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Introduction

This article finds a new analytic use for the functional equation and b-function,
which are fundamental objects in the theory of holonomic modules. Recent well
known applications of various constructions from D-modules have been

primarily to representation theory and Hodge theory. On the other hand the
historic motivation of the subject came from number theory (Sato’s theory of
prehomogeneous vector spaces) and the solution (by Bernstein) of the Division
problem in the theory of distributions. In these early works the sheaf theoretic
and cohomological/geometric aspects of the theory are largely absent. One
simply worked algebraically with modules over the Weyl algebra and exploited
the basic notion of a holonomic module to obtain a functional equation,
involving a differential operator with polynomial coefficients. This led to

important functional equations for the analytic objects of interest to Sato and
Bernstein.

The application in this article is to a general counting problem that emerges
from additive number theory. Given a polynomial P E R[z1, ..., zn], define

Assuming the functions are finite for each x &#x3E; 0, the problem is to describe their
asymptotic behavior as x - oo.
When P is a positive definite quadratic form, the classical work of Epstein

[Ep], Landau [La], among others, described %(x) using the modularity of the
quadratic theta function. This method breaks down however once P is positive
definite and homogeneous of degree at least 3. In this case, An-Stein [A-S] have
given an asymptotic description for X(x). Replacing Z by N, Sargos [Sa-1, 2]
has described the behavior of N(x) when P has positive coefficients.
The class of polynomials used in this paper are hypoelliptic and defined over
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R. Hypoellipticity is characterized by a simple growth condition on P at infinity.
If P is elliptic (in particular, homogeneous and positive definite), then it is

hypoelliptic. More significantly, no assumptions about the sign of the coeffi-
cients need to be satisfied. Hypoelliptic polynomial can have both positive and
negative coefficients.

This paper will assume P is hypoelliptic on [a, oo)" for some a E (0, 1). Thus,
N(x) will be of particular interest. It is, however, a trivial exercise to modify the
arguments given here, and thereby extend the main results to the asymptotic
description of N(x), when P is hypoelliptic on Rn. For this the discussion in
[Li-2] is useful. Thus, the results of this paper extend those of both [A-S] and
[Sa-2] in a unified manner. One should also note that the proof of Theorem 4 in
[Bo] can be used to describe N(x), when P is hypoelliptic on R n with precision
approximately that obtainable by Theorem 1 of this paper. However, the
method used by Bochner does not extend to treat N(x).
More generally, a large class of counting functions will be studied. Let 9 be

any polynomial satisfying the condition

Sign qJ(m) is constant for all but at most finitely many m E Nn. (0.1 )

Then one defines

The description of N~(x) for large x is a solution for a type of weighted lattice
point problem, each point m weighted by ~(m). Thus, an analysis of N~(x)/N(x)
for large x allows one to study the behavior of the expected value of ~(m) when
restricted to {|P|  x} n Nn, for all large x. Still more general classes of weight
functions can also be used (cf. Concluding Remarks).
The basic observation of this paper is that under the above assumptions upon

P, 9, one can combine the b-function and functional equation with classical
Tauberian methods to give a general description of N~(x) as follows:

There exist 03C10(~), 03BC’(~) &#x3E; 0, and non-zero polynomial A(t) such that for any
03B5 &#x3E; 0,

This is proved in Section 3.
The significance of (0.2) is felt to lie in its proof, which is conceptually simple

and extendable, so far at least, partially to Dirichlet series in k  2

variables, cf. [Li-3]. Indeed, the moral of this paper would seem to be that the
functional equation from D-modules is an effective and general tool for the
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analysis of lattice point problems involving polynomials on Rn. This is

presumably of most interest for problems in which the structure of automorphic
functions is absent.

To prove (0.2) one introduces the generating function

called a generalized Dirichlet series, and proceeds classically. This means one
proves the following assertions:

(0.3)

(1) Dp(.s, ~) is absolutely convergent and analytic in a halfplane
03C3=Re(s) &#x3E; B(~);

(2) DP(s, ç) admits an analytic continuation to the entire s(= Q + it) plane as a
meromorphic function with at most finitely many poles in any vertical
band 03C3 e [a, b];

(3) There exists a first pole 03C10(~) and a positive constant 03BC(~) so that the
following "moderate growth" condition holds to the left of the line

03C3=03C10(~):

For each e &#x3E; 0 and Ul  03C32  PO(9), there exists a constant

C = C(e, Ul, Q2) such that

|DP(s, qJ)1  C(1 + |t|03BC(~)(03C10(~)-03C3)+03B5) (0.4)

whenever aE[a1’ U2] and |t|  B, for some B independent of ul, Q2.

