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Introduction

To any isolated complete intersection singularity (X, 0) (abbreviated as "icis"),
we associate a sequence of (Milnor) numbers called the J1*-sequence. We prove
that in a family of icis, the topological type (cf. Definition 6) of the singularity
remains invariant if the sequence f.l* remains constant (cf. Theorem 2). This
generalizes a theorem due to Lê Dûng Tràng and C.P. Ramanujam.
The scheme of the paper is as follows. In Section 1 we define the y, sequence

of an icis (cf. Definition 1), recall some definitions and state a few preliminary
lemmas. In Section 2 we prove two crucial propositions, from which the
theorems follow fairly easily. In Section 3, we prove the two theorems, one of
them concerned with the monodromy fibration and the other with topological
equisingularity. At the end of this section we sketch an example to point out that
the assumption of constancy of the Milnor number is not sufficient to prove the
fibration theorem (cf. Theorem 1). This example is discussed in greater detail in
[P], where the fibration theorem is also proved. In Section 4, we comment on
some problems naturally arising from the earlier sections.

1. Preliminaries

In this section we prove a few preliminary lemmas and define the 03BC*-sequence
for an isolated complete intersection singularity (abbreviated as ’icis’). The
conventions followed are those of Looijenga [Lo], unless explicitly mentioned
otherwise. If (X0, x) is an icis, then by a deformation of (X o, x) we mean a flat
morphism f : (X, x) ~ (S, 0) from a complete intersection germ (X, x) (not
necessarily isolated) to a smooth germ (S, 0), such that ( f -1(0), x) ~ (Xo, x). We
call this deformation a smoothing if f -1(s) is smooth for some s~S-0. For any
icis (X, x), y = M(X, x) denotes its Milnor number, and v = v(X, x) denotes the
multiplicity of the discriminant locus of a versal deformation at the base point.
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LEMMA 1. Let f : (X, x) - (S, s) be a deformation of an icis. Then one can embed
this deformation into a versal deformation, i.e. there exists a versal deformation
f : (X, x) - (S, s) of (f-1(s), x) and an embedding 1: (S, s)  (8, s) such that f is the
fibre product of  and f

Proof. Let f ’ : (X’, x’) - (S’, s’) be a versal deformation of f - 1(s). Then by the
versality we obtain a morphism i’ : (S, s) ~ (S’, s’) such that f is the fibre product
of i’ and f ’. Now consider the embedding 7: (S, s) 4 (S’ x S, s’ x s) given by the
graph of i’. Then clearly f is the fibre product of i and

1 = f ’ x id : X’ x S~S’ x S. Moreover 1 is versal because f ’ is. D

LEMMA 2. Let f: (X, x) -+ (8, s) be a smoothing (general fibre is smooth) of an
icis, with dim(S, s) = 1. Let D f be the discriminant. Then we have,

where f.l is the Milnor number of the corresponding icis and mult(Df) is the

multiplicity of the discriminant D f at s.
Proof. For proof we refer to Proposition 3.6.4 of [Le2]. n

DEFINITION 1. Let (X, x) be an icis. Then for each i  0, we define

The sequence po = ,u, 03BC1, 03BC2, ... is called the y.-sequence of (X, x).

DEFINITION 2. For an icis (Xo, x), am embedding (Xo, x) c (Xi, x), i &#x3E; 0 in

another icis (Xi, x), with Codim(Xi,x)(X0,x)=i is called Mi-minimal if

M(Xi, x) = 03BCi(X0, x). For i = 1, instead of saying pi-minimal embedding, we just
say y-minimal embedding.

DEFINITION 3. The monodromy fibrations of (Xo, x) are defined to be the
fibrations obtained from all y-minimal embeddings, i.e. if f : (X 1, x) ~ (C, 0)
defining (Xo, x) is y-minimal, then a monodromy fibration is X! -+ A*, where
X1 ~ A is a good representative of f and X*1 = X1 - Xo and A* = A - {0}.
Sometimes we also refer to f-1(~0394) -+ ôA as the monodromy fibration. This
depends only on (Xo, x) by Theorem 1.

