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1. Introduction

The conjectures of Beilinson and Bloch ([1]-[3]) relate the conjectural behavior
at s = 0 of the Hasse-Weil L-function L(s, E) of an elliptic curve E defined over Q
to K2E via a regulator which generalizes that of Dirichlet. Part of what the
conjectures assert is that K2E is a finitely generated abelian group of rank
1 + |Spl(E)|, where Spl(E) denotes the set of primes where E has split multipli-
cative reduction [3].

In case E has complex multiplication, there is partial evidence in support of
the part of the conjecture concerning the rank of K2E: in this case the

conjectural rank of K2E is 1, and Bloch has constructed a rank 1 subgroup ([2],
also see [8]). But in case E does not have CM, there were only finitely many
examples for which one knew that K2E had positive rank. In this paper, we
show that for all but finitely many elliptic curves E/Q possessing a rational
torsion point of order at least 3, K2E has positive rank. Our method is as
follows. In the case of an elliptic curve E defined over C, one may view the
regulator as a homomorphism K 2E -+ C. Parametrize elliptic curves in the usual
manner by points in the complex upper half-plane e; denote by E03BB the elliptic
curve corresponding to 03BB ~ H. For each Â, we construct an element 03B103BB E K2E;.
using torsion points on E03BB, and show that the map Â H regE03BB(03B103BB) is real analytic
on H and behaves well near the cusps. (Here, we are denoting by regE03BB the

regulator homomorphism on K2E03BB.) This allows us to conclude our result with
Q replaced by R; using the twisting theory of elliptic curves allows us to descend
to Q.

This work is part of the author’s 1990 Rutgers Ph.D. thesis written under the
direction of David Rohrlich, to whom the author expresses thanks for the

support and encouragement received during that project.

2. Analytic behavior of the regulator

Let E be an elliptic curve defined over C. In this section, we only care about the
C-isomorphism class of E, and thus identify E(C) with a complex torus C/A,
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where A is a lattice in C. Let cv be a nonzero holomorphic 1-form on E(C). In [1],
Beilinson defines a regulator

by

Note that this depends on the choice of w. To eliminate this dependence, we
normalize the regulator as follows. The period lattice of co is homothetic to
A = Z + Zae for some ae E Ye. Let rE denote the element of H1(E(C), Z) determined
by the segment of the real axis connecting 0 to 1. Put

Then define 03C1E: K2C(E) ~ C by 03C1E({f, g}) = 03A9-1E regE({f, g}). We want to

express 03C1E({f, g}) in terms of the homothety class of A, div( f ), and div(g).
Let r, SE R, A = x + iy E Yt, and define 03B5(r, s; A) by:

03B5(r, s; A) = 03A3’ (mA + n)|m03BB + nl-4 e21ti(mr+ns).
(m,n)

Here, the prime indicates that the sum is over all pairs of integers (m, n) ~ (0, 0).
Note that é depends on r and s only mod Z. 03B5 has the following modular

behavior : If 7 = (a c Je SL2(Z), thcn

Beilinson, in [1], gives a formula for 03C1E({f, gl), which we state in the following
lemma.

LEMMA 2.1. Let E be an elliptic curve defined over C, and let A E H be such that
the period lattice of E is homothetic to 039B = Z + Z03BB. For z E C/A, write

z = U(Z)A + v(z) mod A with u(z) and v(z) in [0, 1). Let f, g E C(E)*, and identify f and
g with functions on C/A. Then
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We now examine the analytic properties of this expression for p,. We begin
with the following lemma, which gives a Fourier expansion for .9(r, s; Â). Let
ae=x+iy.

LEMMA 2.2. Suppose that SE Q and N E N satisfy Ns E Z. Then

and

where ak, bk, ck ~ R depend only on r, s, N, and x, and B(s) = 1 3s3 - 1 2s2 + 1 6s for
s E [o,1], and for general s, B(s) = B(s - [s]), where [s] denotes the greatest integer
less than or equal to s.

