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1. Introduction

The object of this paper is to define an adelic capacity theory for varieties over
global fields. A theory of this kind was developed for P 1 by Cantor [1], and
Cantor’s work was generalized to all curves by Rumely [6]. The approach we
will take here for arbitrary varieties is very different and was suggested by recent
work of Gillet and Soulé [4]. We will begin by discussing this approach in the
classical case of a compact subset of C.

Let E be a non-empty compact subset of C which is stable under complex
conjugation. The capacity y(E) of E may be defined in several ways (cf. [3],
[6, p. 7]). One is the transfinite diameter of E:

where the maximum is over all choices of n points of E. Another is the

Chebyshev constant of E:

where the minimum is over all monic polynomials of degree n.
The following theorem of Fekete and Szegô connects y(E) to arithmetic.

THEOREM 1.1 (Fekete-Szegô [6]):

(A) If y(E)  1, there is an open set U containing E such that there are only finitely
many algebraic integers a which have all of their conjugates in U, and

(B) if y(E) &#x3E; 1, then every open U containing E contains infinitely many such a.

In Section 3 we prove the following new definition for y(E).

THEOREM 1.2. For 0  n ~ Z and a = (a0, ..., an) ~ Rn+1 let h(z) be the

polynomial a0+a1z+ ··· + anz". Let Fn(E) be the set of a ~ Rn+1 1 such that

* Partially supported by NSF grant DMS8814768 and NSA grant MDA90490H4033.
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1 fa(z)  1 for all z E E. Let t/I n be the usual Euclidean Haar measure on Rn+1. Then

Using Theorem 1.2, one may prove part A of Theorem 1.1 in the following
way. The set Fn(E) is a convex subset of Rn+1 which is symmetric about the
origin, and Fn(E) is open because E is compact. If y(E)  1, then (1.3) shows that
Fn(E) has large volume for large n. Minkowski’s lemma implies that for large n,
Fn(E) contains a non-zero integral vector a ~ Zn+1. Then U = {Z~C: Ih(z)1  1}
is an open set containing E. Furthermore, if a is an algebraic integer which has
all of its conjugates in U, then fa(03B1) is an algebraic integer having all of its
conjugates inside the unit disk. Hence fa(03B1) = 0, so a is one of the finitely many
roots of fa(z).
The virtue of this approach to capacity theory is that unlike other ones, it

generalizes readily to study sets of Galois conjugate algebraic points on varieties
over a global field K. We will consider v-adic constraints on the locations of such
points as v ranges over all of the places of K. Our main result is a generalization
of part A of Theorem 1.1. To proceed further we must introduce some notation.
Let X be a regular projective variety of dimension d over Spec(K). Let Kv be

the completion of K at the place v. Define Cv to be the completion of an
algebraic closure of Kv. For each v let Ev be a subset of X(Cv), and let E = rl, Ev.
By a thickening of E we will mean the product U = 1-1,, U, of open neighbor-
hoods Uv of Ev in X(Cv). Let K be an algebraic closure of K. We will say that an
embedding (1: K --+ Cv is over v if Q extends the natural inclusion of K into K,.
Define X(K; E) to be the set of all P E X(K) such that (1(P) E Ev for all v and all
embeddings 6: K - Cv over v. Let X = X x Spec(K) Spec(K).

Let Div(X) be the group of Weil divisors on X, and let

DivR(X) = Div(X) ~Z R. We may write an element D of DivR(X) in a unique
way as a real linear combination X riDi of irreducible Weil divisors Di of X. Let
[r] be the greatest integer less than or equal to the real number r, and define
[D] = 03A3[ri]Di. For n E Z define HO(LO") = H0(X,OX([nD])), considered as a
finite dimensional vector space over K inside the function field K(X) of X. Thus
the non-zero functions in H0(L~n) are those f E K(X) such that div( f ) + nD is a
non-negative real combination of irreducible Weil divisors on X. For each place
v of K let H0(L~n)v = HO(LDN) (8) K K,. Let AK be the adele ring of K. Define
H0(L~n)A = H0(L~n) ~K AK, which we will view as a subgroup of the direct
product 03A0vH0(L~n)v. Let ~v be the continuous extension to C, of the
normalized absolute value on K,. For fv~H0(L~n)v define sup(fv, Ev) =
sup {|fv(z)|v: z~Ev}, where the supremum of the empty set of real numbers is
defined to be -~.