REMARK. If (X, x) has embedding codimension k, then 03BCk+i(X, x) = 0 for all
i  0, and 03BCi(X, x) =1 0 for i  k.

We recall (cf. [Lo], 2B, p. 25) the definition of a good representative of a
deformation of an icis. Let f : (X, x) - (S, 0) be a flat morphism of irreducible
analytic germs, where (S, 0) is smooth, giving a deformation of the icis

f-1(0) = (Xo, x). Let f : X ~  be a morphism of analytic spaces representing
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this morphism of germs (with S smooth), and let Xs = f-1(s). Let r: X -+ R0 be
a nonnegative real analytic function such that r-1(0)~X0={x}. Let

B03B5 = {y~X|r(y) 03B5}, S03B5 = {y~X|(y)=03B5} and 03B5 = {y~X|r(y)  03B5}. Let S be a
contractible neighbourhood of 0 in 9. Then

is called a good representative of f if

(i) SE intersects f -’(s) transversally for all s E S, and
(ii) Xo intersects S~ transversally, for all 0  ~  8.

(This is referred to in [Lo] as a good proper representative of f.) Note that by
Sard’s theorem, r-1(03B5)-Xsing is smooth for all sufficiently small nonzero 8, if
X, S are suitably chosen (cf. [Lo] Prop. 2.4).

If f: (X, x) -+ (S, 0) is a deformation of an icis together with a section
0": (S, 0) ~ (X, x), then we may choose r such that r-1(0) = u(S). More generally if
(X, x) - (S, 0) is a deformation of an icis and (S, 0) c (S, 0) is any smooth germ
over which we are given a section 03C3:(S,0)~(,x), then we assume that
r-1(0) = 6(S). This can be done because the germ of any real analytic subset of
(X, x) can be defined by a single real analytic function. The advantage of
choosing such an r is that the same r (but not necessarily the same 8) can be used
to construct a good representative of (X, u(s» ~ (S, s) for s E S close to 0.
The following will be a useful notion to have.

DEFINITION 4. A family of icis is a flat morphism of analytic spaces f: X -+ S
with S smooth and connected, together with a section 0": S~X (called a singular
section) such that (XS, u(s» is an icis for each s E S and u(S) is an irreducible
component of the critical space C f of f. A family f: X - S is said to be a v-
constant family if v(Xs, 03C3(s)) remains constant for all s E S.
Note that any v-constant family is y-constant by Lemma 2 and the fact that

both y and v are semicontinuous.

LEMMA 3. Let f : (X, x) ~ (S, 0) be a y,-constant deformation. Then there exists
a versal deformation : (X, x) - (S, 0), in which f is embedded, and there are
submanifolds (Sl, 0) ce (S2, 0) ~ ··· C (SI, 0) with dim Si = i such that

(Xo, x) = (-1(0), x) c (-1(Si), x) is a Mi-minimal embedding for all i.

Proof. Let fi:(Xi,x)~(Si,0) be Mi-minimal embeddings of (X o, x). By
Lemma 1 there exists a versal deformation 1 : (X, x) ~ (f 0), in which each f and
f are embedded such that ToS n TOSi = TOSi n T0Sj = {0} c Toi for all i ~ j
where To denotes the tangent space at 0. Hence, one can choose a coordinate

system on 8 such that each Si and S are linear subspaces.
Let G(i, N) denote the Grassmannian of i-dimensional subspaces of T.9. Then
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by semicontinuity of yi, there is a Zariski open subset 03A9i of G(i, N) such that for
each Li~03A9i, the embedding (X o, x) c (1- ’(Li), x) is Mi-minimal.

Let F, denote the flag manifold of (linear) subspaces Li c L2 c ... ~ Lr of
ToS with dim Li = i. Then we have surjective morphisms, hi,r: Fr ~ G(i, N) for all
i  r. Therefore ~h-1i,r(03A9i) is a nonempty open subset of Fn say Ur. Now for
each L = (LI c L2 ~ ··· c Lr) E Ur, the embeddings (Xo, x) ~ (-1(Li), x) are
03BCi-minimal. By taking r = k, the embedding codimension of (Xo, x) one obtains
the lemma. D

In the next section we also need the following lemma, which is an easy

consequence of the existence of a collar for ôM.

