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0. Introduction

The Whittaker function is one of the fundamental tools in the theory of
automorphic L-functions as is seen in the work of Jacquet and Langlands [6]
(see also Bump’s exposition [3]). In a recent paper [4], Bump showed an integral
expression of the spin L-function Lspin(s, F) of a Siegel cusp form F of degree 3 in
terms of its associated Whittaker function WF and proved analytic continuation
and functional equation of Lsp;n(s, F) x (a local factor at oo) under the as-
sumption WF :0 0. Unfortunately WF vanishes if F is a holomorphic Siegel cusp
form of degree not less than two and hence Bump’s method does not work for
holomorphic forms.

In [13], Shintani introduced Whittaker functions of Fourier-Jacobi type on
Spn+1, which we call Whittaker-Shintani functions (briefly, WS functions) in this
paper. One of the advantages of introducing such a modified Whittaker function
is explained by the fact that the WS function associated with a holomorphic
cusp form is not identically zero under a certain mild assumption on the form
(see Corollary 5.3). Shintani investigated their basic properties and made several
fundamental conjectures (see Conjectures 0.1 and 0.2 below). The purpose of this
paper is to give an affirmative answer to his conjectures.
To compare the WS function with the original Whittaker function, we let F be

a cusp form on G*(Q)BG*(A), where A is the adele ring of Q and G* = Spn+1. Let
03C8A be the additive character of A trivial on Q with 03C8A(x~) = exp(2nix,,,,) for

x c- R. Let N* = {[ ][ ]|A is an upper unipotent matrix of
degree (n + 1) and B = ’B E Mn+1} be a maximal unipotent subgroup of G* and
let t/JN* be the additive character of N*(A) trivial on N*(Q) defined by
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Then the Whittaker function associated with F is given by

Suppose that F is a common eigenform under the Hecke operators. Then, by the
uniqueness property of local Whittaker functions (see [7, Proposition 2.1]), we
obtain the following Euler decomposition for WF :

where W(v)F is a local Whittaker function on G*(Qv) for each prime v of Q. It is
well-known that WF ~ 0 if n  1 and if F corresponds to a holomorphic cusp
form.

In a similar manner, we can define Whittaker functions on reductive groups
and the Euler decomposition (0.2) holds in general. Note that an explicit formula
for local Whittaker functions is available by the work of Shintani [12] for GL",
and by independent works of Kato ([7]; for split groups) and of Casselman-
Shalika ([5]; for unramified groups).
To define WS functions, we let

be the Jacobi group of degree n. Let f be a Jacobi cusp form on G. Thus f is a
function on G(Q)BG(A) satisfying

together with further nice conditions (for detail, see [8, §1]). For a pair (F,f) of a
Siegel cusp form of degree (n + 1) and a Jacobi cusp form of degree n, the WS
function WF, f is defined as follows:
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As an analogue of (0.2), Shintani conjectured the following:

CONJECTURE 0.1. If F and f are both common eigenforms under the Hecke
operators, then

where W(v)F,f is a local WS function on G*(Q,) for each prime v of Q.
He also conjectured an integral expression of a quotient of the standard zeta

functions of F and f in terms of the associated WS function:

CONJECTURE 0.2. Under the same assumption as in Conjecture 0.1, we have

where Ai denotes the finite part of the idele group A , ItIA the idele norm of
t E A " and D(s, F) (resp. D(s,f)) the standard zeta function attached to F (resp. to
f).

In this paper, we establish these two conjectures (see Theorem 4.1 and
Theorem 6.2).
We now explain a brief account of the paper. In §1, after recalling several basic

properties of Hecke algebras of the symplectic group and of the Jacobi group, we
introduce the space of local Whittaker-Shintani functions after Shintani and

state one of the main results, the uniqueness of local WS functions (Theorem
1.2). To prove this, we first recall Shintani’s results on the support of WS
functions in §2. The proof is completed in §3 by showing the fact that the values
of a WS function satisfy a system of différence equations with at most one
solution. In §4, we give a proof of Conjecture 0.1 by applying the uniqueness
theorem to each local component of the global WS function. In §5, we calculate
explicitly the infinite component of the WS function associated with holo-
morphic cusp forms. Conjecture 0.2 is proved in the last section. The proof is
based on some calculations of spherical functions on G* and G.

