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Section 1

It is an old question how long arithmetical progressions of equal powers of
positive integers can be. There exist infinitely many triples of coprime squares in
arithmetical progression, but Fermat proved that there are no four squares in
arithmetical progression, see [8, p. 21]. Dénes [2] conjectured that for l  3
there are no three 1-th powers in arithmetical progression, and proved this
assertion for 3  1  30 and for sixty other prime values of 1. Faltings’ celebrated
result [5] implies that for any 1 a 5 there are only finitely many triples of
coprime 1-th perfect powers in arithmetical progression. Without loss of

generality we can restrict our attention to the following situation:

1 is a prime number, l  3, and m, d and k are positive 

}integers satisfying gcd(m, d) = 1 and k  3 such that each (1)
of the numbers m, m + d,..., m + (k - 1)d is an 1-th perfect power.

Let dl be the maximal divisor of d such that all the prime factors of dl are
~ 1 (mod l). Similarly, we define m 1 as the maximal divisor of m such that all the
prime factors of m 1 are ---1 (mod 1). For an integer v with |v| &#x3E; 1, we write p(v),
P(v), Q(v) and m(v), respectively, for the least prime factor of v, the greatest prime
factor of v, the greatest square free factor of v and the number of distinct prime
divisors of v. Further, we set p( ± 1) = P( ± 1) = Q( ± 1) = 1 and w(:t 1) = 0. We
write p(l, 1) for the least prime ~ 1(mod 1). Recently Heath-Brown announced
that he has proved

p(l, 1)  l10 if 1 a C (2)

for some effectively computable absolute constant C. Until now the best

exponent was 16, see Wei [12].
It follows from the above mentioned results of Dénes and Faltings that if (1)
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holds then k is bounded by some number depending only on 1. We showed in

[10] that there exists an upper bound for k depending only on cv(d). In fact, we
proved in [10] that (1) implies that

and that

Furthermore, it follows from formula (2.7) of [11] that

Here C1 is an effectively computable absolute constant. In this paper, we find an
upper bound for k depending only on cv(d 1 ). More precisely, we prove

THEOREM 1. Let 8 &#x3E; 0. There exists an effectively computable number C2
depending only on 8 such that (1) with k  C2 implies that

Theorem 1 sharpens the assertion of Corollary 1 of [11] under a stronger
assumption. We derive the following result from Theorem 1, the Brun-

Titchmarsh Theorem and (3).

COROLLARY 1. Let 8 &#x3E; 0 and q(8) = (1 - 8)/long 2. There exists an effectively
computable number C3 depending only on 8 such that (1) with k  C3 implies that

and

Observe that (3) gives stronger results than (7) for small values of 1. For example,
we see from (3) and the Prime Number Theorem for arithmetical progressions
that (1) implies that

if 1 does not exceed a fixed power of log k and k is sufficiently large.
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It is clear from (3) that it is not possible to obtain an inequality analogous to
(7) for p(d 1 ). In fact, p(d 1 ) is bounded whenever 1 is bounded. More generally, we
see from (3) and (2) that if (1) holds with k exceeding a sufficiently large absolute
constant, then

where C4 = 2-1/10.
Next we consider analogous results for m.

THEOREM 2. (a) There exists an effectively computable absolute constant
CS &#x3E; 0 such that (1) implies that

(b) There exist effectively computable absolute constants C6 and C7 &#x3E; 0 such

that (1) with k  C6 implies that

and

COROLLARY 2. If (1) holds then

Finally, we prove a result involving both m and d,

THEOREM 3. There exists an effectively computable absolute constant C8 such
that (1) with k  C8 implies that

Section 2. Proof of Theorem 1

We may assume that (1) with k  c is valid where c is a sufficiently large
effectively computable number depending only on 8. Further, by the result of
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Dénes mentioned in Section 1, we may suppose that 1 &#x3E; 30. The case

1  4w(d,) + 2 is treated in the following lemma.

LEMMA 1. Suppose (1) is satisfied with 30  1  403C9(d1) + 2. Then

Proof. First we consider the case that 31  03C9(d1). Then there exists a positive
integer n satisfying

Consequently, there exists a divisor d’ of dl such that

and

Therefore, by (2.1) of [11],

where CS is the absolute constant appearing in (2.1) of [11]. Further, since
1 &#x3E; 30, we observe that

Now we proceed to apply Theorem 1 (b) of [11]. For this, we observe from (15),
(16) and (4) (or (2.13) of [11]) that

where C8 is the constant appearing in (2.4) of [11]. Hence, by theorem 1(b) of
[11],
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which, together with (14), implies that

since 1 &#x3E; 30.

Thus we may assume that 31 &#x3E; 03C9(d1). Then we may suppose that 1 &#x3E; 200,
otherwise we apply Corollary 3 of [11] to conclude that k  c.

