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1. Introduction

It is observed in [H] that there is a correspondence from the irreducible unitary
almost spherical representations (cf. Definition 5.1 of [H]) of the universal
covering group of GL(n, R) to the irreducible unitary spherical representations of
GL(n, R). When n is greater than or equal to 3, the universal covering group of
GL(n, R) is just a double cover. We write G = GL(n, R) for the double cover of
G = GL(n, R). We let B = MAN be a Borel subgroup of GL(n, R) and let

B = MAN be the corresponding Borel subgroup of GL(n, R). We let £5 be the pin
representation of M. Then we observe that the Langlands quotient of the
principal series Indi( £5 0 v (D 1) is unitary if and only if the Langlands quotient
of the principal series IndB(1 (D 2v (8) 1) is unitary. The correspondence is given
by

Langlands quotient of IndG(03B4 Q v Q 1)
~ Langlands quotient of IndGB(1 (8) 2v ~ 1).

In this paper we will investigate the same kind of phenomenon for p-adic groups.
We restrict our attention to simple split groups first.

Let G be a simply connected simple Chevalley group. Let F be a p-adic field of
residual characteristic q, R its ring of integers with maximal ideal P. Fix a prime
element 03C0 ~ P. Write G = G(F) for the group of F-rational points of G. As an
algebraic group G is simply connected, but as a topological group or abstract
group the fundamental group 03C01(G) of G is equal to the group of all roots of
unity in F (cf. [Ma] and [Mo]). Let n be a positive integer. We define

We assume that l/ln(F)1 = n and that n divides the order of n1(G). We let G be the

*Supported by NSF Grant DMS-8610730.
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central extension of G with a preferred section s:

We also assume that (q, n) = 1 so that the cover splits over the maximal compact
subgroup K = G(R). We write K* = s(K), the lift of K. We let I c K be the

Iwahori subgroup of G. Since the cover is also split over I, we write I * for the lift
of 7 under the section s. The group I* will be called the Iwahori subgroup of G.

Fix a faithful character e of 03BCn(F). Let RE(G) be the category of (equivalence
classes of) admissible representations of G which are generated by its I*-fixed
vectors and such that /ln(F) acts via e. Let X03B5() be the set of I*-bi-invariant,
compactly supported functions on G satisfying the condition f(g03BE) = f(g)03B5(03BE) for
g E G and 03BE E 03BCn(F). Fix a Haar measure on G. The set X"(Û) is an algebra with
respect to the convolution product

The algebra X03B5() is usually called the Hecke algebra. It is also a *-algebra. For
f E e(G) we define

It is easy to see that f*~X03B5() if f~X03B5(). We have ( f *)* = f for f~X03B5().
For a representation (, V)ERt(G), we write VI. for the space of its Iwahori fixed
vectors. Then the linear map f - n(f)1 I* is a representation of X03B5(). It is well
known that the map

gives an equivalence of categories from R£(G) to the category R(X03B5()) of finite
dimensional representations of X03B5(). Let C~c,03B5(/I*) denote the set of compactly
supported I* right invariant smooth functions on G satisfying the condition
f(g03BE) = f(g)03B5(03BE) for g E Gand ç E 03BCn(F). Then the inverse functor is

In particular, when n = 1, G = G. In this case the Hecke algebra will be denoted
by Yf(G) and the category of representations with I-fixed vectors will be denoted
by R(G). For (n, V) E R(G) the map
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gives the equivalence of categories from R(G) to the category R(X(G)) of finite
dimensional representations of X(G). The inverse functor is

We will make use of the computations in [Sa] about the generators and
relations of X03B5() which imply that we have an isomorphism X03B5(G) ~ Jt(G’),
where G’ is an algebraic group. We will see that G’ is isomorphic to either G
modulo a central cyclic subgroup (possibly trivial) or the dual group ’G’ of G.
For any given group G and a fixed positive integer n we can easily determine G’.
In Section 5 we will define the unramified principal series I(î) for G. Moreover
we will construct a bijection from the set of unramified principal series of G to
the set of unramified principal series of G’. Fix an unramified principal series I(j)
of G and let I(X) be the unramified principal series of G’ corresponding to it. We
will see that x is the "n th power" of î. Write I()I* (resp. I(~)I’) as the space of
Iwahori fixed vectors of I(î) (resp. 1(x)). We will prove

THEOREM 5.4. The spaces 1(2),* and I(~)I’ yield equivalent representations of
the two isomorphic Hecke algebras ..1f£( G) and X(G’) respectively.
We write R03B50() (resp. R°(G’)) for the subcategory of RG(G) (resp. R(G))

consisting of irreducible representations. We will construct a bijection between
R’(G) and Ro(G’). Fix a hermitian representation (, )~03B50(), let

(n, V) E R°(G’) be the representation corresponding to it. Suppose V is real

hermitian, then we will prove in Section 6

THEOREM 6.2. V is unitary if and only if V is unitary.

