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0. Introduction

The Whittaker function is one of the fundamental tools in the theory of
automorphic L-functions as is seen in the work of Jacquet and Langlands [6]
(see also Bump’s exposition [3]). In a recent paper [4], Bump showed an integral
expression of the spin L-function L;,(s, F) of a Siegel cusp form F of degree 3 in
terms of its associated Whittaker function Wy and proved analytic continuation
and functional equation of Lgy,(s, F)x(a local factor at oo) under the as-
sumption Wy # 0. Unfortunately W, vanishes if F is a holomorphic Siegel cusp
form of degree not less than two and hence Bump’s method does not work for
holomorphic forms.

In [13], Shintani introduced Whittaker functions of Fourier-Jacobi type on
Sp. + 1, which we call Whittaker-Shintani functions (briefly, WS functions) in this
paper. One of the advantages of introducing such a modified Whittaker function
is explained by the fact that the WS function associated with a holomorphic
cusp form is not identically zero under a certain mild assumption on the form
(see Corollary 5.3). Shintani investigated their basic properties and made several
fundamental conjectures (see Conjectures 0.1 and 0.2 below). The purpose of this
paper is to give an affirmative answer to his conjectures.

To compare the WS function with the original Whittaker function, we let F be
a cusp form on G*(Q)\G*(A), where A is the adele ring of Q and G* = Sp,,, ,. Let
Yo be the additive character of A trivial on Q with Y, (x,) = exp(2mix ) for

1 B4 O
R.Let N* ={| "*!
S W [

degree (n + 1) and B = ‘Be M, ,} be a maximal unipotent subgroup of G* and
let Yy« be the additive character of N*(A) trivial on N*(Q) defined by

1n+1 B A 0 n
i ([ 0 1n+1]|:0 'A“:I) = Yabas1n+1) i1=_[1 Ya(a;;sq).

A is an upper unipotent matrix of
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Then the Whittaker function associated with F is given by

We(g*) = j F(n*g*)yy.(n*) dn*. 0.1)
N*Q)\N*(A)

Suppose that F is a common eigenform under the Hecke operators. Then, by the
uniqueness property of local Whittaker functions (see [7, Proposition 2.1]), we
obtain the following Euler decomposition for Wg:

(I at) = T1 W) ©02)
where W is a local Whittaker function on G*(Q,) for each prime v of Q. It is
well-known that Wy =0 if n > 1 and if F corresponds to a holomorphic cusp
form.

In a similar manner, we can define Whittaker functions on reductive groups
and the Euler decomposition (0.2) holds in general. Note that an explicit formula
for local Whittaker functions is available by the work of Shintani [12] for GL,,,
and by independent works of Kato ([7]; for split groups) and of Casselman-
Shalika ([5]; for unramified groups).

To define WS functions, we let

S O O =
(=)
—

QU O o %

be the Jacobi group of degree n. Let f be a Jacobi cusp form on G. Thus f is a
function on G(Q)\G(A) satisfying

1 0 x« O
f g 1) (1’ g 8| = VA () f(@) (ke A, geG(A)
0 0 0 1

n

together with further nice conditions (for detail, see [8, §1]). For a pair (F,f) of a
Siegel cusp form of degree (n + 1) and a Jacobi cusp form of degree n, the WS
function W; ; is defined as follows:

We,s(9%) = j

F(xg*)f(x) dx (g* € GX(A)). (0.3)
G(Q)\G(A)
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As an analogue of (0.2), Shintani conjectured the following:

CONIJECTURE 0.1. If F and f are both common eigenforms under the Hecke
operators, then

Wi, (n g:) T W e, 04)

where W, is a local WS function on G*(Q,) for each prime v of Q.

He also conjectured an integral expression of a quotient of the standard zeta
functions of F and fin terms of the associated WS function:

CONJECTURE 0.2. Under the same assumption as in Conjecture 0.1, we have

1,
W, lda "~ d™t
.[%f i e

1

={(25)"'D(s + 3, )" ' D(s, F)W, s (e)

where A[ denotes the finite part of the idele group A ™, |t|5 the idele norm of
te A* and D(s, F) (resp. D(s, f)) the standard zeta function attached to F (resp. to

).

In this paper, we establish these two conjectures (see Theorem 4.1 and
Theorem 6.2).

We now explain a brief account of the paper. In §1, after recalling several basic
properties of Hecke algebras of the symplectic group and of the Jacobi group, we
introduce the space of local Whittaker-Shintani functions after Shintani and
state one of the main results, the uniqueness of local WS functions (Theorem
1.2). To prove this, we first recall Shintani’s results on the support of WS
functions in §2. The proof is completed in §3 by showing the fact that the values
of a WS function satisfy a system of difference equations with at most one
solution. In §4, we give a proof of Conjecture 0.1 by applying the uniqueness
theorem to each local component of the global WS function. In §5, we calculate
explicitly the infinite component of the WS function associated with holo-
morphic cusp forms. Conjecture 0.2 is proved in the last section. The proof is
based on some calculations of spherical functions on G* and G.

In the forthcoming paper, we will present an explicit formula for local WS
functions on Sp,(Q,). It is still an open problem to give an explicit formula for
general n.
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Notation
Let r > 1 be an integer. We let Sp, = {geGL,,/'9J,g = J,} be the symplectic

0 1
group of degree r where J, = < { 0’ ) Put

1, x 0
n,(x) = <0 ) ), d.(y = (g; ty_1>eSp,(xeSym,, yeGL,),

where Sym, stands for the space of symmetric matrices of degree r. We denote by
U, the group of upper unipotent matrices of degree r and put

diag(t,,...,t,) = . eGL,.
0 t,
We let A, ={(ay,...,a)€Z’a, = --- >a, >0} and set e[x] = exp(2nix) for

xeC.
Throughout the paper, we fix an integer n > 1 and write G* and G for Sp, .,
and Sp,,, respectively. We make a convention that each element of G* (resp. G) is

