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Introduction

Let 03A9 = G/K be an irreducible Hermitian symmetric space of tube type and of
rank n. Its Shilov boundary is of the form G/P where P = LN is a maximal
parabolic subgroup of G. It is known that n = Lie(N) is an abelian Lie algebra
with a natural Jordan algebra structure. There is a distinguished polynomial (the
Jordan norm) cp on n. The polynomial ç has degree n and transforms by a
positive character v-2 of L.

Let P be the opposite parabolic and consider for each t E R the induced

representation I(t) = Ind P (vt Q 1) (normalized induction). Using the

Gelfand-Naimark decomposition G : NLN and the exponential map, we may
realize I(t) as a subspace E(t) of COO(n).
The Killing form and Cartan involution yield an isomorphism from n to n*.

Thus we get a differential operator D = è(cp) corresponding to 9 in the usual
manner. It is known that for each m E Z, Dm intertwines 1(m) with its Hermitian
dual 1( - m). So if ~,~ is the Hermitian pairing between I(m) and 1( - m), then
(fl, f2)m = ~Dmf1,f2~ is an invariant Hermitian form on I(m).
Our main result is an explicit formula for the signature of this form on each K-

type !
To state this result we introduce some notation. Let b and 1)s be compact and

maximally split Cartan subalgebras, respectively, of g = Lie(G). The K-types in
I(t) occur with multiplicity one, and have highest 1)-weights of the form

b 1 Y 1 + " + bn03B3n, where yi are the Harish-Chandra strongly orthogonal roots
and b1  ···  bn are integers. Also, if as is the split part of 1)s, then the restricted
root system E (a’, g) is of type Cn, and all the short root spaces have a common
dimension d. Our main result is

THEOREM 1. For 03B2 = bly, +... + bnYn, let I(m)p be the corresponding K-
isotypic subspace of I(m). Then for any f E I(m),, we have

This work was supported in part by an NSF grant at Princeton University.
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where

Let us write R(m) for the kernel of Dm and Q(m) for the quotient I(m)/R(m). We
consider next the question of the unitarizability of Q(m). Various parity
considerations arise-there is an important difference between the cases of even
and odd d.

THEOREM 2. Suppose that either (a) d 0(mod 4) and m is odd; or that (b)
d ~ 2(mod 4) and m ~ n(mod 2). Then Q(m) is a direct sum of n + 1 unitary
representations Qo,..., Qn.

This is proved in 3.1, and in 3.2 we extend this result to degenerate series
representations of the universal covering group G of G.

It may be shown (although we do not do so in this paper) that the Qi are
irreducible, Qo and Qn are holomorphic and anti-holomorphic discrete series
representations and that the other Qi are cohomologically induced represen-
tations (indeed they are A(q, 03BB)’s for suitable 0-stable parabolics q).

For odd d the situation is completely different. The representation Q(m) is
either irreducible, or it breaks up into approximately n/2 pieces of which at most
2 are unitary. These are holomorphic and anti-holomorphic discrete series for G.
The other "interesting" unitary representations occur for half-integral values of
m, whose analysis requires an extension of the present techniques. This we leave
to a future paper.

In the appendix we study the degenerate series of G. Using results of [G] we
give a complete determination of the points of reducibility of this series. This
part is independent of the rest of the paper and we include it only for the sake of
completeness.

Here are the main ideas and techniques of this paper.
The first ingredient is the generalized Capelli identity of [KosS]. This is a

formula for the radial part of L-invariant differential operator qJm Dm on

L/L n K.
The second ingredient is the Cayley transform, as discussed in [KorW], for

example. This is an element c of Ad(gc) which interchanges Ïc with Ic, and 4’ c with
I)c.
Now, conjugation by c transforms ç"’ D"’ to a c-invariant differential operator

0394m on I(m). We show that 0394m acts by the scalar qm(03B2) on I(m)03B2. The explicit
formula for qm(03B2) then follows from the generalized Capelli identity!
We now describe some of the relevant literature. Since the work of [W] and