As a consequence we extend the result of D. Barbasch and A. Moy in [BM] to
the nonlinear group G. That is, the unitarity of V can be detected on the space of
its Iwahori fixed vectors I*.
The author would like to thank David Vogan, Pierre Deligne and Gordan

Savin for helpful conversations. He is also very grateful to the referee for making
detailed comments on the manuscript.

2. Notations and preliminaries

We retain the notion in the previous section. Fix a maximal split torus T of G.
Let X = HOmalg(’1; F ) be the group of algebraic characters of T and let

X = Homa]g(F B T) be the group of algebraic one-parameter subgroups in T.

Then the sets X and X are in duality via the natural pairing ~, ). Let 0 c X be
the root system of G with respect to T and let  c X be the set of coroots in
bijection with 03A6. For a root 03B1 ~ 03A6 let  ~  be the corresponding coroot. The
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quaternity (X, 03A6, X, C) is the root datum associated with the pair (G, T). The
quaternity (X, C, X, 03A6) is the root datum for the dual group ’G’. Since G is

simply connected as an algebraic group, ’G’ is of adjoint type. (For more detail
about dual groups, cf. [B2], [Sp] and [T].) Therefore X is the Z-span of Ô. Let
7§ be the identity component of Ker a and Z03B1 be the centralizer of 7§ in G. Then
there is an isomorphism

Let NT be the normalizer of T and W = NT/T be the finite Weyl group of G.

Let s03B1 = ~03B1 (0 -1 1 0). Then the s03B1 generate W which acts on T as well as on X
and X. We write w, as the longest element of W.
Now fix a choice of the set of positive roots 0B This uniquely determines the

Iwahori subgroup I and the Borel subgroup B = TN. Let J4Qw = NTlT’o be the
affine Weyl group, where To is the maximal compact subgroup of T. We have the
standard decomposition Waff = À x W Note that this is only a semi-direct
product. We may identify each element in X as an element of a coset of T/To by
evaluation at n, i.e.

Let A ~ 03A6+ be the set of simple roots. Define

Let n denote the Lie algebra of N and let Adn be the adjoint action of T on n.
Let 03B4 be the modulus character of B = TN: tn H Idet Adn(t)|, where t E T and
n~N. For /LeX and w~W, define l(03BB) and 1(w) such that ql(03BB)=[I03BBI;I] and
ql(w) = [Iwl :1]. Assign G a Haar measure. We have

if we use the identification of (2.2) (cf. [Cl] Lemma 1.5.1).
In the rest of this section we assume that G is a reductive p-adic group (which

may be nonlinear, i.e. a covering group of a linear group). An admissible
representation (n, V) of G is called hermitian if there is a hermitian form (, ) on
V such that

If (nh, V’) denotes the hermitian dual of (n, V), then (n, V) is hermitian if and only
if (n, V) éé (n’, V’).



313

We can also define the notions of hermitian and unitary .Ye(G) modules. A
,-4’(G)-module E is called hermitian if there is a hermitian form (, ) on E such
that

In the equivalence of categories between R(G) and R(e(G», it follows from
(1.6a) and (1.6b) that the property of being hermitian is preserved. In one
direction, we need only to restrict the hermitian form on V to vl. In the other
direction the hermitian form on V is given by

3. The W-invariant forms associated with metaplectic covers

In order to construct the central extension of G, it suffices to construct a W-
invariant cover T of T by the method of Matsumoto. Assume x,  E T such that
p(x) = x, p() = y E T. The commutator [x, ] lies in /ln(F) and depends only on x
and y. Hence a central extension of T determines a map

given by c(x, y) = [x, ]. The map c is called the associated commutator map
and it satisfies following conditions:

