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Introduction

For a class -’4’ of partial orders and a cardinal x, let FA03BA(K) be the following
statement.

If 9 is a poset in K and D a family of K dense subsets of 9 then there exists a
filter G in Y such that G n D =1= QS, for every G E -9.

Let FA(3i) be FA03BA(K), for all x  2eo. Thus Martin’s Axiom (MA) is just
FA(ccc) while the Proper Forcing Axiom is FAN, (proper) (for information on
PFA see [Ba] or [Sh]). In the proof of the consistency of MA one performs a
finite support iteration of ccc posets and it is known that such iterations of

arbitrary length preserve all cardinals. Thus, one is able to show that MA is
consistent with 2N0 arbitrary large. However if one wants to iterate non-ccc
posets and preserve N1 countable support iteration is needed and such iterations
make CH true at limit stages of cofinality 03C91. This puts severe restrictions on the
value of the continuum in such models. In fact, it is known that some extensions
of MAN1 imply that 2N0 = N2. The weakest such axiom is FAN, for the class of
partial orders of size  2N0 which can be written as a composition of a U-closed
and a ccc poset (see [Ve]).

Thus, the problem arises to find a class MT of posets richer than the class of all
ccc posets for which FA(Jf) is consistent with the continuum being large. A
weaker version of this question is that of the consistency of FAN1(K) together
with 2N0 &#x3E; N2. This latter problem was addressed by Groszek and Jech ([GJ])
who isolated a dass 5i of posets possessing a certain type of fusion property and
proved the consistency of FAN1(K) with 2N0 &#x3E; X2. Their approach was to
consider an iteration along a suitably chosen úJ2-like directed set instead of the
usual linear iterations.

In this paper their result is extended for the case of the partial order Y of all
perfect trees ([Sa]). Thus, starting with a regular cardinal x &#x3E; N1 such that
03BA03BA = K, a ccc generic extension of the universe is found satisfying
MA + 2N0 = K together with the following statement CCC(P).
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For everyfamily -9 of 2N0 dense subsets of Y there is a ccc perfect subposet Y of
g such that D ~  is dense in , for all DE!0.

Clearly, CCC(Y) in the presence of MAK implies FA03BA(g). This generic extension
is constructed as follows. One performs a standard finite support iteration
forcing MA + 2N0 = K. Simultaneously, one generates many powerfully ccc
suborders of . This is done following a construction of Jensen ([Jen]), but
instead of 0 forcing is used at each stage to adjoin to each of the current perfect
posets a sufficiently generic tree. At limit steps, one ’seals’ the ccc of all the
posets produced so far by forcing with the m-power of their product. The
delicate part of the argument is showing that at a limit stage of cofinality Wl this
’sealing’ poset is ccc. The argument is in fact reminiscent of some applications of
Q. It then remains to verify that for every !0, a family of 2N0 dense subsets of g,
one of the ccc posets constructed captures the density of each DE!0. In fact, in
the above construction one can replace g by any of the standard posets for
adding a real, indeed any of the fusion posets from [GJ].
One consequence of CCC() concerns a question in the theory of degrees of

constructibility. While it is well-known that Sacks, Laver, and Silver forcing
notions introduce minimal reals over the ground model no such example of a ccc
poset is known in ZFC (Jensen ([Jen]) needed Q for his construction; Groszek
([Gr]) has constructed such an example under CH). Another one involves an old
problem of von Neumann (see [Ma, problem 261]) who asked whether there is a
weakly-distributive countably generated ccc complete Boolean algebra which is
not a measure algebra. CCC() resolves both of these questions. Namely, it

implies that there is a weakly distributive ccc poset which adjoins a real of
minimal degree over v Such a poset clearly cannot add random reals. To obtain
it one simply applies CCC() to a suitable family of 2N0 dense subsets of g to
extract a ccc suborder of Y having the required properties. It is also shown that
CCC() implies that i7 preserves all cardinals, and that in the presence of MA it
makes the ideal of so-sets  2N0-complete.

Finally, on the negative side, PFA is shown to imply the failure of CCC(Y). A
similar argument is used to answer a question of Miller who asked if MAN1
implies that the ideal of so-sets is closed under N1-unions. Namely, starting with
a model of PFA a generic extension is constructed which has the same subsets of
Wl as the ground model and which contains a dense set D of perfect trees such
that every real belongs to the closure of at most countably many members of D.
This easily implies that the reals can be covered by N1 so-sets. In addition, it
shows that MAN, does not imply FAN1().
The paper is organized as follows. Section 1 contains the basic properties of

perfect posets and some technical lemmas. The consistency of MA + 2N0 =
x + CCC(Y) is proved in Section 2. The above-mentioned applications are
deduced in Section 3. Finally, Section 4 contains the proof that PFA refutes
CCC() and the consistency proof of MAN1 + 2N0 = N2 + ‹FAN1().
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Our forcing terminology is mostly standard and can be found in either [Jec]
or [Ku]. We denote the ground model by E If P is a poset then Vp is the
Boolean-valued universe using RO(P). A subset D of P is called predense iff for
every p e P there exists q E D such that p and q are compatible. If P and 0 are
partial orders and P is a complete suborder of Q we identify Vp with a sub-
universe of Va.

1. Basic properties of perfect posets

In this section we present the basic definitions and properties of perfect posets
and prove some lemmas that will be needed subsequently. Much of the material
is well-known and is reproduced for the convenience of the reader. For more
details see [Ab], [BL], and [Mi].

