proof shows

that Z(EndHV) is a trivial G-module, whence an obvious imbedding
Z(EndHV) c Z(EndG v). D
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2. Mumford-Tate groups and mixed Hodge structures

We first recall some definitions. Let R be some noetherian subring of R such that
K := R ~ZQ is a field. Let V be a noetherian R-module. A (pure R-) Hodge
structure of weight M ~ Z on V is a morphism h: Resc/R Gm -+ GL(V~R R) such
that hw(x) is the multiplication by x"; here w denotes the embedding
GmR  Resc/R Gm given by Rx c C’. Equivalently, it is a bigraduation on

V ~R C =- Yp’q with Vp,q = Yq’p, or a decreasing filtration FP on
Cc such that F Vc (Fp = Vp’,M-p’). For instance, there is
one and only one Hodge structure of weight - 2M on V = (203C01)M R, called
the ’Tate-Hodge structure’ and denoted by R(M). A polarization of the Hodge
structure (V,h) of weight M is a morphism of Hodge structures (in the obvious

sense)  such that  is a scalar

product on VR:= V &#x26; R. Elements of Tm,"(V,):= V~m Q (Hom(V, R))~n (8)z 0
(endowed with the natural K-Hodge-structure of weight (m - n)M) which are of
type (0,0) are called ’Hodge tensors’. In fact Hodge tensors are nothing but
elements of F0(Tm,n(VC)) ~ Tm,n(VK) of weight 0 (and thus m = n).
A mixed R-Hodge structure (MHS) is a noetherian R-module E together with

a finite increasing filtration W. of the K-space YK := V~ZQ, and a finite

decreasing filtration F* of VC such that for each n, (GrWn(VK), GrWn(F)) is a K-
Hodge structure of weight n. We say that a M.H.S. V is of type e c Z x 7 if its
Hodge numbers hp’q are 0 for (p, q) ~ 03B5, and that it is trivial if it is of type {(0, 0)1.
The category of mixed K-Hodge structures in an abelian K-linear tensor

category ([D2] Th. 1.2.10), which is rigid and has an obvious exact faithful K-
linear tensor functor co: (VK, W, F) ~ YK. For a fixed mixed R-Hodge structure
(V, W, F’), let V&#x3E; denote the Tannakian subcategory generated by ( YK, W, F’),
and Wy the restriction of the tensor functor w to V&#x3E;; in other words, V&#x3E; is the
smallest full subcategory containing (V., W, F*) and the trivial K-M.H.S., and
stable under ED, p, and taking subquotients. Then the functor Aut~(03C9V) is

representable by some closed K-algebraic subgroup G = G(V) of GL(VK), and 03C9V
defines an equivalence of categories V&#x3E;  RepK G, cf. [DM] II, 2.11. We call G
the Mumford-Tate group of (V, W, F’).

LEMMA 2. (a) Any tensor fixed by G in some Tm,n is a Hodge tensor (an element
of FO(Tm,n(vc)) n Wo Tm,n(vK)), and G is the biggest subgroup of GL(YK) which fixes
Hodge tensors.

(b) If (V, W, F*) arises from pure Hodge structure (V, h), G is the K-Zariski
closure of the image of h in GL(VK) (hence G is connected), and if moreover V is
polarizable, then G is reductive.

(c) 1 n general, G preserves W, and the image of G in GL(GrWVK) is G(GrWVK); in
fact G(V) is an extension of G(GrWVK) by some unipotent group (hence it is

connected); in particular if V is polarizable, G(GrWVK) is the quotient of G by its
unipotent radical.
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REMARK. This definition of Mumford-Tate group is slightly different from
that given in [DM] 1, 3.2 in the case of pure Hodge structures; if the weight is
non-zero, however, this leads to an isogenous group.

Proof of the lemma. (a) Any invariant tensor 1 under G spans a trivial

representation LK corresponding to a MHS, say L, such that L&#x3E; is equivalent
to VectK. Thus L is a trivial MHS, that is to say, 1 is a Hodge tensor. By (1.2), we
know that G is the stabilizer of some line LK in ~ Tmi,nï, which corresponds to a
M.H.S. of rank one (up to isogeny), that is, to some Tate-Hodge structure
L = R(N1). If the weight of V is zero, N 1= 0 and G = Fix(l) for any generator of
L. If the weight of V is non-zero, there exists an integer N such that the weight of
Det WN(VK), say N2, is non-zero. Taking if necessary VK instead of VK, one can
assume moreover that N1 and N2 have the same sign. Let r be the rank of the
MHS WN(VK) over K, and let 1 be a generator of the one-dimensional subspace
L~|N2|K ~ (^rWN(VK))~2|N1| inside (~ Tmi,ni)~|N2| Q . Then G = Fix(l).

(b) The arguments given in [DM] 1, 3, 4-6 prove the statement about pure
Hodge structures.

(c) G preserves W because each WK is a mixed K-Hodge substructure of VK. In
fact since GrWVK&#x3E; is a Tannakian subcategory of V&#x3E;, G maps onto G(GrWVK).
Now let P be the subgroup of GL(VK) which respects the weight filtration W., and
N be the subgroup of P which acts trivially on GrW(VK). Then G c P and N is
unipotent. Moreover G(GrWVK) is the image of G in PIN. Hence G is an

extension of G(GrWVK) by a (necessarily unipotent) subgroup of N. 1:1

REMARK. The description of Mumford-Tate groups by their invariant tensors
implies some restrictions on the groups which may occur; for example, G cannot
be a Borel subgroup of GL(VK), cf. [DM] 1, 3.2. However, there are other
restrictions on the structure of Mumford-Tate groups, as we shall see now:

LEMMA 3. Let G be the Mumford-Tate group of some M.H.S. over R, say V,
such that GrW V is polarizable. Then the abelianized group Gab = G/DG is

a torus. The group of real points of its quotient G bIG b n Gm is compact

(G. = homothety group).
Proof. Since all morphisms in V&#x3E; are strict, one has GrWV’ ~ ObGrWV&#x3E; for

any V’ E Ob V), thus GrWV’ is polarizable. Take for V’ the MHS corresponding
to a faithful representation VK of the quotient U of Gab by its maximal torus. We
find that G(GrWV’) = 0 (see Lemma 2). Thus V’, which is a successive extension of
trivial HS, is also a trivial HS, and G(V’) = U = o. Now let V’ correspond to a
faithful representation of the quotient of Gab by its homotheties. The Tate-
Hodge structure Det V’ must be trivial, i.e. V’ has weight 0. Therefore the
polarization is a scalar product. Because Gab/Gab .G. acts by orthogonal
transformations, it is compact. D

REMARK. The same argument shows in the same situation that if G is
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nilpotent, then G = G. x T (or G = T if V is pure of weight 0), where T denotes a

compact torus.