Next we consider the general case 30  l  4cv(dl) + 2. Then there exists a
positive integer n with

and a divisor d’of d 1 satisfying

Now, we apply Theorem 1(b) of [11] as above, to conclude that

which, since 1 &#x3E; 200, implies that 03C9(d1) &#x3E; 3 2 log k. D

To complete the proof of Theorem 1, we consider the case l &#x3E; 403C9(d1) + 2.
Then, by (5), there exists a divisor d’of dl such that

Further, by (2.1) of [11], we observe that

where C5 is the absolute constant appearing in (2.1) of [11]. Now we proceed to
apply Lemma 8 of [11] with f (x) = log x. First we observe from (19) and (2.7) of
[11] that

Also it is easy to see that |S1|  03C0(k) where Si is the set appearing in Lemma 8 of
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[11]. For this, observe that, by (1), for every prime p  k there is at most one y
with 0  03BC  k such that m + pd is divisible by p. (In fact, (3) is an immediate
consequence of this assertion.) Hence we apply Lemma 8 of [11] to conclude
that

We write

Therefore, for M &#x3E; v  0, we have

We put

Except possibly 1, every prime factor of xl,,v is == 1 (mod 1) and 12 x03BC,v. In
particular, we observe from (20) that

which implies that

Now we fix v = [203B51k] - 2. We conclude from (22) that for li &#x3E; v there exist

positive integers d1,03BC = d1,03BC,v and d2,, = d2,03BC,v such that

and

Furthermore, we derive from (23) that x03BC,v = d1,03BC and d1,03BCl-03B4 is a divisor of d1
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where

For pi &#x3E; 03BC2 &#x3E; v, we observe that x03BC1,v &#x3E; x03BC2,v. Now we apply the Box Principle
to conclude that

PROOF OF COROLLARY 1. Let 8 &#x3E; 0 and 81 = e/2. Suppose that (1) with
k  C3 is valid. Further, we may assume that C3 is sufficiently large. Now we see
from (6) that

We recall that every prime divisor of d 1 is ~ 1 (mod 1) and we apply the Brun-
Titchmarsh Theorem to derive (7) from (24).
Next we proceed to prove (8). First we assume that 1  4cv(dl) + 2. Now we

apply Lemma 8 of [ 11 ] as in the proof of Theorem 1 to conclude (20). Further we
observe that

We combine (25), (24) and (20) to derive (8) if 1 &#x3E; 4m(di) + 2.
Thus we may assume 1  4w(dl) + 2. Then we apply Theorem 1 (b) of [11] as

in the proof of Lemma 1 to conclude (18). We combine (25) and (18) to derive

Thus we may suppose that l  12~(03B5) log k. Then we see from (3) and the Prime
Number Theorem for arithmetical progressions that

which implies (8).
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Section 3

We denote by cl, ... , c9 effectively computable absolute constants. Suppose that
(1) is valid with k  Ci where c 1 is sufficiently large. We write (21). As already
remarked, for every prime q  k there is at most one J1 with 0  03BC  k such that
m + J1d is divisible by q. Therefore there exists a set T with |T|  k - n(k)
consisting of integers J1 satisfying 0  03BC  k and p(x03BC) &#x3E; k. Further, for J1 E T and
v E T with p &#x3E; v, we observe from (21) that

Then we have

We apply the sieve-theoretic Lemma 1 of Erdôs [3] to conclude that there exist
positive integers P, Q and R such that

and that

is satisfied by at least c3k pairs xu, xv with p(x03BC) &#x3E; k, p(xv) &#x3E; k and

gcd(xJl’ xv) = 1.

PROOF OF THEOREM 2(a). We may assume that k  cl, otherwise (9)
follows immediately. Now we apply a theorem of Baker [1] on linear forms in

logarithms to conclude from (26) that

which implies that

This inequality is trivial if c5 log l  1 which implies that l  c6. If l  c6, we
apply an estimate of Feldman [6] on the magnitude of integral solutions of
Thue’s equation (cf. [9], Chapter 5) to (26) for deriving
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Now we combine (27) and (28) to obtain m  dc8 which, together with (4), implies
(9).

PROOF OF THEOREM 2(b). Assume (1). We may suppose that k  c, and,
by part (a), that m  c2. Then there are at least C3k pairs x,, xv with p(xu) &#x3E; k,
p(xv) &#x3E; k and gcd(xu, xv) = 1 satisfying (26). Observe that

Now we apply Theorem 2 of Evertse [4] on an upper bound for the number of
solutions of (26) to conclude that

which implies (10).
We put p = p(m,). Then, by Corollary 2, we observe that p  2. Since

ordp(m)  1 and gcd(m, d) = 1, we see that ordp(m + pd) = 1. If p  k, then this
is not possible. Thus we derive that

By (21), we have

Further, by (29) and gcd(m, d) = 1, we observe that

On the other hand, since p = 1 (mod 1), we see that xô, x i, ... , xlk-1 lie in at most
(p - 1)/l distinct residue classes mod p. Hence we conclude from (30) and (31)
that (p - 1)/l  k which implies (11). Finally we observe that Q(m1)  po(- i)
which, together with (11) and (10), implies (12). D

Section 4. Proof of Theorem 3.

We denote by el 0’ c11 and c12 effectively computable positive absolute

constants. Assume (1) with k  c10 where c10 is sufficiently large. Put

|m - d| = M. Observe that M ~ 0, since gcd(m, d) = 1. By (21), we have
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As in the proof of Theorem 2(a), we derive from the theorems of Baker and
Feldman that

log M  c11 log d

which, together with (4), implies

log M  c12k2. (32)

For a prime q  k dividing m - d, we see from (21) that ordq (m - d + qd)  1.
Therefore, since gcd(m, d) = 1, we derive that ordq(m - d)  1 for every prime
q  k. Assume that P(M)  k. Then

which contradicts (32). D

REMARK. Estimate (9) can be sharpened. Suppose that (1) is satisfied and let
e &#x3E; 0. We refer to (27) and (4) to derive that

where C9 is an effectively computable number depending only on e. For all l, we

apply Theorem 1 of [7] to (26), together with (4) and 1 &#x3E; 30, to obtain

where Clo is an effectively computable number depending only on 8.
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