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Introduction

This paper is the continuation of ’On the Classification of Primitive Ideals for

Complex Classical Lie Algebras, l’ [4]. References to items, the first of whose
three digits is the numeral 1, are references to items contained in that paper.
Unexplained notation refers implicitly to part I, as well.
The first aim of this series of papers, as explained in the introduction to part I,

is to classify the primitive ideals in the enveloping algebra of a complex
semisimple Lie algebra of classical type by determining the fibres of the Duflo
map ([3]), that is, determining explicitly when two irreducible highest weight
modules have the same annihilator. Joseph [7] and [8], first accomplished this
for g of type An-1, by showing that the Robinson-Schensted algorithm applied
to the symmetric group on n letters calculated a complete invariant of the
annihilator of an irreducible highest weight module. (Since this algorithm has an
explicit inverse this solves the problem in a very nice way.) In part I, the
existence of an analogous algorithm, called A, for the Weyl groups of types Bn,
C,,, and Dn, was demonstrated. It produces a pair of domino tableaux.

Completely new, however, was the phenomenon of cycles which was in-

vestigated in that paper, and the completely dissimilar algorithm, S (involving
the notion of cycles, peculiar to the domino situation) which, given a domino
tableau, produces one in a special shape (corresponding to Lusztig’s notion of
special irreducible Weyl group representation [10]: in the An case, every
irreducible representation is special). This last product will be shown, in part III
of this series (for types Bn and Cn; the treatment of type Dn will appear in part IV)
to be the complete invariant sought. (The inverses to both algorithms were
studied in part I.)

In this part we study the relationship between the map a (the main ingredient
of A) and the various T03B103B2’s (for ce and 03B2 appropriate pairs of adjacent simple
roots), since we intend, in part III, to prove Vogan’s conjecture (in the cases Bn
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and Cn, i.e. the cases where it is true) that the generalized i-invariant is a

complete invariant of a primitive ideal [11].
This study falls into two main halves. The first half, contained in Section 1 of

this paper, is, modulo what one may call the obvious complications induced by
the introduction of dominos where squares used to suffice, basically analogous
to Joseph’s analysis of the An situation, and obtains when a and 03B2 have the same
length. In Section 2 we then deal with the essentially new sort of complications
obtaining when a and 03B2 have differing lengths. (The case of Dn would be a third
half and its complications are postponed until part IV.) We must then study how
the step (X of the algorithm A disturbs what we call the cycle structure of the
domino tableaux (produced by the previous steps of A). After this key result is
proved we can then finish our analysis of the relation between A and the T03B103B2’s, in
Section 3.

In this way, the significance of the cycles has broadened considerably from
part I, where they played no role in the discussion of A.

In [5] this author showed how to calculate the annihilators of irreducible
Harish-Chandra modules for type A,, using a hybrid cross between the

Robinson-Schensted algorithm and a completely different procedure. By
making somewhat similar (but more complicated) hybridizations between A and
other items (and then of course applying S) one can do the same for other
families of classical groups. In order, however, to even define these hybrids we
will need the results of this paper on the cycle structure of domino tableaux. (To
show further that these hybrids compute the annihilators we will need the results
on the generalized i-invariant from part III, in cases B. and Cn, and on the
generalized generalized r-in variant, for Lie (G) of type Dn, from part IV.)

It is best to take the results of this paper, to the extent that they refer to simple
roots, etc., as applying to types Bn and Cn. (In particular W is the Weyl group of
type Bn or Cn.) Most of these results do apply equally well to type Dn (although
not those which refer to al); this will be explained in part IV. Also, it is known
that the classification of primitive ideals depends only on the Weyl group. So the
discussion of tableaux for type Bn is unnecessary for the immediate purposes of
this series of papers. On the other hand, most of it will be needed for the study of
Harish-Chandra modules.

In [4] we gave two definitions of the map A. We will use the second of these,
Definition 1.2.7, in all proofs in this paper.

Section 1

The various definitions and theorems of this section are stated for T~J(M),
etc.; they hold for T~J0(M), etc., as well.



309

2.1.1. NOTATION. (1) If T~J(M) and i E M, write T - i for TBD(i, T).
(2) If P={Si,j,Si+1,j} (respectively P = {Sij,Si,j+1}) we set pl(P) = i,

03C12(P)=i+1, 03BA1(P)=03BA2(P)=j (respectively 03C11(P)=03C12(P)=i, x 1 (P) = j, and

03BA2(P)=j+1). Such a P is called horizontal (respectively vertical). If T~J(M)
and k~M we set 03C11(k, T) = pl(P(k, T)) ; similarly 03C12(k, T), xl(k, T), and 03BA2(k, T).
We define various maps, all called transpose.

2.1.2. NOTATION. If F ~ F let tF = {Sji|Sij~F}. For T~J(M) let

(Then 03C1i(tT)=03BAi(T).) We define similarly t:J(M1, M2)~J(M1, M2). We define
t: W(M) - W(M) by t(7; v, 03B5) = (tT, v, - e) and t: D(M) ~ D(M) by t(T, P) = (tT, tP).

PROPOSITION. 03B1(tX) = t(03B1(X)) for X ~ L(M).
Proof. The proof uses induction on |M|. It is then trivial from the

definitions. D

2.1.3. DEFINITION. Let w~W. We define !L(W) and ’t"R(W) as subsets ofn, the
simple roots, by:

(1) a E T’(w) if and only if wa e 1B + which is in turn equivalent to l(wsa)  l(w),
(2) 03B1~03C4L(w) if and only if 03B1~03C4R(w-1) which is in turn equivalent to

l(saw)  l(w).

2.1.4. DEFINITION. (1) If ce and 03B2 are adjacent simple roots we define

similarly we define DR03B103B2(W).
(2) When 03B1 and 03B2 are adjacent simple roots of the same length, we define a

map

Then TL03B103B2 is a well-defined bijection with inverse TL03B203B1. (This is obvious if the Lie
algebra is of type A2. The general case is reduced to this case by Exercise 3,
§1.[2].)

(3) When oc and 03B2 are adjacent simple roots with different lengths, we define a
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map TL03B103B2 with domain DL03B103B2(W) by: for w E D’ (W),

Then 7L03B103B2(w) is a one or two element set. Furthermore we have:

(Again, the general case is reduced to that of B2.)
(4) We define similarly TR03B103B2, with analogous properties.

2.1.5. DEFINITION

(2) We define similarly ai E iR(y) and (Xi ft 03C4R(03B3) by interchanging the roles of M,
and M2 in the above definitions. (This could be phrased as ai E iR(y) if and
only if 03B1i~03C4L(03B3-1) (see Definition 1.1.5).)

REMARK. If M1= {1,...,n} then it is natural to consider (and we do) the
above as defining 03C4L(03B3) as a subset of n, the simple roots. Otherwise the
statements ai E 03C4L(03B3), 03B1i~03C4L(03B3) are considered as formal statements to be made
only under condition of the stated hypothesis on M. Thus, for example, if 1 ~ M,
then the statement OC 1 e TL(y) is considered, not true, but meaningless, and as
such, false. (Similarly for 03C4R(03B3).)
2.1.6. NOTATION. Let 03B3~J(M1,M2).

(2) If i~M1 we define SCL(i; y) E J(M1, M,) as follows: suppose (i, ki, Bi) E y
then
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(3) We define similarly In’ and SC’ (in relation to M2)-
(4) Let Mi = {i1,..., im} with |M1| M, = m. We define

REMARK. (1) For w e W and 2  1 S n we have 03B4(siw) = InR(i -1, i; 03B4(w)) and
b(wsi) = InL(i-1, i; 03B4(w)). We have 03B4(s1w) = SCR(1; 03B4(w)) and 03B4(ws1) = SCL(1; 03B4(w)).
We have also 03B4(wow) = 03B4(wwo) = SC(03B4(w)). (Recall Definition 1.1.3 for l5.)

(2) We have A(SC(03B3))=tA(03B3) (by Proposition 2.1.2 and induction).

2.1.7. DEFINITION. (1) If {03B1, 03B2} = {03B1i, ai + 1} and either i =1 and {1,2} ~ M or
i  2 and {i-1, i, i+1} ~ M1 we define

It is easy to verify (see the list in the proof of Theorem 2.1.19) that TL03B103B2 is a well-
defined bijection with inverse TL03B203B1.
(3) If {03B1, 03B2} = {03B11, OC21 and {1, 2} ~ M, we define a map TL03B103B2 with domain

Again, it is easy to verify (see the list in the proof of Theorem 2.3.7) that TL03B103B2(03B3) is a
one or two element set, and furthermore that TL03B103B2 verifies the statements (i) and
(ii) of part (3) of Definition 2.1.4 above.

