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Introduction

The space of principally polarized abelian surfaces has been studied extensively.
Gottschling [2, 3], see also [ 1 ], has determined the singularities of this space.
They occur in codimension 2 and 3. The moduli spaces of abelian surfaces with
non-principal polarization have been studied much less. It turns out that there
again the situation is very complicated. However, in this situation we have a
natural notion of level structure. Our main objects of interest in this paper are
the moduli spaces .91 l,p of (1, p)-polarized abelian surfaces with level structure,
i.e., of triples (A, H, a) where A is an abelian surface defined over the complex
numbers, H is a polarization of type (1, p) on A, and a is an according level
structure on A. (For definitions see, e.g., [4].)

Since singularities in moduli spaces of abelian surfaces arise from surfaces
with non-trivial automorphism groups, and since the presence of a level

structure breaks many of these symmetries, one can hope to be able to classify
the singularities of the spaces A1,p. Our aim is to show that this is indeed the
case. In fact, we determine the singularities of a suitable toroidal com-

pactification of .91 l,p.
For simplicity we shall always assume that p is a prime and that p ~ 2. In

order to describe our results we introduce some notation which we will use

throughout the paper. Let

be the Siegel upper half space of degree 2. Then, the symplectic group defined with
respect to the standard symplectic form J,
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acts properly Y discontinuously on 2 Namely, g 9 = C B) c- Sp(4, Q), where .4,
B, C, D denote 2 x 2 matrices, maps Z~J2 to (AZ + B)(CZ + D)-1. We also
note that if g is symplectic and of this form, then its inverse can be expressed as

In Sp(4, Q) we consider the arithmetic subgroup

of symplectic transformations which preserve (1, p)-polarizations and level

structures. By taking the quotient Of Y2 with respect to the left action of rl,p we
obtain

the moduli space of (1, p)-polarized abelian surfaces with level structure. d l,p has
at most quotient singularities. We denote by A*1,p a suitable toroidal com-
pactification of .91 l,p which we shall briefly describe at the beginning of section 2.
See chapter 1 of our forthcoming book [5] for details about this com-

pactification which is intended to be an analogue for the Igusa compactification
of the moduli space of principally polarized abelian surfaces.

Denote by r a b)~SL(2, Z)|a = d - 1(p), b ~ c = 0 the prin-
cipal congruence subgroup of level p in SL(2, Z) which acts on

J1 = {z~C| Im z &#x3E; 01. The quotient X°(p) = F,(p)BY, is called (open) modular
curve of level p. Its natural compactification to a smooth curve by adding points
at the (p2 -1)/2 cusps is denoted by X(p) and also called modular curve of level p.
A non-isolated 3-dimensional singularity is said to be of transversal type ’X’

along C, where C is a smooth curve, if it locally is isomorphic to a product of C
and an isolated surface singularity of type ’X’. The surface singularities of
interest to us are the rational double point AI which is isomorphic to C’/l ± 12},
and the rational triple point C3,1 which is isomorphic to C2/{03C1k12|k = 0, 1, 2},
p = e203C0i/3. The singularity types Ai resp. C3,1 occur at the vertices of the affine
cones over the rational normal curves of degree 2 in P2 resp. of degree 3 in P3.
An isolated 3-dimensional cyclic quotient singularity is of type ’1 n(q1, q2, q3)’

if it is determined by the action of the diagonal matrix diag(03B6q1, (Q2, 03B6q3), 03B6 = e203C0i/n,
as a generator of Zn . Note that a cyclic quotient singularity of type 1 2(1, 1, 1)
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occurs at the vertex of the cone over the Veronese surface in P s. See [8, §1] for
details.

We summarize our results in

THEOREM (2.15, 3.4). sli,p contains two disjoint curves C*1 and Ci isomorphic
to X(p) such that A*1,p is singular with transversal A1-type along Ci, and with
transversal C3,1-type along C*2. The complement A*1,p - (CT u C*2) contains only
isolated cyclic quotient singularities which ail lie on the boundary A*1,p - A1,p,
namely (p2 -1)/2 singularities of each of the types 1 2(1, 1, 1) and 1(1,2, 1).
The first section is devoted to characterizing the singularities in the moduli

space A1,p in case p  5. In doing so we rely on work of Gottschling ([2, 3]) and
Ueno ([9]). In section 2 we study the toroidal compactification A*1,p of A1,p in
order to determine its singularities on the boundary sli,p - si l,p. In the final
section we treat the case p = 3 which is slightly différent from p  5.

1. Singularities in the moduli space A1,p

We first determine the isotropy subgroups contained in 03931,p corresponding to
fixed points in g 2 up to conjugacy, then study their respective fixed varieties,
and finally characterize the corresponding quotient singularities in .91 1,p .

DEFINITION 1.1. The following four matrices are elements of finite order in

03931,p:

PROPOSITION 1.2. Every non-trivial element of finite order in rl,p, p  5, is
conjugate with respect to Sp(4, Z) to exactly one of the following eight matrices:

(a) Involutions: S and T.
(b) Elements of order 4: U and U-1.
(c) Elements of order 6: V and V-1.
(d) Elements of order 3 : V2 and V - 2.