A B] b
always denoted by [C D (resp. (Z d>> The group G is embedded in G* by

Let HQ) = {(4, p, k):= n,,H((:; g)>‘dn+1<<(l) f))eG* A, ueQ®, KEQ}

be the Heisenberg group of degree n. Then H is an algebraic subgroup of G*
normalized by G. Denote by G = G, ; the semi-direct product H- G of H and G
in G*. The non-reductive algebraic group G is called the Jacobi group of degree
n. The center of G is Z(G) = {(0,0,«)}. For simplicity, the typical elements
n,.(X) and d,,,(Y) of G* are denoted by n*(X) and d*(Y), respectively
(X eSym, ., YeGL,, ). We also denote by n(x) and d(y) the elements n,(x) and
d,(y) of G for xeSym, and ye GL,, respectively.
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1. Local Whittaker-Shintani functions

Let E be a finite extension of Q, and ¢ = o the ring of integers of E. Fix a prime
element 7 of E and put

q = #(o/no). (L.1)

Let ¥ be an additive character of E with conductor ¢. For an algebraic group X,
we use the same notation X to denote the group X(E) of E-rational points of X
throughout §§1-3. Put K* = G*(») and KK = G(o).

Let s£* = #(G*, K*) be the Hecke algebra of (G*, K*), the space of bi K*-
invariant functions on G* with compact support. As usual, the multiplication is
defined by

(P, *D,)g™) = L* Dy (g*x* D, (x*) dx*, (1.2)

where dx* is the Haar measure on G* normalized by [g.dx* = 1.
Let # = o ,(G,K) be the Hecke algebra of (G, ) with respect to the
additive character y:
#,(G,K)={9:G - (|
(i) ¢(0, 0, K)xgK) = Y(K)P(Q)KEE, k, K€K, geb).
(i) ¢ is compactly supported modulo Z(G)}. (1.3)

The multiplication is given by

(@1 *@2)g) = J @1(@x " Hey(x)dx, (14
Z(G\G

where dx is the Haar measure on Z(G)\G normalized by jZ(G)\Z(G)de =1.
To describe Satake homomorphisms of the Hecke algebras s#* and 5, let
N* = {n*(X)d%(Y)| X €Sym, , ;, YeU, 4} = G*,
N = {(0, u, On(x)d(y)lu€ E", xeSym,, yeU,} = G,
t 0
T* ={d* t,eE* } = G*,
0 bt
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and

T =:d t,eE*p <= G.
0 t,

We normalize Haar measures dn*, dw, dt* and dt on N*, N, T* and T,
respectively, so as to be

j dn*=f dm]=f dt*=J dt=1. (1.5)
N*nK* NnK T*(o) T(e)

Put dy.(t*) = d(t*n*t* ~1)/dn* and Sn(t) = d(tmt ™ !)/dn for t*e T* and te T.

Let X (E*) be the group of unramified characters of E*. For
A=t s Xnt DEX(E™Y T (resp. &= (&y,...,E)eXG(EX)") and Bes™*
(resp. p € ), we set

1N (@) = f 1 NP (t*)deeC, (1.6)

&MNo) = L E Yo (t)dteC
where

D(t*) = Spe(t¥) 12 f Dr*r¥)dn*  (t*e T*), (1.7)
N*

@7(t) = on(O) 1 f O(nt)dn  (teT).
N

Then ® — x*(®) (resp. ¢ — £ (¢)) gives rise to a C-algebra homomorphism of
H* to C (resp. & to C). It is known that every homomorphism of #* (resp. 5¢)
to C coincides with y " (resp. £") for some y € X o(E*)"* 1 (resp. & € X o(E*)") (these
results are due to Satake and Shintani; for proofs, see [11] and [8]).

Let Cy,(K\G*/K*) be the space of functions F on G* satisfying
F((0,0, k)kg*k*) = Y(k)F(g*) for ke E, kelK, k*e K* and g*e G*. Then the
Hecke algebras #* and o act on C,(K\G*/K*) on the right and left
respectively, as follows:

(p+ F0)g*) = f dx dex*mp(xy*x*ﬂ)cp(x*) (1.8
(G\G

4

(Fe Cy(K\G*/K*), pe o, D H™).
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In [13], Shintani introduced a certain space of local Whittaker functions on
G* of Fourier-Jacobi type: For (y, )€ Xo(E™)" ! x Xo(E™)", set

WS, (1> &) = {We Cy\G*/K*)|pxW x @ = £ (@)1 " (®)- W
for every p e # and ©@e H *}. (1.9

We call WS,(, &) the space of Whittaker-Shintani functions associated with (y, &)
(briefly, WS-functions). We can now state Shintani’s fundamental conjecture on
local WS functions [13]:

CONJECTURE 1.1. dim¢ WSy(x, &) = 1.

In this paper we prove a half part of this conjecture, namely the uniqueness of
WS functions:

THEOREM 1.2. dim¢ WSy(x, &) < L.

2. Support of Whittaker-Shintani functions

In this section, we recall Shintani’s result on the support of WS functions. For
f=1,. > far)€Z" ' and m = (m,,...,m,)e Z", put

nl1 0 ™ 0
I = d* eG*, m,=d €G. (1)
0 et 0 T

LEMMA 2.1. Let FeCy(K\G*/K*) and f=(fy,...,fos )EZ"*! with f,, ..
fus1 = 0. Then F((4, u, k)IIg) # O implies f, = 0 and pe o

Proof. Put g* = (4, u, ¥)II; and assume F(g*) # 0. For every k, € », we have
F(g*) = F(g*©, 0, x,)) = F(0, 0, n*/'k,)g*) = Y(n*/'x;)F(g*). This proves
f1 = 0. Suppose p = (uy,...,u,)¢o" We may suppose that pu, en™"»> with
r > 0 without loss of generality. Then, for every e€o ™,

R () R

e 0
=F (‘n <n03 O) A+ @ 0,...,0), 1k + n'ayf)l'[f)