One can then take 03BC’(~) = 1/03BC(~) in (0.2).
In the first article on this subject [Li-1], (0.3)(1,2) were proved using the

functional equation and b-function. In order to keep the length of this article
reasonably modest, the reader will be assumed familiar with [ibid], to which
reference will often be made. Thus, the main result, Theorem 1, of this paper is
the moderate growth condition (0.4). Here too the functional equation and b-
function are used. This paper therefore gives an example demonstrating how
these modern algebraic tools can be used to do classical analysis at a level of
generality not possible using standard techniques.
On the other hand, this method is not strong enough to detect actual poles of

the meromorphic extension of Dp(s, ~). One must rely, so far, on a well-known
theorem of Landau [H-R, p. 10], showing that assumption (0.1) implies the
existence of a first (and necessarily rational, cf. [Li-4]) pole. In addition, if the
determination of the precise value of the first pole is of interest, then one needs to
carry out the type of geometric analysis at infinity that is described in [Li-1, §5].
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Section 1 recalls hypoellipticity and an important property for the proof of
Theorem 1. Section 2 states results, needed for the proof of Theorem 1, and
which are proved in [Li-1]. Section 3 proves Theorem 1. The derivation of (0.2)
from (0.4) is a standard modification of an argument due to Landau [La].

Discussions with Profs. J. Hoffstein and A. Nachman have been very helpful
and are appreciated.

Notation

For ease in reading, compiled below is a list of notations used in the paper.

(1) zj = xj + iyj, j = 1,...,n.
(2) For ZEcn, one sets ~z~ = max{|zi|:i=1,...,n}.
(3) If A = (A1, ..., An) is an n-tuple of nonnegative integers, set lAI = 1:i= 1 Ai,

A! = A1!...An!, and zA=zA11···zAnn.
(4) For A as above, define the differential monomial DAx=DA1x1···DAnxn, and

similarly for DA
(5) For any polynomial P, defined over C, one writes

Also, one writes dp = deg P.
(6) For 0 &#x3E; 0, define a closed neighborhood of [a, oo)" by

(7) For P, ~ as above, define the à tail of Dp(s, ç) as

(8) Set ô = [03B4] + 1/2.
(9) Define the oriented (by increasing x) arcs
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Assuming 03B4 &#x3E; 1, let i ~ {1, ..., [03B4]}, and set y(i) to be a circle centered at i, of
radius r  1/2, and oriented counterclockwise. Define

(10) For each 03C4~J03B8(, 03B4) define

1. Properties of hypoellipticity

Define

One first recalls the

DEFINITION 1.1. u(x, y) = Re(P) is hypoelliptic on [a, ~)n if for any dif-
ferential monomial DA=DA1x1···DA2nyn, one has

When P is defined over R one also says that

DEFINITION 1.2. P(xl, ... , xn) is hypoelliptic on [a, oo)" if for any differential
monomial DB,

This paper assumes that P is defined over R. A simple argument now shows



342

PROPOSITION 1.3. If P is hypoelliptic on [a, oo)", then Re(P) is hypoelliptic on
[a, ~)n.

Proof. For an integral vector I=(i1,..., fj, define the notation 2|I to mean

21 ij for each j.
One observes that u(x, y) has the form

Cauchy-Riemann equations then show that

whenever 211. One then reduces the defining property of Definition 1.1 to that in
Definition 1.2. D

Hôrmander showed the following property is equivalent to hypoellipticity of
P on [a, oo)" [Hô, p. 62].

(1.4) There exist positive constants c, C, D such that |DAxP(x)|  C~x~-c|A||P(x)|
when x~[a,~)n~{~x~  D}. D

PROPOSITION 1.5. If P is hypoelliptic on [a, oo)" then there exist 03B8 &#x3E; 0, y  0
such that

and

Proof. Write

The proof of Proposition 1.3 shows that for each n tuple A,
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Thus, for D defined in (1.4), x E [a, ~)n ~ {~x~  D}, implies

For each A, |yA|  IIYIIIAI. Thus, if 0  c, one concludes by (1.4) that (x, y)~0393(03B8)
implies there exists y  0 such that

It is now clear that (1.4) also implies (i). D

(1.6) REMARK. Tarski-Seidenberg implies the existence of a, B, Do &#x3E; 0 such

that

(1.6) suffices as a starting point for the description of the meromorphic
extension of Dp(s, 9). Of interest in this article is the behavior of |DP(s, ~)| in

punctured vertical strips of the s-plane of the form

This requires a good estimate for Arg P(z), for z E r(0).

