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Abstract. We give the structure of ultrapowers of sums of rearrangement invariant function
spaces satisfying special equiintegrability conditions, and of ultraproducts of such spaces.
We prove that, with these conditions, superstability is conserved by real Lions-Peetre

interpolation; and that Lorentz spaces L(w, p) are superstable (for their natural norm).
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0. Introduction

It was proved in [2] that real interpolation spaces (for the "K-method") of two
stable rearrangement invariant (r.i. in short) function spaces are stable, provided
that these spaces satisfy a special equiintegrability condition for the unit ball of
the one with respect to the norm of the other.
The proof of this result is based implicitly on a description of the ultrapowers

of the sum E + F of two r.i. spaces (when they satisfy the aforementioned
condition), which we explicit here. As a consequence we obtain that (roughly
speaking) when a property 9 "passes from E, F to E + F" (i.e. E ~ ,
F ~  ~ E + F ~ ) then the same is true for the corresponding superproperty:
this is in particular the case for the stability property.

In order to obtain such a result for interpolation spaces, we try to give an
analogous description for ultraproducts 03A0t&#x3E;0(E + tF)/u. Here we are led to
reinforce the "equiintegrability conditions" and to suppose a sort of uniform
version of them, which is close to certain separation conditions introduced in
particular in [ 1 ] or [11] in order to compute the K-functional of two r.i. spaces.
As a consequence we obtain results on the superstability of the Lions-Peetre

interpolation spaces [E, FI,,,, of two r.i. spaces, or of the Lorentz spaces L(w,q).
These results give information of isometric or almost isometric nature in the case
of non-decreasing weights w, in particular for the bidual of Lp," p &#x3E; 1.

In the last section we give an isomorphic description of the ultraproducts
IIt(E + tF)/u, under weaker equiintegrability conditions (e.g. the conditions of
[1]) and a superstable renorming theorem for this case.
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We refer to [10] for definition and main properties of the rearrangement
invariant function spaces (which will be supposed "maximal" in the ambiguous
cases); to [3] for the real interpolation method; to [8] for the main facts about
stable Banach spaces; to [5] and [6] for the background on ultrapowers; to [12]
for the notion of superstability.

If E is a r.i. space defined on [0, oo), its "fundamental function" is

03BBE(u) = ~[0,u]~E. Unless otherwise stated, we suppose the r.i. spaces to be

normalized, i.e. ÂE(l) = 1. If f is a measurable function w.r. to the measure space
(Q, d, 03BC), we denote by f * the non-decreasing rearrangement of 1 f (see [10]).
E(Q, A, J-l) is then the space of measurable functions f defined on (Q, A, 03BC) such
that f’* E E (with the norm ~f~E(03A9) = ~f*~E).

If E is a Banach space, I an index set and W an ultrafilter, then every bounded
family (fi)i~I ~~~(I; F) defines an element of the ultrapower El jO/i which we
denote by (h)i .
A "compatible Banach couple" is a couple (E, F) of Banach subspaces of the

same topological vector space V This is the case when E, F are Kôthe function
spaces, see [10]; then V = L0(03A9).
Here we will obtain (as ultrapowers or ultraproducts) non regular Banach

couples, i.e. E n F not dense in E, F. In fact E, F will be Kôthe function spaces in
L0(03A9’), L0(03A9"); Q’, S2" being distinct parts of the same measure space S2. Recall
that E + F (as a linear subspace of V) is equipped with the norm:

In the lattice case, if f  0 we may restrict the infimum to the couples (g, h) with
0  g, h  f.

1. Ultrapowers of E + F

Let (0., d, li) be a measure space; E = E(Q, A, 03BC) and F = F(03A9, A, 03BC) two
rearrangement invariant function spaces over (Q, A, 03BC). We suppose:

(Al) E and F do not contain co.

Conditions (A2), (A3) may be viewed as "equiintegrability conditions" on the
couple (E, F).