= F(((nr“189 0’ LR} O), 0, _nraﬂf)g*)
= Y(—n"eu)F(g*),

‘o
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1
1, O 1, .. - .
where 'n(x) = )= ) . This is a contradiction, since we can
X n
X 1,
choose €0 so that Y(n'eu?) # 1. O
Let
A*={(fmreZxZ"xZ"|f >0and m,r, m —reA,} 2.2)

denote the set of “dominant” vectors in Z?"*! and “<” the usual dictionary
order in A*. For reZ", put

hr)=(="",...,n™),0,0)eH. 2.3)

PROPOSITION 2.2. The support of every F € C,(IK\G*/K*) is contained in

U Z(G)K- h(r)Hﬁm - K*.
(ff, myr)eA*

Proof. Let g*eG* be in the support of FeC,(K\G*/K*). By Iwasawa
decomposition for G* and Cartan decomposition for G, g* can be written in the
form k- hly, - k* (ke K, heH, feZ, me A, k* € K*). In view of Lemma 2.1, we
may assume g* = h(p)[l;y with p = (py,...,p.)€Z" (p; 2 0), f > 0 and meA,.
We now show

pi<my(l <i<n) 2.4)
Suppose, say, p, > m,. Then, for e€o™,
e 0 n?™e 0
FipIym) = F(Hogn(( 0 o)) = F(Hom((" )" ) Tim
—F(@,..., 7P, (12 P, 0., 0), 12™ " 20g)- T,
By Lemma 2.1, we have 2m, — p; > 0 and hence

F(h(p);m) = (n?™ = #Ve)F(h(p)1;pm).

. . . . . 2 -
This is a contradiction, since we can choose € o * so that y(n?™ ~#Vg) # 1. The
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remaining part of the claim is similarly proved. The proposition is now an
immediate consequence of the following lemma, which will be also used in the
next section.

LEMMA 23. Let (f, m; r)eA*. If p=(py,...,p,)EZ" satisfies 0 < p, <r;
(1 < i < n), then there exists v' € A, satisfying the following conditions:

(@) (f, m;r)eA*
(b) (f, m; r) < (f, m; 1)
() h(p);ye K- Ay K*
(hence F(h(p)I1y,) = F(h(r')[1;y) for every Fe C,(K\G*/K*)).

Proof. We first consider the case where n = 2. Suppose that p; = p, and
m, — p, = m, — p,. In this case, I’ = p satisfies the conditions of the lemma.
Next suppose that p, = p, and m; — p, < m, — p,. Since

1 1 1 nml_"‘Z —pP1 —(pr—my+m2
poraa((L ) =a((} 7))o oo

we have h(p)Iy,elK-h(p,, p; —my +m)lly,-K* Note that 0<p, —
m +m,<r,—my+my,<r, and that my —p, =m, —(p; —my +my)
Hence v = (p,, p; — m; + m,) satisfies the conditions (a), (b) and (c).

Next suppose p; < p,. Since

1 0
a((_y 7))o

1 0
=" + 71" ), 0, 0)'Hﬂm"d<<_ mi—ma 1>>,

T

we have ()l € h(p,, po)[ljym K*. Thus we can take r' = (p,, p,). The
lemma for n = 2 has been proved.

We now consider the general case. By repeating the second argument, we may
assume that p, > --- > p,. For sucha p = (py, ..., p,), we denote by i = i(p) the
smallest integer i such that m;_; — p;_; < m; — p;. By the first argument, we
may replace p; by p;=p,_y —m;_; +m;. It is obvious that p; > p;4, and
(01, s Pio1> Pis Pit1s---»Pn) > i(p). The lemma is proved by repeating this
process. O

3. Uniqueness of local Whittaker-Shintani functions

For simplicity, we write W(f,m;r) for W(h(r)[I;,) for WeWS,(x,¢) and
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(f,m;r)eZxZ"x Z". To prove Theorem 1.2, it is sufficient to show that, for
(f, m;r)e A*, the value W(f, m;r) depends only on y, £ and W(e) = W(0,0;0)
(e = the identity element of G* 0= (0,...,0)eZ"). In fact, we prove the
following result, from which the above assertion is derived.

THEOREM 3.1. Let We WS, (x, £) and (f, m;r)e A*. Then

W(f, m;r) = > cf’,m'’; r)- W(f', m’; r), 3.1)
(f,m’;r)eA*
(f',m’5r) <(f,m;r)

where c(f', m’; v') is a constant depending only on (f’, m’; r'), y and &.
COROLLARY 3.2. If WeWS,(x, &) is not identically zero, then W(e) # 0.

The proof of Theorem 3.1 is divided into three steps. We first consider the
case of f > m, (it is equivalent to (f,m)e A, ) and r = 0. To study the action
of #* on C,(K\G*/K*), we put H(a,B; f,m)= {he Hh-T1, ye K*II;,, K*}
for (o, B), (f,m)e Z x A,. Then the subset H(x, B; f, m) of H is right I, g H(o) 5 -
invariant. We fix a complete set A(x,B; f,m) of representatives of
H(o, B; f, m)/(T pH(o)1,4'). For BeA,, put

deg(KngK) = #(K\KngK) (3.2)
and choose kp;e K (1 < i < deg(KngK)) so that

KngK = Kn_gK = U Kn_gkg; (disjoint union).

LEMMA 3.3. Assume that (f, m)eA, . Then

K K* = () ) U K*(hI1,p) " 'kp; (disjoint union).

e B i h
Here —f <a<f, p=(By,...,B,) runs over A, with 0<B;< f (1 <j<n),
1 < i < deg(KnpK) and h runs over A(o, B; f, m).