For each place v of K, let Fn(Ev) be the subset of fv E H0(L~n)v for which the
following is true:



77

Define Fn = Fn(E) for the adelic set E = Il,, E, to be Fn = H0(L~n)A n IL F.(E,,).

DEFINITION 1.3. The adelic set E has a capacity relative to D if for all

sufficiently large n, Fn is an open subset of H0(L~n)A.

We will assume in what follows that E has a capacity relative to D. In Section
4 we discuss necessary and sufficient conditions for this to be so. A sufficient

condition is that there is a very ample divisor D’ whose support contains that of
D such that E, has positive v-adic distance from D’ for all v and distance at least
1 for almost all non-archimedean v. In this case the points of X(K; E) lie in
X - D’ and have affine coordinates with bounded denominators and bounded

archimedean absolute values.

The natural embedding H0(L~n) ~ H(L~n)A is discrete with respect to the
topology of H0(L~n)A. Thus the choice of a Haar measure 03C8 on H0(L~n)A
induces a Haar measure on H0(L~n)A/H0(L~n), which will also be denoted by 03C8.
If Fn is open and 03C8(Fn) is finite define

Since 03C8 is unique up to a positive real scalar, Àn(E, D) does not depend on the
choice of 03C8. If Fn is not open or .p(F n) is infinite, define 03BBn(E, D) = + ~.

DEFINITION 1.4. Suppose E has a capacity with respect to D. The inner
sectional capacity of E with respect to D is

The outer sectional capacity of E with respect to D is

If Sy(E, D) - = Sy(E, D) +, then the sectional capacity Sy(E, D) of E is Sy(E, D) -;
otherwise Sy(E, D) is undefined.

We can now generalize part A of Theorem 1.1 to varieties.

THEOREM 1.5. If Sy(E, D) -  1 then there is a thickening U of E such that
X(K; U) is not Zariski dense in X.

This theorem is proved in Section 2 using a Minkowski argument (Lemma
2.3) to construct for all ideles a of K and arbitrarily large n a non-zero element f
of aF"(E) n H0(L~n). Lemma 2.3 takes the place of the explicit construction of
such f which is used in the Cantor-Rumely capacity theory for X of dimension
1 (cf. [6, Theorem 6.2.1]).
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We now state two results which are proved in Section 3 by modifying the
arguments showing Theorem 1.2.

Let K = Q and let X be the product (P1)d of d copies of P1. Let prk : X ~ P 1 be
projection onto the k th factor of X. Let p~ be the point at infinity of P1(Q). Let
v(~) be the infinite place of Q. Suppose that E 1, ... , Ed are non-empty compact
subsets of C = A1(Cv(~)) which are stable under complex conjugation. Define
Ev(~) to be the subset E 1 x ... x Ed of X(Cv(~)). For each non-archimedean place
v of Q let Ov={z~Cv:|z|v 1} and let Ev = (Ov)d ~ (A1(Cv))d. Define
E = 03A0v Ev. Theorem 1.2 is equivalent to the special case d = ri = 1 of the

following result.

THEOREM 1.6. Suppose D = 03A3dk=1 rk pr*k(p~) for some positive real numbers rk.
If 03B3(Ek) = 0 for some k then Sy(E, D) = 0. Otherwise

Now suppose K = Q and X = P1. Let z be an affine coordinate for A’ and
let Poo and po be the points z = 0 and z = o0 of P1(Q). For v a finite place of Q,
let Ev = 0: = {z~Cv: izl, = 1} ~ A’(C,). Let r be a positive real number,
and let E(r) be the subset {z ~ C: |z|, = r} of A1(Cv(~)) = C. Define

E(r) = livfinite Ev x E(r).