In the forthcoming paper, we will present an explicit formula for local WS
functions on Sp2(Qp). It is still an open problem to give an explicit formula for
general n.
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Notation

Let r  1 be an integer. We let Sp, = {g~GL2r|tgJrg = Jr} be the symplectic

group of degree r where

where Sym, stands for the space of symmetric matrices of degree r. We denote by
Ur the group of upper unipotent matriçes of degree r and put

We let Ar = {(a1,...,ar)~Zr|a1  ···  ar  0} and set e[x] = exp(2nix) for

xeC.

Throughout the paper, we fix an integer n  1 and write G* and G for Spn+1
and Spn, respectively. We make a convention that each element of G* (resp. G) is

always denoted by (resp.()). The group G is embedded in G* by

be the Heisenberg group of degree n. Then H is an algebraic subgroup of G*
normalized by G. Denote by G = Gn,1 the semi-direct product H · G of H and G
in G*. The non-reductive algebraic group G is called the Jacobi group of degree
n. The center of G is Z(G) = {(0, 0, K)). For simplicity, the typical elements
nn+1(X) and dn+1(Y) of G* are denoted by n*(X) and d*(Y), respectively
(X E Symn+ 1, YE GLn+1). We also denote by n(x) and d(y) the elements nn(x) and
dn(y) of G for x E Symn and y E GLn, respectively.
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1. Local Whittaker-Shintani functions

Let E be a finite extension of Qp and 0 = °E the ring of integers of E. Fix a prime
element 03C0 of E and put

Let t/1 be an additive character of E with conductor e. For an algebraic group X,
we use the same notation X to denote the group X(E) of E-rational points of X

throughout §§1-3. Put K* = G*(o) and K = GM.
Let Yt* = e(G*, K*) be the Hecke algebra of (G*, K*), the space of bi K*-

invariant functions on G* with compact support. As usual, the multiplication is
defined by

where dx* is the Haar measure on G* normalized by K*dx* = 1.
Let ir = K) be the Hecke algebra of (G, K) with respect to the

additive character 03C8:

(i) ~((0, 0, 03BA)kgk’) = 03C8(03BA)~(g)(03BA E E, K, 03BA’ ~ K, g E G).

(ii) cp is compactly supported modulo Z(G)}.

The multiplication is given by

where d x is the Haar measure on Z(G)BG normalized by Z(G)BZ(G)K dx = 1.
To describe Satake homomorphisms of the Hecke algebras .1f* and A, let
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and

We normalize Haar measures dn*, du, dt* and dt on N*, N, T* and T,
respectively, so as to be

Put 03B4N*(t*) = d(t*n*t*-1)/dn* and 03B4N(t) = d(tlJ1)t -1 )/dlJ1) for t* ~ T* and t~T.
Let X0(E ) be the group of unramified characters of EX. For

~ = (~1,....,~n+1)~X0(E )n+1 (resp. 03BE=(03BE1,...,03BEn)~X0(E )n) and 03A6~*

(resp. ~~), we set

where

Then 03A6~~^(03A6) (resp. ~~03BE^(~)) gives rise to a C-algebra homomorphism of
* to C (resp. :le to C). It is known that every homomorphism of XI* (resp. )
to C coincides with ~^(resp. 03BE^) for some X E X0(E )n+1 (resp. 03BE ~ X0(E )n) (these
results are due to Satake and Shintani; for proofs, see [11] and [8]).

Let C",(!KB G* 1 K*) be the space of functions F on G* satisfying
F((0, 0, 03BA)03BAg*k*) = 03C8(03BA)F(g*) for K E E, K ~ K, k* E K* and g* E G*. Then the
Hecke algebras e* and F act on C03C8(KBG*/K*) on the right and left

respectively, as follows:
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In [13], Shintani introduced a certain space of local Whittaker functions on
G* of Fourier-Jacobi type : For (X, 03BE) ~ X0(E )n+1  X0(E )n, set

We call WS03C8(~, 03BE) the space of Whittaker-Shintani functions associated with (X, ç)
(briefly, WS-functions). We can now state Shintani’s fundamental conjecture on
local WS functions [13]:

CONJECTURE 1.1. dimc WS03C8(~, 03BE) = 1.