PROPOSITION 1.7. Given e &#x3E; 0 there exists 03B4(03B5) &#x3E; 0 such that if 0~(0, cl2) and
z E 0393(03B8, £5(e», then 1 Arg P(z)|  e.

Proof. The Cauchy-Riemann equations in v and u are satisfied in each pair
(xj, yj) of coordinates. Thus, for each index vector a with Jal odd there exists an
index y(a) with lai = ly(a)1 such that

Moreover, if |03B1| is even, then it is easy to see that because P is defined over R one
has D"v(x, 0) = 0 for all x. One can then write
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So,

By (1.4), there exist c, C, D &#x3E; 0 such that if ~x~  D then

By Proposition 1.5, there exists K &#x3E; 0 so that if 03B8~(0, c), D’  D, and

|yj|  (xj - a)03B8 for each j = 1,..., n, then ~x~  D’ implies

It is now clear that for each 8 &#x3E; 0, there exists 03B4 &#x3E; 0 so that ~x~  03B4 implies
lv(x, y)/u(x, y)l  e whenever (x, y) E 0393(03B8, ô), for any 0  c/2. This proves Propo-
sition 1.7. D

(1.8) REMARK. It is useful to make precise the dependence of ô upon 8. If
lvlul  1 then

Given 0e(0,c/2), let ~~(03B8 - c,0). One now sets 03B4(03B5) = [(03B5/K)1/~] + 1. A
simple exercise shows that if z E F(O, £5(e» then larg P(z)l  e. D

2. Analytic continuation and the functional equation

Let N = deg ~, and a the exponent from (1.6). Set

PROPOSITION 2.1. Assume 0 E (0, c) and Do is chosen so that (1.6) is satisfied.
Then, for any 03B4  Do the.f’ollowing identity holds between analytic functions in the
halfplane Re(s) &#x3E; B(~):

Proof. Cf. [Li-1, 2.10]. D
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One next recalls the basic analytic use of the functional equation. First one

compactifies cn 4 (plC)n. In the chart (cn, (wl, ... , wn)) at infinity define,

Adapting the argument of Bernstein [Be], one shows

PROPOSITION 2.3. There exist a monic, non-zero polynomial of least degree,
bN(s), and differential operators P0, ..., Pr in the ring Dn(C[s]) =
C[s]~w1, ..., Wn, Dw1, ... , Dwn~ such that

Proof. Cf. [i-1, Prop. 3]. D

The main result of [ibid] was

THEOREM 2.5. Let 8, Do be chosen to satisfy (2.2). Then there exists

(~)  B(~) such that Re(s) &#x3E; (~) and 03B4  Do imply

where P*i is the adjoint of Yi.
Proof. Cf. [ibid, Theorem 1J. ~

The following indices are needed in Section 3. From (2.4) define

3. Proof of Theorem 1

The idea of the proof of Theorem 1 is to split DP(s, cp) into a sum of two terms.
One summand is the l5 tail of the series while the second is a finite sum. One



346

estimates the finite sum crudely (cf. Lemma 3.10) and the ô tail using the
functional equation. The basic problem is to estimate |Rs(w)||039403C4(03B8,03B4), or equiva-
lently |P-s(z)||039403C4(03B8,03B4), for each 03C4. This involves both |P|-03C3, which (1.6) bounds, as
well as etArgP(z). Proposition 1.7 is now used to control the argument. For given B
one chooses b(E) according to (1.8). It follows that for any 03B4  ô(e),

Next, one views e, resp. 03B4, as parameters that depend upon 1 t (cf. (3.11 )) and
which can assume arbitrarily small resp. large values. This allows one to kill off
the growth coming from the argument of P. It then becomes necessary to

estimate the dependence of the right side of (2.6) upon ô. Here the functional
equation is crucial.

REMARK 3.2. Given c satisying (1.4), one assumes 0 resp. Do is chosen to be
any number in (0, min{1, cl2l) resp. in [a, oo) for which (2.2) holds. One also
assumes that 03B4  D0. Frequently, one interchanges ô and (=[03B4]+1 2). This
should not cause any confusion. D

To state Theorem 1 it is necessary to define the growth rate f.l( ((J), cf. (0.4).
Using (2.7), define

THEOREM 1. Assume P is a real hypoelliptic polynomial on [a, oo)n, for some
a E (0, 1). Assume ~ is a polynomial satisfying the sign condition in (0.1). Let 03C10(~)
be the.first pole of Dp(s, cp). Then, for each 03BE &#x3E; 0, 03C31  (J 2  03C10(~), there exists a
constant C = C(03BE, 03C31, (J 2) such that

for all 03C3 ~ [03C31, U2] and 1 tl  B1, where B1 is independent of 03C31, 03C32.
Proof of Theorem 1. The proof is based upon five lemmas.