Conversely, a commutator map c determines a cover of T. For Â (D s,

03BC~t~T=~ZF  we define c by

where (,)H is the n th-order Hilbert symbol and (,)W is the W-invariant even

symmetric form on X. The W-invariant bilinear form (,)W is uniquely deter-
mined up to a scalar. We always take ( , )w as the minimal Z-valued form and
therefore it is unique.
Now we have an imbedding of X into X given by
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Let d be the smallest positive integer such that X d c i(). The integer d is

important for understanding the isomorphism H03B5() ~ H(G’). We will now
determine d for each case. For simplicity we will write (,) for (,)W in the
following table. Notice that (i, j) = 0 if Ji 1 - j |&#x3E; 1 except for the case where G is

of type Dl and {i,j} = {l - 2, l}:

4. The isomorphism between two Hecke algebras

In this section we describe HE(G) and construct an isomorphism between HE(G)
and H(G’), where G’ is a linear group to be determined. Take a nonzero I*-bi-
invariant function f~H03B5() and ~ T such that p(x) =x=03BB~s~T. Then for
any ~s(T0) c I*, we have
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where 03BE = [x, ]. Since the function f is nonzero and the character 8 is faithful,
we must have === [x, ] = 1. That implies (03BB, X)w = 0 (mod n). Hence, we have
(03BB)~Xn or 03BB~=-1(Xn).
The isomorphism between H03B5() and H(G’) depends on the greatest common

divisor (d, n) of d and n (d is defined and determined for each case in Section 3):

(i) If (d, n) = 1, then  ~ n, we take G’ ~ G.
(ii) If d 1 n, then  ~ X n, we take G’ ~ LG0.

(iii) If 1  (d, n) = m  d, which only happens when G = SL(l + 1) or

G = Spin(2l + 1, 2l + 1), we take G’ such that there is a central isogony
0: G ~ G’ with Ker q5 =M. (F).

Let (X’, 03A6’, ’, ’) be the root datum of G’. Then ’n ~ . Write 03C8: ’n ~ X
for the isomorphism. In any case we can identify the Weyl group W of G with the
Weyl group of G’. Fix the set of positive roots of G’ which corresponds to the set
of fixed positive roots of G. Let F be the Iwahori subgroup and B’ be the Borel
subgroup of G’. Let K’ be the maximal compact subgroup of G’. Observe that
the isomorphism of lattices 03C8 induces a homomorphism from T’=X’ Q9 7L F x to
T=~ZF  by

We compose this homomorphism with the section s to get a homomorphism
11: T’ ~ î We need this homomorphism 11 in the next section.
For 03BB~ let S03BB be the function on G with value 03B5(03BE) on I*03BBI* x (j) and 0

elsewhere. For w e W let Sw be the function on G with value 03B5(03BE) on I*wI* x {03BE}
and 0 elsewhere. Then the {S03BBSw| , w c- Wl forms a basis of H03B5().
The isomorphism of the two lattices ’n ~  also suggests an isomorphism

between H(G’) and H03B5(). For 03BB ~ ’ let T03BB be the characteristic function on I’03BBI’.
For w e W let TW be the characteristic function on l’wl’. Then the set

{T03BBTw|03BB~’,w~W} forms a basis of H(G’).
Write A for Î’ and Â for X. Define

By definition 2 E A + if and only if 03BB(03C0) E T - (cf. (2.3)). For any 2 E À there exist
03BB1, 03BB2~+ such that 2 = 21 - 22. Define

For )1. E A we can find 03BB1, 03BB2~+ such that 03BB=03BB1-03BB2. We define
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For WE W we define Sw = q-1 2l(w)Sw and Tw = q-1 2l(w)Tw. Now we define

.f: H(G’) ~ Hf( G) to be the isomorphism of vector spaces induced by

We will often omit t/1 to write 9A. for SI/1(;.n). Using the relations computed in [Sa]
and the fact that (J(f »* = Y( f*), we have

THEOREM 4.1. The map J:H03B5()~H(G’) is actually an isomorphism of
*-algebras.

Let e(K*) be the Hecke algebra of I*-bi-invariant functions on

K = p - ’(K) K * x /ln(F) satisfying the condition f(g03BE) = f(g)03B5(03BE), for g E K and
03BE~03BCn(F). A better notation for it might be X03B5() but we use Yt(K*) for
simplicity. The algebra e(K*) is a subalgebra of the Hecke algebra X03B5(). Let
/(K’) be the Hecke algebra of I’-bi-invariant functions on K’. The algebra
e(K’) is a subalgebra of the Hecke algebra Yt(G’).