THEOREM 1.7. Let a, b and r be positive real numbers and let D = apo + bp~.
Then log Sy(E(r), D) = (b2 - al) log(r).
Theorem 1.7 shows in particular that there can be linear equivalent effective

Weil divisors Dl and D2 such that for suitable E, Sy(E, D1)  1  Sy(E, D2).
We will end this introduction with some questions and remarks.

REMARK 1.8. It is not difficult to show that if Sy(E, rD) is well-defined for all
rational r &#x3E; 0 then log Sy(E, rD) = rd+1 log Sy(E, D) for all such r. We ask when
the following refinement of this statement is true. Suppose that
D = r1D1 + - - - + rtDt for some irreducible Weil divisors D 1, ... , Dt and some
positive real numbers ri. Suppose that for all 0  a1, ..., at ~ Z such that
supi~j |ai/aj-ri/rj| is small, a 1 D 1 + - - - + atDt is ample. Suppose further that
Sy(E, D’) is well-defined for each D’ = r’1D1 + ... + r;Dt such that the vector
r’ = (r’1, ..., r’t) is sufficiently close to r = (r1, ..., rt). Is log Sy(E, D’) then given by
a homogeneous form of degree (d + 1) in the r’1, ... , r’t for r’ close to r? This is so
in the cases treated in Theorems 1.6 and 1.7 and in the function field cases
treated in [2].

REMARK 1.9. When d = 1 a homogeneous form of degree d + 1 = 2 does arise
naturally in the capacity theory of Cantor and Rumely. Suppose x 1, ... , xw are
distinct points of X(K), and that the set = {x1, ... , xw} is stable under
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Aut(K/K). If E and X satisfy suitable hypotheses, Cantor and Rumely define in
[1,6] a w x w real symmetric matrix r(E, ) such that their capacity y(E, ) is
given by exp( - val(r(E, fI»), where val(r(E, )) is the value of r(E, fI) as a
matrix game. In a preprint of this paper we asked whether the function
log Sy(E, ri(xi) + ... r w(xw» of the positive real variables r 1, ... , rw is equal to the
quadratic form defined by the matrix - r(E, ). This is so in Theorem 1.7 and
when d = 1 in Theorem 1.6. Rumely has proved it is so in general:

THEOREM 1.10 (Rumely [7]). Suppose that F(E, X) is well defined and that
D = r1(x1) + + rw(xw) for some positive real numbers r l , ... , r w. Suppose fur-
thermore that D is stable under Gal(K/K), in the sense that ri = rj if xi = UXj for
some a E Gal(K/K). Then

Rumely also proves for curves X various functorial properties of Sy(E, D) with
respect to pullbacks and base extensions; see [7] for details.

REMARK 1.11. The definitions of Sy(E, D) -, S03B3(E,D)+ and Sy(E, D) depend
only on X, E and D, and not on the choice of an integral model for X or of
metrics on X(Cv) for archimedean v. However, to compute Sy(E, D) - and
Sy(E, D)+ it may be useful to make such choices and to utilize intersection

theory. If K is a global function field, the use of ordinary intersection theory on
varieties of dimension d + 1 over the prime field is discussed in [2]. If K is a
number field, the work of Gillet and Soulé in [4] shows that for suitable X and D
there is a natural gi for which

as n ~ oo, where Ld+1 is an arithmetic intersection number. In view of

Definition 1.4, the new analytic problem one faces in studying Sy(E, D) is to
determine the asymptotic behavior of 03C8(Fn) as n - oo.

2. Proof of Theorem 1.5

LEMMA 2.1. Suppose E has a capacity relative to D in the sense of Definition 1.3
and that a = (03B1v)v is an idele of K. Then

as n ~ oo .

Proof. For large n, 03C8(03B1Fn) = |03B1lr(n)03C8(Fn) where lai = nv lavlv is the norm of a as
an idele and r(n) = dimK H0(L~n). By dimension theory, r(n) = O(nd), so Lemma
2.1 holds.
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REMARK 2.2. Lemma 2.1 shows that the values of Sy(E, D) -, Sy(E, D)+ and
Sy(E, D) do not change if in their definition we replace F n by 03B1Fn.