LEMMA 3.4. If p(wl, ... , wn) is any polynomial, then

Proof of Lemma 3.4. This follows easily by first parametrizing each noncom-
pact arc 03C4(j) in the zi plane as
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Then, setting xj = x’j shows that

When z(j) is compact, it is clear that wj|03C4(j) = 0(1) as 03B4 - 00. This shows Lemma
3.4. 0

LEMMA 3.5. For each 1, s

Proof of Lemma 3.5. By Lemma 3.4, it suffices to show (3.6) with 03C8 ~ 1. Let
A = (A1, ..., An) with |A|  vi and DA be any differential monomial appearing in
Yi, one of the operators in (2.6). It is easy to see that DAw(E03C4)|039403C4(03B8,03B4) equals a linear
combination of terms of the form (neglecting irrelevant constants)
T(b, c, c’) = nj= 1 1j(bj, cj, ci) where

Moreover, one has

The only case presenting any difficulty occurs when i( j) is not compact in the

zj plane. It suffices then to assume 03C4(j)=-03B3+(03B8, 03B4). The case 03C4(j)=03B3-(03B8,03B4) is

treated similarly. Thus,

Substituting this expression for wj in Tj(bj, cj, c’j), setting xj = x’j, and
simplifying yields

Set Xj=(x’j-1). As x’j assumes values in [1, oo), Xj assumes values in [0, oo).



348

Expressing (3.7) in terms of Xi and expanding out (Xj+)bj, one sees that
Tj(bj, cj, c’) is a linear combination of terms of the form

One now observes that for any nonnegative integer v there exists a positive
number Cv such that for all Xj~ [0, ~) and any ô one has

Thus, one concludes that Tj(bj, cj, c’j) = O(bj), and therefore

This evidently implies

as claimed. D

The main estimate is this.

LEMMA 3.8. Assume Re(s)  B(cp) and r, &#x3E; 0. Let l5  03B4(03B5), 03B4(03B5) chosen according
to Proposition 1.7. Then for each i = 0, 1, ... , r

Proof of Lemma 3.8. Pick one TE ff(8, 03B4). Set

The primary estimation problem occurs when a2 = n. The discussion below
therefore assumes a2 = n. It is left to the reader to check that the estimate

obtained in this case determines the maximal order in l5 of the sum over all z

appearing in the statement of the lemma.
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Write wj=wj+ivj. Then xj is a coordinate for 03C4(j) in the wj plane. Define

One notes first that

Using the notations from the preceding lemmas, it is straightforward, and left
to the reader, to show that

where

and each uj(, x’j) satisfies these conditions:

(1) It is integrable in a neighborhood of x’ = 1.
(2) It is bounded in a neighborhood of x’ = oo.
(3) It is 0(1) as  ~ oo.

By (1.6) and (3.1), there exist constants C, C’ independent of 6 (when
a  (~)), i, and à such that

Combining these two estimates with that from Lemma 3.5, one sees that there
exists a constant C", independent of 03C3, 03C4, and à such that
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where

By hypothesis, N-03B1(03C3+i+1)  -2 for each i. One concludes there exists a

constant C"’ independent of Q, i, and à such that

Because one has

multiplying the upper bound in (3.9) by n yields the upper estimate for the sum
over i as asserted in Lemma 3.8. D

As the first consequence of Lemma 3.8, one obtains

COROLLARY 1. Let 03B5 &#x3E; 0 and 03B4  ô(e), ô(e) chosen by Proposition 1.7. Assume
Re(s) &#x3E; fi(g) - 1. Then, one has

Proof. Use (2.6) to give the meromorphic extension into Re(s) &#x3E; (~)-1. In
the estimation of |D(03B4)(s, qJ)1 one must then incorporate an O(|s|03BA) factor coming
from bN(s). This gives the O(|s|03B2) in the above statement.
Note too that Re(s) &#x3E; (~)-1B(~)-1 implies that N + 2-03B1(03C3+ i + 1)