Furthermore, U2 = V3 = S.
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Proof. Gottschling has determined the conjugacy classes of all elements of
finite order in Sp(4, Z) ([2]; see [9, 1, §2; II, Appendix] for representatives of all
56 conjugacy classes). Since rl,p is a subgroup of Sp(4, Z) we only need to
characterize which of these classes contain elements of r 1,p . Two necessary
conditions are given by

LEMMA 1.3. Suppose that M E Sp(4, Z) is conjugate to an element of 03931,p and let
XM(À) = det(M - 03BB14) be the characteristic polynomial of M. Then,

(1) Xm(Â) is divisible by (À - 1)2 modulo p;
(2) Xm(Â) is divisible by À - 1 modulo p2.

Proof. We may assume M ~ 03931,p. With the diagonal matrix F =

diag(l, 1, 1, p), we obtain

from which both statements of the lemma are easy consequences. D

We continue with the proof of Proposition 1.2. For the convenience of the

reader we reproduce part of the classification of matrices of finite order in
Sp(4, Z) according to their characteristic polynomials from Ueno [9, II, p. 198]:
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Applying 1.3(1) with p  5 yields that the classes 1(2), 11(2), 11(3), 11(4), III(1),
111(3), 111(6) and all of the classes IV(k) with the possible exception only of IV(4)
in case p = 5 do not contain elements of rl,p. Moreover, class IV(4) can be
excluded even if p = 5 by 1.3(2).
Of the remaining classes, 1(1) is the identity. II(1) contains two involutions

which are conjugate to S and T of (a). For the element conjugate to S this is
obvious, for the other representative given by Ueno we have

Finally, 111(2), 111(4), and 111(5) correspond to (d), (c), and (b), respectively. In
these cases Ueno’s representatives are those of the proposition. D

PROPOSITION 1.4. Let Z ~ J2. Then, the isotropy subgroup
{g e 03931,p | g(Z) = Z} is either trivial or conjugate with respect to Sp(4, Z) to one of
the four cyclic groups generated by S, T, U, and M

Proof. Suppose that G ~ 03931,p is a non-trivial isotropy group. It is shown in
[2, Proof of Lemma 2] that with respect to GL(4, C) the group G is conjugate to

a group of matrices (X 0) with unitary X E U(2). We may thus identify G with
a subgroup G’ of U(2). Moreover, since by 1.2 every element ~ 1 of G has + 1 as
an eigenvalue of multiplicity 2, all elements of G’ are pseudo-reflections, i.e., one
of their eigenvalues is + 1.
We claim that a finite subgroup of U(2) which contains only pseudo-

reflections is cyclic. Let A, B E U(2) be two non-trivial pseudo-reflections such

that AB is also a pseudo-reflection. We may assume A = (1 0) and B = (bij)
with eigenvalues 1 and 03B2. Since AB is a pseudo-reflection and det(AB) = 03B103B2, we
find tr(AB) = b11 + 03B103B222 = 1 + 03B103B2. Wtih tr(B) = b11 + b2 2 = 1 + 03B2 this implies

(a - 1)(03B2 - b22) = 0, hence b22 = 03B2 and b11 = 1, and hence B = (1 0)
because B is unitary. It follows that A and B generate a cyclic group which is
enough to prove the claim.

Consequently, G is Sp(4, Z)-conjugate to one of the cyclic groups generated by
the elements listed in 1.2. Finally, observe that if G contains gV2g-1, g e Sp(4, Z),
then also gVg-1 is in G, as Y and y2 have the same fixed-point set on J2. We
have to show that g Yg -1 E r 1,p which follows from V = 2 314 + 2 3V2 - 1 3V4 since it
is easily seen that 2 3A + 2 3B - te e Sp(4, Z) lies in 03931,p if A, B, C are in Fi p. (Here
we have used 3 f p. The statement, however, remains true for p = 3, cf. the proof
of 3.3.) D
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DEFINITION 1.5. (1) Denote the fixed varieties corresponding to the four non-
trival isotropy groups of Proposition 1.4 by

(2) The respective images of the fixed loci K1, Yf 2, b1, and b2 under the
natural projection from J2 onto .9Il,p will be called Hl, H2, Ci, and C2.

REMARKS 1.6. (1) The points of H1 c .9Il,p correspond to (1, p)-polarized
abelian surfaces A which are determined by period matrices of the form

( /1 0 ïi 0B and which are hence products of elliptic curves A ~ Et! x E’03C43 where
E03C4 = C/(Z + Z03C4) and E’03C4 = C/(pZ + Zr). These surfaces carry product polariza-
tions which are trivial on the first factor and of degree p on the second factor.

(2) The points of H2 ~ A1,p correspond to (1, p)-polarized bielliptic abelian
surfaces, i.e., suitable covers of Jacobians of genus-2 curves which admit an
elliptic involution. For a precise definition see [6].

(3) The surfaces Je;, resp. Hi, i = 1, 2, are examples of Humbert surfaces in the
sense of [1] or [5].

(4) Any abelian surface which admits a non-trivial involution corresponds to
a point in Hl u H2 ([6, Proposition 2.3]). Since by 1.2 every non-trivial isotropy
group in 03931,p contains an involution this shows that .9Il,p is non-singular
outside H1 ~ H2. Proposition 1.4 implies H1 n H2 = 0.