LEMMA 2.3. Suppose Sy(E, D)-  1. Then for all ideles a of K there are
infinitely many n &#x3E; 0 for which 03B1Fn n HO(L(8)n) contains a non-zero function f.

Proof. Let c = - log(Sy(E, D)-)/2 &#x3E; 0. By the definition of Sy(E, D) -, there
are arbitrarily large integers n for which Fn is open and

Let p = ((03B2v)v be the idele of K with component 03B2v = 1/2 (resp. Pv = 1) if v
is archimedean (resp. non-archimedean). By Lemma 2.1, log 03C8(03B103B2Fn) =
log 03C8(Fn) + O(nd). Hence (2.1) and (1.5) imply that for infinitely many positive
integers n,

For such n the projection of 03B103B2 Fn ~ H0(L~n)A into H0(L~n)A/H0(L~n) cannot be
an isometry. Hence there are distinct fi, f2 ~03B103B2 Fn such that f = fl - f2 lies in
H0(L~n). Then f is a non-zero element of H0(L~n), and f is in aFn because fi
and f2 are in aPFn.

Proof of Theorem 1.5. Suppose Sy(E, D) -  1. We are to show that there is

a thickening U of E such that X(]; U) is not Zariski dense in X =

X Xspec(K) Spec(K). Let a = (03B1v)v be an idele of K such that lai = 03A0v |03B1v|v  1 and

|03B1v|v  1 for all v. Let n be a positive integer for which there is a non-zero
function f ~ 03B1Fn(E)~H0(L~n) as in Lemma 2.3. Define Uv to be the subset of
z ~ X(Cv) for which |f(z)|v  |03B1v|v (resp. lf(z)lv  |03B1v|v if v is non-archimedean
(resp. if v is archimedean). By the definition of Fn (E) in (1.4), U = nv U, is a
thickening of E. To prove Theorem 1.5, it will suffice to prove that f(P) = 0 if
P E X(K; U), since then X(K; U) will lie in the hypersurface in X defined by the
vanishing of f. By the product formula, it will suffice to show that for all places v
of K and all embeddings 03C3:  ~ C, over v one has |03C3(f(P))|v  1, with

|03C3(f(P))|v  1 for at least one such v and u. Now f is in K(X), so

u(f(P»=f(u(P». By the definition of X(K; U), P~X(;U) implies
03C3(P)~Uv, so |03C3(f(P))|v=|f(03C3(P))|v|03B1v|v1. Since |03B1|=03A0v|03B1v|v1, we must
have |03C3(f(P))|v  1 for at least one v and 03C3, so Theorem 1.5 is proved.

3. Proof of Theorems 1.2, 1.6 and 1.7

We will give the proof of Theorem 1.2 and then sketch how the argument can be
modified to show Theorems 1.6 and 1.7.



81

For a = (a0, ..., an) ~ Cn+1 define fa(z) = ao + ... + a"z". Let Fn(E) (resp.
Fn(E)C) be the set of a ~ Rn+1 (resp. a ~ Cn+1) such that |fa(z)|  1 for all z E E.

Since the compact subset E c C in Theorem 1.2 is assumed to be stable under

complex conjugation, one finds

Let 03C8n (resp. Iln) be the usual Euclidean Haar measure on Rn+ 1 (resp. Cn+1).
Then