Let be X = E + F and denote by É, f, f the ultrapowers EI/u, F1jô/i, XI/u.
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Recall that E contains a particular band Eo, generated by the elements
é = (1Ai)i having a representing family consisting of indicator functions of
uniformly measure bounded sets. Eo may also be characterized as the set of
elements  = (fi)i having a representing family consisting of functions whose
rearrangements f*i are E-equiintegrable. Eo is lattice-isometric to the r.i. space
E(, , ) where the measure space is the ultrapower (Q, A, 03BC)I/u (defined for
example in [5], §4); see also [16].
As E, F do not contain co, we have band projections in E, F onto E(), F()

respectively; so we may write

where the complementary bands ES, Fs, the "singular parts" of E, F, consist of
the elements  having representing families (fi)icj such that limi,u f*i = 0 for the
topology of convergence in measure.

Let 81 (resp. 82) be the set of element ê E E having representing families (ei)ieI
with |ei|  Ileill · 1{el~0} (resp. |ei|  Il ei 11) for every i ~ I, let f = 9,’, Ep le2 the
bands of elements of E which are disjoint from 03B51 (resp. 82). As 81 n 03B52 contains
the set of families (1Ai)i~I with J1(Ai) = 1, Vi, we have E f cEs, E p c Es . If

.Î = (fi)i~I ~ f ~ p, set A fi = {|fi|  ~fi~}; as (1Afi · fi) ~ 03B51 it is the zero ele-
ment ; thus we may supposer = 1Acfi·fi: then ~03B52 and finally 1 = 0. Hence
f ~ p = {0}.
Although Es may be not order complete, there are projection bands onto E f

and Ep, and more precisely we have:
LEMMA 1. Es = E f ~ p (and similarly Fs = F f C Fp).

Proof. If  = (fi) ~ s, then ~~ &#x3E; 0, ~ A  ~, limi,,, ~1{03B5|fi|A}fi ~ = o.
(for Supi 03BC({|fi| &#x3E; 03B5})~, hence (1{|fi|&#x3E;03B5}) is disjoint from f, but

1{03B5|fi|A}|fi|A1{|fi|03B5} A |fi|).
Set Afi = {|fi|  ~fi~}, gi = 1Acfi·fi, hi = 1Afi ·fi and  = (gi)i,  = (hi)i.
Let é = (ei)icj E 81. We have for each e &#x3E; 0:

By the preceding, the second term vanishes (when taking the u limit) and as
{ei ~ 01 = {|ei|  ~ei~} we have

Hence ~|| A lêl Il = limi,u ~|gi| A |ei|~  e, which implies (with 03B5 ~ 0)  ~ , i.e.
gEÈf.



298

Similarly if é E 8 2 we have for each A &#x3E; 0:

The first term vanishes, and the second verifies:

REMARK. It can be easily seen that ~f iff it can be represented by a "flat
family" (fi)* (with limi,u 11 fi 00 = 0) and  ~ Ê. iff it can be represented by a "peak
family" (h); (with limi,u 03BC(Supp fi) = 0).

PROPOSITION 2. Let E, F be rearrangement invariant function spaces (over the
same measure space) verifying properties (Al) to (A3) above, and X = E + F.
Then with the previous notation:

the norm on X being given by:

Proof. As E, F do not contain co, the same is true for E + F (see [2]); thus:

be the natural inclusion maps; J:
their natural extensions to ultrapowers. We

The hypotheses (A2), (A3) may be written:

(For example if  ~ f then for every e &#x3E; 0 there exists a representing family (fi)
with ~fi~~  e; thus limi,u ~fi~F = 0).
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On the other hand, as the image by J of an E-equiintegrable family is clearly
(E + F)-equiintegrable:

Similarly, using the fact that f E Ep iff for each A &#x3E; 0 there exists a

representing family (fi)i with Vi, Ihl &#x3E; A, we see that:

thus the two preceding inclusions are equalities. Similarly

Putting together, we obtain:

(with equal norms).

REMARK 3. In the absence of the hypotheses A2, A3, we have nevertheless
that the special "equiintegrable" band of (E + F)~ is yet isometric to

E() + F().

REMARK 4. Generalization to Kôthe function spaces.
Let us briefly indicate how to extend the preceding to Kôthe function spaces

(see [10] for a definition). We say (by analogy with [16]) that a Kôthe function
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space E has Essential Subsequence Splitting Property (ESSP) iff every bounded
sequence in E can be split (after extraction) in a measure-vanishing part and an
"essentially E-equi-integrable" one. (A family (XJiEI will be said "essentially E-
equiintegrable" iff lim03B5~0 Supi ~1{|xi| 03B5} · xi ~ = 0 and limA~~ Supi~1{|xi|&#x3E;A}· xi ~
=0). Replace then conditions (Al) by:

(Af1): E, F are order continuous Kôthe function spaces with ESSP.