Since we have the decompositions K* = U WEW I*wI* and K’ = UWEW l’wI’. It
follows that e(K*) is generated by {w|w~W} and X(K’) is generated by
{w|w~W}. It is easy to see from (4.3) that the *-algebra isomorphism
J:X03B5()~X(G’) restricted to e(K*) is an *-algebra isomorphism from
/(K*) to Yt(K’).

5. The unramified principal séries and its Iwahori-fixed vectors

Let G’ be the group defined in Section 4. Let T’, l’and B’ be its maximal torus,
Iwahori subgroup and maximal Borel subgroup respectively. Let K’ be the
maximal compact subgroup of G’. Write T’0 = T’ n K’; that is the maximal

compact subgroup of T’. Let G, T be as before. Write N* c G for the lift of N.
Let Tn={tn|t~T}. Observe that n=p-1(Tn) c ~(T’). Let T* be the maximal
abelian subgroup of T containing f1(T’).

Let x be a character of ~(T’). We can extend it to T* so that |03BCn(F) = E. We still
write it as x. We extend î further to * = T*N* by x(tn) 2(t) for t E T* and
n E N*.

Let I(x) be the space of locally constant functions ,f’: à - C such that

Let G act on 1(2) by right translation. The representation I(î) is a principal series
of G and is admissible.
The character 2 also induces a character x of T’ by x(t) = X(’1(t». The character

x is the "n-th power" of 2 because of the nature of the homomorphism q. We can
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also extend X to B’ and define the principal series representation I(~) for G’
similarly. The character i is called unramified if X is unramified, i.e. ~|T’0 = 1.
From now on we assume that all characters î of T* or X of T’ are unramified.
PROPOSITION 5.1. The correspondence between the unramified characters,
 ~ ~, is a bijection. Therefore this correspondence induces a bijection between the
set of unramified principal series of G and the set of unramified principal series of
G’.

We only need to observe that any unramified character X on T’ can factor
through T’". Hence there is a character î on ~(T’) such that X(t) = î(il(t» for all
te T’. We will see that this bijection has nice properties in Theorem 5.4.

PROPOSITION 5.2 (cf. [C2] Prop. 2.7).

(1) The principal series I(~) is generated by its I wahori- fixed vectors I(~)I’;
(2) The principal series I(X) is generated by its Iwahori-fixed vectors I(X)I*.

Define the G’-projection P from C~c(G’) onto I(X):

Here the measure is the left invariant-Haar measure for which

meas(B’ n K’) = 1. For each w E W let 0,,, = 9(Tw), where Tw is the function

defined in Section 4.

Similarly, we define the -projection  from C~c() onto I(î):

Here the measure is the left-invariant Haar measure for which

meas(B* n K*) = 1. For each w E W let w 9(S,,), where Sw is the function
defined in Section 4.

PROPOSITION 5.3

(1) The functions ~w (w E W) form a basis of I(~)I’;
(2) The functions w (w E W) form a basis of I(î),*.

Proof. (1) This is because G’ is the disjoint union of the open subsets B’wl’.
(2) Let {03B3} be a set of representatives of cosets *. Then G = UÊ* 03B3wI*.
Suppose f E 1(2),* and h E s(To) ce 1*. For any w E W we have
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If f(w03B3) is non-zero, we must have 03B41/2(03B3whw-103B3-1)=1. This is only true when
y E T* because T* is maximal abelian in . ~

Proposition 5.3 suggests a linear isomorphism M between two vector spaces
I(Î)I* 

* 

and I(~)I’ given by mapping the base elements to the base elements.
Actually we can prove

THEOREM 5.4. Take I()I* and I(X)I’ as representations of X03B5() and X(G’)
respectively, then M:I()I* ~ I(~)I’ given by M(w) = ~w defines an equivalence of
representations of the two isomorphic Hecke algebras.

Proof. It is enough to show that for any w, w1 E W and 03BB~039B we have

Observe that Tw~1 = ~w and Sw1 = w. So (5.4a) is obvious. To prove (5.4b)
we need Lemma 3.9 in [C2] which says:

By the same method we have

Therefore by (2.4) we have (5.4b) for w = wl and in the positive chamber.
This is also true for arbitrary Â by the definition of 03BB and SÂ. Since ~wl
(resp. wl) is a cyclic vector of I(X)I’ under the action of {w|w E Wl (resp. I()I*
under the action of {w|w E W}), we only need to show

By (5.4a) we can apply a simple reflection on both sides of (5.4b) (for w = w,
case) to get

By the multiplication relations in the Hecke algebra (but beware of that
TiT03BB ~ T03BBTi unless ~03BB, (Xi) = 0), we have

Then we can apply another simple reflection on both sides of (5.8). Therefore an
induction will do the job of proving (5.6). n
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6. Metaplectic correspondences and unitary representations

In the previous section we had a bijection between the set of unramified

principal series of G and the set of unramified principal series of G’. We proved
that if I() E R’(C) corresponds to I(X) E R(G’) then the spaces of their Iwahori-
fixed vectors I()I* and I(~)I’ are equivalent as modules of the isomorphic Hecke
algebras JfE( G) and e(G’) respectively. In this section we will construct a
bijection between R’(C) and Ro(G’). We need the following well-known theorem.