Perfect trees

Let 203C9 denote the set of all finite {0, 1}-sequences ordered by extension.
T 9 203C9 is called a perfect tree if it is an initial segment of 203C9 and every
element of T has two incomparable extensions in T. Let g denote the poset of all
perfect trees partially ordered by inclusion. Thus,  is the well-known Sacks
forcing ([Sa]). For T ~  let [T] denote the set of all infinite branches through T.
Then [T] is a perfect subset of 203C9. For s E T let T = {t ~ T:s ~ t or t c sl. If Ti is
a perfect tree, for i  n, we shall identify ~T0,..., Tn-1~ with the perfect tree

Meet and join

Given two perfect trees T and S, the meet T ̂  S is defined as the largest perfect
tree contained in both T and S, if it exists, or else 0. Thus [ T ^ S] is simply the
perfect kernel of [T] n [S]. The join T v S is simply T ~ S. The following facts
are easily verified:

Perfect posets

A collection Y of perfect trees is called a perfect poset provided:

(a) (2 
 

CO)s E 9, for all SE 2 
 

03C9,
(b) if T, S c-,9 then T v S ~ , and if in addition, TAS =1= QS then T ^ S E Y.
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The order on Y is inclusion. Note that (b) implies that any two members of f!JJ
are compatible in  if and only if they are compatible in . If  is a perfect
poset and T a perfect tree let 9[ T] be the collection of all joins of finite subsets
of ~{Ts: s ~ T}. Under certain conditions Y[ T] will be a perfect poset. If 
and 9 are perfect posets let  x 9 be the collection of all  T,S~ where T C- 9 and
S ~ 2. Then Y x 9 is not a perfect poset since it is not closed under joins.
However, the collection of all joins of finite subsets of Y x f2 forms a perfect
poset.

The amoeba poset A()

To each perfect poset Y we associate the amoeba poset A(). Elements of A(P)
are pairs (T, n), where T e éP and n~03C9. Say that (T, n) K (S, m) iff T  S, n  m,
and T n 2m = S n 2m. Note that A(P) is ccc iff any finite power of Y is.

A(P)-generic trees

Suppose Y is a perfect poset and V is a universe of set theory containing P. If G
an W(Y)-generic filter over V let

T(G) = ~{T~2n:(T, N)~G}.
Then, by genericity, T(G) is a perfect tree and is called the A(P)-generic tree
derived from G. If Pi is a perfect poset, for i  n, and G is xi generic one
canonically defines a sequence ~Ti(G): i  n) of generic perfect trees.

Complete extensions

Let P and 2 be posets such that Y is a suborder of 2, and let V be a universe of
set theory. We say that 9 is a complete extension of Y over V iff for every n  úJ,

every D ~ V which is predense in Pn is also predense in f2n.

A(P)-weakly generic trees

Suppose Y is a perfect poset and V a universe of set theory. We say that a perfect
tree T is d(f!JJ)-weakly generic over V if for every D E V which is predense in 9 n ,
for some n, every m  co, and 1-1 sequence aE(T n 2m)n there exists a finite
subset X of D such that T(03C3)  vx.
Note that if T is W(&#x26;)-generic over a universe V containing Y then it is also

weakly generic over E Moreover a perfect subtree of a weakly generic tree is
itself weakly generic. This is not necessarily true for generic trees and is the main
reason for introducing the notion of weak genericity.
Let P be a perfect poset, V a universe of set theory, and 57 a collection of

perfect posets. Say that a perfect tree T is d(f!JJ)-weakly generic over (V, F) if for
every poset 2 which is a finite product of members of F, every D ~ V which is
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predense in Pn x 2, every S ~ 2, m  03C9, and a 1-1 sequence u c- (T n 2m)", there
exists R  S, and a finite subset X of D such that ~T(03C3), R&#x3E;  X.
One can generalize the above definitions for product of perfect posets. Thus,

suppose 9i is a perfect poset, for i  n. A sequence ~Ti: i  n~ of perfect trees is
called inA(Pi)-weakly generic over V if for every ~ni: i  n) E con, every D E V
a predense subset of inPnii, all m  03C9, and 1-1 sequences 03C3i~(Ti~2m)ni, for
i  n, there exists a finite subset X of D such that ~Ti(03C3i): i  n~  X. Similarly
one defines what it means that a sequence ~Ti: i  n) is weakly generic over
(V,F).
We now prove some lemmas that will be useful in the proof of the main

theorem. They may appear somewhat technical but the reader should bear in
mind that we are trying to extend perfect posets while preserving the predensity
of certain sets. Instead of adjoining a generic tree T to a perfect poset one wants
to adjoin a perfect subtree S of T. Unfortunately, S need not be generic itself.
However, weak genericity suffices. An additional complication is that we in fact
have a collection of perfect posets which we would like to extend while

preserving predense subsets of finite products of these posets. Special care needs
to be taken since we are not extending all of these posets at the same time. This is
the reason for introducing the notion of weak genericity over (V, F). Note that
Lemma 3 below is analogous to the product lemma in forcing.

LEMMA 1. Let 9 be a perfect poset and V be a universe of set theory containing
P. Suppose T is d(9)-weakly generic over E Then P[T] is a perfect poset.