(4) We define similarly DR03B103B2(J(M1, M2)) and TR03B103B2, with analogous properties.
REMARK. (1) Clearly we have, for w e fl 03C4L(03B4(w))=03C4R(w) and 03C4R(03B4(w))=03C4L(w).
For w~DL03B103B2(W) we have 03B4(TL03B103B2)(w)) = TR03B103B2(03B4(w)); similarly with L and R interchan-
ged. (This follows directly from Remark 2.1.6(1).)

(2) If 03B3~DL03B103B2(J(M1,M2)) then SC(03B3)~DL03B203B1(J(M1,M2)) and TL03B203B1(SC(03B3))=
SC(TL03B103B2(03B3)); similarly with R in place of L.

2.1.8. NOTATION. Let TE5(M). If i, j E M we define
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If i E M and j ~ M we define

These need not be domino tableaux, as they need not satisfy condition (4) of
Definition 1.1.8. When defined, Re(i, i + 1 ; T) and Re(i, i -1; T) will be domino
tableaux.

2.1.9. DEFINITION. (1) Let T~J(M) and suppose i  2 and {i-1, il g M.

(a) We say 03B1i~03C4(T) if p2(i -1, T)  03C11(i, T), or, equivalently, if Kl(i -1, T) 
K’(i, T) and 03BA2(i-1, T)  K2(i, T).

(b) We say 03B1i~03C4(T) if Kl(i -1, T)  Kl(i, T), or, equivalently, if pl(i -1, T) 
pl(i, T) and p2(i-1, T)  p2(i, T).

(The equivalences follow from condition (4) of Definition 1.1.8.)
(2) Suppose 1~ M. Then we say (Xl E !(T) if K’(1, T) = Kl(l, T) (=1) (i.e. if

D(l, T) is vertical), otherwise we say 03B11 ~ 03C4(T).

REMARK. As in Definition 2.1.5, these are formal statements, except when

M = {1,..., n}, in which case we consider these definitions as defining i(T) as a
subset of 111.

2.1.10. DEFINITION. (1) Let

Let

Define F2(a; j, k) = t(1(a; k, j)) and F2(a; j, k) = t(F1(a; k, j)).
(2) If {03B1, fil = {03B1i, ai + 1} and either i = 1 and {1, 21 z M or i  2 and

{i-1, i,i+1} ~ M we define

as follows: if J
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(respectively T03B103B2(T) = (T/r(i-1; j, k)) u Fr(i-1; j, k)). (In this case we say that
T03B103B2(T) is obtained from T by an ’F-type’ interchange.) If not, then T03B103B2(T)=Z
where

Clearly, then, T03B103B2 and T03B203B1 are inverses. (The fact that, under the stated

hypotheses, this intersection consists of precisely one element can be shown to
follow from condition (4) of Definition 1.1.8.)

2.1.11. DEFINITION. If X=(T1, T2)~J(M1, M2) we say 03B1i~03C4L(X) if and only
if 03B1i~03C4(T1); similarly for 03B1i~03C4L(X), 03B1i~03C4R(X), and 03B1i~03C4R(X). We then have the
usual definition of DL03B103B2(J(M1,M2)), and define, for (T1,T2)~DL03B103B2(J(M1,M2))
and (03B1, 03B2} = {03B1i, 03B1i+1} with i  2, TL03B103B2((T1, T2)) = (T03B103B2(T1), T2); similarly with R in
place of L.

2.1.12. REMARK. (1) If T~J(M), and if {i-1, i} ~ M (respectively 1 e M) then
we have 03B1i~03C4(T) if and only if 03B1i~03C4(tT) (respectively, (Xl E !(T) if and only if
03B11 ~ 03C4(tT)).

(2) If T~D03B103B2(J(M)) then (for {03B1,03B2} = {03B1i, 03B1i+1} with i2) we have

t(T03B103B2(T))=(T03B203B1(tT)).

2.1.13. PROPOSITION. Suppose {i,i+1} ~ M, (T’, v, 03B5) ~ L(M) and let (T, P)=
03B1((T’,v)).

Proof Let e = sup M. Suppose first e ~ i+1. Then let T’1 = T’ - e and
(Tl, Pl) = 03B1((T’1, v, B)). By induction on IMI (the induction starts at IMI = 2, in
which case necessarily i + 1 = sup M) the implications are true with T’1 in place of
T’. (Clearly ( Tl, v, e) satisfies the hypotheses of any of the above implications
when (T’, v, e) does.) But P(k, T) = P(k, Tl) for k E M, k ~ e, in particular for
k ~ {i, i+1}, so we are done.

Henceforth assume i + 1 = sup M. By Proposition 2.1.2 and Remark 2.1.12(1)
it suffices to prove statements (b), (c), and (e). Now (b) is clear since

03C11(i+1, T) &#x3E; p2(k, T) for all k~MB{i+1}. Also, (c) is clear unless 03C11(i+ 1, T’) = 1
(since if not then 03BA1(i, T) = 03C11(T’)+1 &#x3E; 03BA2(k,T) for any k~M), so assume
03C11(i+1, T’) = 1. But in that case we see directly that 03C11(i+1, T) = 03C12(i+1, T) = 2;
on the other hand we know p2(i, T) = p2(i, T) = 1, so done.
To prove (e) let T’1=(T’-(i+1))-i, and set (Tl, Pl) = 03B1((T’1, v, e». We use the
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definition of the map a to compute P(i, T) and P(i + 1, T) in the various

situations which arise. First, we see that (e) is clear if any of the following three
conditions holds:

Suppose now that P1 ~ P(i,T’)=~ and P1=P(i+1,T’) is vertical. Then

Kl(i, T’) = K 2(i, T’) and 03BA1(i+1, T)=03BA2(i + 1, T)=03BA2(i, T’) + 1 so we are done

unless 03BA1(i+1, T’)=03BA1(i, T). But this latter contradicts our hypotheses.
We are reduced to the case Pi n P(i, T’) ~ 0 and 03C12(i, T’)=03C11(i+1, T’) -1.

Assume first P(i, T’) is vertical. Then the result holds since then

p2(i, T)  p2(i, T’), and, by our hypotheses (including that p2(i, T’)  03C11(i+1, T’)
which implies P1~P(i+1,T’)=~) we also see that (PiwP(1,T))m
P(i + 1, T’) = QS.

So, finally, assume P1 ~ P(i,T’) ~ ~ and 03C12(i,T’)=03C11(i+1, T’)-1 and

P(i, T’) is horizontal. There are two cases: firstly, that PIn P(i, T’)={Sk,l} for
some k, l. In this case, then we have that P(i, T’)={Sk,l, Sk,l + 1}, and

Then we compute: P(i, T) = {Sk,l+1, Sk+1,l+1} and 03C11(i+1, T) = 03C12(i+1, T)
= k + 2 so we are done with this case.

Secondly, we have the case that P1=P(i, T’). In this case, then we compute

and

2.1.14. PROPOSITION. Suppose {i - 1, i, i + 1} ~ M.
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Proof. By Proposition 2.1.2 and Remark 2.1.12, it suffices to prove (a) and (c).
By induction, we may assume that i + 1 = sup M. By Proposition 2.1.13 it suffices
to prove that T2 is related to T1 by one of the interchanges listed in the definition
of T03B103B2. We prove first (a). Now it is clear that T2=In(i, i+ 1, Tl) unless

pl(i, T’1)+1, which latter would contradict ai ~03C4(T’1), so done.
We next prove (c). If 03C11(i, Tl) &#x3E; 1 then it is clear that T2 = ln(i - 1, i; Tl ), so

assume pl(i, T’1)=1. This assumption yields three possibilities; setting r= Pl (Tl)
they are:

In each case we compute explicitly that the proposition is true. More precisely,
we find that in case 1 we have T2=In(i,i+1; Tl); in case 2, setting
T=(T’1-(i+ 1»-i, that Tl = T~ iB(i-1; 1, r - 2) and T2 = T~ F1(i-1;1, r - 2);
and in case 3, that, with T as in case 2, T1=T~1(i-1;1,r-1) and
Tl=TuFl(i-1; 1, r - 1). D

2.1.15. PROPOSITION. Suppose (T’1,v,03B5) ~ l(M) with v ~ {i-1,i,i+1} ~ M.
Suppose further that T’1 ~ D03B1i,03B1i+1(J(MB{v})) and let T’2 = T03B1i,03B1i+1(T). Let

(1), Pj) = 03B1((T’j, v, B)) for j = 1, 2. Then Tl E D03B1i,03B1i+1(J(M)) and T2 = T03B1i,03B1i+1(T1), and
in particular P1 = P2.