Then if E, F verify (A’1), (A2), (A3):

where Eo, Fo are the bands in E, F consisting of those elements having
essentially equiintegrable representants. (They are function spaces over the same
measure space).

2. Application to the superproperties of the sum of two Banach spaces

Recall that given a property () for Banach spaces, the corresponding
superproperty () is defined by:

E e à - each ultrapower E of E verifies ().

Or, equivalently, each Banach space F which is finitely representable in E has
property ().

It is clear that if (Y) passes from E, F to E + F for each compatible couple
(E F) of Banach lattices satisfying the hypotheses of Remark 4, the same is true
for the corresponding superproperty.

Let us give a result of this sort for the superproperty associated to the
"stability property" for Banach spaces. Recall that a Banach space E is stable (cf.
[8]) iff for any bounded sequences (xn)n, (Ym)m in E and any ultrafilters u, 1/:

It was proved in [2] that if (E, F) is a couple of r.i. spaces satisfying (A,), (A2),
(A3), then E + F is stable.
We will extend slightly this result, after giving the following definition, and

deduce a corollary on superstability (see [12] for details on this last property).

DEFINITION 5. Let E be a Kôthe function space between Li + L~ and
Li n L~, having a band decomposition E = Ea (D ES. We say that E" has a r.i.
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structure over ES iff it is a r.i. space and, for any couple e’, e" of equimeasurable
elements of Ea we have:

In particular, if E is a r.i. space (not containing co), then the decomposition
E = E() ~ Es of its ultrapower is of this type (E() is r.i. over Es).

PROPOSITION 6. Let (E, F) be a couple of stable Kôthe function spaces having
band decompositions E = Ea ~ ES, F = Fa ~ FS with Ea (resp. Fa) r.i. over ES

(resp. FS), and the couple Ea, Fa satisfy the conditions (A2), (A3). Then E + F
(defined in the superspace L0(03A9) ~ ES ~ Fs) is stable.

Proof. It could be obtained by a slight modification of the proof of prop. 22 of
[2], but we prefer to give it here using the formalism of 91.

Let X be any ultrapower of X = E + F. We have (see Remark 4)

Any  ~ Z can be decomposed as Z = é + f, where

For every x E X, x = xp + es + fs (xa ~ Ea + Fa, es ~ Es, fs ~ Fs) we have:

But there exists a natural projection PE from Ea() to Ea (defined by conditional
expectation) which is a contraction. (See [10, th. 2a 4]). As Ea() is rearrange-
ment invariant over ap ~ ES we obtain, by a straightforward extension of the
proof of [10, th. 2a 4] that:

Hence

Now let (xn)n, (Ym)m be two bounded sequences in E + F, whose projections (x:),
(ym) on Ea + Fa tends to 0 in measure.
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The family (xn + y.),,,. defines an element ’ of (E + F)N x N/u x Y and
(xn + Ym)m,n an element 1" of (E + F)N N/V x 0//.
We decompose ’ = e’ + f’, 03BE" = é" + f" as before. Stability of E, F implies

that

and formula (*) that V x E E + F, Il x + 1’ ~ = ~x + "~.
This implies that

for such sequences (xn)n, (ym)m; and, as [2, prop. 17], using the norm-

compactness of the set of decreasing element in (Ea + Fa)(R) (of norm  1) we
remark that (**) is sufficient to test the stability of E + F. 0

COROLLARY 7. Let E, F be rearrangement invariant functions spaces verifying
properties (A1) to (A3) of 91. If E and F are superstable, so is their sum E + F.

3. Ultraproducts of sums of r.i. spaces.

3.1. Ultraproduct of sums

Let (Ei)ieI and (Fi)iEr be two families of rearrangement invariant spaces on the
same measure space (03A9, d, 03BC).