Proof. Clearly, (a) in the definition of perfect posets is satisfied. To verify (b) it
suffices to show that for every R c- Y there is m E w and A ~ T n 2m such that:
R ̂  T equals {Ts: SE AI. To that end define Do to be the set of all S c- Y such
that S  R, and D1 to be the set of all S E f!JJ such that S n R is finite. Clearly,
Do u Dl is dense in P. By the weak genericity of T pick a finite subset X of
Do u D 1 such that T  X. Let X = X n Di, for i = 0, 1. Find m sufficiently
large such that if So E Xo and S1 ~ X1 then So n S1 ~ 2m. Finally, let A be the
set of s ~ T ~ 2n such that Ts{S:S~X0} D

LEMMA 2. Suppose 9 is a perfect poset, F is a collection of perfect posets
containing 9, and f2 is a finite product of members of 5. Assume that a perfect tree
T is W(Y)-weakly generic over (V,F), where V is a universe of set theory. Then
P[T] x f2 is a complete extension of 9 x f2 over E

Proof. Suppose that D ~ V is a predense subset of 9n x f2m. Without loss of
generality m = 1. Let ~S0,..., Sn-1, Q~ be an element of P[T]n x 2. We may
assume that for some l  n and some p  w, there exists a 1-1 sequence

03C3 ~ (T ~ 2p)l such that Si = T,(i) for i  l, and that S ~ P, for i  1. Let

R = ~Sl,..., Sn -1, Q&#x3E;. Then applying the weak genericity of T to D and R one
obtains an element of D which is compatible with ~S0,..., Sn-1, Q). 0



284

Suppose Yi is a perfect poset, for i  n. Let ~Ti: i  n) be inA(Pi)-weakly
generic over ( V, F), and let 9 be as in the lemma. Then, one shows in exactly the

same way that ( inPi[Ti]) x 9 is a complete extension of ( inPi) 2 over E

LEMMA 3. Suppose T is A(P)-weakly generic over (V, F). Let W be a universe
of set theory containing V ~ F ~ {T}, and let .2 be any perfect poset in F.
Assume that S is A(2)-generic over W Then ~T, S) is A(P) x A(2)-weakly
generic over (V,F).

Proof. Let W be any finite product of posets in F, let D E Y be predense in
Pn x 9"’ x R. By a density argument, using the fact that all the relevant
information is in W, it suffices to show that for every (Q, h) ~ A(2) there exist
(Q*, h) ~ A(2), R* ~ R, and a finite subset X of D such that (Q*, h)  (Q, h),
R*  R, and for every 1-1 sequences 03C4 ~ ( T ~ 2’)" and 03C3~(Q* n 2h)m

~T(03C4), Q*(03C3), R*~  X.
To that end fix an enumeration ~03C3i:i  N&#x3E; of 1-1 sequences in (Q n 2h)’tl.
Inductively build: a sequence ~Qi: i  N) of perfect trees, a decreasing sequence
~Ri: i  N) of conditions in R, and a sequence ~Xi: i  N) of finite subsets of D
as follows.

Set Qo = Q, Ro = R, and Xo = 0. Suppose Qi, Ri, and Xi have been
constructed. Considering ~Qi(03C3i), Ri~ as an element of 9"’  R and using the
weak genericity of T, find ~Q*i+1, Ri+1~  ~Qi(03C3i), Ri~ and Xi+ 1 E [D] 03C9 such
that for every 1-1 sequence 03C4~(T~2h)(n)

Then set

In the end set and .

The higher dimensional analog of this lemma is proved in exactly the same
way. Thus, if ~T0,..., Tn-1&#x3E; is inA(Pi)-weakly generic sequence of trees over
(V,F) and if ~S0,...,Sm-1&#x3E; is jmA(2j)-generic over W which contains
V L) 57 then ~T0,..., Tn-1, S0,..., Sm-1&#x3E; is weakly generic over (V, F).

LEMMA 4. Let V be a universe of set theory, P and 2 perfect posets, and 57 a
collection of perfect posets such that 2 ~ F. Suppose that ~ T, S) is A(P) x A(2)-
weakly generic over (V,F), and that Sr does not belong to V, for every r E S. Then T
is W(Y)-weakly generic over ( V, Fu{2[S]}).

Proof. Let W be a finite product of posets in F, and let D E V be a predense
subset of 9" x 2[S]m x f!Jl, for some n, m  OJ. Since 2[S] n V = A ~ V, it follows
that D is actually predense in f!JJn x 2m x W.
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Suppose ~Q0,...,Qm-1,R~~ 2[S]m x -4 and 1  03C9 are given. We have to find

and finite X ~ D such that for every 1-1 sequence 03C4 ~ (T ~ 21)n

We may assume that for some r  m, there is for each i  r an si E S such that

Qi = SSi, and that Qi ~ 2, for i  r. Then find p  1 and a 1-1 sequence

(tao , ... , tr-l) in (S n 2p)r such that for all i  r, si c ti. Using the fact that ~T, S)
is weakly generic and that 9 E IF we find

and finite X ~ D such that for all 1-1 sequences 03C4 ~ (T ~ 2p)n and 6 E (S n 2p)r

Set then Q*i = Sti for i  r. Then ~Q*0,...,Q*m-1,R*~ and X are as

required. n

Like the previous two, this lemma can be generalized to higher dimensions.
Thus, if Yi, for i  n, and 2j, for j  m, are perfect posets and

~T0,...,Tn-1,S0,...,Sm-1~ is a sequence of ( inA(Pi)) ( mA(2j))-
weakly generic trees over (V,F), and if (Sj)r ~ V for every r~Sj, then

~70,..., Tn-1~ is inA(Pi)-weakly generic over (V,F ~ {2j[Sj]:j  m}).