[RV], two papers have obtained explicit formulas for the inner product on



249

holomorphic discrete series with one-dimensional lowest K-types. Of these,
[FK] which considers holomorphic functions on Q, is closest to our approach.
Since holomorphic functions are determined by their values on the Shilov
boundary, the boundary value map imbeds these spaces inside the 1(m). It is
possible to rederive some of the results of [FK] from our main result.
The paper [G] considers Hermitian representations with one-dimensional K-

types (semi-spherical) which are annihilated by a certain ideal in u(g), deriving
an explicit formula for the inner product. It is easy to see that, while any such
representation must be a constituent of 1(t), most unitary constituents of 1(t) are
not semi-spherical. If m is large enough, then among the unitary representations
in Theorem 2 only the discrete series Qo and Qn have one dimensional K-types.
The representations 1(0) have been studied for SU(n, n) and Sp(n, R) in [KaV]

and the general I(t) is considered for S U(2, 2) in [JV] and [S].
It is a pleasure to thank Bert Kostant for invaluable advice and encourage-

ment. While various ideas in this paper were worked out in Fall 1987, the whole

picture became much clearer to me after the results of [KosS] were obtained.
The final version of this paper has also benefited from helpful discussions with
David Vogan and Gregg Zuckerman.

Finally, it would be a shame to permit the ’Cayley coincidence’ to go
unremarked. Indeed a provisional title for this paper was "The Cayley
Transform of the Cayley Operator and Unitary Representations", which was
abandoned as being too cumbersome.

1. Preliminaries

The material of this section is well-known. All the basic facts may be found in

[KorW], [KosS] and [B]. In what follows, all Lie algebras will be real unless

complexified with a subscript "c".

1.1. The Cayley transform

Let (g, f) be an irreducible Hermitian symmetric pair of tube type. Fix a Cartan
decomposition g = 1 + p and let a’ be a Cartan subspace of p. Choose ts ~ f so

that b’ = as ~ ts is a maximally split Cartan subalgebra of g.
It is known ([M]) that the restricted root system is of type Cn where

n = dim(as). Thus we may choose a basis 03B51,...,03B5n for (as)* such that
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The root spaces for + ei ± ej have a common dimension which we will denote
by d. The root spaces for ± 2ej are one-dimensional. Thus + 2Bj may be regarded
as a root of 4’ in g, vanishing on ts.
To each 2Bj we attach in a standard manner (see [KosR]) an S-triple

{hj, ej, fil, contained in g. These S-triples commute, and if

then {h, e, f 1 is also an S-triple.
The eigenvalues of ad(h) on g are - 2, 0 and 2. Let us write n, 1 and n for the

corresponding eigenspaces. Then

Clearly q = 1 + n is a maximal parabolic subalgebra whose one-dimensional
center is a = Rh. Let m (9 a be the Langlands decomposition of I.
We fix positive restricted root systems of g and 1, lexicographically with

respect to h 1, ... hn . Thus

The Cayley transform is the element (of order 4) in Ad(gc) defined by
c = exp nil4(e + f ). It is known that c(Ic) = fc and c(c) = le, and that C2 is the
Cartan involution for the symmetric pairs (f, 1 n f) and (I, I ~ f).

Let us write b = f n c(hsc). Then b is a compact Cartan subalgebra for g (and f),
and we have the decomposition b = t + ts, where t = ic(aS). The Harish-
Chandra strongly orthogonal roots in 03A3(hc, 9c) are 03B31, ..., Yn where yi = c o (203B5i).

1.2. The Capelli identity

Let P be the polynomial algebra on n. Then 1 acts naturally on 9 by

It is known (see [KosS] for details and references) that the algebra of lowest
weight vectors of (n, Y) is a polynomial algebra in n generators ~1,...,~n with
deg(cpj) = j and weight(cpj) = -2vj, where vj = E + ... + 03B5j.

Furthermore, n has the structure of a formally real Jordan algebra with e (see
1.1) as the identity. We normalize the gj by requiring that ~j(e) = 1 and write v
for vn and 9 for 9,. Then ç is the Jordan norm polynomial for n.
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Let 0 be the Cartan involution on g, then (x, y) = B(x, Oy)/B(e, f ) is a positive
definite inner product on n (where B is the Killing form). Thus we have an
isomorphism ô from Y to the algebra of constant coefficient differential

operators on n. We write D for ~(~).
It is easy to see that cpm Dm commutes with 03C0(I) on Y. It follows from Schur’s

Lemma that it acts by a scalar on each irreducible constituent of p.

PROPOSITION ([KosS]). If V is an irreducible subrepresentation of (03C0, P) with
highest weight 03BB = 03BB103B51 + ... + 03BBn03B5n, then for all f in V,

Moreover, there is an ad(I n f)-invariant element Xm in the enveloping algebra
u(I) such that

03C0(Xm) = cpmDm.

