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1. Introduction

Let (E 0) G (A3k,0) be a normal 2-dimensional singularity (k = fixed algebrai-
cally closed field with char k = 0). Suppose an embedded good resolution

(Dy, Y are smooth and transversal; Ev:= Y n Dv) to be given, then the following
functors on W (category of local Artinian algebras of finite type over k) are
defined:

ESEX(A~L):= {isomorphism classes of A-deformations , 03BD  X
of Y, Dv q X such that f blows down to (A3k, 0)}

ESY(A E W): = {isomorphism classes of A-deformations Ev 4  of

E, 4 y such that Y blows down to (V, 0)}.

In an obvious way we get natural transformations ESEX  ESY  Defv, and
following Wahl [Wa2] the deformations in the image of fi (denoted by ES) will
be called "equisingular" (this notion does not depend on the choice of the
resolution n).

(1.1) Are there suitable embedded resolutions X such that all equisingular
deformations are induced by the corresponding functor ESE?

In case of plane curve singularities Wahl used the embedded resolution
obtained by successive blowing ups of (A2, 0). In his paper [Wa1] he showed

*Partly supported by a DFG-grant at the university Kaiserslautern.
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in particular the natural transformation a : ESE - ES is surjective for all A E L.
(Note the different notations: In [Wal] the functors ESE and ES are denoted by
ES and ES, respectively.)

If, in dimension 2, the singularity (V, 0) ~ (Ai, 0) is given by a polynomial f that
is non-degenerate on the Newton boundary 0393(f), we can use embedded
resolutions given by subdividing the dual Newton polyhedron £o (cf. [Va]).
Under the additional assumption that each of the coordinate axes of 1R3 meets
exactly one top dimensional face of 0393(f), the existence of a "good" subdivision
1  Eo making a : ESExI -+ ESy surjective on W is shown in [Al], (5.4).

In sections 2 and 3 of this paper we will show for arbitrary non-degenerate
pol ynomials f, that any equisingular first order deformation 03BE of (V, 0) can be split
into equisingular parts j = 03BE1 + 03BE2 + 03BE3 such that each of the 03BEi is induced by
an equisingular deformation of an embedded resolution ni: Xi -+ (Ai, 0)
(i = 1, 2, 3) (cf. Theorem (3.4)).

This means we can give a support to the above question on the infinitesimal
level in the following sense:

There are three embedded resolutions, one for each coordinate axis, such that
all equisingular deformations are induced by the corresponding functors ESE,
(i = 1, 2, 3) together.

(1.2) In section 4 we fix an arbitrary smooth subdivision E  10 and compute
the image Im(ESEX03A3(k[03B5]) ~ DefR(k[03B5])) (cf. Proposition (4.6)). This together
with Theorem (3.4) imply our main result - an algorithm for computing all
equisingular first-order deformations in DefR(k[e]) (cf. Theorem (5.1)). None of
the smooth subdivisions E  03A30, but only the starting f.r.p.p. decomposition Eo
itself is used there, hence, this algorithm seems to be an easy method to
determine ES(k[8]) by computers. In particular, for each equation f we can
decide if there are equisingular deformations below 0393(f) or not.

Finally, an example is given in (5.3).

2. Résolutions related to the coordinate axes of R3

(2.1) We will use the notations of [Al]:

Let M:= Z3, N:= Z3 which are regarded as being dual to each other by the
canonical pairing ( , ). Let f E (x)2k[x] (x = (Xl, X2, x3)) be an irreducible,
complete polynomial (i.e. f(0, ... , xi, .... , 0) ~ 0 for i = 1, 2, 3); suppose

moreover, that f is non-degenerate on its Newton boundary 0393(f) ~ MR.
The dual of 0393(f) gives a finite rational partial polyhedral (f.r.p.p.) decom-

position Eo  R30 ~ NR. We consider this only by regarding the intersection
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however, rational elements of A will always be given with integer coordinates
that are relatively prime. The vertices of A are in a 1 to 1-correspondence to the
coordinate functions xl, x2, X3 and will be denoted by el, e2 and e3, respectively.

Subdivisions of Eo will always be considered not to change the boundary DA.
Finally, we denote by Q(D), 03A9~D + Y), 0398~-D~, e( -D - Y) the corre-
sponding sheaves with logarithmic poles or their duals. (In [Al] the latter two
were called S’ and S, respectively.)