2. Consistency of CCC(P) + MA + 2"- = K

In this section we prove the relative consistency of CCC() + MA together with
the continuum arbitrary large. Starting with a cardinal x &#x3E; N1 such that

03BA03BA = 03BA, we perform a standard finite support iteration of ccc posets of length K
forcing MA + 2N0 = K. Simultaneously, in order to obtain CCC(), we generate
many ccc perfect posets. Let HK be the collection of all sets hereditarily of size
 K. For each 03B1  03BA and f : a ~ HK which is in the ground model, a perfect poset
f!JJ f will be defined in the 2a-th stage of the iteration. Special care will have to be
taken to ensure that all these posets satisfy the ccc and that for every family -9 of
x dense open subsets of g in the extension there exists f E (HK)V such that Y
captures the density of all sets in D.

THEOREM 1. Assume ZFC. Let K be a cardinal &#x3E; N1 such that 03BA03BA = K. Then
there exists a ccc poset P such that vP satisfies CCC(Y) + MA + 2N0 = 03BA.

Proof. As described in the introduction we shall build inductively a finite
support iteration P03B1; Q03B1: a  K) of ccc posets of size  K. We shall assume that
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the whole iteration is embedded in some reasonable way in HK, and for every
f ~(H03BA03BA)V define a name Pf for a perfect poset and a name Tf for a perfect tree.
If dom( f ) = a, then f!/J f will be defined in VP2- and Tf will be defined in VP2.1
To begin, let P &#x3E; be the collection of all joins of finite subsets of

{(203C9)s:s~203C9}, and set Qo = A(P &#x3E;). In VP1, let T &#x3E; be the generic tree
introduced by 00. For odd ordinals a let Q03B1 be the ccc poset generated by some
fixed bookkeeping device which guarantees that all ccc posets of size  03BA appear
at some stage. This will make sure that MA + 2N0 = K holds at the end.
Now suppose we are at an even ordinal 03B4 = 2a and ~P03BE; Q03BE: 03BE  03B4~ has

already been defined as well as Pf and Tf, for all f E (H03B103BA)V.
CASE 1. a is a successor, say a = 03B2 + 1. Suppose f E (H03B103BA)V. If f(f3) is a canonical

P203B1-term for a perfect subtree of Tf03B2 define

Otherwise let f!JJ f = Pf03B2. By Lemma 1, f!JJ f is a perfect poset. Let Q2a be the
finite support product of the A(f), for f ~ (H03B103BA)V. In VP203B1+1 1 for each f let Tf be
the A(f)-generic tree introduced by Q2a provided that f!JJ f = Pf03B2[f(03B2)]. If
.
CASE 2. et is a limit ordinal. For each f e (H03B103BA)V let

Let Q0203B1 be the finite support product of cv copies of the Pf, and let Q1a be the
finite support product of the A(Pf), for f ~ (H03B103BA)V. Finally, let Q203B1 = Q0203B1 x Q1a.
In VP203B1+1, similarly to Case 1, for f ~ (H03B103BA)V define Tf to be the A(f)-generic tree
introduced by Q1203B1, unless for some 03BE  03B1 Pf = f03BE. In that case let Tf be Tf Í ç
for such 03BE.

This completes the inductive construction. Let the final poset P be the direct
limit of ~P03B1:03B1  03BA~.

LEMMA 5. Q03B1 is ccc in VP03B1, for all a  K.

Proof. For odd ordinals a this is part of the definition of Q03B1. We prove by
induction the statement for even ordinals 03B1  K. To simplify notation let Vx
denote the boolean-valued universe VlP’a. Notice that if a is a limit ordinal and
f ~ (H03B103BA)V, then Q203B1 includes as a factor the product of 03C9 copies of (!jJ f and hence
f is a-centered in V203B1+1. Also, if 03B1 = 03B2 +1, f ~ (H03B103BA)V, and f03B2 is a-centered in
V203B2+1, then f is a-centered in V2a. Finally, if (!jJ f is cr-ccntcred, then so is A(f).
All of this implies that the least ordinal a for which the lemma fails is of cofinality
cvl. Then a = 2a, and by a standard argument, we may assume for some
fo,..., h-l E (Hx)V and n  cv, the poset iknfi is not ccc in V2a. Fix such
fo,..., h-l and n, with k being minimal. It follows that if i  k then (!jJ fi is a
proper extension of f03BE, for all 03BE  a. Suppose A E Y2a is an uncountable

maximal antichain in iknfi. By a genericity argument it follows that if i  k,
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and if 03BE  03B1 is a sufficiently closed ordinal of countable cofinality then f03BE has
a countable dense subset. Thus, by a Skolem-closure argument, we can find a
limit ordinal 03B4  et such that, setting Aa = A n iknfi03B4, the following hold:

(i) Aa belongs to the model V203B4,
(ii) Aa is a maximal antichain in iknfl03B4,

(iii) fi03B4 is a proper extension of fl03BE, for 03BE  03B4 and i  k.

We shall show that Aa remains a maximal antichain in iknfi. Hence, A = Aa,
contradicting the assumption that A is uncountable. To that end we shall prove
a more general fact.