Let us suppose now:

(B 1 ) The families (Ei)i~I and (Fi)i~I are uniform in the sense that for every
ultrafilter u on I, the norms not containing co (on L~(03A9) n L1(03A9)):

define (by completion) r.i. spaces not containing co
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We have then the following decomposition of the ultraproducts:

where S2, the « peak parts» p, Fp, and the « flat parts » f, F f are defined
analogously to the ultrapower case.

Proposition 2 has the following analog (with plainly analogous proof):

PROPOSITION 8. Let (Ei)i~I, (Fi)ieI be families of r.i. spaces satisfying the
conditions (B,) to (B3). Then:

(the last equality with equal norms).

Note that conditions (B2), (B3) may be rewritten (in view of (B1)):

REMARK 9. Define as in [1] the space M(Ei, Fi) of multipliers from Ei in F, by

Mi = M(Ei, Fi) = {f ~ L0(03A9, .si, J-l)1 the operator Mf: g ~ f·g
is defined and bounded Ei ~ Fi},

with ~f~Mi = II M f ~(Ei,Fi): this is a r.i. space over (03A9, A, 03BC). Then:

(B2) is equivalent to: (B2): Sup 03BBMi(03B5) 03B5~0 0

and:

(B3) is implied by: (B’) Inf 03BBMi(A) A~~ oc,

in the case where, moreover, Ei = Mi. Fi and:

3K, ~i, ~ f ~ Ei, ~m~Mi, g~Fi with f = m·g and ~m~~g~  K~f~Fi.
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The first assertion is a consequence of the equality

for the second, see the proof of theorem 1 of [1].

3.2. Ultraproducts rI, (E + tF)/u

Here E, F are two r.i. function spaces on R,; for each t &#x3E; 0, E + tF is E + F
normed with the K(t) functional of Lions-Peetre (see [3]):

To reduce to the preceding case, we define the r.i. function spaces Et, F, by:

where:

D,, is the dilation operator: Da(f)(s) = f -

ÂE, ÂF are respectively the fundamental functions of E, F

at is a solution of the equation ÂE(a) = tÂF(A)-

Such a solution will exist for each t if we suppose:

For f ~ Lo, set St(f) = Datf 03BBE(at); St is clearly an order isometry from Et onto E, and
from Ft onto t. F; and consequently from Et + Ft onto E + tF. Thus the family
(St)t&#x3E;0 defines an order isometry 9 from 03A0tEt/u onto E = ER+/u and from

03A0t(Et + Ft)/u onto X = 03A0t(E + tF)/u. On the other hand the family (1 t St)t&#x3E;0
defines an isometry S’ from 03A0tFt/u onto f = FR+/u.
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PROPOSITION 10. The following assertions are equivalent:

(i) The families of spaces (Et)t&#x3E; 0 and (Ft)t&#x3E; 0 verify the condition (B2), (uniformly
for every possible choice of (at)t&#x3E; 0).

(ii) They verify the condition (B3) (uniformly w.r. to (at)t&#x3E;0).
(iii) There is an a &#x3E; 0 such that (03BBE,F(u))/u03B1 is equivalent to a non-decreasing

function of u.

Proof. (i) ~ (iii). In particular there exists an e &#x3E; 0 such that, for every p  8

we have:

which may be written:

as this can be obtained uniformly in (at)t&#x3E;0, we have in fact:

On the other hand, for each 0  03C1  1: 03BBE,F(03C1a)  (1/03C1)03BBE,F(a) because

03BBE(03C1a)  03BBE(a) and 03BBF(03C1a)  03C103BBF(a).
Thus there exists C such that:

which means that 03BBE,F is equivalent to a non-decreasing function. (Namely
h(a) = SUPo 03C11 03BBE,F(03C1a)).

Setting now 2 = e" we see that (03BBE,F(u))/u03B1 is equivalent to a non-decreasing
function (namely k(a) = SUP003C1 1 (03BBE,F(u))/03C103B1).

(ii) ~ (iii)

We have now
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taking f* = 1[0,2A] we obtain in particular:

which we can interpret (using the uniformity in the choice of (at)) as:

which is the same as

We continue as in the preceding case.

(iii) ~ (i) and (ii)

We notice that

Suppose that ~f~Ft  1. Then for every u &#x3E; 0, f*(u)  1/(03BBFt(u)). Thus:

and we obtain condition B2.
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Similarly, suppose that ~f~Et  1, thus f*(u)  1/(ÂEt(u))(V u &#x3E; 0). Then:

i.e. we obtain condition (B3). D

In particular we have under such conditions a description of TIt(E + tF)/u.