(2.2) DEFINITION. Let a, b~0394 ~ Q3. We denote by Pb(a) the point of A ~ Q3
characterized by the following conditions:

(1) Pb (a) E ab.
(2) If Pb(a) is given by integer coordinates that are relatively prime, then

{Pb(a), b} will be a part of a Z-basis of Z3 ~ NR.
(3) The distance between a and Pb(a) is minimal.

REMARK. (i) Denote by

the "volume" of the corresponding cone a, b~ ~ R3. Then, Pb(a) is given by

d|ai + k. bi for all i.

(ii) As in [Al] (5.2) we abbreviate Pei(a) by Pi(a).

(2.3) DEFINITION. A smooth f.r.p.p. subdivision E  Xo is called "good for
e"’ if the following condition is satisfied: Whenever an element a~03A3(1)0 (i.e. a
vertex of the Zo-partition of A) is contained, with ei, in a common cone a E 10,
then there will be a cone ~03A3 containing Pi(a) and ei.
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REMARK. In section 5 of [Al] the property of £ to be good for all ei

(i = 1, 2, 3) is called "good" and is shown to be sufficient for making the natural
transformation ESExI -+ ES y smooth. Nevertheless, in most of the cases drawn
above (i.e. with non-simplicial "boundary-cones" of SO) such subdivisions Y. do
not exist. (There are exceptions: In Example (5.3) the fact P2(a) E be3 yields good
subdivisions of 03A30.)

(2.4) Let i~{1, 2, 3} be fixed. Now, we give a construction of a 1,  Xo which
will be good for ei:

STEP 1. Connecting e’ with all a~03A3(1)0 contained, with ei, in a common Zo-
cone. We get a new Éo with the 2-skeleton (2)0.

STEP 2. Dividing all line segments ab E fb2) into the "canonical primitive
sequence" (cf. [O], (3.5)(i)): b° : = b;

stops with bN = a. (If ab was already smooth, then b1 = Pb(a) = a. Hence, in
difference to [O], nothing is to do with that line segment.) We obtain a new (2)0.

STEP 3. By a non-canonical division of the 3-dimensional cones of 0 we
obtain a smooth subdivision 03A3i  Eo with 03A3(2)i n |03A3(2)0| = (2)0 ~ |03A3(2)0|.

Let E’ := 03A3(2)i rl |03A3(2)0| (that means the actual subdivision of the 2-skeleton of
Eo); this f.r.p.p.-decomposition does not depend on ï~{1,2,3}!
Denoting by Xi:= X03A3i and W:= X03A3’ the corresponding torus embeddings

after a flat base change A3k(A3k,0), the following geometric situation results:

are embedded resolutions of (V,0) ~ (Ai, 0) for i = 1, 2, 3.

(2.5) PROPOSITION. Whenever E  So is a smooth subdivision with

1 n |03A3(2)0| = 03A3’, the strict transform Y03A3 ~ X03A3 of (V,0) ~ (A3k, 0) is contained in

W = X 1:’; therefore, all such resolutions n: Y03A3 ~ (V, 0) coincide and will be denoted
by n: Y* --+ (V,0).

In particular, the above three resolutions 03C0i: Yi ~ (V,0) are equal to Y#.
Proof. STEP 1. There is a 1 to 1-correspondence between the top dimensional

cones fi E 03A30 and the vertices ro E 0393(f):
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Now, let 1  Eo be an arbitrary smooth subdivision, and let 03B1~03A3 be an

arbitrary cone (a e ôà); we fix the following notations:

Then, X03B1’ ~ X 03A3 is an open subset with the coordinates Yl, y2, Y3, and we will
look for the condition for Y. to meet the closed orbit orb(03B1) ~ X03A3:

(orb(a) n Xa’) n Y03A3 ~ ~

iff there is a triple (Yl, y2, y3) ~ Y03A3 with y, = ... = yk = 0

iff there is a non-trivial monomial yck+1k+1···yc33 in the equation
f03B2(y):= 03A03i=1 y-m(ai)if(x)= x-r03B2f(x) of X in X«,
iff there exists an r E supp f (different from rfi) with
(a, r) = ~a, r03B2~ = m(a) for all a E 03B1

iff there exists a vertex r03B3 ~ 0393(f) (03B2 ~ y) with
(a, r03B2~ = ~a, r1) = m(a) for all a E 03B1.