Proof. As before, we may assume (by induction on IMI) that i + 1 = sup M.
Again, by Proposition 2.1.13 it suffices to check that T2 is related to Tl by one of
the relevant interchanges. Let

Set (1; P) = a«T’, v, e».
The basic idea of this proof is as follows: in most cases T’2=In(a,b; T,) for

{a,b} ~ {i-1,i,i+1}; we may take b = a + 1. (The case where T2 is obtained
from Ti by an F-type interchange is handled separately.) Now in many
situations it will be true that, again, T2 = In(a, a + 1; T1); we refer here to the
situations where P(a, Tl) n P(a + 1, T’1) = 0 and P(a, T2) n P(a +1,T’2)=~. So in
the proof we will first show under what hypotheses these two conditions hold,
and then in the remaining cases we will calculate explicitly the positions of i - 1,
i, and i + 1 in Tl and T2, and thus prove the proposition. There is also a

symmetry involving transpose which we will exploit to reduce the number of
cases we have to consider. This symmetry arises in that tT2 satisfies the

hypotheses on Tl, and that it suffices to prove the proposition with tT’2 in place of
Tl, -
Now the proposition is obvious unless P intersects at least one of P(i -1, Tl),

P(i, Tl), or P(i + 1, T,), so assume that it does. There are three major cases.
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(1) T’2 = In(i, i + 1; T1).
We will show that Tl = In(i, i +1; Ti). By symmetry we may assume P(i -1, T’1)

(which equals P(i-1,T’2)) is horizontal, i.e. 03C11(i-1,T’1)=03C12(i-1,T’2). By the
above it suffices to show that

and

For (2.1.16), obviously we need only consider situations in which it

is possible that P(i, T1) ~ P(i, T’1). Note first that since pl(i, T’1)  pl(i-1, T’1),
it follows from the definition of 03B1 that if P~P(i-1,T’1)~~ then

(P~P(i-1, Tl)) n P(i, T’1)=~, and thus that P(i, T1)=P(i, T’1) and thus (2.1.16).
So we are left with the possibility that P n P(f -1, T’1) = 0 and P n P(i, T’1) ~ 0.
But in this case we must have 03C11(i, T’1)  03C11(i-1, T’1) (or else P would meet
P(i -1, T’1)) and, since 03C11(i+1, T’1) &#x3E; 03C11(i-1, T’1), this implies (2.1.16).
For (2.1.17), note that we have 03BA2(i, T’2)  03BA1(i+1, T’2), so it suffices to exclude

the possibility that 03BA1(i,T’2)=03BA2(i,T’2)=03BA1(i+1,T’2)-1. So assume this. Now,
since T’2=In(i,i+1; T’1) and since 03B1i~03C4(T’1) we have 03BA2(i-1, T’2)  03BA1(i+1, T’2).
Thus 03BA2(i-1, T’2)  03BA1(i,T’2). Since we have assumed that P(i-1,T’1)=
P(i -1, T’2) is horizontal we have 03BA1(i-1, T’2)  03BA1(i, T’2). But this, together with
the fact that, since 03B1i~03C4(T’2), 03C12(i-1, T’2)  pl(i, T’2), contradicts the satisfaction
of condition (4) of Definition 1.1.8 by T’2.

(2) Fr(i -1; j, k) ~ T’1 for some j, k and r~{1,2}.
Then (since we assume that P~Fr(i-1;j,k) ~ ~) we have either

P = {Sj,k, Sj,k+1} or P = {Sj,k, Sj+1,k}. In each of the four situations that we have
listed (i.e. either possibility for P and either r = 1 or r = 2) we compute directly
that T2 = In(i, i+1; Ti). (In fact up to transpose there are only two situations.)

(3) T’2 = In(i - 1, i; T’1).
Since 03BA1(i,T’1) &#x3E; 03BA2(i-1, T’1), it is clear from the définition of a that

P(i -1, Tl) n P(i, Ti) = 0 unless 03BA1(i-1, T’1)=03BA2(i-1, T’1) (i.e. P(i -1, T’1) is ver-
tical) and P=P(ï-1, T’1) and 03BA1(i, T’1) = 03BA1(i-1, T’1)+1. Similarly, it is clear that
P(i-1, T2)~P(i,T’2)=~ unless 03C11(i-1,T’2)=03C12(i-1, T’2) and P=P(i-1,T’2)
and 03C11(i,T’2)=03C11(i-1,T’2)+1. These situations are related by transpose (as
discussed above) so it suffices to consider the situation in which the last-

mentioned three conditions hold. Again there are two cases:
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In case (a) our hypotheses imply that D(i + 1, T2) is a horizontal domino in the
same row as D(i, T2) and we then compute that T2 = In(i, i + 1 ; Tl); in case (b) our
hypotheses imply that 03C11(i+1,T’2)=03C11(i,T’2); we then compute that

T1 = T~F1(i-1;j,k) and T2 = T ~ 1(i-1;j,k) where P(i,T’2)={Sj,k,Sj+1,k}.
a

2.1.18. PROPOSITION. Let 03B3~J(M1, M2).

Proof. We note first that it suffices to prove (a) and (b). For, given (a) and (b),
we have (assuming M2 contains the appropriate numbers) oc E 03C4R(03B3) if and only if
a E iL(y -1) if and only if a E !L(A(y -1)) if and only if a E !(L(y -1)) if and only if
a ~03C4(R(03B3)) which in turn is equivalent to oc ~03C4R(A(03B3)); where the next to last
implication uses Proposition 1.2.3.
Note next that (a) follows directly from the definition of A (here we refer to

Definition 1.2.7) and of the map oc.
It remains to prove (b). We prove first that rxi E !L(y) implies 03B1i~03C4L(A(03B3)).

Assume first i = sup M1. Now by definition, ai E !L(y) implies that one of the
following holds:

If case (i) holds, the fact that ai e 03C4(L(03B3)) follows directly from the definition of A
(again we refer to Definition 1.2.7) and Proposition 2.1.13 part (c). If case (ii)
holds then similarly, using Proposition 2.1.13(b), we see that 03B1i~03C4(L(03B3)). If

instead i  sup M 1, then we use Proposition 2.1.13(e) and induction on |M1|.
The implication 03B1i~03C4L(03B3) implies 03B1i~03C4L(A(03B3)) is proved similarly, using

Proposition 2.1.13(a), (d), (f). This completes the proof of (b), and thus of the
proposition. D

We would like to prove that A and the T03B103B2’s commute. When {03B1, 03B2} = {1,2} this
is difficult (we have not even defined T03B103B2 on tableaux in this case yet) and we
must postpone it until Section 3. Meanwhile we can prove:
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Let d  e  f be such that {d, e, f} = {ki-1, kb ki + 1 1. Set y’ = TL03B103B2(03B3). Then one of
the following eight cases holds:

Cases (5)-(8) are the situations obtained from cases (1)-(4) by replacing y with
SC(y’). By Remarks 2.1.6(2), 2.1.7(2), and 2.1.12(2) we need only consider cases
(1)-(4).
Assume first i+1 = sup M1. Then the proposition is a consequence of

Propositions 2.1.13 and 2.1.14: more precisely, case (1) uses Proposition
2.1.13(c),(e) (applied to ai) and Proposition 2.1.14(a). Case (2) uses Proposition
2.1.13(b),(e) (again, applied to ai) and Proposition 2.1.14(a). Case (3) uses

Proposition 2.1.13(a), (f) and Proposition 2.1.14(c). Case (4) uses Proposition
2.1.13(d), (f) and Proposition 2.1.14(c).
Assume next i + 1 ~ sup Ml. Then the proposition is easily seen to follow

from Proposition 2.1.15 (using induction on |M1|).
(b) This now follows easily from part (a) and Proposition 1.2.3: clearly

We now record two propositions which are analogous to Propositions 2.1.13,
2.1.14, and 2.1.15. They, as well as Propositions 2.1.13, 2.1.14, and 2.1.15, will be
used in subsequent papers on annihilators of Harish-Chandra modules. (One
could have proved these initially instead of Propositions 2.1.13, 2.1.14, and
2.1.15 and then derived Propositions 2.1.13, 2.1.14, and 2.1.15 from these.)
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2.1.20. PROPOSITION.

Proof. The proofs are similar; we prove (a). Let y = A-1((T, T))~J(M). Pick
i &#x3E; sup M, and let y’ = y u {(l1, i, 4 (l2, i +1,1)}. Then T12 = L(y’), P1 = P(i, R(y’)),
and P12 = P(i + 1, R(y’)). Since 03B1i+1 ~ 03C4R(03B3’), our proposition is a consequence of
Proposition 2.1.18. D

For the next proposition, let 03B1((T, (v, 03B5))) = 03B1((T, v, 8)).