LEMMA 4. Let (M, ôM) be a differentiable manifold with boundary. Let

f : (M, ~M) ~ T be a fibration of pairs with T contractible. Let h: aM -+ aMto x T,
to E T fixed, be a homeomorphism giving a trivialization of f laM. Then one can
extend this trivialization to the whole of M, i.e. there exists a homeomorphism
H: M - Mto x T such that H|~M = h. D

2. Nonbifurcation of the critical space

In this section we prove a basic lemma which gives a numerical criterion for the
critical space not to bifurcate. Then we construct certain vector fields using
which we prove the propositions.

In order to state the lemma, consider the following situation. Let

f:(X,x) ~ (S,0) be a deformation of an icis, with dim S=1, and let

Q: (S, 0) - (X, x) be a section such that f and a determine a family of icis (cf.
Definition 4). Let f : X~S be a good representative of f, which is embedded in a
good representative of another deformation g : Y - T with dim T = 2.

LEMMA 5. I n the above situation also assume that for a fixed smooth retraction
r:T~S, if h: Y ~ S is given by h = r -g, then the embedding (Xs, u(s» c (Y,, 03C3(s))
is /l-minimal for s ~ 0. Then critical space of g: Y ~ T does not bifurcate (i.e., the
reduced critical space coincides with 03C3(S)) if and only if (Xo, x) c (Yo, x) is a 03BC-
minimal embedding and f : X ~ S is a v-constant deformation.

Proof. Let f : X ~  be a good representative of a versal deformation of
(Xo, x) in which g : Y ~ T is embedded. Such an f exists by Lemma 1. Assume
that (Xo, x) c ( Yo, x) is y-minimal and X -+ S is v-constant. The second

condition means that

Since (X,, 6(s)) c (Ys, 03C3(s)) is y-minimal Lemma 2 implies that if ls is the fibre of
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the retraction r : T ~ S at SES, then the tangent space 1;;ls is not contained in the
tangent cone of Dl at s ~ . We have the following general formula (see [F],
§11.4, Ex. 11.4.4),

for all s sufficiently close to 0 E S. Shrinking the base S of the good representative
f, if necessary, we may assume that (*) holds for all s E S.
Note that we have the following inequalities:

and also note that (D J 1,), = v(X s’ 03C3(s)). Now it follows that for any s E S the
right-side of (*) has only one term, i.e. Dqm i = {s}. Hence,

T n DJ= T ~ Dm=S. Hence, the discriminant locus does not bifurcate. By
Lemma 2, and the semicontinuity of y, Q(S) is contained in the y-constant
stratum. Hence, there is a unique singular point lying over s e S, in 9. Hence, the
critical space does not bifurcate.

Conversely assume that the critical space does not bifurcate. Then the

discriminant in T also cannot bifurcate, i.e. T n D f = S. To prove that

(Xo, x) c (Yo, x) is y-minimal it suffices to prove that (D·l0)0 = mult(Df, 0); to
prove X ~ S is v-constant we must show that mult(D, 0) = mult(Dq, s) for all
s E S. But we have the inequalities:

Since T n DI = S, the extreme terms are equal by (*). Hence, both inequalities
are equalities. D

DEFINITION 5. Given any real analytic function 9 on an analytic space X, we
say that a vector v E TyX at a smooth point y ~ X, points outward relative to (p if
v«p) = (v, grad (p(y» &#x3E; 0 for some choice of (oriented) local coordinate; however,
the property of pointing outwards is independent of this choice. A vector field V
defined on a neighbourhood of a subset A of X points outward relative to 9 on
A if

We recall two results from Looijenga [Lo]. Let (X, x) be a germ of a complete
intersection, f : (X, x) ~ (S’ x C, 0) and f’: (X, x) - (S’, 0) be deformations of icis,
where 03C0: (S’ x C, 0) ~ (S’, 0) is the projection and f ’ = no f. Let r be a non-

negative real analytic function on a representative X of (X, x) such that
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r-1(0)~f-1(0)=r-1(0)~f’-1(0)={x}. Let 03C02:(S’ C,0)~(C,0) be the
second projection and f1 = n2 - f.