(5) The curves Cl and C2 in H1 parametrize product surfaces in the sense of
(1) of the form Ei x E’03C4 resp. Ep x Ez. Since the second factor is endowed with a
level-p structure, Cl and C2 are isomorphic to the (non-compact) modular curve
X°(p) = 03931(p)BJ1. Proposition 1.4 implies Cl n C2 = 0.

All elements in 03931,p conjugate to either U or V lead in .9Il,p to images of their
respective fixed loci which parametrize abelian surfaces admitting non-

involutory automorphisms. The following proposition shows, however, that no
other loci arise in this way than the curves C1 and C2. Namely, every Sp(4, Z)-
translate of Wi c J2 which is the fixed locus of an element in rl,p is mapped
onto Ci in .9Il,p, i = 1, 2.
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PROPOSITION 1.7. If X E 03931,p is conjugate to U (resp. V) with respect to

Sp(4, Z), then it is also conjugate to U (resp. V) with respect to r 1 ,p.
Proof. Suppose that X = gUg-1 Er 1,p with g = (gij) E Sp(4, Z). We construct

 ~ 03931,p such that X = U-1 by letting g = gh and choosing h ~ Sp(4, Z)
appropriately. Since U2 = S it follows from gUg-1 E rl,p that gSg-1 Er 1,p and
this implies

Because of det(g) = 1, a property of symplectic matrices, at least one of the
remaining three 2 x 2 minors lying on the first and third columns of g must be
~ 0(p). But then necessarily g21 ~ g23 ~ OM’ From det(g) = 1 it then follows

that at least one of g22 and g24 is invertible modulo p2. We can find relatively
prime integers a and c such that ag22 + cg24 = 1(p2) and hence there exists a

matrix (a b) ~ SL(2, Z) such that (g22,g24). (a b) ~ (1, 0)(p2). Consequently,

where we let

It follows that g = gh lies in 03931,p. (The remaining congruence conditions can be
deduced from -1 = 14 using the fact that g is symplectic.) Since h commutes
with U we also have U-1 = gUg-1 = X. We have thus proven the assertion
about U. For Y one argues in exactly the same way. 1:1

We state the main result of this section using the preceding definitions:

THEOREM 1.8. Assume that p  5. Then, the moduli space A1,p is singular with
transversal Al- resp. C3,,-type along the smooth curves CI and C2. The comple-
ment A1,p-(C1 ~ C2) is non-singular.
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Proof. All that remains to be investigated is how the isotropy groups of
Proposition 1.4 act on If 2 with respect to local coordinates around their fixed

points. In general, if Zo = (03C41 T2 ) is a point in If 2 having a non-trivial

isotropy group we will introduce local coordinates (x, y, z) in a neighbourhood

of 0~C3 by Z = (03C41+x 03C42+y). For arbitrary fixed points of S, T, U, and V03C42+y 03C43+z)
taken from the fixed loci YCI, Je 2’ b1, and W2 (cf. Definition 1.5) we find by
straightforward computation

Hence, with respect to local coordinates and neglecting higher order terms,
i.e., looking at the tangent space instead of a neighbourhood of the fixed point
and thus linearizing the action, we obtain

The two involutions locally act by reflections-for T this is easily seen by
checking the characteristic polynomial of the matrix describing the linearized
action-, hence by a well known theorem of Chevalley the quotients by their
actions are smooth. The two cyclic groups generated by U and V both contain
the cyclic group of order 2 generated by S. Dividing out this reflection group we
get cyclic groups of order 2 resp. 3 which in the (X, Y)-plane give rise to quotient
singularities of type A resp. C3,1 while in the Z-direction along the curve rc b1
resp. rc 2 the action is trivial. Hence the claim. D



239

2. Singularities on the boundary of A*1,p

In this section we are concerned with the singularities on the boundary of a
particular toroidal compactification di,p of the moduli space A1,p. In our
construction of A*1,p we mimic the description of the Igusa compactification in
the principally polarized case which Namikawa has given in [7]. A brief outline
of it follows. However, since our question is local in nature, not much will be said
about the global structure of A*1,p, nor will there be proofs since a detailed
exposition will be given in [5]. We refer to [7] for generalities on toroidal
compactification.
The starting point for the compactification of .91 1,p is the Tits building of r 1,p

a graph made up of the rB p-conjugacy classes of parabolic subgroups of r 1,p, or
equivalently the rl,p-cosets of non-trivial isotropic subspaces of Q4 with respect
to the symplectic form J, where edges are drawn for inclusion relations.

PROPOSITION 2.1 ([5]). (1) The rl,p-equivalence classes of isotropic lines in
Q4 are represented by the line 10 generated by (0, 0, 1, 0) and the (p2 -1)/2 lines 1(a,b)
generated by (0, alp, 0, b) where a and b are relatively prime integers representing
(a, b) E (Zp x Zp - {(0, 0)}) ± 1.

(2) The 03931,p-equivalence classes of isotropic planes in Q4 are represented by the
p + 1 planes h[a:b] spanned by 10 and 1(a,b), where [a : b] ~ P1(Zp).