THEOREM 6.1. An admissible irreducible representation (îr, V) (resp. (n, V)) of G
(resp. G’) has a non-trivial 1 wahori-, fixed vector, if and only if it is a subquotient of
an unramified principal series I(î) (resp. I(~)).

For the proof of this theorem, cf. [FK] and [B1].
Fix a v E R03B50(). We can imbed it into a unramified principal series I(). Write

VI* ~ I() as its I*-fixed vector. Let I(X) be the unramified principal series of G’
corresponding to I(x). Write I(~)I’ for its Iwahori-fixed vectors. By Theorem 6.4
I()I* and I(~)I’ are equivalent as modules of the isomorphic Hecke algebras
X03B5() and X(G’) respectively. Therefore their composition factors correspond
to each other. Let VI’ = M(I*) be the irreducible module of X(G’) correspon-
ding to I*. Then we get a V E Ro(G’) corresponding to VI’ (cf 1.6b). We call the
map V H V the metaplectic correspondence. We still write this map as M. This
correspondence is actually a composition of three correspondences

It follows from the fact that J: X03B5() ~ .1f(G’) is an isomorphism of *-algebras
that the correspondence in the middle preserves the property of being hermitian.
Because the other two correspondences also preserve the property of being
hermitian, the metaplectic correspondence JI takes hermitian representations
to hermitian representations. We can use Harish-Chandra’s criterion ([Si]
Theorem 4.4.4) to prove that -lY also takes discrete series to discrete series and
tempered representations to tempered representations (cf. [FK] §17). We call a
representation (, ) E R03B50() real hermitian if M() = y E Ro(G’) is real her-

mitian. The main theorem we want to prove here is

THEOREM 6.2. If (, v) E R03B50() and (n, V) E Ro(G’) are real hermitian such that
M() = V, then V is unitary if and only if Y is unitary.

In [BM] D. Barbasch and A. Moy show that V is unitary if and only if VI’ is
unitary. Since the isomorphism f: .1fE( G) -+ X(G’) is an isomorphism of

*-algebras, PI* is unitary if and only if vl’ = JI(VI*) is unitary. It is obvious that
the unitarity of v implies the unitarity of I*. We need only to prove that the
unitarity of vl implies the unitarity of v We need to introduce the K-character
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and signature character of a hermitian representation V of a reductive group
and their analogous characters of its Iwahori-fixed vectors VI. These notions are
first introduced by D. Vogan in [V] for real groups and by D. Barbasch and A.
Moy in [BM] for p-adic groups.

Let (îr, ) ~ R03B50() be an irreducible representation with a hermitian form (, ).
For each irreducible representation ô of K* fix a positive definite hermitian
form. Let V(b) be the ô-isotropical component of . The finite dimensional
vector space F(ô) = Hom(ô, (03B4)) acquires a nondegenerate form (, ~. Denote
the dimension and signature of F(b) by m(b) and (p(ô), q(b)) respectively. Define
the formal K*-character of P to be

Define the signature character of ~,~ to be the pair of formal sums

Let (n, V) E Ro(G’) be an irreducible representation with a hermitian form (, ).
The K’-character and signature character of V are defined in a similar way.

Let E be a hermitian X03B5()-module. If l5 is a simple module of 9V(K*), let
(p(03B4), q(03B4)) be the signature of Hom~(K*)(03B4, E) and set m(03B4) = p(03B4) + q(03B4). In

analogy with (6.2) and (6.3), the formal X(K*)-character is

and the signature character is

Let Y be the set of all irreducible representations of K* occurring in the
induced representation IndK*I* 1. For 03B4~J the map

is a bijection from J to the set of simple X(K*)-modules. Suppose (, Ji) e Rô(G)
and É = jiI*. Write the K*-character of  as the sum
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Then the X(K*)-character of E is

The signature character of E can be gotten in a same fashion.
Let E be a hermitian 9V(G’)-module. The X(K’)-character and signature

character are defined in a similar way. We also have a formula analogous to (6.8)
for E.