Proof. For z E C, Re z &#x3E; 3 4, define 03B5(r, s; ae, z) by

For z in this half-plane, the sum converges absolutely and uniformly on compact
sets. Assume now that Re z &#x3E; 1. Letting

we may write

We have
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By Poisson summation,

Substituting the right-hand side into the expression for S and simplifying, we
obtain

where, following [5],

By analytic continuation, the expression above for S(03BB, z) holds for all z. In
particular, it holds for z = 1.
We have (see [5], pp. 270-271)

Hence, we have the following expression for S(Â, 1):

and therefore obtain the following expression for 03B5 :

Noting that S(03BB, 1) is totally imaginary, we find that

and



215

In view of (2), the lemma now follows.

We now turn our attention to functions of the form

where mj E Z, and rj, Sj E [0, 1) with sj E Q. For such a ~, we will choose a natural
number N such that for all j, Nsj ~ Z. It is clear that 0 is a complex-valued real
analytic function on Ye. We now proceed to examine the behavior of 0 near the
cusps.
We will need the following simple lemma.

LEMMA 2.3. For y &#x3E; 0 consider the function

where ak, bk E R and N E N. Suppose that 10 is not identically zero. Then for all y
sufficiently large, 03A6(y) ~ 0.

Proof. Let w = e - 203C0y/N. It suffices to show that for all w &#x3E; 0 sufficiently small,
the function

has no zeros. This is straightforward. D

We now return to 4J. For x ~ R, we let Lx denote the vertical ray in H defined

by Lx = {x + iy: y &#x3E; 0}.
LEMMA 2.4. Let x E Q. Suppose that Re 4J (resp. lm ~) is not identically zero on
Lx. Then Re 4J (resp. Im ~) has at most finitely many zeros on Lx.

Proof. We prove this only for Re 4J, the proof for lm 4J being similar.
By Lemma 2.2 we have

which, by Lemma 2.3, has no zeros for y sufficiently large.
If x * 0, write x = A/C with A, C ~ Z, C &#x3E; 0, and (A, C) = 1. Let B and D be

Give each Lx the orientation induced by the usual
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ordering on y. Note that y gives an orientation-reversing map of Lx’ onto L,,.
Thus, by Equation (1), we are led to examine

for large values of y, where

Im  is not identically zero on Lx’ because Re 4J is not identically zero on Lx .
Then, by Lemma 2.3, we conclude that lm 0 has no zeros on Lx’ for y large
enough.

Therefore the zeros of Re 4J on Lx are contained in a compact subset of Lx.
Since Re 4J is real analytic, it follows that it has only finitely many zeros on Lx.

0

3. The main theorem

We now construct elements in the K2 groups of elliptic curves defined over Q
with a rational torsion point of order at least three, and study the relevant
regulator expression.
We begin by standardizing our choice of period lattice for E. Let 0 denote the

identity element for the group law on E.

LEMMA 3.1. Let E be an elliptic curve defined over R. Fix an orientation on
E(R)°, the connected component of the identity in E(R). Then there exists a unique
pair (A, 0) where A c C is a lattice and 0: C/039B ~ E(C) is a complex analytic
isomorphism such that :

(a) 0 is defined over R.
(b) A n R = Z and 03B8|R|Z maps R/Z isomorphically onto E(R)’ in an orientation-

preserving manner, where R/Z is given the orientation induced by the usual order
on R. Hence 0393E = E(R)° with the specified orientation.

(c) A = Z + ZA with Re A = 0 or 1/2 and lm A &#x3E; 0. Furthermore, Re A = 0 (resp.
1/2) f [E(R): E(R)’] = 2 (resp. 1).
Proof Let úJ be a non-zero holomorphic 1-form on E(C) defined over R. Let A

be the period lattice of w. Then A is invariant under complex conjugation,
whence A n R ~ 0. By suitably renormalizing 03C9, we may assume that

A n R = Z. Let 03C8 denote the Abel-Jacobi map:
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Then 03C8 is defined over R. Let 03B8 = 03C8-1. By replacing 0 with - 03B8 if necessary, we
may assume that 03B8|R|Z preserves orientations. This shows (a) and (b).
Now let 039B = Z03BB1 + Z03BB2. Then there exist integers a and b such that

1= a03BB1 + b03BB2. Because A n R = Z, a and b must be relatively prime. Choose

integers c and d such that d ~ SL2(Z), and let 03BB = c03BB1 + d03BB2. Then

A = Z + ZÂ. By replacing A with - 03BB if necessary, we may assume that Â E e.
Since 03BB E A, we find that Re A ~ 1 2Z. Adding a suitable integer to A allows us to
assume that Re 03BB = 0 or 1/2.