Proof. Let g*eK*II;,,K*. By Iwasawa decomposition for G*, we have
g* = k*T1_,ogh' (k*€K*, a€Z, geG, WeH). Let ge KngK (BeA,). Then
g = kn_gkg; with some keK and i (1 <i<deg(KmK)). Thus we have
g* = k*kI1_, _gkp;H' = k*k(hI1,g)~ 'kp; with h = kgl ~'kg;'e H. Since f = m,,
we have —f < a < fand 0 < §; < f. The remaining part is easily verified. [
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LEMMA 34. Let (f, m)eA,,, and BeA,. Then we have

HU B f m) = {2(0) i)ftfle:wl?se'

Proof. Let
1 1 k—y'i u

h= () = g 1)" ti‘ g cH(f, B; £, m).
0o 0 -2 1

n

By the assumption f > m,, n/ - hllg is an integral matrix. Since the (n + 2)-th
column of n’- hIlzg is "k — p'A, p, 1, —4), we see that he H(¢) and p=m. []

For (f,m)eA,,,, we denote by ®,e#* the characteristic function of
K*T1;p, K*. The following result follows from Lemma 3.3 and Lemma 3.4.

LEMMA 3.5. For FeC,(K\G*/K*) and (f,m)eA, ., we have

(F * @y )e) = 2" "2/ - F(Tlyy) + Y, F(hIL,p),
o, B, h

where 0 <o < f— 1, B=(By,...,B,) runs over A, with 0 < B, < f(1<i<n)
and h over A(a, B; f, m).

PROPOSITION 3.6 (Step 1). The assertion (3.1) in Theorem 3.1 holds for
(f;m; 0) with (f, m)eA, .

Proof. We first observe (W * @y )e) = x" (Ppm)- Wie) for We WS, (y, &). If
W(hIl,p) # 0, we can find re A, such that W(hIl,p) = c- W(x, B;r)ce C) and
that (o, B; r)e A* by Lemma 2.3. The proposition is now a direct consequence of
Lemma 3.5 (note that (f,m;0) > (o, ;1) if 0 < a < f— 1). O

To consider the case f < m,, we investigate the action of 2 on C,(K\G*/K*).
For re A,, we denote by ¢, the element of 5 with support Z(G)Kr, K satisfying
¢:(n;) = 1. Then {@,Jre A,} forms a C-basis of o (see [8, §4]). We let B(r) be a
complete set of representatives of »"-diag(n™",..., 7~ ™)/o"

LEMMA 3.7. For reA,, FeC,(K\G*/K*) and g* € G*, we have

(Pcx F)g*) = ). > F((4, 0, O)m Ky ig%),

AeB(r) 1<i<deg(Kn.K)

where Km K = | ) <i<deg(kn k) KTrke; (disjoint union; k. ;€ K).
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Proof. Since K = K- H(e¢) = H(0)' K, every ge Z(G)Kn, K can be written in
the form k- (4, u, K)n ky; (ke K, Ae o" - diag(n™",...,n~"™), peo", ke E). Thus

Z(G)Kn K = |/ U  ZG)K-(4 0, Ok, (disjoint union).
AeB(r) 1<i<deg(KnK)

Since @,((, 0, O)my) = @ ((A, ", . .., 4,7, 0, 0) = 1, we have done. O

REMARK. Let meA, and reZ" satisfy 0 <r,<m; (i=1,...,n). By Lemma
3.7, we easily see

WO, m;r) =g~ ™" "(deg(KmmK)) "' £ " (om)W(e) (We WS,(IK\G*/K*)).

(3.3)
LetreA,. If
ry=-=ry=Putn+1= """ =Ty4n, = P2r+-+> rn1+~~~+nj71+1 = =r, = pj
with  p, >p,>->p; >0, we write simply r=(p,...,p{"")

(ny + -+ + n; = n). The following lemma plays a crucial role in later discussion.

LEMMA 38. Let r = (p{"", ..., p")eA, (py > pp > - > p; =2 0), meA, and
assume that r # 0. Suppose that g € G satisfies (i) g€ Kn_ K and (ii) n'g € K7, , n K.
Then we have g = d(y)n(x)n,k with

71 *
x€Sym,(e), y = eGL,(0) (7:€GL,(0), l <i <))
0 Vj

and ke K.
Proof. By Iwasawa decomposition for G and Cartan decomposition for GL,,,,

g€ G is written in the form

_ y; O 0 1, pla) O
g_d<<0 lnf>>x 0 0 1, 0 Xd<<0 1))

—_
3
A
< N
S <
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where y,eGL,(¢), W=n-—ny,, u, veM,,, z+v'ueSym,, a=

b
(ay,...,0,,)EAN,, pla) = diag(n™,..., "), (g ,a_1>eSp,,, and keK.

We claim that a; = m, and that the first row of (u, z, v) is integral. If this claim
holds, the proof of the lemma is completed by induction on n. For a matrix 4
with coefficients in <, we denote by n-rank(4) the rank of 4 modulo 7 in the
finite field F, = o/no. Put

pl@) ua zp@)~ ' ub+iv'a!
) . O\\ !  _ 0 a ‘vplo! b
O DR
n 0 0 (o) 0
0 0 —'up()* gt

The assumption (i) implies that n™g’ is integral. Moreover we have =n-
rank(n™ **'-m,g’) > 1 by the assumption (ii). Since p; > --- > p; > 0, we have

0
0
T, = modulo ©
1,
0
and hence
TN 0
n-rank(z™ *?' - n.g') = n-rank . ,
0 nml —any

which implies ; = m,. The second claim follows from the first one and the fact
that n™'g is integral. . O

LEMMA 39. Let r, meA, and feZ. Assume v #0 and [ > 0. Then, for
F e C,(K\G*/K*), we have

((Dr *F )(Hﬁm) =cC Z F ((A" 0, O)Hf,m+r) + Z ch,sF (hnf,s)
A€B(r) hs

where h runs over a finite subset of H,s over A, withs < m + r and c(resp. cp5)is a
constant depending only onr, m and f (resp.x, m, f, h and s). Furthermore we have
c>0.