3. Mumford-Tate groups of 1-motives

We recall that a 1-motive over C, denoted by M = [HE], is the following
data:

(i) an extension 0- T-E-A -0 of an abelian variety A by a torus T,
(ii) a morphism u from a free abelian group X to E(C).

One associates to a 1-motive a mixed Hodge structure V = V(M) = (VZ, W, F.),
given by:

Vz = {(l, x) e Lie E x H/exp 1 = u(x)}

Wo vu

W-1 = H1(E) Q Q (thus Gr-1 ~ H1(A) is polarizable)

W-2 = H1(T)~Q

FO = Ker(Ve ~C ~ Lie E).

Morphisms of 1-motives being defined in the obvious way, this rule M ~ V(M)
defines a functor which is an equivalence of categories with the category of
torsion-free Z-MHS of type {(0, 0), (0, -1), ( -1, 0), ( -1, -1)} with polarizable
Gr-1 ([D2] III, 10.1.3). We denote by G the Mumford-Tate group of E and by
G-1 that of W-1. Let E’ be the connected component of identity in the Zariski
closure of u(H), and let us write F : = (End E’) Q Q.

PROPOSITION 1. Let H  G such that WH0 ~ W-1 (for instance we

may take H = G). Let us assume that E is a split extension (E = A x T).
Then U(H): = Ker(H~G(W-1)) is canonically isomorphic to U:=
HomF (F . u(H); H1(E’) Q Q).
Proof (inspired by Kummer’s theory of division points on abelian varieties).

Let us first remark that the 0-MHS Vu does not change if one replaces Y by any
subgroup of finite index. After such a replacement (which therefore does not
affect G), one may assume that u(H) has no torsion, and that E’ is the Zariski
closure of u(H).
Given m = (1, x) E Vz, the map U(H) ~ W- 1: a H 6m - m depends only

on u(x) and therefore defines a G-equivariant homomorphism
U(H)  HomZ(u(H); W- 1). The vanishing of ~(03C3) implies that a- fixes Wo, which is
a faithful representation of H; thus 6 =1, and this shows the injectivity of (P.
Because of Poincaré’s complete reducibility lemma applied to products of
abelian varieties and tori, the exact sequence of 1-motives
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0 ~ [X -+ E’] ~ [H ~ E] ~ [0 - E/E’] ~ 0 splits (up to isogeny, i.e. in the

category of Q-MHS).
From this follows an equality of kernels:

Ker(H -+ G(W-1)) = Ker(H - G(H1(E’))) n Ker(H ~ G(H1(E/E’))

~ Ker(H’ ~ G(H1(E’))),

where H’ = H n G(V([H  E’])). Thus 9 factorizes through

Homz(u(f!l); Hi(E’) (8) Q);

also it is easily seen that elements in the image of ç are F-linear in the sense that
~(U(H)) ~ if.

Replacing E by E’ and X by u(H), we may now assume that u is a dominant
embedding and identify lt and u(H).

Since E is a split extension, we have F ~ EndG W-1 1 (this is because the

category of products of abelian varieties and tori up to isogeny is equivalent to
the category of polarizable Q-Hodge structures of type {(-1, -1), ( -1, 0),
(0, -1)}), whence EndG_1 U ~ (EndF FH)op; also W- 1, whence Û (with trivial
action of G- 1 on FX), is a semi-simple G- 1-module. Thus ~(U(H)) is the kernel
of some G- i-equi variant endomorphism gl of Û; that is to say, there exists f ~ F
such that (03C8~(03C3))· Va E U(H), ~m E FY. If (p(U(H» if, then
03C8 ~ 0, therefore we can find x ~ FY such that U(H)x = x and x ~ 0.
We set Hx = Zx, Mx = [Hx  E], and we denote by a subscript x the objects Gx,

vx etc. associated to this 1-motive. Because U(H)x = x, there is a natural

injection Hx=HnGx ¿ GL(WX, - 1). Since E splits, Wx, -1 ~ W- 1 is a direct sum
of polarizable pure Hodge structures, so that Hx  Gx is reductive. Therefore

Wx,-1 is a direct summand in the Hx-module Wx,o, which means that we could
choose x~Wx,-1 so that Hxx = x : indeed, Hx acts trivially (like Gx) on

Wx,0/Wx,-1 whose type is (0,0). Recall that WH0 ~ W-1; this implies the

corresponding inclusion WHxx,0 ~ Wx,-1 since H commutes with the action of F.
Therefore we get a contradiction, and deduce that ~(U(H)) = if.

COROLLARY. If E splits, with non-trivial abelian part, one has a split exact
sequence 0 ~ Û ~ G - G(H1(A)) ~ 0.

REMARK. If one drops the assumption that E splits, U(G) can be much smaller
than if. In ’Deficient points on extensions of abelian varieties by Gm’ J. Number
Theory (1987), O. Jacquinot and K. Ribet have constructed some examples (by
means of endomorphisms of A which are antisymmetric with respect to a
polarization) where U(G) = 0, corresponding to some self-dual 1-motives.