LEMMA 6 (cf. [Lo], proof of Proposition 5.4, pp. 69-70). There exist an e &#x3E; 0

and good representatives f : f-1(S’ x 0) n B£ -+ S’ x A where A is a closed disc
centered at 0 E C, and f’: f’-1(S’) n B03B5 ~ S’ of f and f’ respectively, and a 03941 c A a
smaller concentric disc, such that

Moreover there exists a vector field V, in a neighbourhood of

which points outward relative to rand Ifl12 and preserves the fibers of f’. 1--l

LEMMA 7 (cf. [Lo] Proposition 5.4, pp. 69-70). If the good representatives are
chosen as in Lemma 6, then there exists a homeomorphism

induced by the vector field V1 such that f’  H = n 0 f and H is the identity on a
neighbourhood of f -1(S’ x 0). 0

Now we note that there is a natural inclusion of f -1 (S’ x 0) in f ’- ’(S’). Under
this natural inclusion, we have

PROPOSITION 1. (i) The map f -1(S’ x 0394) n Se ~ S’x A is a trivial fibration
and, hence, any trivialization induces a homeomorphism h: f-1(0)~S03B5 ~
f-1(s) n Se for all s E S’ x 0394.

(ii) Given any trivialization as in (i), there exists a trivialization of
f’-1(S’) n Se ~ S’ such that it coincides with the trivialization in (i) on f -1(S’ x 0).
Hence, for any s E S’ one obtains a homeomorphism h’: f’ -1(0) n Se ~ f’ -1(s) n S,
which restricts to the homeomorphism h on f-1(0) n Se.

Proof. Choose S’, 0394 and 8 &#x3E; 0 as in Lemma 6. Also fix a trivialization over

S’x0 of f,

Now f:f -’(S’x ~0394) ~ S’  a0 is a fibration and, hence, trivial over S’. Notice
that the boundary of f - ’(S’ x a0) is f - ’(S’ x ~0394) n S,, on which we have a
trivialization (induced by H 1 ) over S’, namely
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By Lemma 4, this trivialization can be extended to the whole of f -1(S’ x a0) i.e.,
there exists a homeomorphism over S’, H2: f-1(S’ x ~0394) ~ f-1(0 x ô0) x S’. The
homeomorphism H of Lemma 7 identifies

Hence, one obtains a topological trivialization of f’-1(S’)~S03B5~S’ over

S’, obtained from Hi and H2, which we denote as H3:f’-1(S’)~S03B5 ~
f’-1(0) ~ S03B5 x S’, such that H3|f-1(S 0) = H1. This trivialization gives the homeo-
morphism as in (ii). D

Now fix good representatives, f, f’ etc. as in Lemma 6, and let V1 be the
resulting vector field on f’-1(S’) n Be - f - 1(S’ x 0394) n B03B5. Assume that we are
given a section a of f : f-1(S’ x 0) - S’ x 0, with a(0) = x making f a v-constant
family, such that (f-1(s), 03C3(s)) c (f’-1(s), a(s)) is 03BC-minimal for all s~S’. We also
assume that dim f-1(s) ~ 2. Fix s~S’. Choose 8 &#x3E; ES &#x3E; 0, an open neighbour-
hood K’ of s~S’, and a concentric disc 1B" c 1B c C of smaller radius, so that
K = K’ x 0" c S’ x 1B is a neighbourhood of (s, 0) such that f-1(K) n B8s -+ K
and f’-1(K’)~B03B5s~K’ are good representatives of f and f ’ at a(s), re-

spectively. Further assume 8s is chosen so that the conditions of Lemma 6 are
again satisfied (with K’ in place of S’and A" in place of 0). Let 0394s=s x 0 and
0394’=K~0394s~0394s.