Proof. By Lemma 3.7,

((pr * F)(Hf,m) = Z Z F((l, 0, O)nrkr,inmnf)

JeB(r) 1<i<deg(KnK)
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70
where we put II, =TI, =d* ((7:) !

Tk € Usen s<r+m KK for ke K. Hence we have only to show that, if
kT, € K7y . n K, then

>> It is well-known that

Y. F((4 0, O)ymeknnIly) = Y F((4, 0, O[T, ). (3.4)
ieB(r) ieB(r) ’

The equality (3.4) implies that ¢ = #{i| nk. ;7€ Kn, nK} and hence that
¢>0.

Let r=(ry,...,r) = (p{", ..., p%")p, > --- > p; = 0). Applying Lemma 3.8
to g = kny,, we have

Y1 0
Tkng, =d . d(z y7e l)n(rrxrr)nr+mk'
0 V;
n" 0 nf'l,, 0
where y,eGL, (o)1 <i<a), 7,= = ,
0 i 0 1,
1, *
y= €GL,(¢), xeSym,(¢) and k'€ K. Observe that
0 1,
71 0
(4, 0,0d d(z, yte n(rexty)
0 V;
Y1 0
=d . d(z, yt, On(t,xt (A, Atxty, A1xt'A),
0 V;
where
Y1 0
A=A )7 L
0 7

Note that A’ runs over o"-diag(n ™", ..., n~"™)/¢" when so does A. Since d(t,y7, b
n(t,xt,) €K, A1,xt. € 0" and A'7,x7,'A’ € 2, we have completed the proof of (3.4).

a
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PROPOSITION 3.10 (Step 2). The assertion (3.1) in Theorem 3.1 holds for
(f, m; 0)e A* with f < m;.

Proof. Let We WS,(x, £). Let n” be the smallest integer such that m,. > m,., ;.
Put r = (17, 0"~ ") and m' = m — r (note that r, m’ e A,). By Lemma 3.9,

&) W(f, m'; 0) = (@ * WYTyw)
=c Y, W((*,0),0,00m) + Y cnsF(hIT4),

ie(ntolo)” hs<m

with ¢ > 0. Since f < m,; = --- = m,.., we have
W((#, 0), 0, 0)T;y) = W(I((m™ /7, 0), 0, 0) = W(f, m; 0).

This proves the proposition. O
We now proceed to the last step of the proof of Theorem 3.1.
PROPOSITION 3.11 (Step 3). The assertion (3.1) in Theorem 3.1 holds for
(f, m;r)e A* withr # 0.
Proof. By Lemma 3.9, we have
M) W, m — 15 0) = (¢ * W) )
=c Y W4 0,00y + Y cpsW(hILyy)

AeB(r) hs<m

with ¢ # 0. Thus it only remains to prove

2 W 0, 0)MIyy) = cW(f, m; 1) + ) cp W(f, m; 1)

A€B(r)

with ¢’ # 0, where r’ runs over A, with (f, m; r') < (f, m; r). This fact immediately
follows from Lemma 2.3. O

4. Global Whittaker-Shintani functions

In this section, for simplicity, we study global WS functions associated with
holomorphic cusp forms. It is immediate to generalize our results to the non-
holomorphic case.

We first recall the definition of holomorphic cusp forms. For r > 1, we let
Sp,(R) act on the Siegel upper half space §, = {z = ze M,(C)Im(z) > 0} by

g<z> = (az + b)cz + d)~' and put j(g,z) =cz+d for g = <Z Z)eSp,(R),

ze$,. Let | be an even natural number. Let S, be the space of Siegel cusp forms
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of weight I on G¥(Z) = Sp,, ,(Z). By definition, F € S, is a holomorphic function
on %, satisfying the following two conditions:

F(y*¢z*)) = detj(y*, z*)'F(z*) (y* € GXZ), 2* €D, 1), 4.1)
Sup [detj(g*, ily+,) " F(g*<ily+ 1)) < 0. (4.2)
g*<G*R)

Then Fe S, admits a Fourier-Jacobi expansion:

F((::v W>> = Y F,(z, we[mt] (te$H,,ze9H,, weCn.
zZ m=1

The function F,, on 9, x C" is called the m-th Fourier-Jacobi coefficient of F.
Let S;; be the space of Jacobi cusp forms of weight I and index 1 on G(Z) (see

[8,§1]). Thus f€S;, is a holomorphic functions on 2, = §, x C" satisfying

FOKZ>) = Jilv, 2)f(2) (veG(Z), Ze 2,), 4.3)
Sgg) 11(9, Zo) Y f(IZH) < 0 (Z, = (il,, 0)€ D,). 4.4)
Here

KZ) = (9<2>, wj(g, 2) "' + A-g<z) + W€D,
J11(@, Z) = detj(g, 2)'e[—x + wjlg, 2)~'c'w — 24j(g, 2) " 'w — 4g{z)']

b .
for g= (4, p, k)ge G(R) (g = <z d)eG(R)) and Z = (z,w)e 9,. 1t is easy to

see that F, €S, for FeS§,.

As is well-known, we can lift FeS; and f €S, to C-valued functions on the
adele groups G*(A) and G(A), respectively, by using the strong approximation
theorems

G*(A) = GXQG*R) [] G*(Z,), 4.5)
G(A) = G(Q)G(R) G(Z,). (4.6)

In later discussion, we often use the same letter F (resp. f) to denote the lift of
FeS§) (resp.f€S,) if there is no fear of confusion.