4. Variations of mixed Hodge structure

In the sequel we shall concentrate on the case R = Z (see the Appendix for other
ground rings). By a variation of MHS, we shall mean a finitely filtered object in
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the category of local systems of noetherian Z modules over a fixed connected

complex manifold X,

(yz, W.), WnVZ ~ Wn+1VZ,

together with a decreasing filtration of the complex bundle Vi attached to
VC: = Vz 0 C by sub-bundles FP, such that on each fibre VZ,s, (W, F*) induces a
MHS and that the flat covariant derivative V satisfies VFP c Fp-1 ~ 03A91X. A
morphism of variation of MHS is a morphism of local system which respects W
and whose complexification respects the filtration FP pointwise. This yields an
abelian category (any morphism is strictly compatible with the filtrations).
One calls such a variation (Vz, W, F*) a (graded-) polarizable one if each of the

local systems GrWnVZ carries a bilinear form with values in Z(-n)X which is a
morphism of local systems and pointwise a polarization. Any subquotient of a
polarizable variation and any object isogenous to a polarizable one are

polarizable. The integral relative cohomology modules of the complement of a
divisor with relatively normal crossings in a projective smooth scheme over an
algebraic variety X furnish examples of polarizable variations of MHS over X
(see [Kz] 4.3 for instance). For a variation of MHS, and for a point x of X, we
denote by Hx the connected monodromy group, that is the connected compo-
nent of identity of the smallest algebraic subgroup of GL(PoJ containing the
image of 03C01(X, x). We also denote by Gx the Mumford-Tate group of the MHS
carried by the stalk VZ,x.
LEMMA 4 (cf. [D3] 7.5). On the (pathwise connected) complement X of some
meager subset of X, Gx is locally constant. If the variation is polarizable, then
Hx c Gx for any x E X.

Proof. For a polarizable variation of pure Hodge structure, this is stated in
loc. cit. We shall write down a detailed proof, though (thanks to Lemma 2) there
is no new complication in the mixed case. Let X be the universal covering of
(X, 0), for some base point 0 E X. The inverse image of the (polarized) variation
of MHS is a (polarized) variation of MHS over X, whose underlying filtered
local system (VZ, W.) is constant. For l E Tm,n(0393VQ) ~ Tm,n(Va,o), we set

Since FOWo is a subbundle, X(l) is an analytic subvariety of X, and its natural
projection rc*X(l) on X is an analytic subvariety too. We set

which is a (dense) countable intersection of dense open subsets of X. By
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definition of X, any 1 E Tm,n(0393VQ), whose stalk at some xo E n -1 X is a Hodge
tensor, is in fact a Hodge tensor at every point of X. For x E X, Gx is then the
biggest subgroup of GL(VQ,x) which fixes the various tensors in Tm,n(VQ,x) which
lift to F0Tm,n(0393VC). Therefore Gx is locally constant on X . We now assume that
the variation is polarized and we shall see that 03C01(X, x) acts (through a finite
group) on the spaces HTm,nx of Hodge tensors in Tm,n(VQ,x) for any x ~ X; this will
be sufficient to prove the lemma, since Gx can be described as Fix(l), for one
element 1 of one space ~HTmi,nix. We have seen that HTm,nx (for x~X) is the
subspace of Tm,n(VQ,x) composed of tensors which lift to F0Tm,n(0393VC); in

particular this subspace is locally constant. Hence HTm°" is the rational stalk at
x associated to a sub-variation of MHS (Yz, W, F’*) of (Tm,n(VZ), Tm,n(W.),
Tm,n(F·)), which is actually pure of type (0, ) and which inherits a polarization.
This polarization 03C8 on V’R,x is a scalar product, invariant under 03C01(X, x). Thus
03C01(X, x) factors through the discrete group Aut VZ,x on one hand and through
the compact orthogonal group O(V’R,x, 03C8) on the other hand; hence the

connected group Hx acts trivially on HTxm .

REMARK. A variation of MHS Y is said to be semi-simple if for any x E X, the
relevant category Vx&#x3E; is semi-simple (notations of §2). It is easily seen that a
polarizable MHS is semi-simple if and only if it is a finite direct sum of variations
of pure HS up to isogeny. Indeed, it is easy to see that both conditions imply the
reductivity of Gx for any XEX. Conversely, assume that for some x ~ X, Gx is
reductive. Then by local constancy of Gy on X, the same is true for Gy for any
yEX.
Next consider a section 6 of the inclusion (Wm)y ç; (Wm+ 1)y in the category

Vy&#x3E;, and let 03B3y,z be a path (up to homotopy) from y to a nearby point z in X.
Then because of the horizontality of the filtration W and the local constancy of

(GY)YEW, the section 03B3y,z(03C3) deduced by transporting 6 along yy,z is a section of
(Wm)z ~ (Wm+ 1)z in the category Vz&#x3E;. Thus YI X is a direct sum of variations of
pure HS up to isogeny, which extend to X by continuity. The semi-simplicity of
V follows from this.

We shall now recall a concept introduced by Steenbrink-Zucker [SZ] (cf. also
[HZ]). Let us assume that X is a smooth connected algebraic variety over C.
The variation of mixed Hodge structure is considered good if it satisfies the
following condition at infinity: there exists a compactification X of X, for which
X - X is a divisor with normal crossings, such that

(i) The Hodge filtration bundles FP extend over X to sub-bundles fP of the
canonical extension Vé of Ve, such that they induce the corresponding thing for
GrW(Yz, W, F.),

(ii) for the logarithm Ni of the unipotent part of a local monodromy
transformation about a component of XBX, the weight filtration of Ni relative
to W exists.

The fact that these conditions are sufficient to imply those of [SZ] (3.13) is
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pointed out in [HZ] 1.5, and follows from [K] 4 and [SZ] A. The following
classes of variations of MHS are known to be good:

(1) polarizable semi-simple variations of MHS over algebraic bases [Sd],
[CKS],

(2) relative cohomology modules of the complement of a divisor with

relatively normal crossings in a projective smooth X-scheme, at least when X is
a curve, see [SZ] 5.7. Moreover, the category of good variations of MHS over X
is stable under standard constructions of linear algebra, EB, (8), duality, see
[SZ] A.