LEMMA 8. Suppose f:f-1(S’ {0},0)~(S’ {0},0) is v-constant along the
section 6: (S’ x {0},0)~(X,x) and (f-1(s), 03C3(s)) c (f’-1(s), 03C3(s)) is 03BC-minimal for
all s~S’. Fix s E S’ and choose 03B5, 8s and 0’ as above. Then there exists a vector field
on f’-1(s) ~ B03B5 - f-1(0394’) n Bf. which points outward relative to |f1|2 everywhere
and points outward relative to r on f’-1(s)~S03B5-f-1(0394’)~Sn and

f’-1(s)~S03B5s-f-1(0394’)~Ssn.
Proof The vector field Vi given by Lemma 6 preserves the fibers of f ’. Hence,

it restricts to a vector field Vi on f’-1(s)~B03B5-f-1(0394s)~Bs. Moreover VI
points outward relative to fi 12 and r. Lemma 5 implies that

f-1(0394s-0394’)~0394s-0394’ is a locally trivial fibration over the annulus 0394s-0394’.
Hence, the vector field V1 on f’-1(s) ~B03B5- f-1(0394s) n B03B5 can be extended to a
vector field Y2 on

such that it points outward relative to |f1|2 everywhere and relative to r on
f’-1(s) ~S03B5- f-1(0394’) n S,,. Here note that V2 may not point outward relative to
r everywhere on f-1(0394s-0394’), because of the possible presence of a vanishing
fold.
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Again applying Lemma 6 to the good representatives

we obtain a vector field V3 in a neighbourhood U of

f’ -1(K’) n BES - f-1(K) n BES, such that it points outward relative to |f1|2 and r
on U and preserves the fibres of f ’. Hence, V3 induces a vector field on

f’-1(s)~B03B5s-f-1(0394’)~B03B5s. Let ~ be a COO function on f’-1(s)~B03B5 with
values in [0,1], supported in U and ~ ~ 1 on Bts. Then the vector field

V4=(1-~)V2+~V3 is nowhere vanishing on f’-1(s)~B03B5-f-1(0394’)~B03B5.
Moreover, since v2 and V3 point outward relative to Ifl12 so does V4. Since
V4~V2 on f’-1(s) n SE - f-1(0394’) and V4~V3 on f’-1(s) ~S03B5s- f-1(0394’) n SES,
it follows that V4 points outward relative to r on these sets. D

PROPOSITION 2. Suppose f : f -1(S’ x {0}, 0)~(S’ x {0}, 0) be v-constant along

is 03BC-minimal for all s E S’. Fix s E S’ and choose e and es as in Lemma 8. Then

(i) if dim f-1(s)~2 then there exists a vector field V on

f -l(S) n Be - f -l(S) n BES, which is nowhere vanishing and points outward

relative to r on the boundary components f-1(s) n Se and f-1(s) n Ses.
(ii) Any vector field as in (i) can be extended to a vector field on

f ’- ’(s) n Be - f’-1(s) n BES, which is again nowhere vanishing and points outward
relative to r on the boundary components.

Proof. (i) The semicontinuity of li and v and the fact that 03BC+03BC1 = v, implies
f-1(S’ 0)~S’ 0 is p-constant. Then for each ë~S’, f-1(s)~B03B5 is con-

tractible. This in particular implies that the inclusions of f-1(s)~S03B5 and
f-’(s)nS,,, in f-1(s)~B03B5-f-1(s)~B03B5s are homotopy equivalences. For
dim f-1(s)3, it follows that the links f-1(s)~S03B5~f-1(0)~S03B5 and

f-1(s) n Ses are simply connected (cf. [H]. In fact the link of an icis of dimension
n is n - 2 connected). Hence, by the h-cobordism theorem there exists a vector
field V on f-1(s) n Be - f - 1(s) n Res which is nowhere vanishing and transver-
sal to the boundaries. For dim f -1(s) = 1, again the existence of such a vector
field can be obtained from classification of surfaces. Replacing V by - V, if
necessary, we may assume that it points outward relative to r on f-1(s) n Se and
f-1(s)~S03B5s.