In this paper we prove a half part of this conjecture, namely the uniqueness of
WS functions:

THEOREM 1.2. dimC WS03C8(~, 03BE)  1.

2. Support of Whittaker-Shintani functions

In this section, we recall Shintani’s result on the support of WS functions. For
f = (f1,..., fn+1)~Zn+1 and m = (m1,...,mn)~Zn, put

LEMMA 2.1. Let F ~ C03C8(KBG*/K*) and f = ( f1,...,fn+ 1) E Z"+ 1 with f2, ...,
f., 1  0. Then F((03BB, /1, 03BA)03A0f) =1= 0 implies f1  0 and Jl Eon.

Proof. Put g* = (î, /1, 03BA)03A0f and assume F(g*) ~ 0. For every Kl E 0, we have
F(g*) = F(g*(0, 0, Kl» = F((0, 0, 03C02f103BA1)g*) = 03C8(03C02f103BA1)F(g*). This proves

f1  0. Suppose 1À = (03BC1,..., 03BCn) ~ on. We may suppose that 03BC1 E 03C0-ro  with

r &#x3E; 0 without loss of generality. Then, for every 03B5~o ,
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where . This is a contradiction, since we can

Let

denote the set of "dominant" vectors in Z2n + 1 and "" the usual dictionary
order in A*. For r E Z", put

PROPOSITION 2.2. The support of every F E C03C8(KBG*/K*) is contained in

Proof. Let g*~G* be in the support of F ~ C03C8(KBG*/K*). By Iwasawa
decomposition for G* and Cartan decomposition for G, g* can be written in the
form k·h03A0f,m·k* (k ~ K, h ~ H, f ~ Z, mE An’ k* ~ K*). In view of Lemma 2.1, we
may assume g* = h(p)II fm with p = (03C11, ... , Pn) E Z" (03C1i  0), f  0 and m ~ An.
We now show

Suppose, say, 03C11 &#x3E; ml. Then, for 03B5~o ,

By Lemma 2.1, we have 2m 1 - 03C11  0 and hence

This is a contradiction, since we can choose 8 E 0 x so that 03C8(03C02(m1-03C11)03B5) ~ 1. The
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remaining part of the claim is similarly proved. The proposition is now an

immediate consequence of the following lemma, which will be also used in the
next section.

LEMMA 2.3. Let ( f, m; r) E A*. If p = (03C11, p,,) E Z" satisfies 0  03C1i  ri
(1  i  n), then there exists r’c- An satisfying the following conditions:

(a) (f, m; r’)~*
(b) (f m; r’)  (1, m; r)
(c) h(03C1)03C0f,m ~ K · h(r’)03A0f,m· K*

(hence F(h(p)Ilfm) = F(h(r’)03A0f,m) for every FE C",(!KB G* 1 K*)).
Proof. We first consider the case where n = 2. Suppose that 03C11  P2 and

ml - 03C11  m2 - P2. In this case, r’ = p satisfies the conditions of the lemma.

Next suppose that 03C11  P2 and ml - pl  m2 - P2. Since

we have h(03C1)03A0f,m~K·h(03C11, 03C11 - m1 + m2)03A0f,m·K*. Note that 0  03C11 -
ml + m2  rl - ml + m2  r2 and that ml - 03C11  m2 - (03C11 - ml + m2).
Hence r’ = (pi, p 1 - m 1 + m2) satisfies the conditions (a), (b) and (c).
Next suppose pi  P2. Since

we have h(03C1)03A0f,m~K·h(03C12, 03C12)03A0f,m·K*. Thus we can take r’ = (03C12, 03C12). The

lemma for n = 2 has been proved.
We now consider the general case. By repeating the second argument, we may

assume that 03C11  ···  pn . For such a p = (03C11,..., 03C1n), we denote by i = i(p) the