COROLLARY 11. Let E, F two r.i. spaces with non-trivial concavity,
03BBE,F = (03BBE/03BBF) their relative fundamental function. Suppose that there exists an
a &#x3E; 0 such that (03BBE,F(u))/u03B1 is (equivalent to) a non decreasing function of u. Then
we have band decompositions:

(The decompositions (ii) and (iii) are different from those described in 91).
Moreover 03A0t&#x3E;0(E + tF)/u = (E(03A9) EB Ép) + (F(Q) ~ Ff) isometricall y.

EXAMPLES. (i) E = Lp F = Lq with p  q.

(ii) E = L9 F = L, with 03C8 ~ ~  03B6 where ( is a r-convex Orlicz function, for
some r &#x3E; 1.

(iii) E is p concave, F is q-convex with p  q. Or, more generally, E has upper
Boyd index qE, F has lower Boyd index pF with qE  pF.

4. Application to superstability of interpolation spaces

We note that the r.i. spaces E(Q), F(03A9) (of cor. 12) verify the conditions (Al), (A2),
(A 3) of §1. Thus if E, F are superstable, we obtain by prop. 6 that

03A0t&#x3E;0(E + tF)/u is stable, for each ultrafilter u on R+. We say that the family
(Xt)t&#x3E;0, Xt = E + tF, is "uniformly superstable". It was proved in [ 13] that the

space Z = (~t&#x3E;0 Xt)l2 is then superstable. If 1  p  oo is a given exponent and
2 a measure on R we define the space [E, F]03BB,p as the space of elements f of
E + F such that 0 K(t, f; E, F)P d2(t)  00. (For d2(t) = 1ItOP+ 1 . dt, we have
[E, F]03BB,p = [E, F]03B8,p, the usual Lions-Peetre interpolation space).

COROLLARY 12. Let E, F be two superstable r.i. spaces satisfying the

hypotheses of cor. 11. Then for every 1  p  oo and 2, the space [E, F]Â,p is
superstable.
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For the space [E, F]03BB,p is finitely representable in lp(Z), which is superstable
(see [12]) as Z is. D

The Lorentz spaces L(w, p), where 1  p  oo and w is a decreasing weight on
R+ (see [ 10], p. 120; [9]; the sequence space version is denoted by d(w, p) in [10])
are (Â, p) interpolation spaces in the preceding sense:

where 2 is the Stieltjès measure associated to the function - w(tP). This is a
consequence of the Holmstedt formula K( f, t; LP, L") - (tp0 f*(s)p ds)l/P and the
definition of the norm on L(w, p):

An integration by parts shows that

When L(w, p) is q-concave for a certain q  oo then

where 2 is now the Stieltjès measure associated to - w(tl), 1/a = 1/p - 1/q. This
is a consequence of the Holmstedt formula ([7] or [3])

and the following equivalence for the L(w, p) norm, proved by [15]:

We obtain thus that L(w, p) has a superstable equivalent norm, when it has non
trivial q-concavity, which is also a consequence of the fact that it embeds in

L,(L,) (as a consequence of [15]).
We will prove in fact that the natural norm on L(w, p) is superstable:
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THEOREM 13. Let w be a non increasing weight on R+ such that the Lorentz

space L(w, p) has non trivial concavity. Then L(w, p) is superstable for its natural
norm.

Proof. We suppose first that p = 1. Denote by q’ the conjugate exponent of q.
We introduce a modified K-functional of interpolation between L’ and Lq by:

which lies between the usual K-functional and Holmstedt estimation (4.4).
Note that

uniformly for ~f~w,1  1.

Proof of Lemma 14. We have:

On the other hand as the natural inclusion Lq,1  Lq is of norm 1, we have:

hence:

i.e.
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By Fubini theorem:

By [15] as Lw,1(R) is supposed to be qo-concave, there exists a constant Aqo such
that:

Then for any q  qo the same relation remains true with a constant Aq  Aqo.

then

Thus the right member in 4.8 is less than:

i.e. we obtain

which proves the lemma.