2.1.21. PROPOSITION. Let T~J(M), and let l1  l2  l3 be such that

(li, l2, l3} n M = 0. Suppose one of the following:

or

Proof. The eight statements parallel the eight cases of the proof of Theorem
2.1.19. As an example we will prove (2) when x1, x2, X3 satisfy condition (ii); the
other seven statements are proved in an analogous fashion. Set 03B3=A-1((T, T))
and pick i - 1 &#x3E; sup M. Let
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and

Then T312 = L(y 1), P3=P(i-1, R(y 1», P31 = P(i, R(y 1», and P312 = P(i+1, R(y 1»,
and T132 = L(03B32), Pl = P(i-1, R(03B32)), P13 = P(i, R(y2», and P132 = P(i + 1, R(y 2».
On the other hand, 03B32 = TR03B11+1,03B1i(03B31), so the proposition follows from Theorem
2.1.19. D

Section 2

In [4] we introduced two basic objects: the map a and cycles. We now have to
describe the relations between them. There are several results which will be

needed either for Theorem 2.3.8 of Section 3 of this paper or for subsequent
papers. We prove the first one in detail as a model for the others.

Throughout this section, we will be discussing tableaux with grid. The results
we prove are valid only for elements of JB(M), JC(M), or JD(M). We will
indicate this in the hypotheses of theorems by writing e.g. T~JK(M); the
theorem is then true with K either B, C, or D.

2.2.1. NOTATION. (1) Let T~J(M) or J0(M), let 0 be a grid, and let

T=(T,~). Objects defined in relation to T will be extended in the obvious way to
T, e.g. Shape(T) = Shape(T), T - e = (T - e, ~), tT = e1; ~), and P(e, T) = P(e, T).
We extend the definition of a to tableaux with grid: for K = B, C, or D write

Similarly we have DK(M), and we have as usual the bijection ce from WK(M) to
DK(M), with inverse 03B2.

(2) If |M| = 0 and T is the unique element of JB(M), respectively JC(M), we
introduce the convention that T has one open cycle, c, which is of course empty,
and we say that Sf(c) = Sb(C) = S1,1. We define E(T, c) as in Definition 1.5.26(2),
respectively, 1.5.26(3), so that E(T, c) E 9-c(M), respectively, E(T, c) E JB(M).

(3) We will modify the notation of Section 1.5.31 to replace the comma by a
semicolon, that is, if U is a set of cycles in T, U = {c1,..., cn}, with |U| = n, then
E(T; U) = E(T, c1,..., cj, and extend this definition to the case when U = 0,
that is, we put E(T; 0) = T.
Suppose (T’, v, e) E LK(M) and (T, P) = 03B1((T’, v, 03B5)). We need first to describe the

relations between the cycles of T’ and the cycles of T. Now (as may be guessed) a
does not preserve the cycles of T’. But it does behave well in relation to what
might be called the cycle structure of T’. We will not define formally a notion of
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cycle structure, but loosely speaking, by cycle structure of a tableau T E ffK(M)
we mean the list of which corners (Definition 1.5.5) of T are connected to which
holes of T by cycles in T. (A corner C and hole H of T are connected by a cycle c
if either C = Sb(c) and H = S f(c) or C=Sf(c) and H=Sb(c).)

2.2.2. DEFINITION. Let Tl E ffK(M 1)’ T2 E ffK(M 1) and suppose U1 ~ OC(T1)
and U2 ~ OC(T2). A bijection y: U1 ~ U2 is called a cycle structure preserving
bijection (and abbreviated c.s.p.b.) if for all ce U1 we have Sb(03BC(c)) = Sb(c) and

Sf(03BC(c)) = S f(c).
(Of course, given U and U2, any such map is unique.)

2.2.3. THEOREM. Let (T’,v,03B5)~LK(M) (for K = B, C, or D) and let

If instead P = {Sj,i, Sj+ 1,i} we have the obvious transposed statements of the above.

To prove this theorem we will make use of the following observation:

2.2.4. PROPOSITION. Let T~JK(M). Let e = sup M and let T = T - e.
Suppose P(e, T) = {Sij, Si,j+ 1}.
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Again, we have the corresponding transposed statements.
Proof. It suffices to note that P’(e, T) is determined by Shape (T) (and how it is

determined by Shape(T)), and that if u E M and u ~ e then P’(u, T) = P’(u, T). The
rest follows easily. D

Proof of Theorem 2.2.3. Let e = sup M. Assume first v = e. Then the theorem is
reduced to Proposition 2.2.4 (note that since i=1, P cannot satisfy the

hypothesis of 2(b), and that if P satisfies the hypothesis of 1(b), then it satisfies the
conclusion of 1(b)(i) with c = {e}).

Henceforth assume v ~ e. Let T’ = T’ - e and set (T, P)=03B1((T’, v, B)) (so
T = T - e by definition of a). We will assume by induction on |M| that the
theorem is true for (T’,v,e) (since if |M|=1 then v = e and we have already
proved the theorem in this case). Write P’e=P(e, T’) and Pe = P(e, T). If P and T’
(respectively, P and T’) satisfy the hypotheses of 1(a) of the theorem we will say
that P (respectively, P) is in situation 1(a), and similarly for the other parts of the
theorem, and also similarly for Pe and Pé in relation to the various parts of
Proposition 2.2.4.
We will prove the theorem by treating in turn the various cases which can

arise, where each case is specified by the situation of P and of Pé and by the
location of Pé relative to P. (The situation of P of course will be determined by
this.) Many cases are basically trivial; we will treat the more interesting cases in
detail. By symmetry (i.e. transpose) we may assume P is horizontal, so

henceforth assume P={Sij, Si,j+1}.
The point of this proof is that from Proposition 2.2.4 we have relations

between the cycle structures of T’ and T’, and between the cycle structures of T
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and T, and by induction we relate the cycle structure of T’ to that of T. Putting
these three sets of information together gives the desired relation between the
cycle structures of T’ and of T. To do this we have to list the various cases and
then carry out this program in each case.
Case A. P is in situation 1(a) and P’e=P (so Pé is also in situation (la) and

Shape(T’) = Shape(T)). Let c’ E OC(T’) be such that Sb(C’) = Si,j-l. Let c E OC(T)
and c’ E OC(T’) be such that Sf(c)=Sf(c’)=Sf(c’). Then by induction and
Proposition 2.2.4 we have Sb(c) = Si,j+ 1 = Sb(C’). Also, we have c.s.p.b.’s

Since Sb(c’) = Sb(c) and S f(c’) = Sf(-C) the above composition of c.s.p.b.’s extends to
a c.s.p.b. OC(T’)~OC(T). Now P = Pe = {Si+1,r+1, Si+1,r+2} where r = 03C1i+1(T’),
and so P lies in one of the situations 1(a), 1(b), or 2(a) (since by hypothesis
p; + 1 (T’)  Pi(T’) - 2). The relation which we want between OC(T) and OC(T’) is,
by Proposition 2.2.4(la), ( 1 b), or (2a), respectively, holding as a relation between
OC(T) and OC(T). Since, as noted above, we have a c.s.p.b. between OC(T’) and
OC(T), we are done.

Case B. Here, P is in situation 1 (a) and P’e = {Si+1,j-1, Si+2,j-1} (so Pg is in
situation 1(a)). Then P = P, Pe = Pé, and both P and Pe are in situation 1(b). Let
P E OC(T’) be such that Sb(c’) = Si, j -1. Let c~ OC(T) and c’ E OC(T’) be such that
Sf(c) = S f(c’) = S f(c’) (so c’ = c’ u {e}). Then by induction and Proposition 2.2.4,
Sb(c)=Si,j+1 and Sb(c’)=Si+2,j-1. Let c1=c and c2={e}, then by Proposition
2.2.4, C 1, C2 E OC(T), Sb(c1) = Sb(c), Sf(c1) -’S f(C), Sb(c2) = Si+2,j-1 and

sf(C2)= Si+1,j. Also by induction and Proposition 2.2.4, we have c.s.p.b.’s

Since Sb(c’)=Si+2,j-1=Sb(c2), Sf(c’)=Sf(c’)=Sf(c)=Sf(c1), Sf(c2)=Si+1,j, and
Sb(c1)=Sb(c)=Si,j+1 we see that P verifies the conclusion of situation 1 (b)(ii).
Case C. Here, P is in situation 1(a), P’e={Si+1,j-2,Si+1,j-1}, and Pé is in

situation (2b)(i). (That is there is a c’~OC(T’) such that Sb(c’)=Si,j-1 and
S f(c’) = Si + 1, j- 2.) Then P = P, Pe = Pé, P is in situation 1 (b), and Pe is in situation
2(a). Also, c’ u {e} is a closed cycle in T’. Let c E OC(T) be such that S f(c) = S f(c’).
Then by induction Sb(c) = Si,j+1. Let c~ OC(T) be such that Sb(c) = Sb(c). Then by
Proposition 2.2.4, Sf(c)=Si+1,j. By induction and Proposition 2.2.4 we have
c.s.p.b.’s