Suppose that Re 03BB = 0, and put A=iy, y &#x3E; 0. Let X = {x + 1 2iy: 0  x  1}.
Then X = X mod A, where the bar denotes complex conjugation, and

X ~ {x : 0  x  1} mod A. So E(R) has two components.
Suppose that Re 03BB = 1 2. Note then that A = ZA + Z03BB, and that the fundamental

parallelogram f?JJ defined by A and 2 is invariant under complex conjugation. So
if z c- Y satisfies z --- z mod A, then z = z, whence z E R. So in this case E(R) has
only one component.
To verify the uniqueness of (A, 0), assume that we have another pair (A’, e’)

satisfying (a), (b), and (c) above. Then 0 = 03B8’-1 00: C/039B ~ C/A’ is a complex
analytic isomorphism defined over R. Therefore, A = cA’ for some c E C*, (a)
implies that c E R and then (b) implies that c =1. D

Now let E be defined over Q, and let N ~ {3,4, 5, 6, 7, 8, 9, 10, 121. We assume
that E has a rational torsion point of exact order N. For each of these values of
N, there are infinitely many such E/Q, because the modular curve Xi(N) has
genus zero in these cases. A well-known theorem of Mazur implies that these
values of N, together with 1 and 2, are the only ones possible.

Let P ~ E(Q) be a point of exact order N, and write P = 03B8(u03BB + a/N) where 0
and A are as in Lemma 3.1, and a is unique modulo N. Since 2Pe E(R)°, we may
assume that u = 0 or 2. If Re A -1 so that E(R) has only one component, we
necessarily have u = 0.

LEMMA 3.2. For each N, let P ~ E(Q) be a point of exact order N. Then there
exist functions f and g in Q(E) such that div(f) = N(P) - N(O),
div(g) = N( - P) - N(O), and {f, gl e kerr, where r is the global tame symbol on
K 2 Q(E) [7].

Proof. Since P is of order N and defined over Q, there exist functions f and g
defined over Q having the indicated divisors. By multiplying these functions by
suitable rational numbers, we may assume that f ( - P) = g(P) =1. Weil

Reciprocity implies that the symbol {f, gl eker T. D

Let f and g be as in Lemma 3.2. An easy calculation gives:
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where E = E03BB and 03BB is given by Lemma 3.1. Let ~(u, a, N; 03BB) = 03B5(2a/N, 0; 03BB)
- 203B5(a/N, u ; ae). Note that ~(u, a, N; ae) e R for Re ae = 0 or t.

LEMMA 3.3. Let u, a, and N be as above. Then ~(u, a, N; 03BB) has only finitely
man y zeros on Lo and L1/2.

y(L- 1/2) = L1/2.Note also that if E/R has period lattice Z + ZA with Re A = 2, then
E(R) = E(R)O; hence in this case u = o.
By Lemma 2.4, it suffices to show that Re ~(u, a, N; UA) is not identically zero

on Lo and that Re ~(0, a, N; 03B303BB) is not identically zero on L - 1/2 for each of the
values of u, a, and N which can occur. Computing using equation (1) and
discarding an automorphy factor which never vanishes, it suffices to show that

is not identically zero on Lo, and that

is not identically zero on L- 1/2. We do this by examining the Fourier coefficients
of these expressions, using Lemma 2.2.

Note that the leading term of the first expression is

Since B(2t) - 2B(t) = 2t3 - t2 for t between 0 and 1, we see that this term is

nonzero for all admissible values of a and N.