Hence to prove Theorem 1.2, it will suffice to show

Suppose now that zo,..., zn E E are chosen to maximize

For 03B1~Fn(E)c, fa(zi) lies inside the unit disc. Hence if M is the (n + 1) x (n + 1)
matrix (zji), Matr lies in the product of n + 1 copies of the unit disc. Thus
|det(M)|203BCn(Fn(E)C)  7r"+ 1. When one uses the Vandermonde determinant

formula for det(M) and the definition of y(E) in (1.1), one finds

We now find a lower bound for 03BCn(Fn(E)C). For each m  1 let pm(z) E C[z] be a
monic complex polynomial of degree m which has minimal supremum over E
over the set of all such polynomials. Define Pm(E) = sup{|pm(z)|1/m: z ~ E}. Let
tm = Pm(E)-m if Pm(E) ~ 0, and let tm = mm otherwise. Define gm(z) = tmpm(Z);
then |gm(z)|  1 if z ~ E. Because E is compact, the set Fn(E)C contains the convex
set J(n) of coefficient vectors associated to the linear combinations

bogo(z) + ... + bngn(z) for which bi ~ C and 03A3i |bi|  1. One can readily compute
the volume Iln(J(n» of J(n) in terms of the tm using the fact that gm(z) has leading
coefficient tmz’". Furthermore, 03BCn(J(n))  03BCn(Fn(E)C). Combining this with the
definition of y(E) in equation (1.2), we see after some simple calculations that

Inequalities (3.2) and (3.3) establish Theorem 1.2.
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We now prove Theorem 1.6. With the notations of the theorem, let M(n) be
the set of polynomials f with integral coefficients in z 1, ... , zd which have

degree  [nrk] in Zk for all k. For v finite, one checks that Fn(Ev) = Z, ~Z M(n).
Choose the Haar measure 03C8 =03A0v03C8v, so t/lv(Fn(Ev» = 1 if v is finite. Let 03C8v(~)
(resp. Il) be induced by the usual Euclidean Haar measure on the coefficients of
elements of R ~Z M(n) (resp. C ~Z M(n)). Then 03BBn(E, D) = 03C8v(~)(Fn(Ev(~)). Since
each Ei in Ev(oo) = E 1 x... x Ed is stable under complex conjugation, one finds as
in the proof of Theorem 1.2 that

as n - oo, where Fn(Ev(~))C is the set of f E C ~Z M(n) with sup norm less than
one on E,,(.,) . The rest of the proof follows the procedure used to show Theorem
1.2. One first bounds 03BC(Fn(Ev(~))C) from above using the fact that lf(Z)v(~)  1 if

f E Fn(Ev(oo»c and Z = (z 1(j(0)), ... , zd(j(d)), where 0  j(k)  [rkn] for all k and
zk(o), ... , Zk(Irkn]) are points of Ek chosen to maximize 03A0i~j IZk(i) - zk(j)|. One
then bounds 03BC(Fn(Ev(~))C) from below by constructing a large convex symmetric
subset of Fn(Ev(~)C. This convex set can be taken to be the set of linear

combinations Ea baga in which the ba are complex numbers such that Ea Ibal  1,
ga is the product g1,03B1(1)(z1) ··· gd,a(d)(Zd) of single variable polynomials, and gk,j(z)
is a polynomial of degree j with sup norm  1 on Ek and large real leading
coefficient. The details are very similar to those in the proof of Theorem 1.2, so
we omit them.

To prove Theorem 1.7, let a and b be positive real numbers. Replace M(n)
in the proof of Theorem 1.6 by the set of Laurent polynomials
C-[an] Z-[an] + ... + C[bn] Z[bn] in one indeterminate z with real coefficients ci . As in
the proof of Theorem 1.6, one must find suitable upper and lower bounds for
03BC(Fn(Ev(~))C), where now Ev(~) is the circle E(r) of radius r &#x3E; 0. To bound

03BC(Fn(Ev(~)) from above, evaluate Laurent polynomials f E Fn(Ev(~))C at num-
bers of the form r03BE with ( a root of unity and then use Vandermonde

determinants. To bound 03BC(Fn(Ev(~)) from below use the convex symmetric
subset of Fn(Ev(~)) formed by the Laurent polynomials
e - [an](Zlr) - [an] + ... + e[bn](Z/r)[bn] for which the ei are complex numbers such that
03A3i le, |  1.