(3) The Tits building of 03931,p is the following graph

Then, A*1,p is obtained from .91 l,p by adding boundary components at infinity
which are indexed by the vertices of the Tits building. There is a one-to-one
correspondence between boundary components of codimension k and rl,p-
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classes of isotropic subspaces of rank k in Q4 with adjacency of boundary
components corresponding to edges in the Tits building. In particular, (with
(a, b) and [a : b] as in 2.1 ):

where the Dl ’s are open, irreducible surfaces, and the Eh’s are connected,
compact curves which are reducible. By D, we denote the Zariski closure of D03BFl in

A*1,p. The component Dlo is called central boundary component while the other
components Dl(a,b) are referred to as peripheral boundary components.

Let r be an isotropic subspace in Q4. Then, the boundary component
associated with r can-in the present context-be described as follows: Let

Pr c I-’ 1,p be the parabolic subgroup stabilizing r. In P, there is an intrinsically
defined normal subgroup P’r ~ P, such that N = P’rBJ2 is a toroidal "neigh-
bourhood of infinity." The partial compactification of A1,p in the "direction r" is
defined by the choice of a suitable toroidal embedding N of N such that the
action of Pr - Pr/Pr on N extends to N. Then, P"rB(N - N) is the boundary
component belonging to r, and P"rBN will become an open neighbourhood of it
in A*1,p. (Of course, compatibility conditions need to be satisfied for the various
partial compactifications to glue together.)

Concretely, in our situation P’ is always conjugate to a lattice consisting of

matrices (12 B)~03931,p, B = tB which act on J2 by translations Z~Z + B,
so that the quotient map er:J2 ~ P’rBy2 is conveniently expressed by expon-
ential functions. N = P’rBJ2 is locally around infinity isomorphic to either
J1 x C x C* if r is an isotropic line, or to (C*)3 if r is a plane. In the first case we
simply choose the trivial partial compactification J1 x C x C while in the

second case we need to be more careful-see 2.11 below. In either case we obtain

a smooth space N on which Pr acts properly discontinuously, so in order to find
the singularities of A*1,p on the boundary component associated to r it is

sufficient to consider the fixed points of the P"r-action on N lying on N - N.
We also note that under the larger group 039303BF1,p of symplectic transformations

preserving only (1, p)-polarizations all lines l(a,b) are equivalent, and all planes
h[a:b] are equivalent. Since we naturally choose the partial compactifications
belonging to these subspaces to be identified accordingly, we may restrict
ourselves to looking at A*1,p locally around Di, D4o.1)’ and Eh[0.1].

In Propositions 2.2, 2.5, and 2.11 below we summarize the technical details of
the construction of these components. The computations involved are always
straightforward but sometimes lengthy.
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PROPOSITION 2.2 ([5]). The stabilizing subgroup of 10 in hl,p is

where entries ’*’ are determined by the conditions of symplecticity. It contains the

lattice P’lo = {(12 B)|B = q 0 q~Z}. Hence, the corresponding toroidal
neighbourhood of infinity is the image of g 2 under the map

An open neighbourhood of Dîo in A*1,p is then obtained as the quotient of a

neighbourhood of {0} x C x g 1 by the induced action of Pl’ 0 = P,.IP’,o on

C x C  J1. I n particular, we may identify P"l0 and its action on C x C  J1 as
follows:

REMARK 2.3. It follows that D03BFl0 is isomorphic to the open Kummer modular
surface K’(p) which is defined to be the quotient of the Shioda modular surface
S°(p) by the involution acting simultaneously on all fibers of S°(p) by the natural
involution x~-x of elliptic curves. K°(p) is a smooth surface if p  2.

PROPOSITION 2.4. A*1,p is non-singular locally around D03BFl0.
Proof. Suppose that we have (tl, i2, !3)ECxCxgl and
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The invariance of T3 implies that (1/p)03C43 is a fixed point of (a b) e 03931(p) acting
on Y 1. It follows that (a b) = 1 since 03931(p) has only trivial fixed points on
.

If e = + 1, then invariance of r2 implies m = n = 0, and hence 9 = 1. Now
assume that 03B5 = -1. Then, from the second coordinate we obtain

-CI = 1 2(m03C43 + pn). The fixed points arising in this way are just those of the
"Kummer involution" (cf. 2.3) and its Pl’-conjugates, i.e., the 2-division points in
the i2-plane with respect to the lattice pZ + ZT3. The element g acts by

which locally around !2 = 1 2(m03C43 + pn) is equivalent to a reflection. Hence, the
quotient space is smooth. D

PROPOSITION 2.5 ([5]). The stabilizing subgroup of 1(0,1) in rl,p is

where entries ’*’ are determined by the conditions of symplecticity. 1 t contains the

lattice P’l(0,1) = {(12 B)|B = (0 0), q~Z}. Hence, the corresponding tor-
oidal neighbourhood of infinity is the image Of J2 under the map

An open neighbourhood of D03BFl(0,1) in d!,p is then obtained as the quotient of a
neighbourhood of J1 x C x {0} by the induced action of PÍ;O.l) = Pl(0,1)/P’l(0,1) on
Y, x C x C. In particular, we may identify Pl’ (0’,) and its action on Y, x C x C as
follows: 
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REMARK 2.6. It follows that D03BFl(0,1) is isomorphic to the open Kummer modular
surface K’(1) which contains four singular points.

DEFINITION 2.7. For i = 1, 2, denote by Ci the Zariski closure of the curve

Ci in A*1,p. (Cf. 1.5(2) for the definition of Ci.)