Proof. This is a reformulation of the main result of [KosS]. The function
denoted by f;’ in (3.16) of that paper is a highest weight vector of weight
- Zi (Âi - d/2(n - 2i + 1»e,, and (4.4) in that paper shows that

Thus if f is a highest weight vector of weight Â, then

which, after simplification, proves the first part of the Proposition.
Also, as shown in Section 4 of [KosS] (although with slightly different

notation), ~mDm is an invariant differential operator on L/L n K. Now the
existence of X m follows from the fact that the natural map from Õ//(I)LnK to
D(L/L n K) is surjective. D

1.3. The induced representation

Let 03A9 = G/K be the Hermitian symmetric space corresponding to the pair (g, f)
and let P be the normalizer of q in G. Then G/P is the Shilov boundary of Q in
the bounded (Harish-Chandra) realization. Let P be the opposite parabolic
subgroup and let P = LN = MAN be its Levi and Langlands decompositions.



252

Let à be half the sum of restricted roots in n. Then an easy calculation shows

that tJ = rv where 03BD = 03B51 + ... + En as in 1.2 and r = (nd - d + 2)/2. For each
t E R, we define the character xt of L by Xt(m exp(H)) = exp(tv(H)) for all m E M
and H E a. We define

and we write n, for the representation of G on I(t) by right translations.
Since G = PK, restriction to K is a K-isomorphism between I(t) and

C’«L n K)BK). Now, as remarked in 1.1, (K, L n K) is a symmetric pair. It

follows that each K-type in I(t) has multiplicity one. Furthermore, the K-types
which do occur are exactly those that have an L n K-fixed vector. By the
Cartan-Helgason theorem, this happens exactly when the highest weight fl of
the K-type satisfies Plt = 0 and

where the yj are as in 1.1.
We will write I(t)03B2 for the K-type of I(t) of highest weight p.
Since PN is open and dense in G, restriction to N gives an injection from I(t)

to C°°(N). Using the exponential map to identify n and N, we get an embedding
f H f from I(t) into C~(n). The image E(t) will be referred to as the non-compact
picture.

In this picture, g acts by polynomial coefficient vector fields and so n, gives a
homomorphism from the enveloping algebra *(g) to the Weyl algebra 11/ of
polynomial coefficient differential operators on n.
The action of q is particularly simple, and we have

where 03C0(u) is as in 1.2 and v is regarded as a character of 1 vanishing on m.
If D = è(cp) is as in 1.2, then D: E(t) ~ C~(n). The crucial property of Dm is the

following:

PROPOSITION ([B]). For each integer m  0, Dm intertwines nm and n_m. D

For a different proof see Proposition V.6.1 in [JV].
For fi E I(t) and f2 E I ( - t) we define
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where dg is the right-invariant measure on PBG.
It is easily checked that the above expression is well-defined, and that it gives

a non-degenerate, Hermitian, G-invariant pairing between I(t) and I(-t).
The pairing has a very simple expression in the non-compact picture. It

becomes

2. The signature of the hermitian form

In this section we prove Theorem 1.

2.1. Finite dimensional subrepresentations

Let v = 03B51 + ... + 03B5n be as in 1.2. Regard v as a character of b’ by extending it
trivially on ts. Then by the Cartan-Helgason theorem, for each nonnegative
integer m, there is a finite-dimensional spherical representation of G with highest
weight 2mv. An easy calculation of central characters shows that these finite
dimensional representations occur as constituents of certain of the E(t)’s. The
next lemma makes this precise.

Let r = (nd - d + 2)/2 be as in 1.3, and let m  0 be an integer.

LEMMA 1. E(r + 2m) has a finite-dimensional subrepresentation F2. with

highest weight 2mv. Furthermore, if f E F2., then f is a polynomial on n.
Proof. As remarked in 1.3, n, gives a homomorphism of Gll(g) into W. Thus 03C0t

may be extended to an action on all of C~(n).
For t = r + 2m, the constant function is 03C0t(n)-invariant and transforms by the

character 2mv of I. Thus it generates a finite-dimensional subrepresentation F2m,
say, of C~(n). This exponentiates to a spherical representation of the group G. It
follows that F2m consists of K-finite vectors and so is contained in E(t).