As for the second expression, note that its leading term is

which is nonzero for all admissible values of a

and N except N = 4 and a = + 1.
To take care of this case, we return to

where we have used the fact that 03B5( - r, - s; 03BB) = - 03B5(r, s; 03BB). This fact also
implies in particular that 03B5(1 2, 0; 03BB) =0. Returning to the proof of Lemma 2.2, we
find that
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Break this into two sums, one for which n = 0 and one for which n ~ 0. Denote
this latter sum by S(x, y). We thus obtain

The term S(2, y) decays like y-1 e-203C0y as y - oo. Hence,

PROPOSITION 3.1. Let K be a perfect field of characteristic ~ 2, 3. Let j E K,
j ~ 0, and let N  3 be an integer. Then there are only finitely many K-
isomorphism classes of elliptic curves E/K such that j(E) = j and E(K) has a point
of exact order N.

Proof. Suppose that j ~ 1728. Let E/K have invariant j. Choose a Weierstrass

equation for E:

with A, B E K. The set of K-isomorphism classes of elliptic curves E’/K such that
j(E’) = j is in one-to-one correspondence with K*/K*2; this correspondence is
given explicitly by

and an isomorphism 4JD: E ~ ED, defined over K, is given by

where D 3/2 is some fixed square root of D3 [10].
Let (x, y) ~ E(K) be of exact order N; since N  3, we know that y ~ 0. We

claim that there is at most one D mod K*2 such that l/JD(X, y) E ED(K). For

suppose that D’ were also such that ~D’(x, y) E ED,(K). Then both ~Dy and
JIY y belong to K. Since y e 0, we conclude that D ~ D’ mod K*2. Hence we
obtain the proposition in case j ~ 1728.

If j = 1728, consider the following elliptic curve

The set of K-isomorphism classes of elliptic curves E’/K with j(E’) =1728 is in
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one-to-one correspondence with K*/K*4; this correspondence is given explicitly
by

and an isomorphism 03C8D: E - ED, defined over K, is given by

where à is any fourth-root of D [10].
Let (x, y) E E(K) be of exact order N; since N a 3, we know that xy ~ 0. Again

there is at most one D mod K*4 such that t/lD(X,Y)EED(K). For if D’ mod K*4
were also such that 03C8D’(x, y) ~ ED,(K), then, letting l5’ be a fourth-root of D’, we
have ô"x and ô"y belonging to K. Since xy ~ 0, we have (03B4/03B4’)2 ~ K* and
(03B4/03B4’)3 e K*. So fJ/l5’ e K*, that is, D ~ D’ mod K*4. ~

REMARKS. (1) In the case K = Q, this is a weak version of the main result of
[6].

(2) As stated, the proposition is false for curves of j invariant 0. As a

counterexample, consider the family Ed of curves defined over Q by

where d ~ Q*2. Then the 3-torsion in Ed(Q) consists of (0, d), (0, - d), and 00.
We may now state our main result:

THEOREM 3.1. Let N be an integer greater than or equal to 3. Then for all but
finitely many Q-isomorphism classes of elliptic curves E/Q such that E(Q)
possesses a torsion point of order N, there exists a E K2E such that 03C1E(03B1) ~ 0.

Proof. If j(E) = 0, then the statement follows from Bloch’s theorem [2]. Hence,
we may assume that j(E) e 0. For each such curve, choose a point P of exact
order N defined over Q and construct ( g gl as in Lemma 3.2. Since (f, gl is in
the kernel of the tame symbol, it follows from the localization sequence in K-
theory that {f,g} represents an element a E K2E. Let 03BB be the point in Ye
corresponding to E, as determined in Lemma 3.1. Then PE (a) = ~(u, a, N; ae) for
some admissible choice of u, a, N.

By Lemma 3.3, there are at most finitely many values aeo for À such that the
corresponding value pE(a) is zero. By Proposition 3.1, to each of these values 03BB0
there are associated only finitely many elliptic curves of the type we are
considering. The theorem follows. D

Using the functoriality of the regulator, we immediately obtain the following:

THEOREM 3.2. For all but fznitely many elliptic curves E/Q which are isogenous
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over Q to an elliptic curve defined over Q containing a rational torsion point of
order at least three, K2E contains an element of infinite order.

We remark that this generalization is non-vacuous, since any elliptic curve
defined over Q is isogenous over Q to an elliptic curve E’/Q such that

|E’(Q)tors| =1 or 2 ([9]).
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