PROPOSITION 2.8. There are precisely four singular points of A*1,p on D03BFl(0,1),
namely (1) Two non-isolated singular points Q, and Q2, represented by the points
(i, 0, 0) and (p, 0, 0), p = e21tiI3, o f J1 x C x C in the setting of 2.5, respectively. For
i = 1, 2, the point Qi is the point of intersection of Ci with D03BFl(0,1) where Ci is

smooth at Qi. The singularities of A*1,p around these points are of transversal A1-
type along Ci and of transversal C3,1-type along C2.

(2) Two isolated cyclic quotient singularities Q’1 and Q2 which are represented
by (i, p 2(1 - i), 0) resp. ( p, 23(l - p), 0) in J1 x C x C, and which are of type 1 2(1, 1, 1)
resp. 1 3(1, 2, 1). (Cf. the introduction.)

Proof. Suppose that we have (il, i2, t3)E!/1 x C x C and

From the first coordinate we read off that g0 = a b E SL(2, Z) acting on fil 1
leaves il fixed. We then either have go = + 12 which act trivially on J1, or

03C41 = i g0 = ±(0 1 0’ or ! 1 = P and go E :t 1 1 -1), ±(-1 0
The case of go = ±12 can be dealt with in exactly the same way as in the proof

of 2.4. Since it is easy to see that go and go 1 give rise to the same singularities, for
the remaining cases we just have to look into the following three possibilities:

a -cl = i, g0 = 
0 -1). Then, T2 = m + n)(1 - i) - n and modulo the

P"l(0,1)-action these points belong to the two orbits represented by i2 = 0 and
03C42 = p 2(1 - i).

Let i2 = 0, i.e., m = n = 0. This element g leaves all the points fixed in

{i} x {0} x C which contains the image of b1. With respect to local co-

ordinates introduced by (i + x, y, z) around (i, 0, 0) the action of g is

g: (x, y, z) ~ ( - x, - iy, z) + ..- up to first order. Hence the claim about transver-
sal A1-type along Ci locally around Ql.
Now let i2 = p 2(1 i ), i.e., m = 1 and n = 0. In local coordinates defined

around (i, p 2(1 - i), 0) by (i + x, p 2(1 - i ) + y, z) the action of g is (x, y, z) H
(-x, p 2(1 - i)x - iy, - z) + - - - which after a change of base is equivalent to
(, , )~(-, i, -). After dividing out the reflection induced by g2 we see
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that we get a cyclic quotient singularity of type 1 2(1, 1, 1) at Q’1.

(b) i = p, go = 1 1 . Then, 12 = p(m - n) - pnp, hence modulo Pl’ (0.1) all
these points are équivalent tO’r2 = 0, corresponding to m = n = 0. Again we find
a point-wise fixed curve {03C1} x {0} x C containing the image of b2. With
coordinates defined by (p + x, y, z) around (p, 0, 0) we get
(x, y, z) ~ (p2x, - py, z) + ..- for the action of g. Hence, the resulting singularities
are of transversal C3,1-type along Ci.

(c) i = p, g0 = (-1 1 -1) . Then, 2 = p 3(m + n)(1 - P) pn, and module
P"l(0,1) these points belong to two orbits, namely those represented by 12 = 0 and
i2 1 fll - p). (Note that the orbits of p 3(1 - p) and 2p/3(1 - p) coincide. This
can be seen by applying the Kummer involution 03C42 ~ -03C42.) In the case i2 = 0
the corresponding element g is the square of the one considered in (b) above.
Hence, let 12 = p 3(1- p), and define local coordinates around (p, p 3(1 - p), 0) by
(p + x, p 3(1 - p) + y, z). Then, g: (x, y, z) ~ (03C1x, -p 303C1(1 - p)x + 03C12y, pz) + ... and
this defines a cyclic quotient singularity of type 3(1, 2, 1) at Q2 as claimed. D

Now that we know the structure of di,p around the open codimension-1
boundary components it remains to study a neighbourhood of the codimension-
2 boundary component Eh[0.1]. Unlike in the two preceding cases we cannot just
use a trivial embedding of the toroidal neighbourhood. Before giving the details
we state a few facts about torus embeddings and define the fan determining the
particular torus embedding which we are going to use.
Let T xé (C*)’ be an algebraic torus of rank r, and denote by M = Hom(T, C*)

and N = Hom(C*, T) its respective groups of characters and 1-parameter
subgroups. M and N are lattices of rank r, naturally dual to each other, with
associated real vector spaces MR = M ~Z R and NR = N ~Z R. If 03C3 ~ NR is a
cone defined by rational hyperplanes, then define X03C3 = Spec C[03C3~ n M] where
C[u’ n M] is the semi-group ring defined by U’ = {x~MR|x·y  0 for all

y~03C3}, the cone dual to 6. More generally, let E be a fan (also called a rational
partial polyhedral decomposition) in NR, i.e., a collection of cones which do not
contain linear subspaces such that with u c- 1 all faces of 6 are in E, and such that
03C31 n u 2 is a common face for any two 03C31, (J 2 E E. If 6’ is a face of 6 E E, a natural

open inclusion X03C3’ 4 X03C3 is induced by 03C3’~ ~ 03C3~. ( T = Xjoj  X03C3 is a special
case.) The torus embedding X, associated to L is defined to be the scheme

obtained from patching together all X03C3, u E E, using the identifications X03C3’  X 6
coming from faces a’ c 6.