Finally, if f is in F2m then f = 03C0t(u) · 1 for some u in u(g). Since 03C0t(u) E W,f
must be a polynomial. D

Let ~ be the Jordan norm as in 1.2. Define the polynomial t/J (of degree 2n) by

where e is as in l.l and x’ is the square in the Jordan algebra.
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LEMMA 2. The functions 1 and cplm are the highest and lowest weight vectors in
F2m. The functions cpm and t/lm span the one-dimensional spaces of L-fixed and K-

fixed vectors respectively.
Proof. The formula for 03C0r+2m(I) shows that the only polynomials transform-

ing by a character of 1er + 2m (1) are the powers cpk for k = 0, 1, .... The first part of
the Lemma follows after we note that 1, lpm, ,2m transform by the appropriate
weights of a.

It remains to show that 03C8m is K-fixed. Complexifying the action of g on F2m
we get a holomorphic representation of Qc. Let c be the Cayley transform as in
1.2. Then c acts on F2m and it suffices to show that c takes ~m to 03C8m.

Let e1 ··· en be as in 1.1. Then the set {ad(L~K)(03B11e1 + ··· + 03B1nen)|03B1j~R} is
open in n. (Indeed as remarked in Proposition 1 of [KosS], this is an open cone.)
On the other hand, since cpm and 03C8m are both L n K-invariant, it suffices to show
that

However, this follows from the definition of c and an easy sl2-calculation.
0

Each of the representations n, is spherical. Let f be the K-fixed vector in 1(t);
then we have ft(mank) = (avy-r. The next Lemma gives an explicit formula for
f.

LEMMA 3. The spherical vector in E(t) is qit - r/2.
Proof. The formula for f shows that ft+r(g) = (f2+r (g))t/2. On the other hand,

Lemma 2 shows that the spherical vector in E(2 + r) is t/f. Thus the spherical
vector in E(t + r) is 03C8t/2 and the result follows. 0

LEMMA 4. For each w and t in R, the map f ~ 03C8tf is a K-isomorphism between
E(w) and E(w + 2t).

Proof. The definition of I(t) in 1.3 shows that if f ~ I(w) and f’ E 1(2t + r), then
f1 belongs to I(w + 2t). In particular, f2t+rJ belongs to I(w + 2t) for all f in
1(w). Going over to the compact picture, we see that the map f ~ f2t+rf is a K-
isomorphism - indeed it is just the identity map in the compact picture. On the
other hand, by Lemma 3, this map becomes f ~ 03C8tf in the noncompact picture.

D

As remarked in 1.3, for each m, 03C0m gives a homomorphism of e(g) into the
Weyl algebra 3Y’. Let us write "fi/ m for the image. Then "fi/ m contains all constant
coefficient differential operators and is stable under the adjoint action of 03C0m(G).
The next Lemma is due to Kostant.

LEMMA 5. For each p E F2m, the operator pDm belongs to "fi/m. Moreover, the
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map p H pDm intertwines F2. with a subrepresentation of the adjoint action of G
on Wm.

Proof. (Kostant) Fix f E E(m), g E G and let f ’ = Dm03C0m(g)-1f. Then by Lemma
2.3, f’ ~ E(-m) and n-m(g)f’ = Dmf.
Now, if p E F2m ~ E(r + 2m), then as remarked in the proof of Lemma 4,

pf’ ~ E(m). Further, it is easy to check that 03C0m(g)(pf’) = (03C0r+2(g)p)(03C0-m(g)f’).
Rewriting this in terms of f, we get

Now set p = 1 in (1). This shows that

By the remarks preceding this Lemma, the right side of (2) is in 1f/’ m. On the
other hand, since F,. is irreducible, the set {03C0r+2m(g) · 1|g ~ G} spans F2m. This
proves the first part of the Lemma. The second part is now just the identity (1).

D

Let us write Om for the differential operator 03C8mDm. In Lemma 2 we showed
that in the representation of gc on F2m, the Cayley transform c maps gm to .pm.
Combining this with Lemma 5 gives us the following key result.

PROPOSITION. Om = 03C0m(c)~mDm03C0m(c)-1. ~

2.2. Proof of Theorem 1

For each integer m  0, we define a Hermitian form (,)m on E(m) by

where f and f ’ belong to E(m) and ~,~ is as in 1.2.
Proposition 1.3 shows that (,)m is 03C0m(g)-invariant. Consequently, for each p as

in 1.3 there is a constant qm(03B2) such that for all f E I(m),,

The right side of (2) can be expressed in the non-compact picture as follows:

LEMMA 1. Let If¡ be as in 2.1, then for all f E I(m),
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Proof. This is easy to check for m = 0. The general case follows by Lemma
2.1.4. D

COROLLARY. For each f E E(m)p, 03C8mDmf = qm(03B2)f.
Proof. This follows by combining (1), (2) and the Lemma. ~