It follows from the remark after the statement of Theorem 6.2 that we only
have to prove the following proposition in order to prove Theorem 6.2.

PROPOSITION 6.3. I n the setting of Theorem 6.2, suppose I* is unitary, then 
is also unitary.

Proof. Denote by ( , ) the hermitian form on V and ~, ~I* its restriction on
VI*. Denote by (,)1’ the hermitian form of VI’ = M(I*). Now we need a
signature theorem which is suitable for our use. Following the same line of D.
Vogan in [V] or D. Barbasch and A. Moy in [BM], we can find finitely many
real tempered irreducible representations Pi,..., Vm E R’(G) (i.e. all Vi’s are I*-
spherical and /ln(F) acts on them via e) and non-negative integers a1, ..., am,
b 1, ... , bm (some of them may be zero) such that

This is just a modified version of Theorem 5.2 in [BM], which can be proved
through the same procedure as in Section 5 of [BM]. Then the signature
character of I* is

Applying the map W, we have the signature character of VI’ is

where V" = M(I*). By the linear independence of 03B8X(K’)(VI’j)’s (cf. [BM]
Corollary 4.8), the positive definiteness of ~, )1’ implies bi = 0 for all j. Hence
( , ) is also positive definite. 1:1

COROLLARY 6.4. Suppose (1t, V) E R’(C) is real hermitian, then the unitarity of
V can be detected on the space of its 1 wahori- fixed vectors I*.



322

References

[BM] D. Barbasch and A. Moy: A unitarity criterion for p-adic groups, Invent. Math. 98 (1989), 19-
37.

[B1] A. Borel: Admissible representations of semi-simple groups over a local field with vectors
fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259.

[B2] A. Borel: Automorphic L-functions, Proceedings of Symposia in Pure Mathematics 33 (1979),
part 2, 27-61.

[C1] W. Casselman: Introduction to the theory of admissible representations of p-adic reductive
groups, preprint.

[C2] W. Casselman: The unramified principal series of p-adic groups I. The spherical function,
Compositio Mathematica 40(3) (1980), 387-406.

[CS] W. Casselman and J. Shalika: The unramified principal series of p-adic groups II. The

Whittaker function, Compositio Mathematica 41(2) (1980), 207-231.
[FK] Y. Flicker and D. Kazhdan: Metaplectic correspondence, Publ. Math. IHES. 64 (1986) 53-

110.

[G] S. Gelbart: Weil’s Representation and the Spectrum of the Metaplectic Group, Lecture Notes
in Mathematics 530, Springer-Verlag, 1972.

[H] J.-S. Huang: The unitary dual of the universal covering group of GL(n, R), to appear in Duke
Mathematical Journal 61(3) (1990), 705-745.

[KP] D. Kazhdan and S. Patterson: Metaplectic forms, Publ. Math. IHES 59 (1984), 35-142.
[KP’] D. Kazhdan and S. Patterson: Towards a generalized Shimura correspondence, Advances in

Math., 60 (1986), 161-234.
[Ma] H. Matsumoto: Sur les sous-groupes arithmétiques des groupes semi-simple déployés, Ann.

scient. Ec. Norm. Sup., 4e série, t.2, 1969, 1-62.
[Mi] J. Milnor: An Introduction to Algebraic K-theory, Ann. of Math. Studies 72 (1971).
[Mo] C. Moore: Group extensions of p-adic and adelic linear groups’, Publ. Math. IHES 35 (1968),

157-222.

[Sa] G. Savin: Local Shimura correspondence, Math. Ann. 280 (1988), 185-190.
[Si] A.J. Silberger: Introduction to Harmonic Analysis on Reductive p-adic Groups, Princeton

Math. Note 23 (1979).
[Sp] T. A. Springer: Reductive groups, Proceedings of Symposia in Pure Mathematics 33 (1979),

part 1, 3-27.

[T] J. Tits: Reductive groups over local fields, Proceedings of Symposia in Pure Mathematics 33
(1979), part 1, 29-69.

[W] A. Weil: Basic Number Theory, Die Grundlehren der mathematischen Wissenschaften 144,
Springer-Verlag, 1973.

[V] D. Vogan: Unitarizability of certain series of representations, Ann. of Math. 120 (1984), 147-
197.