DEFINITION 2.9 (Cf. [7, §7]). Denote by Symm(2) the 3-dimensional real
vector space of symmetric 2 x 2 matrices, and by Symm + (2) the cone of positive
definite matrices therein. Then, the 2nd Voronoi decomposition Y- of Symm+(2) is
defined to be the fan consisting of all GL(2, Z)-translates of the cone
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together with all respective faces, where GL(2, Z) acts on Symm(2) by
g(M) = tg-1Mg-1 for g E GL(2, Z) and M E Symm(2).

REMARK 2.10 ([7, (6.14)]). Let N be the lattice of integral matrices in Symm(2).
Then, the 3-dimensional torus embedding X03A3 associated with the 2nd Voronoi
decomposition 1 is smooth. Furthermore, the action of GL(2, Z) on the

embedded torus T = N Q C* induced from the GL(2, Z)-action on N naturally
extends to an action on X03A3. (This is so because g(03C3)~03A3 holds for every

g e GL(2, Z) and a e E.)

PROPOSITION 2.11 ([5]). The stabilizing subgroup of h[0:11 in rl,p is

where

The corresponding toroidal neighbourhood of infinity is the image of f/ 2 under

The group P"h[0:1] = Ph[0.1]/P’h[0:1] can be identified with

by sending the 2 x 2 matrix A in the description of Ph[0.1] above to FAF-1 where

F = 1 0). With respect to coordinates (t1, t2, t3) on T, G then acts on T by
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This action corresponds to the action of G c GL(2, Z) given in 2.9 if the lattice of

integral matrices in Symm(2) is identified with Hom(C*, T) by sending 
el e2

e2 e3
to the 1-parameter subgroup 03BB~ (03BBe1, 03BBe2, 03BBe3).
An open neighbourhood of Eh[0:1] in di,p is then obtained as the quotient of a

neighbourhood of X03A3 - T in X03A3 by the induced action of G, where T  X03A3
denotes the torus embedding determined by the 2nd Voronoi decomposition E.

PROPOSITION 2.12. 1 p is non-singular locally around Eh[0:1].
Proof. (I) The description for the action of G on T given in 2.11 allows to

define an action of GL(2, Z) on T, and by definition of X this action extends to
X03A3. In order to prove smoothness of W*, 1 p around Eh[0:1] it suffices to show that
every non-trivial isotropy group in G of a point in XE - T is generated by
pseudo-reflections. We will prove the stronger assertion that every g ~ ± 12 in
GL(2, Z) which is conjugate to an element of G and has a fixed point on XE - T
acts locally like a reflection.

Let u, c- 1 be defined as in 2.9. We first observe that it is sufficient to consider

only fixed points in the affine piece X03C30 c X03A3 because every point x ~ X03A3 lies in
some Xg(03C30), g E GL(2, Z), and there is a natural isomorphism g: X (10  Xg(03C30) by
which fixed points in Xg(03C30) correspond to fixed points (with respect to conjugate
group elements) in X03C30. Since X03C30 is isomorphic to C3 with (C*)3 being the image
of T, we have to look for fixed points lying on the three axes C x {0} x {0},
{0} x C x {0}, and {0} x {0} x C. However, since the stabilizing subgroup of the
cone 6o in GL(2, Z) permutes the generators of Uo [7, (8.7)], and hence also
permutes the three axes in X03C30, by a similar argument it suffices to consider only
one of them, e.g., {0} x {0} x C. Our problem now splits up into two parts: Fixed
points in 101 x {0} x C* representing generic points of Eh[0:1], and (0, 0, 0) as a
fixed point, representing so-called deepest points of Eh[0:1].

Before treating the two cases separately, we make two observations which will
become useful. Firstly, note that if x ~ X03C30 is a fixed point of g E GL(2, Z), then
there exists an open neighbourhood W of x in X03C30 such that g(W) c X03C30. (A
direct consequence of continuity.) In order to make use of this fact we need to
understand where points of X03C30 are mapped to by elements g E GL(2, Z).
Conveniently using the coordinate functions tl, t2, t3 on T for generators of the
lattice M = Hom(T, C*) we find that the dual cone 03C3~0 is generated by the
characters tlt2, t2t3, and t2 1 in M. If we use them to represent coordinate
functions Ti, T2, T3 on X03C30 ~ C3, then the actual embedding of the torus T in
X03C30 is expressed by

For g = a b ~ GL(2, Z) we formally define ~g = l03BFg03BFl-1 as a rational

morphism from Xao to itself. Wherever ~g is a map it describes the part of the
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action of g that takes place inside X ao. Concretely,

The second observation we want to make is the following lemma which is a
trivial consequence of the definition of G in 2.11:

LEMMA 2.14. If g E GL(2, Z) is conjugate to an element of G, then its

characteristic pair (tr(g), det(g)) is either congruent to (0, -1) or to (2, 1) modulo p.