Now consider the restriction of (nm, C~(n)) to 1. The formula in 1.3 shows that
if f ~ P has 03C0m(as)-weight 03A303BBi03B5i, then it has 7r(a’)-weight 03A3(03BBi + m - r)03B5i.
Combining this with Proposition 1.2 gives

LEMMA 2. Let V be a finite dimensional, irreducible 03C0m(I)-subrepresentation of
CI(n) with highest weight 03A3i 03BBi03B5i, then for all f E V

Further, there is an ad(I~)-invariant element Ym in U(I) such that

7r.(Y.) = cpm Dm. 0

We are now in a position to prove Theorem 1.
Proof of Theorem 1. Let Zm = ad(c) Ym, then Zm E and Proposition 2.1

shows that 03C0m(Zm) = A..
Now if f is a highest weight vector for 03C0m(I) with weight 2 Si bi03B5i then 1.3

implies that 03C0m(c)f is a highest weight vector for 7r.(t,,) with weight fi = Si biyi.
Thus by Lemma 2,

3. Certain unitary representations

In this section we prove Theorem 2 and extend our results to the universal

covering group.

3.1. Proof of Theorem 2

Let E(m) and (, )m be as in 2.2, and write V(m) for the Harish-Chandra module of
K-finite vectors in E(m). If R(m) is the radical of (, )m, then R(m) is a submodule of
V(m) ; and the quotient Q(m) = V(m)/R(m) is a Harish-Chandra module with a
non-degenerate Hermitian form.
Theorem 1 completely determines the K-structure and the form on Q(m). We
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will show that the form is definite on certain submodules of Q(m). For this we
need an elementary Lemma. Fix a positive integer m and let 9 and -4 be the sets
of highest weights of K-types of in Q(m) and R(m) respectively.

LEMMA. Suppose S is a subset of 2 with the property that for each 03B2~S,
03B2 ± 03B3j~S~R for each j. Then 03A3{Q(m)03B2|03B2 ~ S} is a g-submodule of Q(m).

Proof. From 1.1 we see that the t-weights of the adjoint representation are
+ yi and 1 2(±03B3i ± 03B3j). So if V03B2 is a K-type of V(m), then 03C0m(g)V03B2 ~
03A3{V03B1|03B1 = 03B2, 03B2 ± 03B3j}.
Now let W = LpeS V(m)03B2. Then the assumption of the Lemma shows that

03C0m(g)W ~ W + R(m), which clearly implies the result. D

Proof of Theorem 2. First suppose that (a) d = 4k and m = 2p - 1 with

k, p E N. Then qm(03B2) becomes

Let us write 9 for the K-types of Q(m) and ai for k(n - 2i + 1). The formula
shows that 2 consists of fl = Li biyi such that (a) b,  bn E Z and (b) for
each i, either bi + ai  -p or bi + ai a p.

Let Sl = {03B2~2|b1  ···  bl  p - al and - p - al+1  bl+1  ··· bn}.
Then 9 is the disjoint union of So,..., Sn and each SI satisfies the hypothesis of
the Lemma above. Thus if we write QI for 03A3{Q(m)03B2|03B2~Sl}, then each QI is a
submodule, and Q(m) = Qo + ··· + 6n It is easily checked that for fi in a fixed
Sl, all qm(03B2) have the same sign. Consequently QI is unitarizable.
The argument for case (b), when d == 2(mod 4) and m --- n(mod 2), is similar.

D

It can be shown that the representations QI are irreducible, but the proof is a
bit involved. Once this is proved, Proposition 6.1 of [VZ] can be applied to
show that QI is an A(ql, 03BB), where q, is a 0-stable parabolic whose Levi
component is a real form of f. We postpone this to a future paper.
The representations Qo and Qn are the holomorphic (and anti-holomorphic)

discrete series considered by Wallach in [W]. They have 1-dimensional lowest
K-types. Renormalizing our form to be 1 on the lowest K-type gives an explicit
formula for the form considered by [W]! This yields Wallach’s results on the
analytic continuation of these series. Since these results are already known (see
[FK]), we omit the details.