For FeS, and f €Sy;, we define the global Whittaker-Shintani function Wy, ,
associated with F and f as follows:
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We 1(g*) = J F(xg*f(x)dx (g*e G*(A). 4.7
G(Q)\G(A)

We easily see that

W se) = KFy, [, (4.8)

where {(, )} is the Petersson inner product of S;; defined by

LSS = j SO0 dx (. f €S 49)
G(QN\G(A)

Recall that s, is the additive character of A with Y4(x ) = e[x] for x,€R.
The conductor of ¥, the restriction of /4 to Q,, is Z,. Let #7} = #*(G*Q,),
G*(Z,) and #, = #, (G(Q,), G(Z,)) be the Hecke algebras at p of G* and G,
respectively. Then, for every p, % (resp. #,) acts on S, (resp. on S, ;) by

(F*®@,)(g*) = f F(g*x; )®(xp)dx; (FeS), ®,e#7, g*€G*(A)),
)

G*Q,
(4.10)
(f *o)g) = f F(gx, Yo(x)dx, (f€S,;, ¢,€H,, geG(A)).
Z(GYQN\G(Q,)
(4.11)

Assume that F and f are Hecke eigenforms; this means that, for every p, we
have

Fx®,=y) (@) F (®,eH#%) (4.12)
fro,=87(0) f  (9,e)), (4.13)

where x, = (Xp.1>- - > Xpn+1) @and &, = (&, 15 .., &, ) are the Satake parameters
corresponding to F and f; respectively (y,; and ¢, ; are unramified characters of
Q).

Let W{°) (resp. W) be the restriction of Wy, to G*(R) (resp. G*(Q))).
Assume Wy, #0. Then W®,eWS, (x,,¢,) is non-zero and hence
dim WS, (x,,¢,) = 1 in view of Theorem 1.2. By Corollary 3.2, there uniquely
exists WP e WS, (x,,&,) such that Wi, (e) = 1. This observation establishes
the following Euler decomposition of W ,:
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THEOREM 4.1. Assume that F and f are Hecke eigenforms and Wy ; # 0. Then
we have

WF,j(gto H g:) (w)(goo) l—[ ng(g (4.14)
p<o

REMARK. Assume that Wi ; = 0. Then {(F,, f>> = 0 and hence W) = 0 by
Corollary 5.2 in the next section. Thus (4.14) is trivial in this case.
5. Explicit formula for Whittaker-Shintani functions on G*(R)

In this section, we give an explicit formula for Wi} for Fe S;and f€S;;. To be
more precise, put

o (9) =J (87 Z) 7K (87 <Z,))  (9eG(R)) (5.1)
where
K1(2) = ey det (z +ii1">—l-e[—w~(z Fil) W] (Z= (s weD,),
(52)
e = @m) e o2 1;1; ,1j1 (1 ! ; L j>. (53)

Let I, be the stabilizer of Z, = (il,,0)e 2, in G(R). Then K, = Z(G)(R) K,
where K, = {ge G(R)|g(il,> =il,}. It is known that

oy (kgk') = detj(k, il,) detj(k’, i1,) @ (9) (9€G(R), k, K€K ).

Let K¥ be the stabilizer of il,,,; €9,,, in G*(R). It is easy to see that G*(R) is
t 0
decomposed into G(R)- {d* ((0 1 )) t> O} -K*

THEOREM 5.1. Assume that | is even and | > 2n + 1. Then

W%‘f’x’( od* ((3 10>> k*>

=cfit - detjk*, il,, )" 'wy @) ' exp(—2nt?) KFy, [)

(geG(R), t > 0, k* e K*).
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Proof. For simplicity, we write W for W§7). Tt is easy to see that

W(g*k*) = detj(k*, il,, 1) 'W(g*) (g*€G*R), k* € K3).

We first prove

_— 0
ooy 2)-anie(; 1)) e eon

(5.4)
The strong approximation theorem (4.6) implies
t 0
. d*
woae (g 2)
g (P 28
G(Z)\G(R) 0 1,
(e e
GZ)\GR) 0 1,
By [8, Lemma 5.6], we have
= _[ w, (@7 'Y)f(v)dy (feS; and geG(R) (5.5)
G(R)/Z(G)R)
and hence

«((t O
w(se((5 1))
t 0 _
Lo (s ) i 0
G(Z)\G(R) n G(R)/Z(G)R)

Since K, commutes with

d* <((§ ?)) and F(g*k) = F(g*) detji(k, iln)—l(ke K.),

n
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we have

(E()
S e )
G(Z)\G(R) 0 1, G(R)/ZG)R)

XJ‘ wl,l(@kx_lv)detj(k, iln)_ldk. (56)
K,

By [8, Lemma 5.7],

f wp(gkx ~1v) detji(k, i1,) " dk = ¢ @y (@)wp(x ). (5.7)

©

The assertion (5.4) is now an immediate consequence of (5.5), (5.6) and (5.7).
It now remains to verify

W<d* <<(t) 10 >>> = t'exp(—2nt*)(Fy, ). (5.8)

For the time being, we write F~ (resp. f 7) the lift to G*(A) (resp. to G(A)) of F
(resp. of f) to avoid confusion. We put

Fig" = f F~((0, 0, k)g*Wa(—x)dx  (g* € G*(A)).
QA

Then the restriction of F; to G(A) coincides with the lift of F; €S, ;. For
Z =(z,w)eD,, let z=x+ iy and w = Az + u (x, ye Sym,(R), 4, ueR"). Then

du(Z) = (dety) " tdxdydidu

is a G(R)-invariant measure on &,, where dx, dy, d4 and du are the usual
Lebesgue measures. Let g, be any element of G(R) satisfying g,{Z,) = Z. We
may put

1, x\/y'? 0
- (l’ #’ 0) ( " >< h .
9z 0o 1,/)\o y2

It is easily shown that

* ' 0 = ~ * t 0 T~ N
W<d <<0 1n>>> —L(Z)\@" Fi (gzd <<0 1,,>>>f (92) du(2). (5.9
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Since
t 0 tli+ Az w
F~ * — 1/2 .1
(se((o v))) = omer (177 7))
we obtain
t O
Fy (g]zd* <<0 ) ))) = (det y)"?d'e[t%i + Az'A]F (Z). (5.10)

On the other hand, we see that

17(g2) = (dety)e[A2'2]f(2). (5.11)

The assertion (5.8) follows from (5.9), (5.10) and (5.11). dJ
COROLLARY 5.2. For FeS;andfe€S;;, W ; # 0if and only if {(Fy,f>) #0.