4. Necessary and sufficient conditions for E to have a capacity relative to D

We assume the notations of Definition 1.3. For each n &#x3E; 0 let W(n) be a basis
for HO(L(g)n) = H°(X, OX([nD])) as a vector space over K. Let E = 03A0v Ev be an
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adelic set. Recall that sup( f", Ev) = sup( Ifv(z )Iv: z E Ev} for f, E H0(L~n)v=
H0(L~n) Q9KKv. Via the map g - g ~ 1 we will view H0(L~n) as a subset of
H0(L~n)v and of H0(L~n)A = H0(L~n) ~K Ax. Define c(W(n), v) =

max{sup(g, Ev): g E W(n)l.
From Definition 1.3, one sees that E will have a capacity relative to D if and

only if the following is true:

(4.1) If n » 0 then c(W(n), v)  oo for all v and c(W(n), v)  1 for almost all v.

We now give some sufficient conditions for (4.1) to hold. Let S be a non-empty
finite set of places of K containing the archimedean places of K, and let O(S) be
the ring of elements of K which are regular off of S. Suppose that X is an
irreducible regular scheme which is flat and proper over U = Spec(O(S)) and
which has general fibre X. If v is a non-archimedean place of K let 0, be the ring
of z E Cv for which |Z|v  1. Let D’ be an effective Weil divisor on X. For v not in S
define ED’,,, to be the set of z E X(Cv) such that the Zariski closures of z and D’ in
X x u Spec(Ov) are disjoint.

THEOREM 4.1. Suppose that E = II" E" and D’ satisfy the following conditions:

(4.2) If v is infinite then the closure of Ev in the complex topology is compact and
disjoint from the points of D’ over C,.

(4.3) If v is not in S then E, - ED,,".
(4.4) For each non-archimedean place v in S there is a very ample divisor Dv on X

whose support contains that of D’ and for which sup{ Ig(z)lv: z E Ev} is finite
for g E H°(X, Ox(Dv)).

Then E has a capacity relative to each real linear combination D = Si riD’i of the
set {D’i}i of irreducible components of D’.

Proof. Since D’ is effective, H°(X, LO") = H°(X, OX([nD])) will be contained in
H°(X, OX(n’D’)) if n’ is sufficiently large relative to n. Hence the criterion in (4.1)
shows it will be enough to consider the case in which D = D’. If v is archimedean
then (4.2) implies that c(W(n), v) in (4.1) is finite because each g E W(n) defines a
continuous function on a compact set containing E,. Suppose v is not in S and

z ~ Ev ~ ED’,v = ED,v. Let D be the Zariski closure of D in X. Because

HO(X, L On) = HO(X, Ox(n D» (D 0(s) K, we can assume that the basis W(n) of
H’(X, L On) is contained in H’(X, OX(nD». Then (4.3) implies each g E W(n) is
regular in a neighborhood of the section (z) of X x u Spec(Ov) ~ Spec(Ov) which
is the Zariski closure of z in X xu Spec(O,). Hence g(z) is the restriction of a
global section of the structure sheaf of (z), so g(z) E Ove Thus Ig(z)lv  1 so

c(W(n), v)  1 in (4.1). Finally suppose v is a non-archimedean place in S and
that (4.4) holds. To prove c( W(n), v) is bounded for large n we are free to replace
D = D’ by Dv. Thus we may assume that D=D’=D"v is very ample. By
assumption, |f(z)|v is bounded for z ~Ev and f in a basis W(1) for H°(X, Ox(D))
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over K. Suppose n &#x3E; 0 and g E H’(X, LDn) = HO(X, Ox(nD». It follows from the
argument showing [5, p. 126, Ex. 5.14(a)] that g is integral over the K-

subalgebra of K(X) which is generated by the elements of W(1). (Hartshorne
assumes that he is working over an algebraically closed ground field, but this
assumption is not necessary.) Because the v-adic absolute values of the elements
of W(1) are bounded over Ev, it follows that Ig(z)lv is bounded for z~Ev. Hence
c(W(n), v) is finite, so Theorem 4.1 is proved.

REMARK 4.2. The case in which D’ is very ample and D’ = D" for v ~ S is
discussed just after Definition 1.3. Theorem 4.1 applies to more general
situations, however, in which D’ may not be ample.
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