The latter condition does not depend on the special choice of a’.
Finally, we obtain:

orb(a) n Y, 0 iff a is contained in two different

top dimensional 03A30-cones.

STEP 2. If E n l1:b2)1 = l’, we obtain

orb(a) m lg = 0 for aIl ex ’* |03A3(2)0|, i.e. oc 0 1’.

In particular, W = X03A3B~03B1~03A3B03A3’ orb(a) contains Y,. D

REMARK. As we have seen in (2.4), Y# arises after a canonical subdivision of
03A3(2)0. This resolution is the minimal one in the category of resolutions Y,
obtained by smooth subdivisions E  03A30.

Proof. By induction only the following has to be checked:
Is a = a°, ... , aN = b any smooth subdivision (i.e. det(av, av+1) = 1) of a line

segment ab, then Pb(a) is among the elements a03BD (v = 0,..., N).
We can assume b = e’; let d := gcd(a2, a3).
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Now, any point c of the line ae (in A n Q3) can be written as

and this notation admits the following properties:

(1) c: Q0~{~} - ae1 is order preserving
(2) c(~) = c(l, 0) = e1; c(O) = c(O, 1) is the intersection of ae 1 with (e2, e3)
(3) a = c(a1/d); and c(r) belongs to the line segment ael if and only if r  a1/d
(4) c(pl/ql), C(P2lq2) yield a smooth segment if and only if

(5) c(r), el yield a smooth segment if and only if r~Z; P1(a) = c([a1/d] + 1).

Let a’ = c(pv/qv), av+1 = c(p03BD+1/q03BD+1) be adjacent elements in the above smooth
subdivision of ael . Then, by (4) the open interval (p03BD/q03BD, p03BD+1/q03BD+1) can not
contain any integer g

in particular, we obtain [a,ld] + 10 (p,,Iq,, p, + 1 /qv + 1). D

(2.6) Finally, we want to state here the most important property of resolutions
that are good for ei.
Let E  10 be a smooth subdivision, then by section 5 of [Al] we get the

following diagram (with exact rows and columns)

(k[a] dénotes the object k[e] := k[03B5]/03B52 of L).
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The sheaf 0398X~-D~ as well as the map C split into

(denoted by Sj in [Al])

and

Now, the proof of Proposition (5.4) of [Al] yields:

If £  Eo is good for ei, then 03A6i will be injective.

3. Dividing ESY# (k[03B5]) into a sum

(3.1) Let É  E  Eo be two smooth subdivisions with a canonical |03A3(2)0|-part E’;
let 03C3:~X be the corresponding map of the torus embeddings. We get an
injection 0398  03C3*0398X, and the canonical map

induces the injection

(Locally we can illustrate the situation as follows:
Let u*: B - A be the ring homomorphism corresponding to a;
D, 9 X correspond to equations gv c- B,
03BC ~  correspond to equations f03BC~A, and the pull backs u*D, are given by

Then, the map aeJl%VJlIX -+ ~03BDN03C3*D03BD| is given by
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Is D:A~A a derivation (i.e. DE Oi), we can compute the image of D in the
above sheaves as

Finally, D(u*g,) = D(g,) if D is considered as an element of 03C3*0398X (i.e. as a
derivation B ~ A).)

The two sheaves are both contained in Q (9 torus ~ ~xj;
therefore,

and the injection i will split into ij:S()j  03C3*S(X)j ( j = 1, 2, 3). Now, the exact
sequence

together with the analogous one for X yields the surjections

((a) Existence of H2(i):
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(S(X)j(- Y#) is invertible, and Wx - (R+03C3*)03C3*OX is a quasiisomorphism).
(b) The horizontal maps are surjective by

(3.2) LEMMA. There exists a universal surjection of k-vectorspaces

such that for arbitrary smooth subdivisions 03A3  Eo (with E n IE(2)1 = E’) the
surjection H1(Y#, 0398Y# ~-E~)  H2(X, ~3j=1 S(X)j(- Y#)) will factorize (uni-
quely) through Pi  H2(X, S(X)j(- Y#)) ( j = 1, 2, 3).