Since S f(c) = Si+1,j and Sb(c) = Sb(c) = Si,j+1, we see that P verifies the conclusion
of situation 1 (b)(i).
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Case D. Here P is in situation 1(a), P’e={Si+1,j-2, Si+1,j-1}. and P’e is in
situation 2(b)(ii), i.e., there are cycles c’1, c’2~OC(T’) with c’1~c’2 such that
Sb(c’1)=Si,j-1 and Sf(c’2)=Si+1,j-2. Then P = P, Pe = P’e, P is in situation l(b),
and Pe is in situation 2(a). Let c’ = cl V C2 u {e}, then c’~OC(T’), Sb(c’)=Sb(c’2),
and Sf(c’)=Sf(c’1). Let cl, c2~OC(T) be such that Sf(c1)=Sf(c’1) and

Sb(c2)=Sb(C’2). Then by induction Sb(c1)=Si,j+1 and Sf(c2)=Sf(c’2). Let cl,

c2~OC(T) be such that Sb(c2)=Sb(c2) and Sf(c1)=Sf(c1). Then by Proposition
2.2.4, Sb(c1)=Sb(c1) and Sf(c2)=Si+1,j. By induction and Proposition 2.2.4, we
have c.s.p.b.’s

Since Sb(c’)=Sb(c’2)=Sb(c2)=Sb(c2),Sf(c’)=Sf(c’1)=Sf(c1)=Sf(c1), Sf(c2)=Si+1,j
and Sb(c1)=Sb(c1)=Si,j+1, we see that P verifies the conclusion of situation
1(b)(ii).
Case E. Here, P is in situation 1(a) and Pe does not satisfy the hypotheses of

any of the previous cases. Then P = P, Pe = Pé, and P is also in situation 1(a). One
now checks (tediously but trivially) using induction and Proposition 2.2.4 that P
satisfies the conclusions of situation 1(a).
Case F. Here P is in situation 1(b)(i) and P’e=P (so Pé is in situation 1(b)).

Let c~OC(T) be such that Sb(c) = Si,j+1 and Sf(c) = Si+1,j. We have

P = Pe={Si+1,j,Si+1,j+1} so P is in situation 2(b) and we see that Pe is in
situation 2(b)(i) (with c as in the statement of that situation). Then, setting
c’ = {e} E OC(T’), we have c.s.p.b.’s

which yields the conclusion of situation 2(b) with u = e.
Case G. Here P is in situation 1(b)(ii) and Pé = P (so Pé is in situation 1 (b)).

Then P = Pe = { Si+1,j, Si+1,j+1}. Let c’ E OC(T’) and c1, c2~OC(T) be such that
Sf(c1)=Sf(c’), Sb(c1)=Si,j+1, Sf(c2)=Si+1,j and Sb(c2) = Sb(c’). Now P is in

situation (2b) and Pe is in situation 2(b)(ii), with CI and c2 as in the statement of
that situation. Let c’ = (e) and c’ = c’, then, by Proposition 2.2.4, c’, c’ E OC(T’),
Sb(ê’) = Sb(c’), S f(c’) = S f(c’), Sb(c’) = Si,j+ 1 and Sf(c’) = Si + 1,j’ Let c = c1 U Cl U {e},
then c E OC(T), Sb(C) = Sb(é2), and S f(c) = Sf(c1). We have c.s.p.b.’s

Since Sb(C) = Sb(C2) = Sb(C’) = Sb(c’) and Sf(c)=Sf(c1)=Sf(c1)=Sf(c’)=Sf(c’) we can

extend the above-given composite of c.s.p.b.’s to a c.s.p.b. OC(T’)B{c’} H OC(T).
We have thus the conclusion of situation 2(b) with u = e.

Case H. Here, P is in situation 1 (b)(i) and P’e = {Sij, Si+1,j}. Then
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P = {Si,j+1, Si+1,j+ 1 1 is in situation 2(b) and Pe = {Si+ 1,j, Si+ 1,j+1} is in situation
2(b)(i). This case is entirely similar to Case F.

Case I. Here P is in situation 1(b)(ii) and Pé = {Sij, Si+1,j}. This case is entirely
similar to case G.

Case J. Here, P is in situation 1(b)(i) or (ii) and Pé does not satisfy the
hypotheses of any of the previous four cases (that is, P n Pé = 0). Then P = P is
in the same situation as P (with one exception), and one verifies the appropriate
conclusion using induction and Proposition 2.2.4. We discuss the exception as
an example. Suppose P is in situation 1(b)(ii). Let èl, c2~OC(T) be such that
Sb(c1)=Si,j+1 and Sf(c2)=Si+1,j. Let ë’ E OC(T’) be such that Sf(c’)=Sf(c1) and
Sb(c’) = Sb(c2). Suppose further that for some k and 1 we have Sf(c1)=Sk,l
(respectively Sl,k), Sb(c2)=Sk-1,l+1 (respectively Sl+1,k-1), and P’e={Sk,l, Sk,l+1}
(respectively {Sl,k, SI + l,kl). Then Sf(c’) = Sk,l (respectively Sl,k) and

Sb(c’)=Sk-1,l+1 (respectively SI + 1,k-1), so Pé is in situation 2(b)(i) with C’ the
distinguished cycle of that situation (so c’ = c’ u {e} is a closed cycle in T’). Then
we see that Pe is in situation 2(b)(ii) with Ci and c2 the distinguished cycles of that
situation and c=c1 ~c2 ~ {e} the corresponding open cycle in T, that is

Sb(C) = Sb(cl) and S f(c) = S f(c2). Also, we have c.s.p.b.’s

Since Sb(C) = Sb(cl) = Si,j+ 1 and S f(c) = S f(c2) = Si+ l,il we see that P verifies the
conclusion of situation 1(b)(i).
Case K. Here P is in situation 2(a) and Pé = P (so Pé is also in situation 2(a)).

This is entirely similar to case A (again, our hypotheses rule out the possibility
that P is in situation 2(b)).
Case L. Here P is in situation 2(a), Pé = {Sij, Si, 1,j}, and Pé is in situation 2(a)

(i.e. j = 1 or Si+2,j-1 E Shape(T’)). This case follows the pattern of case B (let
c’~OC(T’) be such that Sf(-C’) = Sij, ...) and P satisfies situation 1(b)(ii).

Cases M and N follow the patterns of Cases C and D, respectively.
Case M. Here P is in situation 2(a), Pé = {Sij, Si+ j,jl and Pé is in situation

2(b)(i) (so j &#x3E; 1 and Si+2,j-1 ~ Shape(T’)). Then P satisfies situation 1 (b)(i).
Case N. Hypotheses as in Case M, except that Pé is in situation 2(b)(ii). Then P

satisfies situation 1(b)(ii).
Case 0. Here P is as in situation 2(a) and Pé does not satisfy the hypotheses of

any of the previous four cases. This is as Case E.
Case P. Here P is in situation 2(b) and Pé = P. Then since by induction there is

a u E MB{v, el such that {u} = é’ e OC(T’) with S f(c’) = Sij and Sb(c’) = Si-1,j+1, we
see that Pé is in situation 2(b)(i) with c’ the distinguished cycle of this case. We
have c.s.p.b.’s
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and thus a c.s.p.b. OC(T’) H OC(T). The rest is as in cases A and K.
Case Q. Here P is in situation 2(b), P’e= {Sij, Si+1,j}, and Pé is in situation 2(a).

Then P={Si,j+1, Si+1,j+1} is in situation 1 (a) and Pe = {Si+1,j, Si+1,j+1} is in
situation 1(b). By induction we have {u} = c’ E OC(T’) with Sb(c’) = Si-1,j+1 and
S f(c’) = Sij. By Proposition 2.2.4 we have c’ u {e} = c’ E OC(T’) with Sb(C’) = Sb(C’)
and Sf(c’)=Si+2,j, and also {e} = c E OC(T) with Sb(c)=Si+1,j+1 and

Sf(c)=Si+2,j. Then we have c.s.p.b.’s

Since Sf(c’)=Si+2,j=Sf(c), Sb(c’)=Sb(c’)=Si-1,j+1, and Sb(c)=Si+1,j+1, we see
that P verifies the conclusion of situation l(a).