smallest integer i such that mi-l - 03C1i-1  mi - 03C1i. By the first argument, we

may replace Pi by pi = pf-i - mi-l + mi . It is obvious that 03C1’i  03C1i+1 and

i(03C11,..., 03C1i-1, 03C1’i, 03C1i+1,...,03C1n) &#x3E; i(p). The lemma is proved by repeating this

process. D

3. Uniqueness of local Whittaker-Shintani functions

For simplicity, we write W(f, m; r) for W(h(r)03A0f,m) for W~WS03C8(~,03BE) and
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(f, m; r) ~ Z  Zn  Zn. To prove Theorem 1.2, it is sufficient to show that, for

( f m; r) E A*, the value W( f, m; r) depends only on ~, 03BE and W(e) = W(O, 0; 0)
(e = the identity element of G*, 0 = (0,..., 0) ~ Zn). In fact, we prove the

following result, from which the above assertion is derived.

THEOREM 3.1. Let W ~ WS03C8(~, ç) and ( f, m; r) E A*. Then

where c( f’, m’; r’) is a constant depending only on ( f’, m’; r’), X and ç.

COROLLARY 3.2. If W E WS03C8(~, ç) is not identically zero, then W(e) ~ 0.

The proof of Theorem 3.1 is divided into three steps. We first consider the
case of f  ml (it is equivalent to ( f, m) ~ An+1) and r = 0. To study the action
of * on C03C8(KBG*/K*), we put H(03B1, 03B2; f, m) = {h ~ H|h · 03A003B1,03B2 ~ K*03A0f,mK*}
for (a, 03B2), (f, m) E Z x An. Then the subset H(a, 03B2; 1, m) of H is right 03A003B1,03B2H(o)03A0-103B1,03B2-
invariant. We fix a complete set A(a, P; f, m) of representatives of

H(a, 03B2; f, m)/(03A003B1,03B2H(o)03A0-103B1,03B2). For P E An’ put

and choose so that

(disjoint union).

LEMMA 3.3. Assume that ( f, m) ~ n+1. Then

(disjoint union).

Here -f  et  f, P = (03B21,..., 03B2n) runs over An with 0  03B2j  f (1  j  n),
1  i  deg(K03C003B2K) and h runs over A(a, P; f, m).

Proof. Let g*EK*TIf,mK*. By Iwasawa decomposition for G*, we have

g* = k*TI-a,oghf (k* E K*, a E Z, g E G, hfEH). Let g ~ K 03C003B2K (PEAn). Then

g = k03C0-03B2k’03B2,i with some k ~ K and i (1  i deg(KnpK». Thus we have
g* = k*k03A0-03B1,-03B2k’03B2,ih’ = k*k(h03A003B1,03B2)-1k’03B2,i with h = k’03B2,ih’-1k’-103B2,i ~ H. Since f  m1,
we have -f  et  f and 0  03B2i  f The remaining part is easily verified. ~
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LEMMA 3.4. Let ( f, m) E An+ 1 and 03B2 ~ n. Then we have

Proof. Let

By the assumption f  m1, 03C0f· h03A0f,03B2 is an integral matrix. Since the (n + 2)-th
column of 03C0f· h03A0f,03B2 is t(03BA - 03BCt03BB, 03BC, 1, - 2), we see that h ~ H(o) and p = m. D

For (f, m) ~ n+1, we denote by 03A6f,m ~ * the characteristic function of

K*03A0f,mK*. The following result follows from Lemma 3.3 and Lemma 3.4.

LEMMA 3.5. For F ~ C03C8(KBG*/K*) and (f, m) ~ n+1, we have

where 0  03B1  f - 1, 03B2 = (03B21,..., 03B2n) runs over An with 0  03B2i  f(1  i  n)
and h over A(a, P; f, m).

PROPOSITION 3.6 (Step 1). The assertion (3.1) in Theorem 3.1 holds for
(f,m;0) with (f,m)~n+1.