Proof. Two smooth subdivisions of Eo coinciding in |03A3(2)0| admit a common
finer one without changing the part IE(2)1.

Therefore, we can define Pj as the limit of the successive surjections

described in (3.1); by dimk H1(Y#, 0398Y3 ~-E~)  co, this process stops after

finitely many steps. D

(3.3) Now, we can define some subspaces of ESY#(k[03B5]) and

H1(Y#,0398Y#~-E~): For j = 1, 2, 3 let

PROPOSITION.

(1) 03A33j=1 F’j=H1(Y# ,0398Y#~-E~).
(2) For arbitrary smooth subdivisions E  Eo with 1: n |03A3(2)0| = 1:’ the surjection

maps Fj onto H2(X, S(X)j(- Y#)).
(3) 03A33j=1 Fj = ESY# (k[e]).
(4) If the image of Fj under the map ESy# (k[e]) ~ DefR(k[03B5]) is denoted by

Fi 9 ES(k[03B5]), then ~3j=1 Fj contains all "above -0393(f)- deformations" off
(i.e. deformations l with 0393() = r(f».

Proof. The parts (1) and (2) are clear by definition or by the previous Lemma.
For (3) and (4) take a smooth subdivision 03A3  03A30 (E n |03A3(2)0| = 1:’) that realizes
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~3j=1 1 Pj’ i.e. H2(X, Sj(- Y#)) = pj ( j = 1, 2, 3). Now, we regard the diagram of
(2.6): .

Part (3). Let 03BE~ESY#(k[03B5]) With 1 = li + 03BE2 + 03BE3 (çj E Fj). Then, qJ = 03A603C8
maps each of the 03BEj into the corresponding factor of H1(Y#, OY#)3, and we get

hence qJ(Ç1) = ~(03BE2) = qJ(Ç3) = 0.
But this means 03BEj~ESY#(k[03B5]), i.e. çj E Fj ( j = 1, 2, 3).
Part 4. By construction of the subspaces Fi g ESY#(k[03B5]) we have

On the other hand, all "above-0393(f)-deformations" can be lifted to elements of

ESEX(k[03B5]) (cf. [Al], (2.1)). D

(3.4) Finally, let us return to the situation of section 2: We had three embedded
resolutions

and each X was good for ei(i = 1, 2, 3). Regarding the corresponding diagram

of (2.6), we obtain
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THEOREM. For i = 1, 2, 3, the subspace Fi g ESY# (k[B]) is contained in Im(ai).
In particular, the map between the tangent spaces

is surjective.
Proof. Let 03BE~Fi~ ESY#(k[03B5]), then, by Proposition (3.3), the image 03C8i(03BE) is

contained in the factor H2(Xi, S(Xi)i(1- Y#)).
Now, 03A6(i)i is injective (cf. (2.6)), and from qJ(ç) = 0 we obtain the vanishing of

03C8i(03BE), 1.e. 03BE is contained in the image of ESEXik[03B5]). D

(3.5) REMARK. (1) Equisingular deformations coming from some ESE are
equimultiple (cf. [Ka], (4.6)). So the above theorem illustrates the fact that over
k[03B5] equisingularity alone is sufficient for equimultiplicity (cf. [Ka], (2.8)).

(2) In [Al] the smoothness of ESE and the surjectivity of some

ESE(k[8]) - ES(k[8]) are used to show the smoothness of ES. It is not possible
to apply this schema of proof to our situation - the surjectivity of

~3i=1 ESEXi(k[03B5]) ~ ESY# (k[e]) cannot be lifted to any Artinian rings A of
higher order because there is no possibility of defining the sum of two A-
deformations !

4. Computation of Im(ESEX(k[03B5])  DefR(k[E])) (for a fixed embedded
resolution X)

For this section we fix an arbitrary smooth f.r.p.p. subdivision E  so with
the corresponding good resolution n: X ~ A2.

(4.1) The connecting morphism of the cohomology sequences of

yields the following diagram:
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This diagram can be identified with

(The first columns are identified according to [Al] (2.2) - we take

and

for the right hand side we use (2.5)(y) and (4.2) of [Al] - in the latter one the
vanishing of H2(X, 0398X~-D- Y~) has been proved.)