EXAMPLE. Smooth 1-motives. Recall from [D2] III, 10.1.10 that a smooth 1-
motive M over X is the following data:

(i) and extension 0 ~ T ~ E ~ A ~ 0 of a (polarizable) abelian scheme A

over X by a torus T over X,
(ii) a morphism u: H~ E from a group scheme !!! over X to E; one assumes

that locally for the étale topology on X, H is constant and defined by a free Z-
module of finite type.
The construction V(M)=(TZ, W., F’):

Vz = W0(VZ) = Lie E/X E H defined by the exponential sequence,

W-1 = Ker exp = R1fan*Z,

W- 2 = (Xc(T)Y,
FO = Ker(VcC ~ Lie E/X),

which is fibrewise compatible with that of Section 3, yields a polarizable
variation of MHS over X.

LEMMA 5. Assume that X is a curve. Then the variation V(M) associated to the
smooth 1-motive M is good.

Proof (sketch of). According to M. Raynaud [C.R.A.S. 262 (1966) 413-416],
there exists a Néron model É of E over the smooth completion X of X, such that
u extends to

note that the smooth group scheme É/X is not of finite type in general.
Replacing H by a subgroup-scheme of finite index, which yields an isogenous
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variation of MHS, we may assume that ù (Y) lies in the identity component E0 of
É. Condition (i) defining good variations is fulfilled with

In order to verify (ii), we may proceed by induction since we know that both
W-1 (by point (2) above: the geometric situation) and W0/W-2 (by duality of 1-
motives and point (2)) satisfy (ii).

Granting (ii) for W-1, it follows from Theorem 2.20 of [SZ] (formula 2.21) that
(ii) for Wo reads equivalently:

where(-2)M-l-1 is the relative weight filtration of W-2, which is W-1-1 since
the unipotent part of the local monodromy of W-2 is trivial (see [SZ] 2.14; the
point is that T is necessarily locally constant). Therefore (*) follows from
property (ii) for W0/W-2. D

5. Normality

We keep the notations of the previous paragraph. The following result is a

simple consequence of the theorem of the fixed part (Griffiths-Schmid-
Steenbrink-Zucker).

THEOREM 1. Let V = (VZ, W., F) be a (graded-) polarizable good variation of
mixed Hodge structure over a smooth connected algebraic variety X. Then for any
x E X, the connected monodromy group Hx is a normal subgroup of the derived
Mumford-Tate group !0Gx.

Proof. We first prove that Hx a Gx, using the implication (ii)=&#x3E;(i) in Lemma 1.
Since we already know by Lemma 4 that Hx c Gx = G’, it suffices to prove (ii)
for Hx, Gx. Since 03C01(X, x) acts on the free Z-module Tm,n(VZ,x)/torsion, any action
of n1(X, x) on a line inside Tm,n(VQ,x) must factor through 11 (the only
possible eigenvalues). Thus the connected group Hx has only trivial rational
character.

Replacing X by the finite covering defined by the maximal subgroup (of finite
index) of ni(X, x) which factors through the connected component Hx of the
monodromy group, we are reduced to prove that the largest constant sub-local
system of fi = Tm,n(VZ) is a (constant) sub-variation of MHS. For a finite direct
sum of polarizable variation of pure HS, this is precisely the theorem of the fixed
part of Griffiths-Schmid, see [CG], [Sd]. For a general polarizable good
variation of MHS in Steenbrink-Zucker’ sense, this is the theorem of the fixed

part of these authors, see [SZ] 4.19. In fact, in loc. cit., this theorem is stated for a
one-dimensional base X, but we can reduce to this case by considering curves in
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X, see [Kz] §4.3.4.0, for the detailed argument.
So far we have proved that Hx  G,,; to show that Hx a !0Gx, we have to

prove that the algebraic subgroup H’x: = Hx/Hx n DGx of Gabx is trivial. We first
note that the homothety group in Hx is finite (by the same argument as in the

beginning of the proof). It follows from this and Lemma 3 that H’x|R is a compact
torus.

Let V’ c ~Tmi,niVQ,x a faithful representation of H’. A subgroup of finite
index of 03C01(X, x) acts on V’ through GL( V’ n EB Tmi,niVZ,x) which is discrete, and
also through a compact torus. Because of the connectedness of Hx, it follows that
V’ is a trivial Hx-module, and then Hx is trivial. D

As a consequence of these group-theoretic arguments, we recover:

COROLLARY 1 (see [D2] 4.2.6-9). The local system fa underlying a pola-
rizable variation ofpure Hodge structure is semi-simple; each isotypical component
carries a sub-variation of pure Hodge structure; the center of End(fo) is purely of
type (0, 0). For any x E X, the connected monodromy group Hx is semi-simple.

Proof. Since Hx a -9Gx for x ~ X, and since -9Gx is a semi-simple group
(Lemma 2), it follows that Hx is semi-simple; since Hx is locally constant on X, Hx
is in fact semi-simple for any x ~ X. This implies the complete reducibility of the
action of n1(X, x) on VQ,x and the first assertion follows (the normality Hx  Gx
would suffice here). By (i)=&#x3E;(iii) in Lemma 1, applied to Hx  Gx for x E X, we get
on each stalk of each isotypical component of the local system faix a Hodge
sub-structure. By continuity, these Hodge sub-structures extend across XBX
and patch together to give rise to a sub-variation of Q-Hodge structure on the
isotypical component of Ku. The third assertion follows from Lemma 1 in the
same manner.

COROLLARY 2 (see [D2] 4.2.9b). The radical of the connected monodromy
group Hx associated to a polarizable variation of MHS is unipotent.

Proof. Let Px be the subgroup of GL(VQ,x) which respects the weight filtration
W, and Nx the subgroup of P which acts trivially on GrW(VQ,x). Then Hx c Px
and Nx is unipotent. Moreover the connected monodromy group, say GrHx, of
GrW(Vz) at x is the image of Hx in PxlNx. Hence Hx is an extension of GrHx,
which (according to the previous corollary) satisfies GrHx = DGrHx, by a
(necessarily unipotent) subgroup of Nx. D

REMARK. Corollary 2 shows in particular that if Gx is solvable for some x E X,
then the variation of MHS is unipotent in the sense of [HZ].