Proof. We first observe (W*03A6f,m(e) =~^(03A6f,m)·W(e) for W ~ WS03C8(~, 03BE). If

W(h03A003B1,03B2) ~ 0, we can find r E An such that W(h03A003B1,03B2) = c· W(a, P; r)(c E C) and
that (a, P; r) E A* by Lemma 2.3. The proposition is now a direct consequence of
Lemma 3.5 (note that ( f, m; 0) &#x3E; (a, P; r) if 0  a  f - 1). 0

To consider the case f  ml, we investigate the action of F on C03C8(KBG*K*).
For r~n, we denote by CPr the element of 3Q with support Z(G)lKnr K satisfying
~r(03C0r) = 1. Then {~r|r E n} forms a C-basis of :Te (see [8, §4]). We let B(r) be a
complete set of representatives of on. diag(03C0-r1,..., 03C0-rn)/on.

LEMMA 3.7. For r~n, F ~ C03C8(KBG*/K*) and g* E G*, we have

where K7r,K = ~1ideg(K03C0rK) K03C0rkr,i (disjoint union; kr,i E K).
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Proof. Since K = K · H(o) = H(o). K, every g~Z(G)K03C0rK can be written in
the form k·(03BB, 03BC, 03BA)03C0rkr,i (k E K, 03BB~on·diag(03C0-r1,...,03C0-rn), y C en , 03BA~E). Thus

(disjoint union).

Since we have done.

REMARK. Let mE An and reZ" satisfy 0  ri  mi (i = 1,..., n). By Lemma
3.7, we easily see

Let r E An. If

with we write simply
The following lemma plays a crucial role in later discussion.

LEMMA 3.8. Let r = (03C1(n1)1,...,03C1(nj)j) E An (03C11 &#x3E; P2 &#x3E;... &#x3E; 03C1j  0), m E An and
assume that r =1- 0. Suppose that g E G satisfies (i) g E K03C0mK and (ii) nrg E K03C0r+mK.
Then we have g = d(y)n(x)03C0mk with

and k E K.

Proof. By Iwasawa decomposition for G and Cartan decomposition for GLn1,
g E G is written in the form
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where

We claim that ai = m 1 and that the first row of (u, z, v) is integral. If this claim

holds, the proof of the lemma is completed by induction on n. For a matrix A
with coefficients in 0, we denote by n-rank(A) the rank of A modulo 03C0 in the
finite field IF q = o/03C0o. Put

The assumption (i) implies that n’Ig’ is integral. Moreover we have n-

rank(03C0m1+03C11 · 03C0rg’)  1 by the assumption (ii). Since p 1 &#x3E; ··· &#x3E; 03C1j  0, we have

modulo n

and hence

which implies ai = m1. The second claim follows from the first one and the fact
that 03C0m1g is intégral.. D

LEMMA 3.9. Let r, m ~ n and f~Z. Assume r ~ 0 and f  0. Then, for
F E C03C8(KBG*/K*), we have

where h runs over a finite subset of H, s over An with s  m + r and c (resp. ch,s) is a
constant depending only on r, m and f (resp. r, m, f, h and s). Furthermore we have
c &#x3E; 0.

Proof. By Lemma 3.7,
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where we put It is well-known that

03C0rk03C0m~~s~n,’sr+m K03C0sK for k ~ K. Hence we have only to show that, if

03C0rk03C0m ~ K03C0r+m K, then

The equality (3.4) implies that c = # {i|03C0rkr,i03C0m~K03C0r+mK} and hence that
c &#x3E; 0.

Let r = {r1,..., rn) = (03C1(n1)1,...,03C1(nj)j)(03C11 &#x3E; ··· &#x3E; 03C1j  0). Applying Lemma 3.8
to g = k03C0m, we have

where

x ~ Symn(o) and kf E K. Observe that

where

Note that 2f runs over on. diag(03C0-r1,...., 03C0-rn)/on when so does 2. Since d(03C4ry03C4-1r),
n(irxir) E K, 03BB’03C4rx03C4r~on and 03BB’03C4rx03C4rt03BB’~o, we have completed the proof of (3.4).

D
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PROPOSITION 3.10 (Step 2). The assertion (3.1) in Theorem 3.1 holds for
( f, m; 0) E A* with f  m1.