DEFINITION. For 03BE=03A3r003BEr·xr~k[x]~H0(XBD,OX(Y)) we denote by
03BE0393(f) the image Of 1 in

Taking the canonical section of k[x]  k[x]/~monomials  0393(f)~, we get

(4.2) PROPOSITION. (1) Fur i = 1, 2, 3 the vertices e’c- A correspond to the -
non exceptional - divisors orb(ei) ~ X. Denote these divisors also by ei, and let
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be the multiplication by xi(~f/~xl). Under the isomorphism

then

(2) Let 03BE = 03A3r0 03BEr·xr E k[x] define an element of DefR(k[03B5]) (the infinitesimal
deformation (x,03B5) = f(x) - 03B503BE(x)). Then, this deformation is induced by
ESEx(k[e]) if and only if

Proof. (1) By the second diagram of (4.1) it holds

On the other hand, we can lift the surjection 0398X~-D~NY|X to the

homomorphism 0398X~-D~ ~ (9x (Y) given by ~[~(f)/f]:
(i) In local coordinates (take the same notations as in the proof of (2.5):
f = xr03B1 · fa) we obtain

Since ~~0398X~-D~, the section [~(xr03B1)/xr03B1] is regular on X, and ~(f)/f is indeed
an element of the sheaf (9x(Y).

(ii) The projections 0398X~-D~  NY|X and OX(Y)  Jryjx are locally given
by

and
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respectively. Then, the congruence

shows that the diagram

Since H1D(X, OX(Y))  H1D(X, NY|X) is an isomorphism, we obtain

Finally, the first claim follows by the equation

and taking the isomorphism

(2) 03BE E k[x] = H0(XBD, (9x(- E m(a)Da ~ H0(XBD, OX(Y)) maps onto

0~Coker 03B3 if and only if

vanishes in Coker(~3i=1 ~i). D

(4.3) Our next task will be to describe the maps ~i by the methods of torus
embeddings. For this purpose it is useful to regard the dual version of these
maps:
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and the homomorphisms are still given by multiplication by xi(~f/~xi). Now, for
r, t E M we define the following sets:

Then, the convex sets (0394BHt) are contained in Bf,t, and the maps ~*i are equal to
some homomorphisms

(As we are really interested in the dual of, for instance, H2(X, wx(1: m(a)Da)), the
notations are chosen such that Ar describes the cohomology of the -r(th) factor
of this sheaf. The relations "" or "" - instead of the strict ones - in the
definitions of Ar and B7,t are induced by taking wx(divisor) instead of

OX(divisor).)
But, what does ~*i look like? We have to make some general remarks

concerning the computation of cohomology on torus embeddings:

(4.4) Denote by j:T  X03A3 a torus embedding in the sense of [Ke].
(1) Let L ~ j*OT = j*k[M]~ be an M-graded invertible sheaf with order

function 03A6: |03A3| ~ R; for r E M let A, := {a~0394/~a, r)  (D(a)l.
Then, if a E E is an arbitrary cone, we obtain

hence L(r)|X03B1 = H°(a, a n A,) ~ k. In particular, the sheaf L(r) and the pair (A, Ar)
yield exactly the same Cech complexes.

(2) Let LB L2 ~ j*OT be M-graded invertible sheaves with 03A61, (D2 and A’, A 2
as before. Assume that there is an s~M with xs·L1 ~ L2 (equivalent:
03A61 + s  03A62 as functions on A).
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Then, for each r~M there is an inclusion A2r+s ~ A;, which provides the
commutative diagram

Again by taking Cech cohomology we obtain a description of the multiplication
by xs on the cohomological level:

(ç is induced by the inclusion A2r+s ~ Ar ; in particular, 9 is homogeneous of
degree s.)

(3) Let Li, 03A6i, Air (i = 1, 2) as before, assume that there is a Laurent polynomial
g(x) E k[M] with g(x). n..1 ç; L2.

Then, by M-graduation of both sheaves L1 and L2, this fact is equivalent to

Hence, the method of (2) can be applied to describe the maps

(4.5) The third part of the previous general remark applies exactly to the special
maps ~*i regarded in (4.3). Denoting by 039403A3i ~ A the union of all closed E-cones
not containing ei, we obtain the following

and the perfect pairing with
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is built in the obvious way.
(2) For i = 1, 2, 3 and t E M the cohomology group H1(Btt, k) is equal to

(i) H0(039403A3i n Ht)· x - t ( for ti = -1 and t03BD  0 for all v :0 i),

Il H0(039403A3i~Ht) H0({ej})·x-t (for ti = -1, tj  -1 ( j 0 i), and the remaining component
is  0);

(iii) 0 ( for ti ~ -1 or t  -(1, 1, 1)).