(ii) Since the critical space of f does not bifurcate, by Lemma 5,
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is a trivial fibration. Hence, the vector field V as given in (i) on

can be extended to a vector field V5 on the whole of

such that Vs points outward relative to r on S03B5 and S03B5s and it preserves the fibres
of f Again the vector fields Y and V5 may not point outward relative to r

everywhere because of the possible presence of a vanishing fold.

The vector field V4 constructed in Lemma 8 is transversal to the fibres of f
and V5 is tangential to the fibres of f over ~0394’ and both are nowhere vanishing,
hence they are linearly independent on f-1(~0394’). Moreover both V4 and
points outward relative to r on S, and S03B5s. Hence by using partitions of unity one
can construct a vector field Y6 on f’-1(s) n BE - f’-1(s) n BE;s satisfying

(i) V6 is nowhere vanishing,
(ii) it points outward relative to r on f’ - l(S) n SE and f ’- ’(s) n S03B5s,

(iii) it coincides with V5 on a neighbourhood of f - l(S) n BE - f - l(S) n BES,
and hence it is an extension of v

This proves the proposition. D

3. Topological equisingularity

In this section we prove the main theorems. At the end we also give an example
to point out that Theorem 1 is false without the assumption v-constant. We
begin with the following definitions,

DEFINITION 6. The topological type of an icis (X, x) is defined to be the
homeomorphism type of the sequence of germs

where k = the embedding codimension of (X, x) and the embedding
(X, x) c (X i , x) is 03BCi-minimal for all i. This depends only on (X, x) and not on the
particular choice of the nested sequence of 03BCi-minimal embeddings, by Theorem
2. A family of icis f : X - S with a singular section Q is said to be topologically
equisingular if the topological types of the singularities (XS, 03C3(s)) are the same.
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REMARK. If Li denotes the link of (Xi, x) in the definition above, then the
topological type of (X, x) is determined by the homeomorphism type of the
nested sequence of links L = Lo c Li ci ... c Lk ~ S2n+2k 1. The topological
type determines the 03BC*-sequence (cf. Definition 1). This is easily proved along the
same lines as the proof for hypersurfaces (cf. [T], Theorem 1.4, p. 295).

THEOREM 1. If f : X~S is a v-constant family then the monodromy fibrations
of (f-1(s), 6(s)) are isomorphic.

Proof. Fix 0 E S; it suffices to show that the monodromy fibrations of

(f-1(0), 03C3(0)) and (f-1(s), u(s» are equivalent for all s in a neighbourhood of 0 in
S. Choose a p-minimal embedding (X 0’ 03C3(0)) c (YO, x) and a deformation

g : ( Y, x) ~ (S x C, (0, 0)) such that the deformation g’ : ( Y, x) - (S, 0) is y-constant
and (Xs, 03C3(s)) ~ (Ys, 03C3(s)) are y-minimal embeddings. Choose good represen-
tatives g : Y~S 0394 and g’ : Y’~ S satisfying the conditions of Propositions 1

and 2. Also assume that X ~ g-1(S) and f=g|X. Then by definition, a
monodromy fibration of f-1(0) is g-1(0 x ~0394)~ 0 x ~0394 and that of f-1(s) is
g-1(s x aA’) n Bes ~ s x ~0394’. By Proposition 1, g-1(s x ~0394’) n B03B5 ~ s x DA’ and
g-1(0 ~0394)~B03B5~0 ~0394 are isomorphic fibrations. By Proposition 2,
9 - 1(s x ôA’) ~B03B5~s x êA’ and g -1 (s x DA’) n Bes - s x DA’ are isomorphic fi-

brations if dimf-1(s) ~ 2. Hence, for dimf-1(s) ~ 2 the monodromy fibrations
of a v-constant family are isomorphic. For dimf-1(0) = 2 they are fibre

homotopy equivalent, again by Proposition 2. D

THEOREM 2. If f:X ~ S is a 03BC*-constant family with dim f-1(s) =F 2, then f is
a topologically equisingular family.