Case R. Here P is in situation 2(b), P’e = {Sij, Si+ 1,j}, and Pé is in situation 2(b).
Then P = {Si,j+1, Si+1,j+1} and Pe={Si+1,j, Si+1,j+1} are in situation 1(a). By
induction we have {u}=c’2~OC(T’) such that Sb(c’2)=Si-1,j+1 and Sf(c’2)=Sij.
Let c’1 e OC(T’) be such that Sb(c’1) = Si+ 1,j-1. We see then that P’e is in situation
2(b)(ii) (with Ci and c’2 the distinguished cycles of that situation). Let

c’1 ~ c’2 ~ {e} = c’ E OC(T’), so Sb(c’) = Sb(c’2) and Sf(c’)=Sf(c’1). Let CE OC(T) be
such that Sb(c)=Sb(c’1); then Sf(c)=Sf(c’1). Let c~{e}=c~OC(T), so

Sf(c)=Sf(c) and Sb(c) = Si+1,j+1. We have c.s.p.b.’s

Since Sf(c’)=Sf(c’1)=Sf(c)=Sf(c), Sb(c’)=Sb(c’2) = Si-1,j+1, and Sb(c) = Si+1,j+1,
we see that P verifies the conclusion of situation l(a).

Case S. Here P is in situation 2(b) and P’e={Si-2,j+2, Si-1,j+2} (so P’e is in
situation 2(b)). Then P=P, Pe = P’e, and P and Pe are in situation 2(a). Let
{u}=c’1~OC(T’) be such that Sb(c’1)=Si-1,j+1 and Sf(c’1)=Sij, and let

C2eOC(T’) be such that Sf(c’2)=Si-2,j+2. Then we see that P’e is in situation
2(b)(ii) (with Ci and ë; the distinguished cycles of that situation). Let

Ci u C2 u {e} = c’ ~ OC(T’), so Sb(c’) = Sb(c’2) and Sf(c’)=Sf(c’1). Let c E OC(T) be
such that Sb(c)=Sb(c’2); then Sf(c)=Sf(c’2). Finally, let c~{e}=c~OC(T), so
Sb(c) = Sb(c) and Sf(c)=Si,j+2. We have the following c.s.p.b.’s:

Since Sb(c)=Sb(c)=Sb(c’2)=Sb(c’), Sf(c’) = Sf(c’1)=Sij, and Sf(c)=Si,j+2, we see
that P verifies the conclusion of situation 2(a).

Case T. Here P is in situation 2(b) and P’e = {Si-1,j+2, Si-1,j+3} (so P’e is in
situation 1(a)). Then P = P, Pe=Pg, P is in situation 2(a) and Pe is in situation
l(b). This case follows the pattern of case Q.
Case U. Here P is in situation 2(b) and P’e does not satisfy the hypotheses of
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any of the previous five cases. Then P = P and P is also in situation 2(b). As in
cases E, J, and 0, the conclusion follows by induction.

This completes the proof of Theorem 2.2.3. D

2.2.5. DEFINITION. Let T’and T be as in Theorem 2.2.3. A cycle c ~ OC(T) is
said to correspond to a cycle c’ E OC(T’) if either Sb(C’) = Sb(C) or S f(c’) = S f(c) (or
both). Equivalently, by Theorem 2.2.3 (and in that theorem’s notation), either
c = 03BC(c’) for p the applicable c.s.p.b., or P is in one of the situations 1(a), 1(b)(ii), or
2(a) of the theorem and c and c’ are amongst the distinguished cycles of P’s
situation. In particular note that an open cycle in T corresponds to at most one
cycle in T’.

2.2.6. PROPOSITION. With the notation as in Theorem 2.2.3, suppose m E M
and m  v. Suppose c(m, T’) E OC(T’). Then c(m, T) E OC(T) and c(m, T) corre-
sponds to c(m, T’).

Proof. This can be proved by induction as in the proof of Theorem 2.2.3 by
examining the cases which arise in that proof. (When |M| = 1 the proposition is
vacuously true.) As examples we treat cases G and R (with notation as in those
cases). Let cm = c(m, T’) and let c. = c(m, T).

Case G. Suppose first c’m=c’; then since c’ = c’, we have m E c’. By induction
then either m E cl or m E c2. Since c = c1 V C2 u {e} we have m~c, i.e. c = cm. By
definition, c and 2’ correspond, as desired. Suppose next c’ m :0 ê’. Let 2 be the
cycle in T corresponding to c’ . Then c’ E OC(T’), ê E OC(T), and c’ and ê
correspond as cycles of T’ and T. Thus by induction m e c, so we are done.

Case R. If mie’ then the argument is as in the second half of the previous case,
so assume c’=c’m. Now c’ = c’1 ~ -’ u {e}, and ê’ = {u} with u &#x3E; v. Since m  v by
hypothesis, we have m~c’1. By induction (since c corresponds to 2’) we have
m~c. Since c=cu {e} we have m E c, as desired. D

2.2.7. DEFINITION. Let T’, etc., be as in Theorem 2.2.3. Suppose m~M,
m  v, and suppose c’ = c(m, T’) is closed. We define c = c(m, T) to be the cycle in
T corresponding to c’.

2.2.8. PROPOSITION. (1) The above is well-defined, i.e. does not depend on the
choice of m  v in c’.

(2) Either
(a) c is closed

or

(b) P is in the situation 1(b)(i) of Theorem 2.2.3 and c is the open cycle in T
with no corresponding open cycle in T’ (i.e. Sb(C) E P).

Proof. The proof uses induction on IMI. (The proposition is vacuously true
when IMI = 1.) Let e = sup M. The proposition is obvious if e = v (since then
c(m, T) = c(m, T’) is closed) so assume e ~ v. Let T, etc. be as in the proof of
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Theorem 2.2.3, and let c(m) = c(m, T), c’(m) = c(m, T’), ë(m)=c(m, T) and

c’(m) = c(m, T’). Note that ë’(m) is closed if and only if e ft c’(m) which in turn is
equivalent to c’(m) = c’(m). Assume first that both c’(m) and c(m) are closed. Then
(since c(m) closed implies that c(m) = c(m)) the proposition is true by induction.
Assume next e ~ c’(m). We may assume P(e, T’) is horizontal, so let

P(e, T’) = {Sk,l, Sk,l + 1 1. Since c’(m) is closed we have P’(e, T’) = {Sk-1,l + 1, Sk,l +1}.
Now c’(m) is open in T’, Sb(c’(m))=Sk-1,l+1, and Sf(ë’(m))=Sk,l’ By the previous
proposition, c(m) corresponds to c’(m) (in the sense of Definition 2.2.5). By
Theorem 2.2.3, and using Proposition 2.2.6, there are four possibilities:

(1) Sb(2(M» = Sb(c’(m)) and Sf(c(m)) = Sf(c’(m)). Then c(m) = c(m) u {e} is closed.
2 P = {Sk-1,l+2, Sk-1,l+3}. Sf(c(m)) = Sf(c’(m)), and Sb(c(m))=Sk-1,l+3 3 (so

P = P and P(e, T) = P(e, T’)) (cf. case C of Theorem 2.2.3). Then P is in
situation 1(b)(i) and c(m) = ë(m) u {e} is the open cycle in T which has no
corresponding open cycle in T’.

(3) P={Sk,l, Sk+1,l}, Sb(c(m))=Sb(c’(m)), and Sf(ë(m))=Sk+3,1 (Cf- case M of
Theorem 2.2.3). Then P is in situation 1(b)(i) and c(m)=c(m) ~ {e} is the
open cycle in T which has no corresponding open cycle in T’.

(4) P is in situation 1(b)(ii), P = {Sr,t, Sr,t+1} (respectively {Sr,t, Sr+1,t})
and there are cycles éi, c2~OC(T) such that Sf(c1) = Sf(c’(m)), Sb(c1) =
Sr,t+1 (respectively, Sr+1,t), Sf(c2) = Sr+1,t (respectively Sr,t+1), and

Sb(c2) = Sb(c’(m)). By Proposition 2.2.6 either m~c1 or mE ë2. Then

c(m) = c1 ~ c2 ~ {e} is the open cycle in T with no corresponding open
cycle in T’ (P = P but now P is in situation 1(b)(i)). (This is the exceptional
subcase of case J of Theorem 2.2.3.)