(3) Let f(x) = 03A3s~supp f Às . xs be the explicit description of our starting equation.
Let r, i and t be such that H1(Ar, k), H1(Btt, k) * 0 (i.e. r  0, r  0393(f) and
ti = -1, t  -(1, 1, 1), respectively). 

Then, the x - part of ~*i(x-r) is given by

with s: = - t + r (because of ( - t) = s + (-r)) and a*~03A3(1)0 such that

(a*, r)  m(a*).
In particular, this part of ~*i(x-r) vanishes, unless s  r(f).

Proof. (1) Ar = 0394B{a~0394/~a,r~  m(a)l = 0B(convex set), and the above con-
ditions for r arise by r  0 iff DA 9 Ar and

(2) 0394BHt ~ B03A3i,t, and the only vertex of 03A3(1) in which both sets can differ is e’.
Hence, the non-vanishing of H1(B03A3i,t, k) implies ei~0394BHt, ei~B03A3i,t, and we obtain
ti = (ei, t) = -1.
Assuming this from now on, we see that B?, contains exactly the same

elements of 03A3(1) as 0394B[039403A3i n Ht]. In particular, both subsets of 0 (consisting of
open or closed halfspaces in every cone of 1:) are homotopy equivalent and yield
the same cohomology. Without loss of generality we take i = 1 and consider the
above three cases:

follows by the Alexander duality.
(ii) t2  -1, t3  0: This means et, e3 ~ (0394B[039403A31 n HJ), e2 ~ (0394B[039403A31 n HJ) and
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therefore, the connected component C of e2 in 039403A31 n Ht has no influence on
the cohomology:

(The middle equality again follows by the Alexander duality.)
(iii) t2, t3  -1: By Ht = à we obtain

and this set can be contracted to the point e1.

(3) The linear map H1(Ar, k) ~ H1(B03A3i,t, k) is constructed by the inclusion
B03A3i,t ~ A, (cf. (4.4)); in dual terms this means that H0(0394BAr) ~ H0(039403A3i ~ Ht)/··· is
induced by

Take an element a*~03A3(1)0 with ~a*, r)  m(a*) (i.e. a* E A BAr); assuming
s  0393(f), we obtain

and x - r maps onto the corresponding connected component in Af n 0-II t
(multiplied by the coefficient of xs in xi(~f/~xi)). 0

REMARK. As 0394BAr is convex, we obtain for (3):

does not depend on the choice of a*~03A3(1)0 with (a*, r)  m(a*).

(4.6) Now, we are in the position to determine the deformations of

exactly:

DEFINITION. (1) We choose (and fix) a map
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(r  0393(f) means that r sits below some faces of 0393(f). Now, by the map a, one of
these is selected. a(r) plays exactly the role of a* in the poposition above, and we
have seen that all constructions are independent of the special choice the map a.)

(2) For i = 1, 2, 3 let Mi:= {r~M/r  0, 0393(f) - ei  r  0393(f)} ({e1, e2, e3}
denotes the canonical Z-basis of M).

Recall the definitions

and

PROPOSITION. (1) Given the following data

(1) i ~{1, 2, 3},
(2) t E M with: (a) ti = -1

(b) (i) t,  0 (i.e. ev e Ht) for all v :0 i, or

(ii) tj  -1 (i ~ j) and the remaining component is  0,
(c) there exists an r ~ Mi with r - t  0393(f) and (a(r), t + ei~  0,

(3) a connected component C of 039403A3i n D-Ot not containing any of the vertices el, e2,
e3,

then, the deformation defined by

comes from ESEx(k[e]).

(II) lm(y) 9 DefR(k[a]) as a k-vectorspace is spanned by the above-r(f)-
deformations and all deformations constructed in the above way.
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Proof. By Proposition (4.2), Im(y) is spanned by the above-0393(f)-deformations
together with the images of the maps gi (i = 1, 2, 3). However, in Lemma (4.5)(2)
it is shown that the data {i, t, C} meeting (1), (2a), (2b) and (3) of the claim form a
k-basis of

finally, part (3) of the same Lemma gives

It remains to prove that we are able to restrict ourselves to rEM (instead of
r  0, r  0393(f)) and that the additional assumption (2c) for t can be made:

Let {i, t, C} be as before and take an r  0, r  0393(f) such that

~i({i, t, C})|k·xr ~ o.