REMARK. Theorem 1 applies to the geometric situations considered in Section
4 since in the course of proving it, we have made a restriction to curves.

COUNTEREXAMPLE. We produce an example, following Steenbrink-

Zucker (see [SZ] 3.16), to show that some extra hypothesis upon the variation of
MHS is necessary.
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Consider a smooth 1-motive M = [Zcn~xn Gm] over X = Gmo Here the
set X is CxBCxtors. The corresponding good variation of MHS Vis an extension of
Z by Z(1) inside C. We denote by 9 - 2 the generator + i of Z(1) ~ W-2 and by eo
any element of VZBW-2; then 03B50,03B5-2&#x3E; spans VZ. For some suitable deter-

mination of log x (depending on the choice of 80), the section Bo : E - log x E -
of Vi spans F° and extends to a section of VcC over pl. We now combine
notations from Sections 3 and 4. For XE X, we have U(Hx(M») = U(Gx(M)) =
U ~ Ga according to Proposition 1. On the other hand Hx(M) = U(Hx(M))
according to the previous corollary.
For any entire function f, let us now consider the following perturbation Vf

of V:(VfZ; W.f)=(VZ; W.) but (Ff)0 is spanned by 03B50+f03B5-2. The corresponding
groups Hx(Mf), Gx(Mf ) admit the same description. The following assertions are
easily seen to be equivalent:

The group Hx(Y’) is isomorphic to Ga; viewed as a subgroup of Gl2 x GL2
acting on (VQ,x Q VfQ,x), its ’typical’ element takes the form

The ’typical’ element of Gx(V’) takes the form

a being independent of c if (and only if) Vf  V. Therefore we see in this example
that Hx(V’) -9G,,(V’) if and only if V’ is good.

6. Maximality

Let (Vz, W, F*) a polarizable good variation of mixed Hodge structures on X.
Let x ~  as in Lemma 3. By the theorem, we know that Hx  !0Gx. We now
study how big Hx can be in !0Gx.

PROPOSITION 2. Assume that for some YEX, Gy is nilpotent (hence abelian,
according to the remark following Lemma 3). Then for any x ~ , Hx =!0G x.



13

Proof. According to the remark which follows Lemma 3, Gy is actually a torus.
Since the assertion is invariant under taking finite coverings of X, it suffices to
show that any tensor 1 E Tm,nVQ,x invariant under 03C01(X, x) spans a Gx-module Wx
on which the action of Gx is abelian. It follows from the ’fixed part’ theorem that

Wx is fixed by 03C01(X, x), and the local constancy of Gx on X, together with an
argument of continuity, shows that Wx extends to a constant sub-variation of
MHS, say (V’, W’, F’’), of (T’,» VU. In particular the action of Gx on V’x = Yx is
the same as the action of Gy on V’y, which is abelian.

For an application to smooth 1-motives, see Theorem 2 below.

REMARK 1. By the normality theorem, the equality Hx = DGx (x ~ X) holds
whenever -9Gx is Q-simple and the variation of MHS does not become constant
over any finite covering of X. By way of example, we consider a non-trivial
polarized family of abelian varieties with many endomorphisms over a complex
algebraic base X; by this, we mean that the generic fibre f~ of f (that makes
sense since f is automatically algebraic) enjoys the following property:
(End f~) ~ZQ is a division ring which contains a commutative field of degree
dim £ over Q. Then the derived Mumford-Tate group of the stalk (R1f*Q)x can
be computed for any Weil generic point x of X (so that End £ = End fx) : it turns
out that DGx ~ ResZ+/QG, where Z+ denotes the maximal totally real subfield of
the center of (End f~) ~Z Q, and G is an absolutely simple group over Z+ (in fact
G|C ~ SL2) ; thus in this case -9Gx is simple over Q (see also the Appendix, and
[My] Lemma 2.3, [Al] Th. 2).(1)

REMARK 2. On the other hand, the equality Hx = DGx (x ~ ) may fail for
trivial reasons, namely when some Jordan-Hôlder constituent of(VZ, W, F’) is a
locally constant variation of MHS, with non-abelian Mumford-Tate group.
However this is not the only obstruction to the maximality of Hx in general, as
we shall now show. (2)

SCHOLIE. There exists a non-isotrivial abelian scheme A - X over some curve
X, with simple geometric generic fibre, such that Hx =1= -9Gx for any XEX.

Proof. We use M. Borovoi’s construction of a simple complex abelian variety
A of dimension 8 with Mumford-Tate group G = ReszjQSL1(Dl x D2), where Dl
and D2 are quaternion algebras over some real quadratic field Z, with the same
invariants at every finite place of Z, and of type compact-non-compact (resp.
non-compact-compact) at oo [B]. In fact, such polarized abelian varieties (with

(1)Other examples of Q-simple Mumford-Tate group are constructed in Mustafin’s paper cited in
the final note.

(2)This contradicts the conjectural statement IX 3.1.6 in the author’s ’G functions and Geometry’
Vieweg 1989.
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suitable level structure) can be put into a family ’of Hodge type’ Ao - X o,
parametrized by a Shimura variety

where

ri is a torsion-free congruence subgroup in G’,

K’ = maximal compact subgroup in Gi(R),

Now choose y ~ X0, let y denote its projection on the curve K1BG1(R)/03931, and
let A ~ X:= Yl  (K2BG2(R)/03932) be the pull-back of A0 ~ X0. It is clear that
Hx c G2 for every XEX. However Gx = Gy = G x G2 for every XEX.

REMARK 3. In this example, Z is the center of the centralizer of Hx in
End H1(Ax, Q), and this provides by the way a non-trivial instance where the
conditions 4.4.11 of [D2] II fail.

7. Algebraic independence of abelian integrals

The heuristic idea underlying this section is that ’periods’ describe the location
of the Hodge filtration with respect to the integral lattice, so that large
Mumford-Tate groups reflect randomness of periods. We illustrate this prin-
ciple in the case of 1-motives (periods are then abelian integrals).

Suppose we are given some 1-motive M over the algebraic variety X; its
generic fibre M := M~ is then a 1-motive over the function field C(X).