(II) Fixed points on {0} x {0} x C*. Assume that the point (Ti, T2, T3) with

T1 = T, = 0 and T3 e 0 is fixed by g = t b). Using the fact that is defined
in an open neighbourhood of the fixed point, we obtain from T, = 0 and (2.13)
that bd = 0, hence b = 0 or d = 0. Similarly, T2 = 0 implies ac = 0, so a = 0 or
c = 0. Of these four cases, obviously those where a = b = 0 or c = d = 0 cannot
lead to invertible matrices. The cases b = c = 0 resp. a = d = 0 together with
det(g) = + 1 lead to the following eight possibilities:

Finally, 2.14 shows that if g E GL(2, Z) is conjugate to an element of G and has a
fixed point on {0} x {0} x C*, then g must be one of the following:

We shall describe the action of these matrices on X03C30 in part (IV) below.
(III) The "deepest point" (0, 0, 0)~X03C30. If(Ti, T2, T2) with T1 = T2 = T3 = 0 is

fixed by g = (a b), then arguing as in II we obtain from T - 0 with 2.13
that d(d - b)  0, b(b - d)  0, and bd  0 hold simultaneously. This implies
that b = 0, or d = 0, or b = d. Similarly, T2 = 0 yields a = 0, or c = 0, or a = c,
andfinallyfrom T3 = 0 we get a + b = 0, or c + d = 0, or a + b = c + d. This
basically gives us 27 différent cases to consider. However, one easily sees that
only the following six cases can occur if the matrix g is invertible:
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Again, 2.14 helps to cut down the number of possibilities in our case:

(Note that we have used p ~ 3 when we excluded the matrices of cases 4 and 5.)
(IV) We describe how the matrices found in (II) and (III) act on Xao. In the

four non-trivial cases we compute with (2.13):

The first three matrices obviously act by reflections. They are also easily seen to
be conjugate to each other. The fourth matrix leaves the two hyperplanes
defined by T3 = 1 and T3 = -1 fixed and is also acting like a reflection locally
around them. This concludes the proof of Proposition 2.12. D

Putting together the results of this section and of Theorem 1.8 we conclude

THEOREM 2.15. For p  5, the singular locus of A*1,p contains two smooth,
compact curves Ci and C! isomorphic to X(p) which are the Zariski closures of the
two modular curves of degree p in A1,p parametrizing polarized products of type
Ei x E’ resp. EP x E’, where E’ is an elliptic curve with level-p structure. W*,p is
singular with transversal A1-type along CT, and is singular with transversal C3,1-
type along C!. Both curves C* and C! intersect each of the (p2 - 1)/2 peripheral
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boundary components Dl(a,b) in precisely one point, and do not meet the central
boundary component D,.. Outside CT u Ci the singularities of sl*@p consist of
exactly one isolated cyclic quotient of type 1 2(1, 1, 1) and one of type 1 3(1, 2, 1) on
each of the (p2 - 1)/2 peripheral boundary components.

3. The case p = 3

In this section we study the space A*1,3. It turns out that Theorem 2.15 is still
valid for A*1,3 although some points of Y2 actually have more complicated
isotropy groups in 03931,3 than they have in rl,p for p  5. We first rephrase some
of the results of section 1 in terms of automorphism groups of abelian surfaces:

THEOREM 3.1. Assume that p  5 and let (A, H, 03B1) be a (1, p)-polarized abelian
surface with level structure. Then:

(1) If (A, H, 03B1) is neither a polarized product nor bielliptic, then Aut(A, H, 03B1) is

trivial.

(2) If (A, H, 03B1) is bielliptic, then Aut(A, H, 03B1) ~ Z2.
(3) If (A, H, a) is a polarized product A = E x E’ of elliptic curves with product

polarization coming from a trivial polarization on E and one of degree p on E’,
then Aut(A, H, 03B1) ~ Aut(E) which is either Z2 for E generic, or Z4 if E ~ Ei,
or Z6 if E xé Ep, where Et = C/(Z + ZL).

DEFINITION 3.2. Let

an element of 03931,3 of order 3. Let

and denote by C3 the image of q¡ 3 under the natural projection from Y2 onto
A1,3.

THEOREM 3.3. Let (A, H, a) be a (1, 3)-polarized abelian surface with level
structure. Then:

(1) If (A, H, 03B1) is neither a polarized product nor bielliptic, then
Aut(A, H, a) = {1}.
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(2) If (A, H, ot) is bielliptic, then either Aut(A, H, a) ~ Z2 if (A, H, 03B1) does not lie
on C3, or else Aut(A, H, oc) xé S3, the symmetric group acting on three symbols.

(3) If (A, H, a) is a polarized product A = E x E’ as in 3.1(3), then

Aut(A, H, oc) xé Aut(E).

Proof. Firstly, note that an analogue of 1.2 is valid for p = 3 which differs
from 1.2 only by the existence of one additional conjugacy class of matrices of
order 3 in r 1.3’ represented by W The arguments for the proof essentially remain
unchanged, the only exception being that Ueno’s class 11(3) can no longer be
excluded. Of the three Sp(4, Z)-conjugacy classes II(3)a, II(3)b, and II(3)c
belonging to it, the first one is represented by

The (2,4)-entry of gMg-1 for g = (gij) E Sp(4, Z) is (g21 + g23)2 +
(g22 + g24)2 - 3(g21g23 + g22g24) which must be congruent to 0 modulo 9

for gMg-1 to be in 03931,3. This, however, implies g21 = g22 = g23 = g24 == 0 (3)
which clearly contradicts the invertibility of g. Hence, the class II(3)a does not
contain elements of 03931,3, and the same is true for the class II(3)b since its

elements are the inverses of those of II(3)a. As for the last class II(3)c this one in
particular contains W as can be seen from the following explicit conjugation of
Ueno’s representative