Proof. Let 0 E S, we prove the theorem for all s in a neighbourhood of 0 in S.
By Lemma 3 there exists a versal deformation f : (X, x) ~ (S, 0) of (X o, 03C3(0))
containing f and a flag (Sl, 0) ce (S2, 0) ~ ... C (Sk, 0) in (,0) such that the
embeddings (-1(0), x) c (-1(Si), x) are Mi-minimal. Consider any smooth
retraction (9, 0) ~ (S, 0), whose special fibre containing all the linear spaces of
the flag. Write (, 0) = (f’ x S, 0). Then by semicontinuity of 03BCi(f-1(s), a(s», we
obtain that (f-1(s), a(s» c (-1(s x Si), 03C3(s)) is also 03BCi-minimal for all i and for all
s in a neighbourhood of 0 in S.

This implies that each (-1(s x Si), 03C3(s)) c (-1(s x Si+ 1), u(s» are y-minimal.
So one can choose a smooth retraction (Si+1, 0) ~ (Si, 0) such that

(Si+1, 0) ~ (Si x A, 0), (A, 0) a smooth one dimensional germ, and the morphism
-1(S  Si  0394, 0) ~ (S  0394, 0) will have reduced discriminant S and reduced

critical space 03C3(S) by Lemma 5.
Let g : -1(s x Si x A) ~B03B5 ~ S x A be a good representative, where S, A and

e &#x3E; 0 are chosen as in Proposition 1. Inductively we may assume that there is a
homeomorphism given on g -1(0) n Se with g -1(s x 0) n Se’ which is obtained by
a topological local trivialization of g-1(S x A) n Se ~ S x A such that it maps
f -1(0 x Sj) n Se onto 1-1(8 x Sj) n Se for all j  i. Then by Proposition 1(ii), this
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trivialization can be extended to obtain a homeomorphism of g’-1(0) onto
g’-1(s), where n : S x A - S is the projection and g’=03C0g.
By Proposition 2(i) and induction on i, we may assume that we are given an

e, &#x3E; 0 and a nowhere vanishing vector field on g -’(s) n B03B5 - g -’(s) n Bes which
points outward relative to r on the boundary components, and maps -1(s x Sj)
into itself for all j  i. By Proposition 2(ii) this can be extended to a vector field
on g’-1(s)~B03B5-g’-1(s)~03B5s which points outward relative to r on the

boundary components, and nowhere vanishing. But for each j, -1(s x Sj) n Ses
is isomorphic to the link of the germ (-1(s Sj), 03C3(s)). Moreover

f -1(0 x Sj) n Se is isomorphic to the link of (-1(0 x Sj), x). Hence, combining
the homeomorphisms constructed above with the homeomorphisms obtained
by the vector fields, we get a homeomorphism of the (i + l)-tuple

By taking i = k - 1 one obtains that the link sequence of the topological types
of the singularities (Xs, a(s» are homeomorphic. Hence, by the remark after the
definition of the topological equisingularity, we proved that any y,-constant
family is topologically equisingular. D

EXAMPLE. Consider a deformation of a smooth hyperelliptic curve of genus 3
to smooth planar quartics, and look at the corresponding family of canonical
rings. The general member X1 has a hypersurface singularity, while the special
member Xo is a complete intersection of embedding codimension 2; hence, the
multiplicity of the discriminant is not constant. However, p is clearly constant.
Given a smoothing of an icis, the eigenvalues of monodromy which are ~ 1

can be computed by "compactifying" the deformation (to a smoothing of a
complete variety with an isolated singularity), and computing the eigenvalues of
monodromy for the compactified family. In our situation there is an obvious
compactification of the singularity as a projective cone (in p3 for X1, and as a
cone in weighted projective space for Xo - which we can uniformly describe as
the result of taking Proj of the graded ring obtained by adjoining a variable of
degree 1).