COROLLARY 5.3. Let FeS,. If F| # 0 as an element of Sy, then there exists a
Hecke eigenform f € S,y such that Wy ; # 0.

Proof. The assertion follows from the fact that there exists a basis of Sy
consisting of Hecke eigenforms (see [8, §6]). d

6. Integral expression of standard zeta functions

In this section, we let notation be the same as in §1. Let |-| be the normal-
ized valuation of E (n|=q~'). We put {g(s)=(1—q %' and {P(s) =
25 le(s —i). For x=(ty- s XarDEXJAE YT and &=(y,..., ¢ )€
X(E™)", we put

Lots, ) = 8609 T1 {01 = 1m0 = 2w a7} 6.1)
Lis, & = [T {1 = &ma ™1 = &m~'a ™9}, 62)

The object of this section is to prove the following theorem.

THEOREM 6.1. Let We WS, (x, &). Then

Lo(s, x)

LoLGe+L e I

1
j w " e e =
E* t
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This result implies Conjecture (0.2), since L(s, x) and L(s, &) are the local
factors of the standard zeta functions of a Siegel cusp form and a Jacobi cusp
form, respectively (see Theorem 6.2 below). In the case where the forms are

holomorphic, a stronger result holds in view of Theorem 5.1.

THEOREM 6.2. Let FeS; and f€S;,. Assume that F and f are Hecke

eigenforms. Then

t
1" s—n—1 3%
W s . [¢[A d*t
A~ t

1

n

=(2n)—(s+l—n—1)/21" (S +l-n— 1)
2

{257 DG + 3, )" Dis, F)KFy, [

Here |- |4 is the idele norm of the idele group A™ of Q and,

D(S, F) = n LO(S, Xp)

p<o

and

D(S,f) = l_[ LI(S’ ép)

p<w

(6.4)

are the standard zeta functions attached to F and f, respectively ( for more detail of

the standard zeta functions, see [1], [10] and [9]).

For seC, define a function N¥ on G* by
N3(K*TIgk*) = g U+ 1m0

for k*, k¥ e K* and f = (f1,..., fu+ 1) €A+ 1-
We show Theorem 6.1 by calculating the integral

Z(s, W) = L* W(Gg*INSens1(g®)dg*  (WeWSy(x, &)

in two ways. First we prove the following:

(6.5)

(6.6)

PROPOSITION 6.3. If WeC,(K\G*/K*) satisfies W x ® = y (D)W for every

O e #*, then we have
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LO(S) X)
n+1
Ces+n+1) ] Ce@s+2n+2—2i)
i=1

Z(s, W) = W(e). 6.7)

Proof. Let ®¢e #* be the characteristic function of K*IT¢K* for feA,, .
Since W is a common eigenfunction under the action of #* corresponding to y,
we easily see that

Z(s, W)=Y,y N(@g)g CTmOSE e Sur),
feA, .y

Then (6.7) follows from Bocherer’s result [2] (see also [10]). O
PROPOSITION 6.4. For We C,(K\G*/K*),

Ll(s +’%’ E)
Cols + 4+ 1) [T Ca@s + 20 +2 — 20)
i=1

SRR

Theorem 6.1 is a direct consequence of the above two results. To prove the
proposition, we let

Z(s, W) =

vi(g*) = L Y(ENF(O, 0, k)g*)dx (9% G¥). (6.9)

be a partial Fourier coefficient of N¥ and let v, be a function on G defined by

(0, 0, K)kg) = Y(—K)v(@)  (k€E, K, k'eK, geb), (6.10)
Vo) = g~ ™ T (meA,). (6.11)
Note that v, is uniquely determined by the conditions (6.10) and (6.11) (see [8,
Lemma 4.4]). Henceforth we denote by o,, the characteristic function of

M, (o). We omit the subscripts and write simply ¢ if there is no fear of
confusion. For £ X (E™)", we let ¢, be a function on G defined by

¢{((09 i, K)nd(diag(tla ] tn))(j'a 09 0) K)

=Y(K)01,,(4) ljl (&l 272 (6.12)

for A, pe E", keE, neN, ;e E* (1 <i<n)and kel
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To demonstrate Proposition 6.4, we need the next two lemmas. We postpone
their proofs until the last part of this section.

LEMMA 6.5. For éEe X (E™)", we have
Ly(s, &) = ] Ce@s+2n+1-2i) Xj Vs+n+4(9)0L9) dg. (6.13)
i=1

Z(G\G

LEMMA 6.6. Let We C,(K\G*/K*), geG and te E™. If

wfon(( ) e

then we have

Vi (@d* ((t ) >>> = L(s) " |tl*vy(g)- (6.14)

Proof of Proposition 6.4. By Iwasawa decomposition

t
G* = G (d*
(1)
and Lemma 6.6, we have
= owvloe(( )
E* Z(G\G 1,
ool

=cE(s+n+1>-1f ot d*e
.

xf d@JW<gd*<<t 1>>>vs+n+1(g)-
Z(G\G n

Using a similar argument to the proof of Proposition 6.3, we obtain

OGN
ZG\G "
=f Vs+n+1(@)¢f(g)dg.w<d*<<t 1 >>>
Z(G)\G '

teE"}K*
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By Lemma 6.5, the above integral is equal to
[T oas + 2042 =207 Lys + 4. D,
This proves the proposition. O

To prove Lemma 6.5, we recall some results of [9]. For seC, let J;” be a
function on G defined by

1
JJ (hg) = e(s) azn+1,4n+2<Y( ) Y'a(h)> |det Y|*"*#d*y,
GL;,41(E) 9

(6.15)
where
es) =Lels +n+HCE" s+ n+ D[] Ce@s +2n+ 1= 2i), (6.16)
i=1
k—Au —1 —u
oh) = ‘u 1, 0 (h= (4, u, k)eH). 6.17)
—'A 0 1,
Note that J.” is denoted by ®~(-;s) in [9, Lemma 2.27]. Put
J(9) =I Y(x)J (0, 0, k)g) dx. (6.18)
E
LEMMA 6.7 ([9, Corollary 2.4 and Theorem 2.12])
Lys, &) = J Js(9)¢:(9)dg. (6.19)
Z(G)\G

Lemma 6.5 immediately follows from Lemma 6.7 and the following fact.