Finally, let us point out that Theorem 2 applies to the groups SO* (4n) (with
d = 4), O(4p + 1, 2) (with d = 4p), E7(-25) (with d = 8), U(n, n) (with d = 2) and
O(4p + 3, 2) (with d = 4p + 2).
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3.2. Degenerate series for the universal covering group

Let G be the universal covering group of G and let L be the inverse image of L in
G. Then it may be shown that  ~ L x Z. The characters of Z may be identified
with the set [0, 1) through the correspondence 03B1 ~ 03BE03B1 where 03BE03B1(~) = exp(203C0i03B1~).
We define 03C003B1,t to be the representation of G by right translations on

Observe that 1(0, t) is just I(t).
An easy calculation shows that the K-types occur with multiplicity one and

have highest weights such that Plt = 0 and

As before, restricting to N and using the exp map, we get an injection from
1(a, t) to C~(n). Let us write E(a, t) for the image. The space E(a, t) depends on
both a and t, however the action of na,t(g) depends only on t.
We observe also that the Hermitian dual of E(a, t) is E(a, - t). As before, Dm

intertwines E(a, m) with its Hermitian dual, so that we get a Hermitian form on
E(a, m) for each m. The signature of this form is given by Theorem 1 (the only
difference is that the b j are in Z + a).

Let us write V(a, m) for the Harish-Chandra module of E(a, m) and Q(a, m) for
the quotient of Y(a, m) by the radical of the form.

Arguing as in the proof of Theorem 2 we find that if (a) d = 4k and m is even,
or if (b) d = 4k + 2 and m ~ n (mod 2), then Q(1 2, m) is a direct sum of n + 1
unitary representations whose t-types may be explicitly computed as before.

Appendix

In this appendix we study the reducibility of 1(a, t) using a result of Guillemonat.
For the group Sp(n, R), Kudla and Rallis [KuR] describe how this may be done.
However their result depends crucially on Proposition 1.2 of [KuR] which does
not obviously hold for other tube domains.

Guillemonat in [G], considers a problem very similar to the one discussed in
our paper. He studies representations of g which have a one-dimensional f-type
annihilated by a certain ideal J in the enveloping algebra. These representations
are constructed as follows:

Let a be as in 1.1 and let 3 be the center of . Fix 03BB E a* and x E 3* and let ~~,03BB be
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the ix-semi-spherical function on G with infinitesimal character corresponding
to 03BB. The representation V’,Â of [G] is obtained by the right translations of CPx,;’.
This representation has a natural Hermitian form (normalized to be 1 on ~~,03BB).
The quotient of V’~,03BB, by this form is an irreducible representation denoted V,,, in
Section 5 of [G].
The connection with our paper is that V~,03BB is a constituent of I(a, t) for

a = ix(H)/2n (mod Z) and t = 03BB(E)/n

where H and E are in Section 2.2 and Section 3.1 of [G]. (This follows by
elementary infinitesimal character and f-type considerations.) Furthermore, for
these values of the parameters, V’~,03BB and I(a, t) have the same t-types. Therefore,
I(a, t) is irreducible if and only if the corresponding V~,03BB is irreducible. We claim
that this happens if and only if the form on V’,, is non-degenerate. This depends
on the following simple observation:

If the form is degenerate then the representation is clearly reducible. Suppose
the form is non degenerate. Since ~~,03BB is a cyclic vector, it suffices to show that
the representation is completely reducible. This is a consequence of the next
Lemma.

LEMMA. Suppose V is a Harish-Chandra module with a non-degenerate
invariant Hermitian form. If each K-type in V has multiplicity one, then V is
completely reducible.

Proof If W be a submodule of v then W 1 ~ {03BD E V|(v, w) = 0 for all w E W} is
also a submodule. On the other hand, since each K-type in Vhas multiplicity
one, the form is definite on each K-type. Since different K-types are orthogonal,
it follows that W 1 contains exactly the K-types not in W Consequently
V = W ~ W~. a

In Section 6 of [G] it is shown that the form on V’~,03BB is non-degenerate if and
only if the expressions in formulas (1’) and (2’) of [G Section 6.9] are non-zero.
Rewriting these formulas in our notation the requirement becomes

This is equivalent to the condition that for each i = l, ... , n,

Thus for d ~ 0 (mod 4), 1(0, t) is reducible for odd integral values of t, and
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1(1, t) is reducible for even integral values of t. While for d --- 2(mod 4), 1(0, t) is
reducible when t - n is an even integer and 1(1, t) is reducible when t - n is an
odd integer.
For odd values of d, the representations 1(0, t) and I(t, t) are reducible for

integral values of t and also for half-integral values. There are unitary
representations at these other points which are not amenable to the present
analysis. We intend to discuss these and other unitary constituents of 1(t) in a
future paper.
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