The trouble with the functionals K(t, . ) is that they are not continuous for the
norm of L1 + Lq (note that they are not norms). For this reason we set, for each
03B5 &#x3E; 0:

Using (4.7) we see that:

LEMMA 15. Each functional K£(t, .) is uniformly continuous on the unit ball of
L, + Lq ( for the norm metric).
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Proof of Lemma 15. It suffices to prove that this is the case for the functionals

For A it is evident, since A is a norm (majorized by the (L 1 + Lq)-norm).
Suppose now thatfn’ gn are sequences in the unit ball of L, + Lq with

Using the Subsequence Splitting Property of L, + Lq we may suppose

where: (f’n*)n, (g’n*)n are (Li + Lq)-equüntegrable,

(f’n)n, (g’n)n have supports converging to 0 in measure,

(f’’’n), (g’’’n)n converge to 0 in L~-norm.

Clearly B(f"n) ~ 0, B(g"n) ~ 0 and

We have also f’*qn - g’*qn ~ 0 in measure, and by equiintegrability:

(note that the L1 + Lq equiintegrability of (f’n), (gn) implies the Lq equiintegra-
bility of (1[tq’,~[f’n*), (1[tq’,~[g’*n) by Holmsted formula), and on the other hand

Finally B(fn) - B(gn) ~n~~ 0, so we have I B( f ) - B(g)1 S cp(t; Ilf - g~) where it
is easy to see that the modulus of continuity 9 is locally uniform for t~]0, ~[.
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Hénce by triangular inequality:

and by integration:

The second term in the right member of (4.14) is majorized by

which by [17], prop. 1, is majorized by:

Hence Lemma 15.

This lemma allows us to take the ultrapower of functional Ke, i.e. we define for

Consider the decomposition of (L1 + Lq)I/u into its principal and singular parts
given in §1:

(Li + Lq)I/u = (L 1 + Lq)(03A9) ~ p C F f . (Where É p is a L 1 space and F f a Lq-
space). It is not hard to see that:
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and in general if

with

LEMMA 16. Functionals 03B5(t, ·) are stable on the unit ball of (Ll + Lq)-.
Recall that a functional 03A6 on a normed vector space is said to be stable if

lim lim 03A6(xn - Ym) = lim lim 03A6(xn - Ym) (for every bounded sequences (xn),

(ym).)
Lemma 16 is proved by a reasoning analogous to the proof of prop. 6, which

we will not develop anew.
As a consequence, functionals Ke(t, .) are superstable.

LEMMA 17. On bounded sets of Lw,l’ the functional

is superstable ( for each e &#x3E; 0 and 1  q  oo).
Proof. Using (4.12) and the similar equality for the usual K(t,·;L1, Lq)

functional we see that it suffices to prove that on Ll(Ll + Lq) the functional

dt is superstable.

We have in general

(see [14] for a proof of this generalization of prop. 2) and it is not too difficult to
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see that for/ in this ultrapower:

where Kg is defined by (4.15), (4.16), and is stable by lemma 16. Then the

functional ~|~~|03B5,q is stable (by an easy modification of the proof that E
stable implies L1(E) stable, see e.g. [1] prop. 18).
The last step to end the proof of proposition 13 is to prove the following

extension to the K03B5 functionals of the approximation result given by lemma 14.

LEMMA 18. lim |~f~|(q,03B5)w,1 = ~f~w,1 uniformly on the unit ball of Lw,1.

Proof. By integration of (4.10) we have:

where

So we have only to prove that |~f~|(03B5)  ~f~w,1, or that

But as:

and:
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we have

Case p &#x3E; 1

We have only to change in the preceding K(t, f; L,, L~) in:

and similarly

This ends the proof of Theorem 13. D

Before ending this section let us remark that Corollary 12, in the usual situation
of Lions-Peetre interpolation, has interest mainly from isometric or almost
isomorphic point of view. For it is not hard to see that the Lions-Peetre

interpolation spaces [E, F]03B8,p of two "well separated" r.i. spaces E, F (i.e. with
relative fundamental functions ÂE,F equivalent to an a-convex function for some
a &#x3E; 0) are isomorphic to Lorentz spaces L(w, p) (with in general non monotone
weight w).