LEMMA 6. Suppose YJ is such that 03B4  ~  et, and let F~ = {: i  k}. Then
the following hold :

(a) ik is a complete extension of ik over V203B4,
(b) ~Tf0~,..., Tfk-1~~ is ikA(fi~)-weakly generic over (V203B4, F~).

Proof. By a simultaneous induction on YJ. For ~ = 03B4, (a) is immediate, while (b)
follows from property (iii) of 03B4 above, since then ~Tf003B4,...., Tfk-103B4~ is

ikA(fid03B4)-generic over V203B4 and F03B4~ V203B4.
Suppose ~ = 03BE + 1 and the lemma is known for 03BE. Let us assume that for some

1  k fi(03BE) is a perfect subtree of Tfi03BE iff l  i  k. Thus Pfi~ = Pfi03BE, for i  l,
and Pfi~ = Pfi03BE[fi(03BE)], for l  i  k. So, ~fl(03BE),..., fk-1(03BE)~ is likA(Pfi03BE)-
weakly generic over (V03B4, F03BE). Then, by the generalization of Lemma 2, it follows
that ikPfi~ is a complete extension of ikPfi03BE over V203B4. To prove (b),
notice that

Tf003BE,....,Tfl-103BE, fl(03BE),..., fk-1(03BE)&#x3E; is ikA(Pfi03BE)-weakly generic over
(V203B4, F03BE.)

Hence, by Lemma 4, Tfp03BE,..., Tfl-103BE&#x3E; is ilA(Pfi03BE)-weakly generic over
(V203B4, F03BE ~ {Pfi~: li  i  k}). Now, if i  1 then Tfi~ = Tfi03BE. On the other hand
Tfi~,..., Tfk-1~&#x3E; is the likA(Pfi~)-generic sequence of trees over V203B4
adjoined by Q2~. Hence, by the multidimensional version of Lemma 3,
Tf0~,...,Tfk-1~&#x3E; is ikA(Pfi~)-weakly generic over (V203B4,F~). This

completes the proof for successor ordinals YJ.

Suppose now ~ is a limit ordinal. Then for i  k, Pfi~ = ~03BE~Pfi03BE. Hence (a)
is immediate. To prove (b), let us assume that for some l  k, for every i  k
there is 03BE  YJ such that Pfi~ = Pfi03BE if and only if i  1. Pick 03BE  ~ sufficiently
large such that if i  l then Pfi~ = Pfi03BE. It follows that if 03BE  03B6  ~ and i  1 then

Tfi03B6 = Tfi03BE. Together with the inductive assumption this implies that

Tf0~,..., Tfl-1~&#x3E; is ilA(Pfi~)-weakly generic over (V203B4,F~). Finally,
Tfl~,..., Tfk-1~&#x3E; is the likA(Pfi~)-generic sequence of trees introduced by
Q2". Hence, by the generalization of Lemma 3 again, Tf0~,..., Tfk-1~&#x3E; is
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ikA(Pfi~)-weakly generic over (V203B4,F~). This completes the proof of
Lemmas 5 and Lemma 6. 0

LEMMA 7. Vp satisfies CCC(Y).
Proof. For f~(H03BA03BA)V let us define:

Since for each a  K, Pf03B1 is a-centered and cof(03BA) &#x3E; N1, it follows that Pf is ccc
in Vp being a K-increasing union of 6-centered posets. Suppose that

D03B1: 03B1  03BA&#x3E;~VP is a sequence of dense open subsets of g. We shall build

f~(H03BA03BA)V such that D03B1 ~ Pf is dense in Pf, for every 03B1  03BA. Although
D03B1: 03B1  K) is a member of Vp it is important to arrange that the whole
construction of f takes place entirely in E Since the whole iteration is embedded
in Hf in a reasonable way, every P-term for a real is essentially a countable
object, modulo elements of x, and hence belongs to Hf. Thus, let us fix some
enumeration 03C403B1: 03B1  03BA&#x3E; of all P-terms for perfect trees and an enumeration
03C303B1: ce  03BA&#x3E; of all P-terms for ordinals  K. We build f recursively as follows.
Suppose f03B4 has been defined for some ordinal 03B4  K. Pick the least pair of
ordinals (ce, 03B2&#x3E; such that 03C403B1 and a pare P203B4-terms, and

03C403B1~Pf03B4 and there is no T ~ D03C303B2 ~ Pf03B4 with T  Ta.
For simplicity, let us assume that every condition in 1P2b+ 1 forces that Tf03B4  03C403B1.

Now, since Dap is forced to be a dense open subset of i7, there exists y &#x3E; 03B4 and a

P203BC-term r such that

03C4~D03C303B2 and 03C4  Tf03B4.
Let us extend f03B4 to 03BC + 1 by setting f(03BE) equal to some canonical term for 0,
for 5  03BE  ,u, and setting f(J-l) = r. One can show that thus defined f works.
This completes the proof of Lemma 7 and Theorem 1. D

3. Applications

The idea of thinning out Sacks forcing to a ccc poset is due to Jensen ([Jen]),
who used it to produce a non-constructible 03C01 2 singleton of minimal degree over
L. The principle CCC(.9) is an attempt to capture the combinatorial content of
Jensen’s construction compatible with MA +‹ CH. We now show that it can be
used to extract ccc suborders of Sacks forcing having some of the properties of
.9 itself. Recall that a poset Y is called weakly distributive if and only if any
function f~03C903C9 which belongs to VP is dominated by some g E 03C903C9 from the
ground model V. If V is a universe of set theory and x is a real which does not
belong to V, x is said to be minimal over V provided for every y E V[x], either
YE Y or V[y] = V[x].
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PROPOSITION 1. Assume CCC(Y). Then there is a weakly distributive ccc
poset Y which adds a minimal real over the ground model.