Proof. Let WE WS03C8(~, 03BE). Let n" be the smallest integer such that mn" &#x3E; mn"+1.
Put r = (1(n"), O(n-n")) and m’ = m - r (note that r, m’ E An). By Lemma 3.9,

with

This proves the proposition. D

We now proceed to the last step of the proof of Theorem 3.1.

PROPOSITION 3.11 (Step 3). The assertion (3.1) in Theorem 3.1 holds for
(f, m; r) ~ * with r =1= 0.

Proof. By Lemma 3.9, we have

with c ~ 0. Thus it only remains to prove

with c’ ~ 0, where r’ runs over n with ( f, m; r’)  ( f, m; r). This fact immediately
follows from Lemma 2.3. D

4. Global Whittaker-Shintani functions

In this section, for simplicity, we study global WS functions associated with
holomorphic cusp forms. It is immediate to generalize our results to the non-
holomorphic case.
We first recall the definition of holomorphic cusp forms. For r  1, we let

Spr(R) act on the Siegel upper half space r = {z = tZEMr(C)IIm(z) &#x3E; 01 by

gz&#x3E; = (az + b)(cz + d)-1 and ut j(g, z) = cz + d for = a b ~ Spr(R),

z E Dr. Let 1 be an even natural number. Let SI be the space of Siegel cusp forms
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of weight 1 on G*(Z) = Spn + 1 (Z). By definition, F E S, is a holomorphic function
on Dn+1 satisfying the following two conditions:

Then F E SI admits a Fourier-Jacobi expansion:

The function Fm on n x C" is called the m-th Fourier-Jacobi coefficient of F.
Let S/,1 be the space of Jacobi cusp forms of weight 1 and index 1 on G(Z) (see

[8, §1]). Thus f E S/,1 is a holomorphic functions on Dn = n x C" satisfying

Here

see that F1 E 51,1 for F~Sl.
As is well-known, we can lift F ~ Sl and f E 51,1 to C-valued functions on the

adele groups G*(A) and G(A), respectively, by using the strong approximation
theorems

In later discussion, we often use the same letter F (resp. f ) to denote the lift of

F ~ Sl (resp. f E SI,,) if there is no fear of confusion.
For F ~ Sl and f E S/,h we define the global Whittaker-Shintani function WF,f

associated with F and f as follows:
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We easily see that

where «, » is the Petersson inner product of Sl,1 defined by

Recall that 03C8A is the additive character of A with 03C8A(x~) = e[x~] for x~ E R.
The conductor of t/J p’ the restriction of 03C8A to Qp, is Zp. Let Je; = *(G*(Qp),
G*(Zp)) and Jfp = 03C8p(G(Qp), G(Zp)) be the Hecke algebras at p of G* and G,
respectively. Then, for every p, 9V* (resp. p) acts on S, (resp. on Sl,1) by

Assume that F and f are Hecke eigenforms; this means that, for every p, we
have

where Xp = (~p,1,..., ~p,n+1) and çp = (03BEp,1,....,03BEp,n) are the Satake parameters
corresponding to F and f, respectively (~p,i and 03BEp,j are unramified characters of
Q;).

Let W(~)F,f (resp. (p)F,f) be the restriction of WF,f to G*(R) (resp. G*(Qp)).
Assume WF,f ~ 0. Then (p)F,f ~ WS03C8p(~p, 03BEp) is non-zero and hence

dim WS03C8p(~p, 03BEp) = 1 in view of Theorem 1.2. By Corollary 3.2, there uniquely
exists W(p)F,f~WS03C8p(~p,03BEp) such that WFp f(e) = 1. This observation establishes
the following Euler decomposition of WF, f :
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THEOREM 4.1. Assume that F and f are Hecke eigenforms and WF,f ~ 0. Then
we have

REMARK. Assume that WF, f - 0. Then «F1, f» = 0 and hence WF f - 0 by
Corollary 5.2 in the next section. Thus (4.14) is trivial in this case.