LEMMA 6.8
Ji(g) = l_—l1 Ce@s+2n+ 1 — 2i) X Vi n44(0). (6.20)

To prove this, we need the following elementary result that is also useful in
later discussion. The proof is easy and we omit it.
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LEMMA 69. If geGLJ(E) has a Cartan decomposition g =

k-diag(n™,...,n"™)k" (k, KeGL,(0), (my=--2m;=20=2m;,; 2--=m,), we
have
j 6,2 (Yg ™!, Y)ldet YI*d*Y = {§(s)- g~ ™, (6.21)
GL,(E)

Proof of Lemma 6.8. By [9, Proposition 2.3], we have
Js((oa 09 K)K@K,) = l/J(—K)Js(@)

for ke E, , k'€ i and ge G. This implies that the support of J is contained in
Umen, Z(G)Kny K (see [8, Lemma 4.4]). Hence we have only to verify (6.20) for
g = 7, with meA,. By (6.15) and (6.18),

Jy(7tm) = e(s) J Y(x)dx

1 ,
xf d*Ya(Y( ))o(Y(K >>|det Yptnts,
GLypi (B) Tim 15,

Decomposing Y into u (g Z> (ueGL,, . (), xeE™, yeGL,,(E), z€ E*™), we
Yy
have

J() = e(s)" 1,115,

where
I, = L dk L‘ d*x|x[* "% 6(x)a(xK)(x),
I, = JEZ” o(zny)o(z)dz
and
Iy = j o(y)o(ymm)det yI* "~ F d*y.
GL,,(E)

We easily see that I, =1 and I, = g~ (m*+*mn) Moreover we have
I;= C(EZn)(s +n— %).q'(M1+"-+mn)(S+n*%)

by Lemma 6.9. These prove the lemma. O
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Proof of Lemma 6.6. The proof is based on a direct calculation of the left-
hand side of (6.14) by using an integral expression of v¥ (see (6.22) below).

t
Assume W<Xd* << 1 >>> # 0. By Proposition 2.2, we may assume that
t .
xd* << ) )) is of the form (4, 0, O)JIy, with f>0, meA, and

A-diag(n™, ..., n™) e 0" The definition (6.5) of N¥ and Lemma 6.9 imply

N¥(g*) = (""" j o(Yg*)a(Y)det YI*d*Y.
GLayo(E)

Thus we obtain

vE((4, 0, O)lTgm) - L7 2s)

=J l/I(K)dKJ d*Y
E GL;+(E)
1 A K 0
1, 0 O/f]|p(fim) 0 N
olY ) 0 [ 0 o m)‘1:| a(Y)|det YJ°, (6.22)
|

n

where we write p(f, m) for diag(n’, n™,...,n™). Decompose Y into u(é g >

(ueGL,, 4 5(2), o, € GL, , (E), Be M, . 1(E)). Then the right hand-side of (6.22)
is equal to

dx d*a d*é dp|det aff|det 5|F " ! 6.23
[ o Jor 0 Jon o [l g et (623)

o(elo cym) (0 0)eo (L D))

(s )t o

1 A
Observe that < 0 1) p(f,m) is an integral matrix and hence that

a(a ((1) f) p(f, m))-a(oc) = o(a). Changing the variable f into f — a(S 0),

we see that

vE(A, 0, Ogg) - L™ 2s) = I 1", (6.24)
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where

I'= f Y(x)dx J d*a J dp
E GL,.,(E) M, (E)
0
O ED R

= ooy ) tm ) toaetsr o avs (626)
(E) 4,

To calculate I', we decompose o into u'(Z; Z)(u’eGL,,+ (o), xeE™,
y

yeGL,(E), ze E") and write f as (,/;1 §2> (B,€E, B,, B5€ E", B, € M, (E)). Then
3 4

I—Jn//(x)drcj d*xf d*y J dzjdﬁl‘[ dﬁzf d,lgf
GL,(E) M, (E)

x |xPldet yI*~ta(n ™ (By — Bo' ) o(n (B3 — Ba'A) (B, p(m) ™"
x o(Bap(m)~No(x)a(y)o(z) o(By — xK)o(B;)o(B3)o(Ba),

where p(m) = diag(z™, ..., n™). Observe that, for xe ¢ — {0},
_ fYx71By) ifxeo”
L o1 = Xl dre = {0 if xene — {0}

and that

j o(y)ldet y* =1 d*y = (s — 1).
GL,(B)

Thus
I'={Ps—1) J d*x J dp, J dp, f dp; J dp,
o E ©"p(m) o" M () p(m)
a(n~ I (By — B2 Mo~/ (B3 — Ba' DWW (x ™' By).
Since B,'A and B,'4 are integral for 8, € "p(m) and B, € M, (2)- p(m), we obtain

I' = {s — 1)-q 0 Dlm = f d*x J dByo(n ! B By)
o E

= g DU Emt b)), (6.27)
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. . 4, O
To calculate the integral I”, decompose J into u” (: 51 5 >(u”eGL,,+1(o),
2 3

0,€E™, 6,eE", ;€ GL,(E)). Then

I" = j d*51 J‘ dézj d63lélls_2n_l'det53's_n_l
E* En GL,(E)

x a(n~13,)a(r (0, — 05" A)a(03p(m) 1) 6(0,)0(8,)(33).

By a similar argument as above, we obtain

I" =q 6T n DU Hmrrmr (o 2n — D(s —n — 1). (6.28)
Lemma 6.6 now follows from (6.24), (6.27) and (6.28). O
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