Proof. Let si denote the collection of all countable antichains in g. For each
sequence A = An: n  03C9&#x3E; of elements of sV let D(A) denote the set of all T ~ g
such that either for every n  w there is F ~ [An]03C9 such that T  F or else
there exists n such that T ̂  R = 0, for every R ~ An. By a fusion argument one
shows that D(A) is a dense subset of . Let  be a ccc perfect poset such that
D(A) ~  is dense in , for all A e .s;1’w.

CLAIM 1.  is weakly distributive.
Proof Let r be a -name for an element of 03C903C9. For each n  cv, let An be a

maximal antichain of elements of Y deciding i(n). Since Y is ccc each An is
countable. Let A = An: n  03C9&#x3E; and fix R ~ D(A) ~ . Since An is a maximal
antichain in Y, for each n, there exists Fn E [An] 03C9 such that R  V Fn. Define the
function g, E cv" by letting

gR(n) = sup{m  03C9: for some T~Fn T 03C4(n) = m}

Then it follows that R  r x gR . 0

Let us say that r is a canonical name for a real if it is a countable subset of

203C9 such that: if (S, s), (T,t)~03C4 and s and t are incompatible, then

S ̂  T = 0; and if n  m then for every (S, s) e r with s~ 2" there exists (T, t) e T
with t e 2m such that T  S and set. For a canonical name r let D(i) be the
collection of all perfect trees T such that: either there exists f E 203C9 such that if

(S, s) er and S A T ~ QS, then s c f, or for every n there exists m  n and a 1-1
function 9: T n 2" ~ 2m such that if (R, r)~03C4 with r E 2"‘ and R A T ~ 0, then
r = cp(s) for some s E T n 2n. Again, by a usual fusion argument, one shows that
D(i) is a dense subset of . Suppose now that 9 is a perfect ccc poset such that
D(i) ~  is dense in Y, for all canonical names T.

CLAIM 2.  adds a minimal real over the ground model.
Proof. Suppose a is a -term for a new real. For each se 203C9 let AS be a

maximal antichain contained in PT~: T s c al, and let T = {(T, s): T ~ As}.
Since a is forced not to belong to the ground model, every element of D(03C4)
satisfies the second clause in the definition of D(r). Now, given T ~ G n D(T),
where G is a generic filter, one recovers the generic real as U {~-1(t): t ~ a}.
Thus, V[a] = V[G]. D

Our next application answers a question of Baumgartner who asked if it is

consistent with 2N0 &#x3E; N2 that i7 preserves the continuum.

PROPOSITION 2. Assume CCC(Y). Then Y preserves all cardinals.
Proof. Since i7 has the (2N0)+-cc, the only cardinals it could collapse are

 2N0. Suppose K  03BB  2N0 are cardinals and f is an -name for a function
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mapping x onto 2. For each ce  03BB, let

D03B1 = {T~:for some 03BE  x T f(03BE) = 03B1}.

Then Da is a dense open subset of Y. Now by applying CCC() we obtain a ccc
poset Y such that Da n 9 is dense in , for all ce  2. Then Y collapses 2 to x.
Contradiction. D

Recall that A s 203C9 is called an so-set iff for every perfect subset P of 2o there
exists a perfect Q ~ P such that A n Q = 0. Thus, A is an so-set iff the set of all
perfect trees T such that [T] n A = 0 is dense in V. A standard fusion

argument shows that the collection of so-sets is a 6-complete ideal. We now
show that MA + CCC() implies that this ideal is  2N0-complete. In the next
section we shall show that MA does not suffice for this result.

PROPOSITION 3. Assume MA + CCC(Y). Then the union of less than

continuum so-sets is an so-set.

Proof. It suffices to show that for every 1, a collection of so-sets of size
x  2N0, there exists a perfect set P disjoint from U 1. For each A ~ X let D(A) be
the collection of all T~ such that [T] n A = 0. By CCC() find a ccc perfect
poset Y such that D(A) n &#x26; is dense in Y, for all A e i. Now consider the
amoeba poset A(). It satisfies the ccc and for every A ~X the set E(A) of all
(T, n) ~ A() such that T E D(A) is dense. For each s~203C9 let F, be the set of all
(T, n) E A() such that either s ft T or there exist distinct t1, t2 ~ T ~ 2" such that
s ~ t1, t2. Now, applying MA,, to  and the union of {E(A): A ~ X} and
{Fs: s ~ 2 03C9}, one obtains a perfect tree T such that [T] n A = ~, for all A ~X.

~

4. PFA and the négation of CCC()

In the previous sections we have seen that CCC() is relatively consistent with
MA,,, and consequently, so is FA,, (Y). Although FAN1() follows from PFA we
show that CCC() does not. We then show that MAN, does not imply FAN1().
This is accomplished by starting with a model of PFA and generically adjoining
a dense subset D of , such that every r~203C9 is a branch through at most
countably many members of D. This implies that FAN1() fails. The forcing does
not add new subsets of 03C91 and hence MA + 2N0 = N2 remains to hold in the
extension. For this argument we need only assume a fragment of PFA whose
consistency does not require any large cardinal assumptions. We shall indicate
how this can be established at the end of this section.