According to [D2] III, 10.1.7, there exists a universal extension M# of M by
a vector group:

The De Rham cohomological realization of M is by definition

H1DR(M): = CoLie E#. Moreover, the exact sequence
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induces an exact sequence

where H1R(E) is the De Rham cohomological realization of the 1-motive

[0~E], identified with the usual first algebraic De Rham cohomology group
of E.

Let Kx denote the fraction field of the local ring (!J xan,x at some point x e X.
Construction [4] III, 10.1.8 then yields a canonical isomorphism:

Let van the flat connection over Vi such that (VcC)an = VC. According to Griffiths,
GrW~an has only regular singular points (see [CG], [Dl]). It follows that van
itself has only regular singular points (according to Proposition 1.13 in [Dl]
Ch. II), henceforth is induced by a connection V over H1R(M). In fact (*) is a
sequence in the category of C(X)-vector spaces with C(X)/C-connection,
inducing the Gauss-Manin connection on H1R(E), and a trivial connection on
Hom(1, GJ.
By definition of V, we have

Let us translate (*) and (**) in more down-to-earth terms, assuming that H  E

is injective, and that f!lis constant over X. Then Xmay be considered as a group
of sections of &#x26;. -!. X, and Vz is spanned by logEH, Ker eXPE), at least if we
restrict ourselves to the subset of X where u is fibrewise injective. By means of
suitable bases, a fundamental solution matrix of a Picard-Fuchs differential

system of order one associated to H1R(M) can be expressed in some neighbourh-
ood of xo E X by:

where 03C9i (resp. 03B3j, resp. Çk) runs over some basis of H1R(&#x26;/X) 0 Qx,x0 (resp. of
(R1fan*C), resp. of gxo)’ so that the entries of Z are elements of OXan,xo. On the left
side, we can recognize the classical ’period matrix’ solution of a Picard-Fuchs
differential system associated to the quotient H1R(E); such a matrix Z was
already considered by Y Manin [M].
Our next theorem deals with a smooth 1-motive of the form [0 ~ E].

THEOREM 2. Assume that some fibre of E ~ X splits : EX1 = Tx1 x Ax1, and that
Ax1 is of CM type.
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Then the transcendence degree of the C(X)-extension generated by all the

’periods’ 03B3j03C9i equals the dimension of the ’generic’ derived Mumford-Tate group
!0G. 

Proof. By ’generic’, we mean the dimension l5 of D(Gx(V([0 ~ E]))) for any
XEX. The group GX1 is a torus, according to the CM type hypothesis. Since the
variation of MHS is good (at least when restricted to curves, see the example at
the end of Section 4), Proposition 2 applies to establish the equality l5 = dim Hx.
Since the connection has only regular singular points, we get furthermore that l5
is the dimension of the differential Galois group associated to H1R(E). But
differential Galois theory tells us that this dimension is the transcendence degree
of the C(X)-extension generated by the entries of the fundamental solution
matrix Z (see [Al], [A2]). D

Our last theorem is concerned with a smooth 1-motive of the form [HA],
where A  X is an abelian scheme. 

THEOREM 3. Assume that, over any finite étale covering of X, the map induced
by u:H~A/fixed part remains injective. Then the transcendence degree of the
extension of C(X)((03B3j 03C9i)ij) generated by the germs of analytic functions f ok 03C9i (Çk
as above), equals the dimension of the generic group U introduced in Section 3.

Proof. Using similar arguments from differential Galois theory, we can see
that it is enough to show that

Ù ~ Ker(Hx(V[X ~ A]) ~ Hx(V[0 ~ A])) := U(Hx).

According to Theorem 1, we have Hx  Gx; thus in order to apply Proposition 1,
it suffices to show that WHx0,x ~ W-1,x. At the cost of replacing X by a finite étale
covering, we may assume that Hx is the whole monodromy group (not only its
neutral component). We identify lt with its image in A and consider it as a

group of sections of / Let vx ~ W; it extends to global section v of Wo;
setting 03BE=exp v ~ H, we thus have ~(d/dx)03C9x=0, for any section W of
H1DR(A/X) ~ OX,x and any derivation d/dx of C(X). According to Manin [M],
this implies that some integral multiple of 03BE belongs to the fixed part of A.
However the hypothesis we have made upon u implies in turn that 03BE is torsion,
so that v ~ 0393W-1.

REMARK. This result is the geometric variant of the ’Kummer theory’ on
abelian varieties, which studies the extension of the field of rationality of some
torsion points, generated by the division points of some non-torsion points.

REMARK. The exact sequence (*) of C(X)-vector spaces with connection splits
if and only if U(Hx) = 0.
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Appendix

Automorphisms of certain Hodge structure over number fields

So far we have been constructed only with polarized Hodge structures (HZ, h, 03C8)
over Z, and we used some variants of the argument that the automorphisms of
(Hz, h, 03C8) form a finite group, say G : indeed G imbeds both into the discrete

group GL(Hz) and into the compact orthogonal group (9",= Aut(HZ Q R,
03C8(·, h(i)·)). If 7L is replaced by the ring of integers R of some totally real number
field, the group GL(HR) is no longer discrete in general; even if one tries to use
Weil’s restriction of scalars from R to Z, it could happen that the ’conj ugates’ of

(9", are not compact. Here we shall study those polarized Hodge structures over
R which arise naturally as pieces of the cohomology of abelian varieties with
many endomorphisms, and show how the finiteness of G involves arithmetical
questions.

A. Classification of abelian varieties with many endomorphisms

Let X be a complex simple abelian variety of dimension g &#x3E; 0, such that
D = End X Oz U contains some commutative field E of degree g over Q. Since X
is simple, D is a division ring whose center is denoted by Z. Any polarization 03C8
of X defines a positive involution * over D ; this implies that the subfield Z + of Z
fixed by * is a totally real number field. After Albert’s classification (cf. [Md] 11),
four cases can occur a priori:

Type I
Z+ = Z = E = D; X is then called a ’Hilbert-Blumenthal’ abelian variety.