5. Explicit formula for Whittaker-Shintani functions on G*(R)

In this section, we give an explicit formula for W(~)F,f for F ~ SI and f E Sl,1. To be
more precise, put

where

Let IKoo be the stabilizer of Zo = (i1n, 0)~Dn in G(R). Then IKoo = Z(G)(R)·K~
where K~ = {g ~ G(R)|gi1n&#x3E; = i1n}. It is known that

03C9l,1(kgk’) = det j(k, i1n)l detj(k’, l1n)l03C9l,1(g) (g~G(R), K, k’~K~).

Let K*~ be the stabilizer of i1n+1 ~ n+1 in G*(R). It is easy to see that G*(R) is

decomposed into

THEOREM 5.1. Assume that 1 is even and 1 &#x3E; 2n + 1. Then
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Proof. For simplicity, we write W for W(~)F,f. It is easy to see that

We first prove

The strong approximation theorem (4.6) implies

By [8, Lemma 5.6], we have

and hence

Since K~ commutes with
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we have

By [8, Lemma 5.7],

The assertion (5.4) is now an immediate consequence of (5.5), (5.6) and (5.7).
It now remains to verify

For the time being, we write F~ (resp.f~) the lift to G*(A) (resp. to G(A)) of F
(resp. of f) to avoid confusion. We put

Then the restriction of F i to G(A) coincides with the lift of F 1 E 5,,1. For
Z = (z, w) ~ Dn, let z = x + iy and w = 2z + J1 (x, Y E Symn(R), 2, J1 E Rn). Then

is a G(R)-invariant measure on Dn, where dx, dy, d2 and d/1 are the usual
Lebesgue measures. Let gz be any element of G(R) satisfying gzZo&#x3E; = Z. We
may put

It is easily shown that
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Since

we obtain

On the other hand, we see that

The assertion (5.8) follows from (5.9), (5.10) and (5.11). u

COROLLARY 5.2. For F E SI and f E Sl,1, WF,f ~ 0 if and only if «F1,f» ~ 0.

COROLLARY 5.3. Let F E SI. If F 1 =/; 0 as an element of then there exists a
Hecke eigenform f E SI,, such that WF,f :0 0.

Proof. The assertion follows from the fact that there exists a basis of Sl,1
consisting of Hecke eigenforms (see [8, §6]). Fi

6. Integral expression of standard zeta functions

In this section, we let notation be the same as in §1. Let | be the normal-
ized valuation of E (|03C0| = q-1). We put (E (S) = (1 - q-s)-1 and 03B6(r)E(s) =

03A0r-1i=0 03B6E(s-i). For ~ = (~1,...,~n+1)~Xo(E )n+1 and 03BE=(03BE1,...,03BEn)~
Xo(E )n, we put

The object of this section is to prove the following theorem.

THEOREM 6.1. Let W ~ WS03C8(~, 03BE). Then
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This result implies Conjecture (0.2), since Lo(s, X) and L,(s, ç) are the local
factors of the standard zeta functions of a Siegel cusp form and a Jacobi cusp
form, respectively (see Theorem 6.2 below). In the case where the forms are
holomorphic, a stronger result holds in view of Theorem 5.1.

THEOREM 6.2. Let F ~ Sl and f ~ Sl,1. Assume that F and f are Hecke

eigenforms. Then

Here ’.IA is the idele norm of the idele group A x of Q and,

and

are the standard zeta functions attached to F and f, respectively ( for more detail of
the standard zeta functions, see [1], [10] and [9]).

For s E C, define a function N* on G* by

for k*, k*’ E K* and f = (f1,..., fn+ 1) E n+1.
We show Theorem 6.1 by calculating the integral

in two ways. First we prove the following:

PROPOSITION 6.3. If W ~ C03C8(KBG*/K*) satisfies W * 03A6 = ~^(03A6)W for every
03A6 ~ *, then we have
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Proof. Let cDfEJe* be the characteristic function of K*IIfK* for f ~ n+1.
Since W is a common eigenfunction under the action of e* corresponding to x,
we easily see that

Then (6.7) follows from Bôcherer’s result [2] (see also [10]).