Let us first make some definitions which will facilitate the proofs. Given a
function f : co ~ co such that f(n) &#x3E; n, for all n~03C9, say that a perfect tree T is f-
thin provided for all n ~ 03C9: card(T f(n))  card(T r n) + 1. A sequence

f03B1: a  03BA&#x3E; of functions in wro is called a weak scale provided it is increasing and
unbounded in 03C903C9, *. The following two lemmas will be needed subsequently.
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LEMMA 8. Suppose X gi 2°’ has cardinality  2N0, and f E ccW is such that for all
n  03C9, f(n) &#x3E; n. Then every perfect tree T has an f -thin perfect subtree S such that
[S] n X = QS.
Proof First find an f-thin perfect subtree R of T. Then build a collection

Rx: x ~ 203C9&#x3E; of perfect subtrees of R such that if x ~ y then [Rx] n [RY] = QS.
Then for some xE2w, [Rx] n X = QS. Set S = Rx. D

Suppose K is an ordinal. Let us say that a subset C of [K]n is cofinal iff for
every OC  K there exists x ~ C with min(x) &#x3E; et.

LEMMA 9. Let f03B1: 03B1  K) be a weak scale and r03B1: 03B1  K) an enumeration of
203C9. Suppose for every et  K, T03B1 is anfrz-thin tree such that r, e [T03B1], for 03BE  a. Let

C be a cofinal subset of [03BA]n. Then there are x, y E C such that if et E x and fi E y
then [T.] n [T03B2] = QS.

Proof. For XE [K]n let Tx be the union of the T03B1, for et E x. Let fx E coû’ be the

pointwise infimum of the fa, for a E x. It follows that for every m,

card( Tx fx(m))  (2m + 1)n.

Since {fx: x ~ CI is unbounded in w’,  *, there exists m such that the set

I = {fx(m): x E C} is infinite. This implies that for every 1 E 03C9 there exists x ~ C

such that card(Txl)  (2m + 1)n. By an application of Kônig’s lemma, find
F ce K of size (2m + 1)n such that for every 1 E cv there is x ~ C such that

Now pick any y E C with min(y) &#x3E; sup(F). Then, r03B1~[Ty], for all a E F. Fix 1
sufficiently large so that r03B1l~Ty, for all et E F, and x E C such that Tx f 1 is

contained in {r03B1l: 03B1~F}. It follows that [ Tx] n [ Ty] = 0, as desired. D

THEOREM 2. Assume PFA. Then there is a family D of 2N0 dense open sets of
EX such that for every ccc suborder Y of Y, there exists D~D such that

D~=~.
Proof. Let us fix a weak scale f03B1: ce  W2) such that f«(n) &#x3E; n, for every ce,

and n. Let also r03B1: a  03C92&#x3E; be an enumeration of 203C9. For a  cv2 let:

D03B1 = {T~: T is f03B1-thin and r03BE~[T], for all 03BE  03B1}.

Then, by Lemma 8, Da is a dense open subset of . Let D = {D03B1: 03B1  03C92}.
Suppose Y is a subposet of i7 such that Drx n f!JJ =1- 0, for all a. We shall find a
proper poset -4 which introduces an uncountable antichain to . An application
of PFA then implies that Y is not ccc.
To begin, select T03B1 ~ D03B1 ~ , for each a  W2. Let W be the usual u-closed

collapse of W2 to have cardinality N1. In V61 fix a cofinal subset C of 03C9V2 of order
type mi , and let 03B5* be the poset of all F~[C]03C9 such that for every distinct
a, fi c- F [T03B1] ~ [T03B2] = 0, ordered by reverse inclusion. A standard A-system
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argument together with Lemma 9 implies that é* is ccc. Pick a condition F c- 6*
which forces that the generic filter is uncountable and let g be é* below F. It
follows that à = W *03B5 introduces an uncountable antichain to 9. D

THEOREM 3. Assume PFA. Then there is a poset 9 such that Ve satisfies
MA + 2N0 = N2 + ‹ FAN1().

Proof. As in the proof of Theorem 2, let us fix an enumeration r03B1: a  W2) of
2°’ and a weak scale f03B1: ce  W2) in 03C903C9 such that fin) &#x3E; n, for all a, n. Define the

poset 9 as follows: p~ iff p is a function which maps some a  W2 into i7 such

that:

(a) P(1) is f03BE-thin, for 1  a,

(b) r~ ~[p(03BE)], for ri  03BE  a,

(c) there is a partition a = Uiew Xi such that for every i, and 03BE, ~ E Xi, if j ~ ~
then lP(1)1 n [p(~)] = ~.

We shall show that 9, ordered under reverse inclusion is the required poset.
Clearly, 9 is 03C3-closed. Assuming PFA we show that more is true.

LEMMA 10 (PF A). 9 does not add new 03C91-sequences of ordinals.
Proof. It suffices to show that if D is a family of Ni 1 dense open subsets of 9

then n Çfi =1= 0. Let G be the canonical 9-generic filter and let g = U G. Then g
maps wi to i7, and every proper initial segment of g is in 9. Moreover, for every
D c- -9 there exists 03B4  wi such that g03B4 E D. Let W be the usual u-closed collapse
of wi to have cardinality N1. In V*** define the poset f2* as follows. Let F~2*
iff F~[03C9V2]03C9 and for every distinct 03BE,~~F, [g(03BE)] n [g(~)] = 0. The order is
reverse inclusion. Finally, let 2 be the finite support product of oi copies of f2*.