Type II
Z+ = Z and for every real place p of Z, D ~Z,03C1 R ~ M2(R).

According to loc. cit., there exists a ~ D, such that the reduced trace TrD/Z(a)
vanishes, and such that the involution * is given by x* = a[TrD/Z(x) - x]a-1 for
any x ~ D. Since D is a quaternion algebra over Z, there exists b E D, such that the
reduced trace TrD/Z(b) vanishes, and which anticommutes with a. We then have
b* = b. So Z(b) is totally real and one can assume that E = Z(b).

Type III
Z+ = Z and for every place p of Z, DZ,03C1 Q R is isomorphic to the Hamilton
quaternion algebra H. In fact this case does not occur under our assump-
tions on X. Indeed the representation of EndH[H1(Xan, R) ~Z,03C1 R] over

H 1 (Xan, R) ~Z,03C1 R yields, after complexification, two copies of the standard
representation of S02 ([My] Lemma 2.3). This representation thus decomposes
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into four sub-representations of degree one, whose endomorphism algebra has
to be H ~R ~ M 2(C): this is impossible.

Type IV
Z is a totally imaginary quadratic extension of Z +. Either [Z:Q] = 2g in which
case X is said of’CM type’ and we can choose E = Z+, or [Z:Q] = g and we can
assume that E is a totally imaginary quadratic extension of its subfield E + fixed
by *, whence the following diagram of extensions:

since [D:Q]2g, [E:Z][D:E] (from the commutativity of E), and

[E:Q]=g, we find that [E:Z]  2.

Except in the CM case, E is a maximal commutative subfield of D, and in any
case we shall write E + for the subfield of E fixed by *, K for the Galois closure of
E+ in R, and R for the ring of integers of K.

B. The Hodge structure H03BC over R

Let us pick some primitive element ( of E + over 0 in the order (End X) n E + of
E+. This element acts via 03B6* on the free R-module H1(Xan, R), and its

characteristic polynomial has rational integral coefficients and the same roots as
the minimal polynomial of 03B6; that the characteristic polynomial thus equals
some power of this (separable) minimal polynomial, so that some essential R-
submodule of H1(xan, R) decomposes into a direct sum of free R-modules H JI’
the indices running among the imbeddings of E+ into K. Let L be the

compositum in C of K and the image of E through some complex imbedding, so
that L = K except in the non-CM type IV case. Then the rank of H03BC is

2g/[E:Q]=2[L:K]. The free R-module H03BC is naturally endowed with a

polarized Hodge structure (h03BC, 03C803BC) of type (0, 1) + (1, 0) over R, and there is an
isomorphism of polarized K-Hodge structure

Furthermore when L ~ K, t/JJl comes from a L-hermitian form 9, on the L-
vector space H03BC ~R K.
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C. Automorphisms of (H.., h.., 03C803BC)

PROPOSITION 3. The group G of L-linear automorphism of (HJI’ h03BC, 03C803BC) is

infinite if and only if one of the following statements holds:

(i) K = L, and there exists some non-totally positive element k E KX such that

the multiple fi. C of the Weil morphism C = h03BC(-1) on H JL ~R R comes
from an endomorphism of H JI (8) R K,

(ii) K ~ L and the direct summand (H03BC ~R K)~L C of H03BC ~R C is

bihomogeneous.

We begin the proof with the case K = L.
Let us choose an R-basis of H JI such that the Riemann form 03C803BC = ·,·&#x3E; is

represented by the matrix ( 0 e) 
for some e E Rx and let us consider thep y 

-e 0 
’

matrix of C in the basis (viewed as a basis of HJL OR R): since C2 = -1, this

matrix has the shape 
( ), for (03B1, 03B2, 03B3)~R3 satisfying the equation

ay = 1 + 132. It follows that ay * 0. The symmetric form ·, C(·)&#x3E; is represented by

Q = ( ). Let 0 E G, so that 0 E Aut H03BC n O(H, Q R, Q), and let us write
03B8ij E R for the coefficients of the matrix of 0. The equation tBQo = Q is equivalent
to the system

(a) Let us first deal with the case when C is defined over some totally real
algebraic extension of K. Then a, 13, y are totally real algebraic numbers. Let
03C3 ~ Gal(K/Q), and let oce, 03B203C3, y’ be conjugates (necessarily real) of a, fi, y re-

spectively, above a. Setting Q03C3 = ( ), we find t03B803C3Q03C303B803C3=Q03C3, and

det QG = (eG)2 &#x3E; 0, so that 03B803C3 belongs to the compact orthogonal group 02(QG).
By restriction of scalars à la Weil from K to Q, G imbeds into

(ResK/Q Aut(H03BC ~R K))(Z) (which is discrete) and into 03A003C3O2(Q03C3) (which is

compact), so that G is finite in this case. Here we point out that the CM type is a
special case: indeed the Hodge bigraduation of H03BC ~R C comes from the CM
decomposition
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for some complex place v of Z over J1 (here we denote by L’ the compositum
K . v(Z) which is a quadratic totally imaginary extension of K). Let us write
L’ = K(h) with h2 - - g ~ R-; the matrix of C (in some basis adapted to the above

décomposition) reads ( ), thus C is defined over the totally real number
field K()=K(ih).

(b) Let us now assume that 11, 03B2, y span a line over K ; since 03B103B3 ~ 0, we write

f3 = ha, y = ca for some (b, c) e K x K*. This yields a2 = 1 e K ~ R +. Getting
rid of the above possibility (2), we are reduced to the case (i) of the proposition

with k = c - h2. Since any 03B8 e G commutes with  C = (), 03B8 has the form

() for x, y, cy and 2b y e R. The set of all these matrices is an order R’y x+2by

in the field K’ = K(b2 - c) = K(i03B1), as is seen by identifying x cy with
(x + by) + yb2 - c. Since 0 is invertible, it is identified with some unit in

R’. The equation t03B8Q03B8 = Q then reads X 2 + 2bxy + cy2 - 1, that is (x + by) +

yb2 - c ~ Ker NK’/K. But NK’/K has maximal rank as a morphism between unit
groups (R’)* ~ R*. By assumption, K’ is not totally imaginary, so that by
Dirichlet’s theorem rk(R’)* &#x3E; rkR*. Thus the kernel of NK’/K in (R’)* contains
infinitely many elements, and so does G in this case.