This completes the proof of the proposition in the case where c’(m) is open. (Note
that part 1 of the proposition is a consequence of Proposition 2.2.6 and is

implicit in what we have said above.)
Suppose finally c’(m) is closed (i.e. e ~ c’(m)) and c(m) is open. Then by

induction P is in situation 1(b)(i) and Sb(c(m)) E P. Thus we are in one of the cases
F, H, or J of the proof of Theorem 2.2.3. If we are in case J then P = P, c(m) = c(m)
and Sb(c(m))=Sb(ë(m)). In cases F and H we have c(m) = c(m) ~ {e} is closed. This
gives part 2 of the proposition and part 1 by induction. D

2.2.9. THEOREM. Let (T’1, v, e) c- WK(M) (K = B, C, or D). Let U’ be a set of
cycles in Ti such that for every c~ U’ either c is open or there exists an m E c such

that m  v. Set T’ = E(T’1; U’). Let (Ti, Pi) = 03B1((T’i, v, 03B5)) for i = 1, 2. Let U be the set

of all cycles in Tl which correspond to cycles in U’. Then T2 = E(T1; U).
Proof. By induction on |U’| it suffices to prove the theorem when |U’| = 1 (since

a cycle in Tl corresponds to at most one cycle in T’1, so that, writing
U’ = U’1 ~ U’2 with |U’1| + |U’2| = |U’|, the sets U1 and U 2 of corresponding cycles
in Tl are disjoint). So assume ! |U’| = 1; write U’ = {c’0}. Let e = sup M and assume
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first v = e. By symmetry (via transpose) we may assume here 03B5 = 1. Then

P(e,T1)={S1,r,S1,r+1} where r = 03C11(T’1)+1. Assume first CoeOC(Ti) and

Sb(c’0)=S1,r-1. Then 03C11(T’2)=r-2 so P(e,T2)={S1,r-1, S1,r}. On the other hand
it is clear that, setting Co = c’0 ~ {e}, we have Co e OC(T1) is the cycle correspond-
ing to c’0, and that T2 = E(T1, co). This also handles the case when Sf(c’o)=S1,r
(by interchanging T’1 and T’2 in the previous case). In all other cases

03C11(T’1) = 03C11(T’2), so P(e,T1)=P(e,T2), and the theorem is clear.
Henceforth assume v ~ e. The rest of the proof uses induction on IMI (when

|M| = 1 we have, necessarily, v = e, and thus have already proved the theorem).
Let T’j = T’j-e for j = 1, 2, and set (Tj, Pj) = 03B1((T’j, v, 03B5)). Henceforth the proof
follows the cases of the proof of Theorem 2.2.3. Note that if Pi is in case A and
c’0 = c’ then P2 is in case K, and similarly case B corresponds to case L, case C to
case M, case D to case N, case E to case 0, case Q to case T, and case R to
case S.

We treat cases A and B; the rest are handled along the same lines. In general
we use induction to show that every domino except the one containing e is in the
correct position in T2 and then inspection to show that the domino containing e
is in the correct position in Tl. ’Correct position’ means that if a number k is in
one of the cycles corresponding to Co then, in T2, it occupies the position
P’(k, Ti); otherwise it occupies the position P(k, Ti).

Case A. Here P1 = P(e, T1) = {Sij, Si,j+1} and P 1 is in situation 1(a). (We use
the notation of case A, but with Ti in place of T’, etc.) Suppose first

c’0 = c’ = c(e, T’1). Then c’ = c’/{e} ~ OC(T’1) and c ~ OC(T1) corresponds to c’. By
induction T2 = E(Ti, c).
Now P(e, T1) = {Si+1,r, Si+1,r+1} where r = 03C1i+1(T’1)+1. We distinguish two

cases:

(1) Sf(c’) ~ Si+1,r. Then 03C1i+1(T’2) = 03C1i+1(T’1) and P(e, T2) = P(e, T1); setting
c = c we have c E OC(T1) is the cycle corresponding to c’, and hence, finally,
T2 = E(T1, c).

(2) Sf(c’)=Si+1,r. Then 03C1i+1(T’2) = r and P(e, T2)={Si+1,r+1,Si+1,r+2}. · Set

c=c u {e}, then c~OC(T1) is the cycle corresponding to c’, and again we
see thatT2=E(Ti,c).

Suppose instead c’0 ~ c(e, T’1). Let c’0~OC(T’1) with c’0 = c’0; let Co be the

corresponding cycle in T; then either both c’0 and c’0 are closed or Sb(c0)=Sb(c’0)
and Sf(co) = Sf(c’o). As before by induction, T2 = E(T1, Co). Then the two cases are
again as above.
Case B. Suppose Pi is as in case B of the proof of Theorem 2.2.3. If c’0 ~ c’

(notation as in that case, but with Ti in place of T’, etc.) then the theorem is
clearly true by induction so assume c’0 = c’. Then P(e, T’2) = {Si,j-1, Si+1,j-1}
and, by induction applied to Ti and U’ = {c’}, we have T2 = E(T1,c). Thus
P2 = {Si,j-1, Sij} so P(e, T2) = {Si+ ij-1, Si+ 1,j). On the other hand, U = {c1, c2},
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so by induction (since c1=c) and the above computation of P(e, T2) (since
c2 = {e}) we have T2 = E(T’1; U). D

Section 3

We now proceed to define T03B103B2 on tableaux for {03B1, 03B2}={03B11,03B12}. To do this we
must define extended cycles.

2.3.1. DEFINITION. (1) Let (T1, T2) ~ JK(M1,M2) (for K=B,C,orD). We
define an equivalence relation on M1 1 (depending on T 1 and T2) as the
relation generated by the following two types of relations:

The equivalence class containing k E M, is written ec(k, T,; T,) and is called the
extended cycle of k in Tl relative to T2. (Clearly it depends only on T, and the
cycle structure of T2.) Similarly we define an equivalence relation on M2, and,
for k~M2, write ec(k, T2; Tl) for the equivalence class containing k. Obviously
an extended cycle is a union of cycles of T,, and, in fact, consists either of one
closed cycle of T1 or of one or more open cycles of T1. If c = ec(k, T1; T2) consists
of one or more open cycles of T1 we can write c = c i ~ ··· u c: so that, if

c?eOC(T2) is such that Sb(c2) = Sb(c1i) then S f(c2r) = S f(ci) and for 1  i  r - 1,

sf(c2i)=Sf(c1i+1). Then clearly c i ~ ··· u cr is an extended cycle in T2 relative to
Tl which we define to be the extended cycle corresponding to ec(k, Tl; T2)-

(2) If c is an extended cycle in Tl relative to T2 we define E((T1, T2), c, L) to be
equal to

(E(T1, c), T2)

if c consists of one closed cycle in T1, but to be equal to

if c is a union of open cycles and the cji are as above.
Similarly we define E((T1, T,); U, L) if U is a union of extended cycles in T,

relative to T,. We define similarly E((T1, T,), c, R) when c is an extended cycle in
T2 relative to Ti, and E((T1, T2); U, R) when U is a union of extended cycles in
T2 relative to T1.

REMARK. The point of the definition of extended cycle is that, if

(T1, T2) ~ JK(M1,M2) and c = ec(k, T1; T2) for some k c- M 1, and, setting
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(T1, T2) = E((T1, T2), c, L), we have Shape(T1) = Shape(T2). More precisely, if

(T1, T2) E JC(M1, M2) and if u = inf Ml then E((T1, T2), c, L) E JC(M1, M2) if and
only if u ft c. If u E c then E((T1, T2), c, L) E 9-B(Ml, M2)- Similarly if C and B are
interchanged. If (T1, T2) ~ JD(M1, M2) then E((T1, T2), c, L) ~ JD(M1,M2).
Similarly for R.

EXAMPLE. Suppose (T1, T2) is:

Then c(2,T1)={2,3,4} but ec(2,T1;T2)={2,3,4,6} (and the corresponding
extended cycle in T2, relative to T1, is {3, 4, 5, 6}). Thus E((T1, T2),
ec(2, Tl; T2), L) = (T1, T2) where (T1, T2) is:

2.3.2. PROPOSITION. Let (T’1, T’1)~JK(M, M). Suppose v~ N*BM, e E N*BM,
03B5 ~ {1, -1}, and e &#x3E; sup M. Let (Tl, Pl) = oc«T’, v, 03B5)) and let T1 = Adj(T’, Pl, e)
(i.e., in the notation of 1.1.13, T1 = T’1 ~ {(e, S)|S~P1}).