5. Renorming interpolation spaces

We suppose here weaker separation assumptions than those of cor. 11, for
example the assumptions of [1] or of [11]. Then we give an isomorphic
description of the ultraproducts 03A0t&#x3E;0(E + tF)/u which enables us to give a
superstable renorming theorem for interpolation spaces.

THEOREM 19. Let E, F be two superstable r.i. spaces (on the same measure
space). We suppose Arazy’s conditions to be satisfied, i.e. E = M. F with

03BBM(t) ~t~00, 03BBM(t) ~t~~ ~ ([1]). Then for every t &#x3E; 0 there exists a norm Nt on
E, F, such that:

(i) The family of norms (Nt)t&#x3E; 0 is uniformly equivalent to the family of K(t; E, F)
functionals.

(ii) The family of spaces (E + F, Nt)t&#x3E;0 is uniformly superstable. Consequently
each interpolation space [E, F]03BB,03B8 has an equivalent superstable renorming.
As a corollary of the proof of th. 19, we will obtain
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PROPOSITION 20. Let E, F be two r.i. spaces, with non trivial concavity and

satisfying Arazy’s separation conditions. Then

isomorphically (with constant independent of u), where E(03A9), Ê,, F(03A9), Fp are the
bands in ER+/u, FR+/u described in corollary 11.

Proof. We know that the K(t; E, F) functional is equivalent, with constants
independent of t, to:

Using the r.i. structure of E, we see that:

hence

as

[Note that 03BBM(u)03BBF(u)  03BBE(u) becomes an equivalence when E = M· F. For if

J1(A) = u and 1A = gh with K~1A~E  ~g~M~h~F, as in [1] prop. 3, we have:

as 1A  g**· h** by Hôlder inequality].
As a consequence Nt(f) ~ F(t,f) (uniformly in t).
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To see that Nt is a norm it suffices to check the triangle inequality for the
second part of it. Set:

we see easily that

(as a consequence of the well-known inequality ( f + g)**  f ** + g**) which
implies that 11(f + g)~(a,·)~F  ~(a,·)~F + ~(a,·)~F. (by [10] proposition
2.a.8).

Let us give now a description of X = IIt (E + F, Nt)/u. As in §3 no. 2, we
define the r.i. space Et, F, by

(note that the r.i. space F, is not normalized, we have only 03BBFt(1) ~ 1). Then

(E + F, Nt) is order isometric to (Et + Ft, Mt), where:

(with Mt(f) = Nt(D03C8(t)·f) 03BBE(03C8(t))). So X is order isometric to  = 03A0t(Et + Ft, Mt)/u.
We decompose y= Y0() ~ p (f) Yf (with the notations of §1). Let E, F be the
limit r.i. spaces (defined in §3 no. 1) limt,u Et, lim,,,w F,. We have (see Remark 3):
0(03A9) ~ (E + F)() (isomorphically) but now the ultraproduct norm on Y0() is
given by:

Now if  ~ Yf we have  = (ft)t with limt,u ~ft~~ = 0. Clearly limt,u M(ft)
= limt,u ~ft~F, so (ft)t ~ f and conversely. So (with the notations of §3 no. 1)
Yf = Hif (and this is an order isometry). Suppose that (03BBE(03B5)/03B5) ~03B5~0 00 . Then if
 = (ft)*t ~ p we have for every a &#x3E; 0

thus letting a ~ ~ we obtain lim,,,, f**t(1) = 0, and consequently



318

limt,u M(f,) = limt,u ~ft~Et. In this case we obtain Yp = JE p (with equal norms).
So we obtain the following representation result:

LEMMA 21. If É([0, 1]) is not isomorphic to Li then

equipped with the norm

where:

As E and F are stable it is easy to show (by a reasoning analogous to that of §2)
that 9 is, ending the proof of theorem 19 (and proposition 20) in this case.

In the case where É([0, 1]) is isomorphic to L1(lim03B5~0(03BBE(E)/03B5)  oo) we have
still Yp = JEP but only with equivalent norm.
We introduce on Ep the Ll-semi-norm N1: N1() = limt,u~ft~1. Now X is

equipped with the norm:

Where now:

(and f’0 has the same expression then as in lemma 21).
Again the norm of X is stable (note that the Li semi-norm N1 is stable).

D
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