(c) It remains to deal with the case when 11, 03B2, y span a K-vector space of
dimension at least 2. This implies that all minors of (E) vanish. In particular,

(1) ,
(2) ,
(3) (03B8222 - 1)(03B8222 - 1) = 03B821203B8221,

from which it follows that ,
so that 03B81203B821 = 1 + 822011 if 03B81203B821 ~ 0. Squaring, we find (using (3) again) that
03B81 1= -03B822 in this case, and from (1) we get 03B81203B821 = 1-03B8211; that is, det 03B8 = -1
and tr0=0, from which it follows that 03B82=1. If 03B81203B821 = 0, we get (from the
vanishing of the other minors) that 03B8211=03B8222=1, and moreover that

03B81103B822 = -1 if 012 and 03B821 do not vanish simultaneously; so we are reduced to
the previous case where 03B811 = - 03B822, except if 03B8 = ± 1. From this description we
see that any two elements of G, distinct from ± 1, are inverse up to sign; this
implies that G is finite (with at most 4 elements).

We now turn to the case K ~ L.
Let us choose a R-basis of H03BC such that the L-hermitian form ~03BC=·,·&#x3E; is

represented by the matrix (), for some (e,f)E(RX)2. VVe identify L~K R
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with C by means of an element h of L such that h2 - - g E K n R’; since L is
totally imaginary (like E), g is totally positive. The Weil morphism C is linear
with respect to the complex structure induced by L ~K R on H Il (8) R R, since it
commutes with the action of L.

(a) Let us first deal with the case when (H03BC ~R K)~L C is not bihomo-

geneous. Through the isomorphism  (H03BC~R K)~L C can be
identified with the complex plane H Il (8) R R, and C has the two eigenvalues ± i
on H Il OR R. Since t/J Il is a morphism of the Hodge structure and since C is C-
linear, C belongs to the unitary group of qJll. Using this property, and the
equations C’ 1 and tr C = 0, we get the following matrix representation with

C : ht y with t c- R, a y) E e2, and with the following equation:
ay + gt2 = 1 and fa = ey. (*)

Let us write a = v + hw, for (v, w)~R2. Taking into account (*), we find the

following matrix representation for the symmetric form Re h/g·, C(-» in the
real basis of H03BC ~R R attached to the chosen complex basis:

Since Q, has maximal rank and index 0, the first main 1-minor is non-zero:
t ~ 0. Let us first assume that 03B1 ~ 0. Since 0 E G commutes with C, we find that 0
has the following matrix representation:

Furthermore the relation yields the system

Eliminating xx between (1) and (2) and yy between (2) and (3), one obtains
xy = 0; inserting this equation into (1) and (3) gives y = 0 and xx = 1. (Note that
since 0 is invertible, x is a unit in L).
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If on the contrary a = 0, then y = 0 according to (*), so that 0 is diagonal and
xx = 1 again. In both cases, to show that G is finite, it suffices to prove that the
units in Ker NL/K form a finite group. Since L is a totally imaginary quadratic
extension of K, the unit groups UL and UK have the same rank [K:Q]-1, thus
the desired statement comes from Dirichlet’s theorem.

(b) It remains to deal with the case (ii) of the proposition. In this case C is the
homothety with scale ±i~L~K R on H03BC ~R R. The matrix of the symmetric
form Re h·, C(’)) in the real basis of H03BC ~R R attached to the chosen complex
basis reads:

Since Q is definite (positive or negative) it follows from Sylvester’s criterion that
the product 03B4103B43 of the first and third main minors of Q is positive: ef &#x3E; 0.

Let K’ the imaginary quadratic extension of K generated by -e/f. We
shall show that K’ is not totally imaginary. Indeed, according to a result of
Shimura [S] Th. 5, there exists at least one place ap of K (03C3 E Gal(K/Q)) such
that H03C303BC falls into case (a). We apply Sylvester’s criterion to the matrix

considered in case (a) (for H03C303BC instead of H03BC).
The product blb3 is - (e2f)03C3t2(f03C3v2 + f03C3g03C3w2 + g03C3e03C3t2). Because of the relations
(*), this can be simplined: 03B4103B43 = -(e03C3f03C3t)2e03C3f03C3. We find el1fl1  0, so that K’ is

not totally imaginary. Let 0 E Gand bits L-determinant. The relation t03B8()
0 (e 0) . Id 0 = a - () for the matrix of 03B8, with 03B403B4=1 and

eaa + fcc = e. To show that G is infinite, it suffices to consider the case where

a, c ~ R and à = 1. Then the set of matrices c a with (a, c) E K2 is a field
isomorphic to K’. The subring consisting of matrices with entries in R is an order
R’, and the subgroup of (R’)* consisting of unimodular matrices satisfying
ea2 + fc2 = e is the kernel of N K’/K in (R’)*. The same argument as in the first part
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of the proof (K = L, case (b)), shows that this group is infinite. This completes the
proposition. D

Along the lines of [D2] II, 4.4.8, Proposition 3 can be used to reprove the
conjecture of Section 6 for families of abelian varieties with many endomorph-
isms. The point is that, except in case (ii), the Hodge filtration of !Ill is locally
constant if and only if the monodromy is finite. Indeed, the local constancy of F*
implies that the monodromy group (whose component of identity is semi-

simple) imbeds into the automorphism group G which is finite except in cases (i),
(ii) and which is a torus in case (i); here G denotes the Zariski closure of the group
G determined by Proposition 3.

Note

Nearing the completion of this work J.P. Wintenberger pointed out to me a
paper by G.A. Mustafin ’Families of algebraic varieties and invariant cycles’,
Math. Izv. 27 (translation: 1986) n°2, where the author also compares Hx and Gx
under a strong degeneration hypothesis; in that paper, the normality property in
the ’projective smooth’ case is stated, and attributed to P. Deligne.
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