 0 for i = 0, 1,..., r. Thus, the largest power of b appearing in the estimate for

|D(03B4)(s, qJ)1 should be 2v. This shows the corollary. p

For 1 = 0, 1, 2, ... and B &#x3E; 0, define

Theorem 1 of [Li-1] implies there exists B, such that Jl(B1) contains no poles of
Dp(s, ~) for each 1 = 0, 1, 2, .... Iterating (2.6) immediately shows

COROLLARY 2. Let 03B5 &#x3E; 0 and à a ô(e), ô(e) chosen by Proposition 1.7. Assume

s~Jl(B1). Then



351

Now, one can write for any s not equal to a pole of the series,

where the first term is given the trivial analytic continuation as the finite sum of
the entire functions ~(m)/P(m)s and the second term denotes the analytically
continued à tail. One estimates the absolute value of the first term in an

elementary way by estimating the absolute value of each summand. The

verification of the next lemma is left to the reader.

LEMMA 3.10

(1) There exists D1 &#x3E; 0 such that if 03C3~[N/03B1, (~)] then

(2) There exists D2 &#x3E; 0 such that f 03C3 E [0, Nla) then

(3) There exists D 3 &#x3E; 0 such that f 03C3  0 then

Combining Lemmas 3.8, 3.10 is now useful by choosing |t| as the underlying
parameter upon which both e and ô will depend. In addition, one specifies the
form of b(8) via (1.8). Thus, given any 03B8~(0, c/2) let ~~(03B8- c, 0) be arbitrary and
set

One concludes immediately

LEMMA 3.12. For each 1 = 0, 1, 2,..., there exist Kl, K2, K3 depending only
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upon 1 and qJ such that for any sEg,(B1) one has

Define the positive number

One now proceeds classically. For any 6 define

One knows that

(1) 03C0(03C10(~))=0 (continuity of n and n(a) =0, a &#x3E; po(g».
(2) 03C0 is a convex function on (- 00, 03C10(~)] (Phragman-Lindelôf).

Combining the five lemmas with these two properties of 03C0(03C3) and a standard
argument (cf. [Sa-1, p.116]), one concludes:
For each 1 &#x3E; 0, 03C31  03C32  03C10(~) there exists C = C(i, al’ a2) so that

for all 03C3~[03C31, 03C32] and |t|  B1. One now observes that the parameter 03B8 can be
chosen arbitrarily small. The estimates in the lemmas are unaffected by the
choice of 03B8, as long as (1.6), (1.7) are satisfied. Thus, for given i, 03C31 in (3.13), one
can choose 0 so small that if j7 e (0 - c, 0) and 03BC(~) is defined by (3.3), then one
has

This implies one can replace 03BC(~, ç) by p(g) in (3.13), for any choice of i, 03C31, (J 2’ at
the expense of replacing i in the exponent off in (3.13) by 303C4/2. This completes
the proof of Theorem 1. D

(3.14) REMARK. Theorem 1 is an extension of [Sa-1, Theorem 1.4] to a large
class of real polynomials with coefficients not all of the same sign. In [Sa-2], an
optimal estimate was given for the growth rate over the set of all polynomials
with positive coefficients. An interesting question seems to be how one can
estimate the smallest value of 03BC(~) with reasonable precision. It would then be
interesting to know whether for some polynomials with positive coefficients, the
best value of p(g) is smaller than that obtained in [ibid]. However, what is
important for this paper is the fact that p(g) is positive. D
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Information given by Theorem 1 converts into asymptotic information about

N~(x) (cf. (0.2)) following a standard procedure, due to Landau [La], also cf.
[Ch-Na, §4]. Although Landau assumes the series possesses a "reflection type"
functional equation, it is clear from his argument that this assumption is not
needed to derive the asymptotic below.
Assume the conditions in Theorem 1 hold for P and 9. Let

be the poles of DP(s, 9), ordered by their real parts. At each pj let

be the principal part at 03C1j. Define Nj(x)=x03C1j03A3n’i= 1 Aj,i logi-1x. The corollary of
interest from Theorem 1 is

THEOREM 2

CONCLUDING REMARKS. (1) The technique used to prove Theorem 1 for
~ a polynomial function on Rn extend to allow 9 to equal a rational function
defined in r(0) for some 0. The arguments apply even more generally to any
~ E R[z03B111,..., znn, log z1, ... , log zn] satisfying (0.1), where each ai E R.

(2) Using local techniques from Gô modules, it is possible to show [Li-4] that
the poles of any Dp(s, ç) are rational. This is done by showing that all roots of a
local b-function at any point on the divisor {w1···wn=0} must be rational.
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