PROPOSITION 6.4. For W E C03C8(KBG*/K*),

Theorem 6.1 is a direct consequence of the above two results. To prove the

proposition, we let

be a partial Fourier coefficient of N* and let vs be a function on G defined by

Note that vs is uniquely determined by the conditions (6.10) and (6.11) (see [8,
Lemma 4.4]). Henceforth we denote by Ur,r’ the characteristic function of

Mr,r’(o). We omit the subscripts and write simply a if there is no fear of

confusion. For 03BE ~ Xo(E )n, we let ~03BE be a function on G defined by

for 2, J1 E En, 03BA~E, n ~ N, ti E E x (1  i  n) and 03BA ~ K.
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To demonstrate Proposition 6.4, we need the next two lemmas. We postpone
their proofs until the last part of this section.

LEMMA 6.5. For 03BE ~ Xo(E )n, we have

LEMMA 6.6. Let W ~ C03C8(KBG*/K*), g~G and feEB If

then we have

Proof of Proposition 6.4. By Iwasawa decomposition

and Lemma 6.6, we have

Using a similar argument to the proof of Proposition 6.3, we obtain
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By Lemma 6.5, the above integral is equal to

This proves the proposition. D

To prove Lemma 6.5, we recall some results of [9]. For s E C, let J S be a
function on G defined by

where

Note that JS is denoted by 03A6~(·; s) in [9, Lemma 2.2]. Put

LEMMA 6.7 ([9, Corollary 2.4 and Theorem 2.12])

Lemma 6.5 immediately follows from Lemma 6.7 and the following fact.

LEMMA 6.8

To prove this, we need the following elementary result that is also useful in
later discussion. The proof is easy and we omit it.
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LEMMA 6.9. If g E GLr(E) has a Cartan decomposition g =

k·diag(03C0m1,...,03C0mr)·k’ (k, k’~GLr(o), (m1  ···  mj  0  mj+1  ···  mr), we

have

Proof of Lemma 6.8. By [9, Proposition 2.3], we have

for 03BA ~ E, 03BA, 03BA’ ~ K and g ~ G. This implies that the support of J, is contained in

~m~nZ(G)K03C0mK (see [8, Lemma 4.4]). Hence we have only to verify (6.20) for

g = 03C0m with m~n. By (6.15) and (6.18),

Decomposing Y into u (0 )(u ~ GL2n+1(o), xc-E’, yc-GL,,,(E), z~E2n), we
have

where

and

We easily see that I1 = 1 and 12 = q-(m1+···+mn). Moreover we have

by Lemma 6.9. These prove the lemma.
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Proof of Lemma 6.6. The proof is based on a direct calculation of the left-
hand side of (6.14) by using an intégral expression of vi (see (6.22) below).

Assume W ( d*((t ))) ~ 0. By Proposition 2.2, we may assume that
xd*(()) is of thé form (À., 0, 0)03A0f,m with f  0, m ~ n and

03BB· diag(03C0m1,..., nmn) e on. The définition (6.5) of N*s and Lemma 6.9 imply

Thus we obtain

where we write p( f, m) for diag(03C0f, 03C0m1,..., nmn). Decompose Y into u( j
(uEGL2n+2(o), 03B1, 03B4~GLn+1(E), f3EMn+l(E)). Then the right hand-side of (6.22)
is equal to

Observe that ( ) p(f,m) is an intégral matrix and hence that

a (03B1 1 ) P(f, m) - 03C3(03B1) = 03C3(03B1). Changing the variable f3 into f3 - 03B1 ( 0
we see that
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where

To calculate /’, we decompose oc into u’()(u’ ~ GLn+1(o), x~E ,

y ~ GLn(E), z e E") and write fi as ( ’fl2 (Pl e E, fl2, 03B23 ~ En, 03B24 ~ Mn(E)). Then

where p(m) = diag(03C0m1,..., 03C0mn). Observe that, for XE 0 - {0},

and that

Thus

Since /32t2 and 03B24t03BB are integral for /32 e e"p(m) and /34EMn(o). p(m), we obtain
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To calculate the integral I", decompose 03B4 into u"

By a similar argument as above, we obtain

Lemma 6.6 now follows from (6.24), (6.27) and (6.28).
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