CLAIM. ~a(r), t~  -a(r)i.
~a(r), t~  -a(r)i would imply that there is an j ~ i with tj  -1 (cf. case

(ii)), and we would obtain the following situation:
t:= {a~0394/~a,t~  - ai} ~ 0-Ot contains a(r) and ej, but not the vertex ei.

Hence, there is no cone bei ~ 03A3, b ~ R (b ~ Ht) meeting a(r)e’, and a(r) and
must be contained in the same connected component of 039403A3i ~ Ht.

Therefore, the x -t-part of ((Jr(x-r) would be killed by dividing out
H0({ej}) z H0(039403A3i ~ Ht) to get H1(B03A3i,t, k).
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Now, (r - t) E supp f implies r - t  0393(f); in particular, we obtain

and therefore

Finally, each face a of 0393(f) with ~a, r)  m(a) could be taken instead of a(r), and
we obtain r ~ Mi. 0

REMARK. Condition (2c) guarantees that there are only a few (in particular a
finite nuniber of) t~M fulfilling (2).

(4.7) In (2.6)-(2.8) of [Al] we already tried to describe the image of y.
For elements 03BE~H1(X, 0398X ~ - D - Y~) (given explicitly by a 1 -cocycle

the induced deformation 03B3(03BE)0393(f) was computed directly. Now, we want to give
a short dictionary to understand this formulae in the cohomological language
used here. This language is more suitable to see what really happens.

(i) For i = 1, 2, 3 we obtain elements ç(xi)eH1(X, OX(-03A3a&#x3E;0aiDa)) (given by
Çap(Xi) in [Al]).

(ii) The exact sequence

together with H1(X, (9x) = 0, shows that 03BE(xi) can be lifted to an element
bi E HO(X, (9r
(In [Al] these sections are given locally by b03B1i~OX:

(iii) Multiplying by ~f/~xi provides a commutative diagram

Therefore, we obtain 03A33i=1 (of /oxi)bi E HO(X, O03A3m(a)Da)- still written as a local

(9x-section in [Al].
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(iv) Finally, we recall the isomorphism

5. An algorithm to determine the equisingular déformations below 0393(f)

(5.1) Analogously to Proposition (4.6) it is possible to compute all deformations

of ES(k[03B5]) ~ DefR(k[E]). The corresponding algorithm does not use any of the
smooth subdivisions of Xo regarded before, but only the starting f.r.p.p.
decomposition 1o itself.

Let 0394i:=~{03B1/03B1~03A30, ei~03B1} ~ A (i = 1, 2, 3) and take the definition of

Mi ~ M, a: Mi -+ 03A3(1)0 and M, of (4.6).
THEOREM. (I) Given the following data

(1) i~{1, 2, 3},
(2) t ~ M with: (a) ti = =1

(b) (i) t03BD  0 (i.e. e03BD ~ Ht) for all 03BD ~ i, or

(ii) tj  -1 (i ~ j) and the remaining component is  0,
(c) there exists an r E Mi with r - t  r( f ) and (a(r), t + ei~  0,

(3) a connected component C of Di n Ht, not containing any of the vertices
1 2 3
e,e,e,

then, the deformation defined by

is contained in ES(k[B]).
(II) ES(k[03B5]) ~ DefR(k[03B5]) as a k-vectorspace is spanned by the above-r(f)-

deformations and all deformations constructed in the above way.
Proof. Take the three resolutions 1:v (v = 1, 2, 3) of (2.4). Then, by Theorem

(3.4) and Proposition (4.6) the above claim were valid if the Ai would be replaced
by 039403A303BDi and the resulting elements of ES(k[03B5]) were put together for v = 1, 2, 3.

STEP 1. Each deformation that is induced by a 039403A303BDi n IHIt can also be obtained by
using Ai n Ht.