In each case the projective cone is smoothed by an embedded deformation.
The monodromy for each compactified family can be computed by first making
a semistable reduction (blow up to get a normal crossing divisor in the special
fibre, and base change by a degree 4 map). Then one observes that in the special
fibre of the semistable family, all but one component blow down to smooth
curves resulting in a smooth family; thus the original family has a monodromy
transformation of order 4. The smooth special fibre of the family obtained from
the semistable reduction has an automorphism of order 4; to compute the
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dimensions of the eigenspaces for :t 1, ± i we need only compute the Betti
numbers of quotients of this special fibre by powers of the automorphism. In the

plane quartic case, the quotient modulo the automorphism of order 4 is P2,
while it is F4 (the Hirzebruch surface, ~ P(OP1 ~ (!)pl(4») in the other case.
The referee has pointed out to us that there is a local example of a y-constant

family of plane curves with two Puiseux pairs which specialize to a monomial
curve which is a complete intersection, hence cannot be v-constant. There is also
an example given in [B-G].

4. Further remarks

In [cf. B-G] Buchweitz and Greuel defined a notion of Milnor number for
arbitrary isolated curve singularities. They proved that any y-constant de-
formation of curves is topologically equisingular in the classical sense (two
singular germs embedded in a smooth germ are said to be topologically
equivalent (in the classical sense) if there is a homeomorphism of the smooth
germ into itself carrying one singular germ on to the other. Using this one can
define a notion of equisingularity - cf. [B-G], §5, p. 261).

If f : X - S is a p-constant family of icis of dimension n embedded in CN x S,
then the topological equisingularity (in the classical sense) follows if one can
show that (S,, XS n SE) and (SES, XS n S03B5s) are homeomorphic pairs (here the real
analytic function r is chosen to be the square of the distance function in C’;
E &#x3E; ES &#x3E; 0 is chosen so that S~ intersects f-1(0) transversally for all q  e and Si
intersects f-1(s) transversally for all il  es). Now if N = n + 1, this follows from
Theorem 2. If N &#x3E; n + 1 then CodimS03B5(S03B5 n Xs)  4, where the codimension is
taken in the real sense. Hence if n &#x3E; 2, SE - SE n X, and SES - S03B5s n Xs are simply
connected by the homotopy exact sequence of pairs. Then the h-cobordism
theorem of Smale (cf. [Sm], Theorem 1.4) for pairs implies that (S,, SE n XJ is
diffeomorphic to (SEs’ SEs n Xs). Hence, any 03BC-constant deformation is topologi-
cally equisingular in the classical sense.
Theorem 2 has been recently proved in the case of hypersurface singularities

for n = 2 with the additional hypotheses that the fundamental group of the links
of the singularities is constant, with the possible exception of singularities with a
link which is a torus bundle over the circle (cf. [Sz] Theorem B). The methods
employed there are quite different and do not extend to the complete inter-
section case.

We pose the following problem whose affirmative answer would extend
Theorem 2 to the case n = 2.

PROBLEM 1. Let f : X ~ S be 03BC*-constant family of icis of dim 2. Can one find a
J1*-constant family of curves g: Y ~ S which is embedded in f such that the
embeddings (g-1(s), 03C3(s)) c (f - l(S), 03C3(s)) are y-minimal for all s E S?
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More generally one can ask;

PROBLEM 2. Given any y.-constant family of icis f : X ~ S, can one find a
function g: X ~ 0 where 0 is a smooth one dimensional complex analytic space,
such that ( f, g): X ~ S x 0394 has reduced critical space as a(S)?

Another problem regarding the topological type is related to the Zariski

multiplicity conjecture (cf. [Z]);

PROBLEM 3. If f : X ~ S is a y.-constant family, then does the multiplicity of
(XS, 03C3(s)) remain constant?

This has been proved for quasi-homogenous hypersurface singularities by
Greuel in [G], using a deep result of Varchenko [Var].
Massey (cf. [Ml]) and Vannier (cf. [Van]) have given a criterion for the

Milnor fibrations to be constant in a family of hypersurfaces with one

dimensional singular locus. Massey has also studied the case when the

singularities are arbitrary in the case of hypersurfaces and conjectured a
criterion for the constancy of Milnor fibrations (cf. [M2], Conjecture 5.1). It
would be interesting to investigate these cases for complete intersection

singularities with arbitrary singular locus.
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