(a) Let c’ = ec(m, T’; fIl) for some m  v. If c’ consists of the cycles c’1,..., c’
and c1,...,cr are the cycles in Tl corresponding to c’1,...,c’k (without
repetition) then ~1ir c1 = ec(m, T1; T1) (which we define to be the

extended cycle corresponding to c’).
(b) Let U’ be a set of extended cycles in T’1 relative to T’1 each of whose elements

satisfies the hypothesis of (a) and let (T’2, T’2) = E((T’1, T’1); U, L). Let
(T2, P2) = 03B1((T’2, v, 03B5)) and let T2 = Adj(T’2, P2, e). Let U be the set of
extended cycles in Tl relative to Tl corresponding to the cycles in U’. Then
(T2, T2) = E((T1, T1); U, L).
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Proof. To prove (a) we note first that Proposition 2.2.8 proves the case when
k =1 and Ci is closed. So assume Ci is open. By Proposition 2.2.6 it suffices to
prove that ~ 1ir ci is an extended cycle in T 1 relative to ti Then (a) of the
proposition is a consequence of Theorem 2.2.3 and Proposition 2.2.4. The only
difficult case is when P1 is in situation 2(b) of Theorem 2.2.3 and the cycle {u} of
that situation is one of the c’i. By hypothesis then k  2 and r = k - 1. Then
P(e, Tl) is in situation 2(b)(ii) of Proposition 2.2.4 and the two distinguished
cycles of that situation are contained in the extended cycle in T’1 relative to Ti
which corresponds to c’. The desired conclusion is now clear.
To prove (b) let (T3’ T3) = E((T1, T1); U, L). Then Theorem 2.2.9 says that T3 =

T2. It remains to show that T3 = T2. We may assume that U’ consists of one
extended cycle, c’. Suppose first c’ is a closed cycle in T’1. Then T2=ti. If the
cycle c in T1 corresponding to c’ is also closed then Shape(Ï2)=Shape(Ti) so
Tl = 1. On the other hand, since U = {c} and c is closed, we have T3 = T1, so we
are done in this case. If c is open, and, say, P1 = {Sij, Si,j+1}, then by Proposition
2.2.8 and Theorem 2.2.9 we have P2 = {Si,j, Si+1,j}, that is, {e} is the extended
cycle in Tl relative to T1 corresponding to U = {c} and T2 = E(T2, {e}), as was to
be shown.

The other cases are similar. For example, consider the case treated in the
proof of (a). Again, assume Pi = (Sij, Si,j+1}. Let 0’ be the extended cycle in Ti
relative to Ti which corresponds to U’ and let 0 be the extended cycle in T1
relative to T1 which corresponds to U. Then there are cycles c’1 and c’2 contained
in 0’ with c’1 ~ c’2, Sb(c’1) = Si-1,j+1, and Sf(c’2) = Sij. Then Ci ~ c’2 ~ {e} is an

open cycle in fI and Ù consists of it and the remaining cycles of U’. As a
consequence of Theorem 2.2.9 we have P2 = {Si-1,j+1,Si,j+1}, and thus T2 = T3,
as desired. D

2.3.3. PROPOSITION. Let (T’1, T’1) ~ JK(M, M). Suppose v~N*BM, e~N*BM,
03B5 ~ {1, -1}, and e &#x3E; sup M. Let (T1,P1)=03B1((T’1,v,03B5)) and let T1 = Adj(T’1, P1, e).

(a) {e} is an extended cycle in T1 relative to T1 if and only if Plis in situation
1(b)(i) of Theorem 2.2.3.

(b) Extended cycles in Ti relative to Ti are of the form c n (MB{e}) where c is
an extended cycle in T1 relative to T1.

(c) Let U be a set of extended cycles in T1 relative to fI such that no element of
U is equal to {e}. Let (T2, T2) = E((T1, T1); U, L). Let T’2 = T2 - e and let
(T’2, v2, 03B5) = 03B2((T2, P(e,T2))). Let U={c~(MB{e})|c~U}. Then v2=v,

B2 = B, and (T’2, T’2) = E((Ti, T’1); U’, L).
Proof. (a) is obvious. (b) is a direct consequence of Theorem 2.2.3 and

Proposition 2.2.4.
To prove (c), we may assume U consists of one extended cycle; say U = {c}. Let

c’ = c ~ (MB{e}), so U’ = {c’} and by (b), c’ is an extended cycle in Ti relative
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to T’1. Set (Tl, T’3) = E((T’1, T’1), c’, L), let (T3, P3) = 03B1((T’3, v, 03B5)) and let

T3 = Adj(T’3, P3, e). Since a and fi are inverses, it suffices to prove that

(T3, T3) = (T2, T2). Since c’ = c n (MB{e}) we have T’3 = T2 - e. Since

Shape(Tj) = Shape(Tj) for j = 2, 3 and since T3 = Tg u D(e, T3), it now suffices to
prove that T3 = T2. If c consists of one or more open cycles in Tl then let c be the
corresponding extended cycle in T1, otherwise set c = 0, and define similarly c’
in relation to c’. Note that c is the union of the cycles in T1 which correspond (in
the sense of Definition 2.2.5) to the cycles in T’1 contained in 2’; this follows from
Definitions 2.2.5 and 2.3.1, and our hypothesis that c ~ {e}. Then the fact that
T3 = T2 is just Theorem 2.2.9. D

REMARK. We have also the obvious analogues of Propositions 2.3.2 and 2.3.3,
in which left and right are interchanged.
We now restrict our attention to types B and C, and define T03B103B2 on tableaux

when {03B1, 03B2} = {03B11, 03B12}. Unlike the situation when a and 03B2 have the same length,
here we have to define T03B103B2 on pairs of tableaux.

2.3.4. DEFINITION. (1) We treat first type C. Let

let F1 = tF2, and let Fi=’F2. Suppose {1,2} ~ M1 and suppose

(T1, T2)~DL03B103B2(JC(M1,M2)) with {03B1,03B2}={03B11,03B12}. Suppose first 03B2 = 03B12. Then
clearly either F2 ~ T1 or F2 ~ T1. If F2 ~ T1, then let (Tl’ T2) = E((T1, T2), c)
where c=cc(2,Ti;T2) (so F2 ~ T1), let T1 = (T1BF2) ~ F1, and define

TL03B1103B12((T1, T2)) = {(T1,T2)}. If instead F2 ~ T1 let T’1 = (T1BF2) ~ F1. If

1 E ec(2, T’1; T2), define TL03B11,03B12((T1, T,)) = {(T’1, T2)}. If 1~ec(2, T’1; T2) then let

and define

Suppose next 03B2=03B11. We define TL03B12,03B11((T1, T2)) as in the definition of

TL03B11,03B12((T1, T2)) but interchanging FI (respectively fl) and F2 (respectively F2).
We define similarly TR03B103B2 for {03B1, 03B2} = {03B11, a2j and (1, 2) ~ M2-

(2) Ta1.a2 and T03B12,03B11 are defined similarly for type B, putting
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and

The rest of the definition is the same.

EXAMPLE. Let (T’, T’2) =

Then 1 E ec(2, T’; T’), so

where (T,, T,) and (Îl, T2) are as in Example 2.3.1.
REMARK. Let (T1, T2) ~ JK(M1, M2) where K = B or C and suppose F1 ~ T,.
Let T1 = (T1BF1) ~ F2. Then 1 E ec(2, T,; T2) if and only if 1 ft ec(2,’Î,; T2).
The proof of this remark is as follows. One can check this directly if lM 11 = 2.

Then the general statement follows by induction on lM 11 and Proposition
2.3.3(b); i.e. let e = sup M 1, let T’1 = T1 - e, let (T’2,v,03B5)=03B2((T2,P(e,T1))), and let
T’ =(T’1BF1) u F2. Then 1 E ec(2, Tl; T2) if and only if 1 E ec(2, T’1; T2) which is
equivalent to 1~ec(2,T’1; T’2) which in turn is equivalent to 1~ec(2,T1;T2).

Proof The statement about DL03B103B2 is contained in Remark 2.1.12(1). For the
second statement, note first that for any grid, 0, Sii is 0-fixed if and only if Sji is
~-fixed. (In fact the 0-fixedness of Sij depends only on the parity of i + j.) It
follows from this and Definition 1.5.8 that P’(k, tT) = tP’(k, T) for any T = (T, 0).
As a consequence cycles in T are cycles in t T and vice versa, and furthermore for
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any such cycle c we have E(’T, c) = t E(T, c). The rest follows easily.
We now prove the analogue of Theorem 2.1.19 for {03B1, 03B2} = {03B11, 03B12}. In place of

Proposition 2.1.14 we will use the following lemma. We state it for type C; it has
an obvious analogue for type B, with an analogous proof.

We have also the obvious transposed version of the lemma.

We see then, using Proposition 2.3.5, the corresponding statement for TL,03B103B2s on
J(M1, M2), Remark 2.1.6(2), and Proposition 2.3.6, that it suffices to prove the
following: suppose 03B3~J(M1, M2) and suppose {(1, k, 1), (2, l, -l)} ~ 03B3 with
k  l. Let 03B3 = 03B3B{(1,k,1),(2,l, -1)}, let 03B3’ = 03B3 ~ {(2, k, 1), (1, l, -1)}, and let

03B3 = 03B3 ~ {(2, k, 1), (1, l, 1)} (so TL03B103B2(03B3) = TL03B103B2(03B3)={03B3’}). Set (T1, T2) = A(03B3),
(T’1, T’2)=A(03B3’) and (T1,T2)=A(03B3). Then
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and

Now (2.3.9) and (2.3.10) follow easily from the definition of the map A (i.e.
Definition 1.2.7). For (2.3.11), it is clear that if l = sup M2 this follows from
Lemma 2.3.7; if l ~ sup M2 then (using induction on |M2|) this is a consequence
of Proposition 2.3.2(b). 0
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