Secondly, 1.4 carries over to p = 3 now stating that every non-trivial isotropy
subgroup of 03931,3 not containing a conjugate of W is conjugate to one of the
cyclic groups generated by S, T, U, and E We need a new argument to prove that
the cyclic groups generated by Sp(4, Z)-conjugates of V2 do not occur. From the

(2,4)-entry of gV2g-1~03931,3 we obtain g21 + g223 + g21g23 = 0 (9) for g = (gij)
which implies g21 = g23 ~ 0 (3). A lengthy computation then shows that this is
indeed sufficient for g Yg -1 1 Er 1,3. Hence, if an isotropy group contains gV2g-1,
then it also contains g vg -1.
Our next step is to show that in analogy to 1.7 every Sp(4, Z)-conjugate of W

lying in Fi 3 is a 03931,3-conjugate of W as well. Suppose that gWg-1~03931,3 and
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g e Sp(4, Z). Our aim is-like in the proof of 1.7-to find h e Sp(4, Z) such that

gh E r 1, 3 and h Wh - 1 = W Of the matrices h commuting with W we will make
use of

The (2,4)-entry of gWg-1 is 3921923 + 2g21g24 - 6g22g23 - 3922924 = 0 (9)
which readily implies g21 0 (3) or g24 - 0 (3). Using this together with the
conditions obtained from the first three entries of the second row of g Wg -1 - 14
all being ~ 0(3) we deduce that g21 == g24 ~ 0 (3). Then, again exploiting the
(2, 4)-entry of gWg-1 we see that either g22 = 0 (3) or g23 - 0 (3). Substituting g
by one of ± g or + ghl, we may assume that g22 ~ 1 (3) and g23 ~ 0 (3). Finally,
substituting g by gh2 for some integer k we can achieve g24 --- 0 (9) in addition to
the other congruences satisfied by g. As was noted in the proof of 1.7 this suffices
to conclude that g~03931,3.
We thus see that the only differences between the cases p  5 and p = 3 occur

with points lying on C3 c H2 in A1,3. Denote the isotropy group of a point in
J2 over C3 by G. Like in the proof of 1.4 G is equivalent to a subgroup of U(2).
From Gottschling’s proof in [2, p. 123] we see that matrices in U(2) correspond-
ing to conjugates of W have p and p2 as their eigenvalues. In particular, the
image of G in U(2) does not contain scalar matrices and hence is isomorphic to
its induced group of automorphisms of the sphere PI. Thus G either is cyclic, or
dihedral, or the group of symmetries of a regular polyhedron. Since G contains
only elements of order 2 and 3, this leaves the dihedral group D3 ~ S3 and the
tetrahedral group as the only possibilities. But since G contains the dihedral
group of order 6 generated by T and W, it cannot be tetrahedral. So,
G ~ W, T&#x3E; ~ S3. D

COROLLARY 3.4. Theorem 2.15 remains valid if p = 3.
Proof. (I) We first prove the analogue of Theorem 1.8 for p = 3. In view of 3.3

it suffices to show that the isotropy groups G of points Z ~b3 are generated by
elements which locally around Z act like reflections. This, however, is clear since
G is a dihedral group of order 6 and as such is generated by the two involutions
T and W T W -1 which act like reflections2013cf. the proof of 1.8.

(II) The compactification procedure for obtaining d!.p from A1,p described
in section 2 goes through unchanged for p = 3. Also, the statements and proofs
of 2.4 and 2.8 remain valid as they are. The only difference to the case p  5
arises with deepest points on codimension-2 boundary components where now
additional elements of order 3 can appear (cf. the proof of 2.12).
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Consider a deepest point and assume that we are in the situation of part (III)
of the proof of 2.12. The isotropy group G of (0, 0, 0) then is contained in the set

and we assume that it contains the last two elements which are of order 3 and

which leave the curve determined by Tl = T2 = T3 point-wise fixed. Since C3 lies
inside H2 there must also be an involution present in G. It is easy to see that any
one of the six possible involutions together with the elements of order 3

generates a dihedral group of order 6 which then acts as a group generated by
reflections just as in (I) above. Finally, since this dihedral group contains one
element from each of the three pairs of involutions in H, it must already be the
whole of G because otherwise G would contain -12, a contradiction to G c H.

D

REMARK 3.5. Consider the polarized product E x E’ where E = C/(Z + Z1 303C43)
and E’ = C/(3Z + Z!3) which without its polarization of type (1, 3) is the

product of two isomorphic elliptic curves. If G = Z2 x Z2 is as a subgroup of
E x E’ identified with the points (03C9i, -03C9’i), i = 1,..., 4, where Wl, ... , W4 denote
the 2-torsion points on E and 03C9’1,..., 03C9’4 are the corresponding points on
E’ ~ E, then it is easy to see that the abelian variety A = E x E’/G is bielliptic

and corresponds to ( 1 303C43 -1 203C43 
)~b3. (This is a special case of a construction

in [6, §4].) We note without proof that using this identification one can show
that C3 ~ X°(3).
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