LEMMA t 1. f2 has the ccc in V*.
Proof. Live in V*. Suppose {q03B1: a  03C91} is an uncountable antichain in il.

We may assume that for some n, qa E (2*)n for all a. Let

By a counting and a A-system argument we may assume that card(F’) = ki does
not depend on ce, and by throwing away the root of the A-system, that

F’ n Fi03B2 = 0, for distinct a and p. For a  Wl, let ma be such that for i  n and

any distinct 03BE, ~~Fi03B1 g(03BE) n g(l) g 2m03B1. Let

be the increasing enumeration. By going to suitable subsequence again, we may
assume that m03B1 = m, for all et, and that there exist tji ~ 2m such that

g(ai03B1,j) n 2m = tij, for all a. Note that tij1 and tij2 are disjoint for jl ~ j2. Moreover,
we may assume that if et  /3 then ai03B1,j  a1,j’ for all i  n, and j  ki . For each i
let li  ki be the least j, if it exists, such that the set
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is unbounded in cv2, and let 03B4 be the supremum of U {Aij:j  li}. Since 03B4  03C9V2,
and g 03B4 ~, there is a partition 03B4 = ~i03C9Xi such that for all i and distinct j,
ri ~ Xi, [g(03BE)] ~ [g(q)] = 0. By shrinking one more time we may assume that for
some f : co x 03C9 ~ w, all a and j  li, a’,j E Xf(i,j). This implies that for all i  n,

j  li, and distinct a and 03B2, [g(ai03B1,j] ~ [g(a’,j] = ~. Finally, for each a let

E03B1 = {ai03B1,j: i  n and j  li}.
Then {E03B1: a  03C91} is cofinal in co’. Hence, by Lemma 9, there are a and 03B2  Co,
such that for all i  n and j  li, [g(ao03B1,j] ~ [g(a’,j] = ~. This implies that qa and
q, are compatible. This contradiction finishes the proof of Lemma 11. D

Now, to prove Lemma 10, notice that in V2 g satisfies all the properties in
the definition of Y except that its domain is 03C9V2. By applying PFA to a suitable
family of N1 dense subsets of Y * * f2 we can find a ’copy’ of g in V, i.e. for some
03B4  03C9V2 a condition p e P with domain 03B4 such that for every D c- -9 there exists

ce  03B4 such that p03B1 E D. This p clearly belongs to ~D, as required. 0

To finish the proof of Theorem 3, note that since V has the same subsets of
03C91 as V, it satisfies MA + 2N0 = N2. If G is the generic filter let D be

U {ran(p): pe Gl. Then, by genericity and Lemma 8, it follows that D is a dense
subset of . Moreover, by (c) in the definition of 9, and the fact that no subsets
of col are added, every r~203C9 is a branch through at most countably many
members of D. Using the fact that every perfect tree has 2N0 incomparable
subtrees one can split D into disjoint dense sets D03B1, for a  ay . Then there

cannot exist a filter H in g which intersects all the Da since this would yield a
real belonging to the closure of uncountably many members of D. Thus,
FAN1() fails. D

REMARKS. Note that in the above model the reals can be covered by N1 so-
sets. For if one sets A03B1 = 203C9 B U Da, for a  col, then the A03B1 are so-sets whose
union covers 203C9. Moreover, forcing with i7 over this model collapses 2N0. To see
this let T03B1: a  W2) be the sequence of generic trees added by . If now r is y-
generic over V* then the set {03B1: r E [T03B1]} is a cofinal subset of wi of order type
03C91.

In the proof of the consistency of PFA large cardinals are used. However, for
the proof of Theorem 3 this is not necessary. Namely, starting with a model of
GCH one performs a countable support iteration P03B1; Q03B1: a  03C92&#x3E; of proper
posets of size  N1, forcing with all such posets along the way. Simultaneously,
one generates a weak scale f03B1: a  W2)’ an enumeration r03B1: a  03C92&#x3E; of 203C9, and
an enumeration P03B1: a  03C92&#x3E; of the poset Y from Theorem 4 as defined in the
final model VP03C92. One takes care that at each stage 1J the sequences f03B1: ce  03B4&#x3E;,
r03B1: 03B1  03B4&#x3E;, and p03B1: 03B1  03B4&#x3E; belong to the current model VP03B4. At stage à of
cofinality 03C91 one does the following. If f03B1: 03B1  03B4&#x3E; is a weak scale in VP03B4,
r03B1: a  03B4&#x3E; is an enumeration of the reals in VP03B4, and if dom(Pa) is less than 03B4, for
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all a  03B4, consider the poset Yô = {p03B1: a  03B4}, ordered under reverse extension.
Suppose 9â is u-closed and for each a  03B4, the set of p E Y. with dom(p)  a is
dense in Yâ. Let 203B4 be defined in VP03B4*03B4 in the same way 9 was defined in
Lemma 10 replacing Q)2 by 03B4 and ignoring the collapsing poset . Then let
Q03B4 = 03B4*203B4. If any of these conditions are not satisfied let Q03B4 be the trivial
poset. Note that Q03B4 has size  N1 and the proof of Lemma 11 shows that it is
proper. A standard Skolem closure argument shows that the poset Y defined in
VP03C92 is Ni-Baire. Thus, forcing with Y over VP03C92 one obtains the desired result.
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