Let i, v E {1, 2, 3}, t E M be fixed. By construction it is clear that 0394i ~ 039403A303BDi, hence
0394i~Ht~039403A303BDi~Ht.
Now, both sets contain the same elements of 03A3(1)0, and the connected

components of 039403A303BDi n 0-flt (restricted to Ai n Ht) are built by taking the union of
several complete components of Ai n Ht.
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For the déformations induced by 039403A303BDi ~ Ht this means that they split into sums
of deformations induced by Ai ~ Ht.

STEP 2. The connected components of 0394i ~ Ht and 039403A3ii n H, correspond to each
other and contain the same elements of 03A3(1)0:

Let a, b E I:b1) n [0394i ~ Ht] be contained in different components of 0394i ~ Ht,
then they can be separated by a line segment cei (contained in a cone of Eo) with
c ~ Ht.

By the construction of 03A3i (cf. (2.4)), this f.r.p.p. decomposition contains Pi(c)ei
as one cone of the canonical partition of ces. Because of ti z1, (c, t) a 0

implies ~Pi(c) t) a 0, and Pi(c)ei will separate a and b as elements of âfi n Ht.
(The opposite direction was already done in step 1.) D

REMARK. (1) ES(k[03B5])/~monomials  0393(f)~ is generated by the columns of
the following matrix A:

3

The rows correspond to elements r E U Mi,

the columns correspond to triples (i, t, C) with (1), (1)-(3) of the above
Theorem, and

(Of course, this matrix does not depend on the special choice of the function
a: Mi -+ 1:b1).)
To make the computation of all possible t easier, it is useful to give coarser

restrictions than those of (I)(2):
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r - t  0393(f) implies t  r; together with ~a(r), t + e1~  0 this gives the
following conditions for t:

There exists an r ~ M1:

with t2 and t3 not both negative.

(2) All type-(i)-deformations in ES(k[a]) (cf. (1.2.b) of the Theorem) consist of
pieces of trivial deformations (i.e. trivial deformations in which some terms are
dropped). If, moreover, Ai n Ht is connected, then the corresponding de-
formation will be really trivial.

(3) Compare with Theorem (5.8) of [Al]: If the sets Ai are convex, there will
be no type-(ii)-deformations, and all deformations of type (i) will be trivial.
Hence, all equisingular deformations are above r.

(5.2) COROLLARY. The k-vectorspace ES(k[03B5])/(monomials  0393(f)~ and, in

particular, the fact whether ES is exactly the functor of above-0393(f)-deformations
or not, are independent of the coefficients Âs of f with

Proof. Let Â., be a coefficient of f that appears in the matrix A (defined in the

previous remark). If

then we take the element a := a(r)~03A3(1)0B{e1, e2, e31, and now we obtain

hence,

(5.3) EXAMPLE. Let f(x, y, z) := x5 + y6 + Z5 + y3z2 (cf. [Al], §3) ; we get
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(1) A, is convex, hence, the case i = 1 yields only trivial deformations (cf.
remark (5.1)(3)).

(2) Let i = 2.

Computation of M2:
rEM2 iff r  0,

We obtain

Conditions for t:

For a(r) (r E M2) there are only two candidates: (12, 10, 15) and (1, 1, 1). We
obtain the conditions

Connected components of 03942 n 0-fJt:
The only possibility for A2 n 0-flt to have at least two components is
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Hence,

and we get a contradiction.

By the same methods as in the previous case we obtain

and the conditions for t:

Connected components of 03943 n Ht:
The only possibility for 03943 n Ht to have at least two components is

Hence,

We obtain the only solution to = (2, -1, -1), and our matrix A consists of
exactly one column (i = 3, t°, C) (with C ~ A3 n Ht is the connected component
containing the vertex (12, 10, 15)).

Computation of the entries of A:

Which elements r~~3i=1 Mi ~ {r  have the property
r - t0  0393(f)?
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therefore, such an r has to meet the following conditions:

and the only solution is rO = (2, 2, 1).
That means the only non-vanishing element in our matrix A is

(r03 + 1)·03BBr0-t0 = 2·03BB(0,3,2) (in the row corresponding to r° = (2, 2, 1)).

Since (0, 3, 2) E M represents a vertex of r( f ), the coefficient 03BB(0, 3, 2) can never
vanish (03BB(0, 3, 2) = 1 in our special example). Therefore, we have proved

not only for the special equation f, but for all equations having this special
Newton boundary.
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