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Let A be a complete Noetherian local domain with separably closed residue field
k and with quotient field K. For a prime number p which is different from
char(K), let cdp(K) be the p-cohomological dimension of the absolute Galois
group Gal(Ksep/K) (cf. [ 13], [14], here Ksep denotes the separable closure of K).
In this paper, we determine cdp(K) in the case dim(A) = 2, char(k) = p and
char(K) = 0.

In general, if char(k) ~ p, a standard conjecture (Artin [2]) is that

cdp(K) = dim(A). (0.1)

In the more delicate case where char(k) = p and char(K) = 0, Artin suggests in
[2] that the rank of the absolute differential module fll = 03A91k/Z should be
involved in cdp(K). The precise form of his conjecture in this case should be

cdp(K) = dim(A) + dimk(03A91k). (0.2)

The aim of this paper is to prove (0.2) in the case dim(A) = 2.

THEOREM. Let A be a complete Noetherian two dimensional local domain of
mixed characteristic (0, p) with a separably closed residue field k, and K be the
quotient field of A. Then,

cdp(K) = dimk(03A91k) + 2.

The conjecture (0.1) has been proved in the case dim(A) ~ 2 (the case

dim(A) =1 is classical and the case dim(A) = 2 is due to O. Gabber [4]). The
conjecture (0.2) has been proved in the case dim(A) = 1 (cf. [6]II, [13], [14]), and
in the case where dim(A) = 2 and k is algebraically closed (then Çll k = (0)) by K.
Kato ([12] §5).
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Notation

A ring means a commutative ring with a unit.

For a local ring A,

Â: the completion of A by the maximal ideal MA,
Ali: the localization of A at a prime ideal k,
03BA(k): the residue field of Ak,
03A9iA: the i th exterior power over A of the absolute differential module 03A91A.
For a field k,

Ki(k): the ith Milnor’s K-group of k ([11]).

For an abelian group M and a family S03BB(03BB e A) of elements of M, S03BB; 03BB e A) is
the subgroup of M generated by S. for 03BB E A.

Proof of theorem. Throughout this paper, let A be a complete Noetherian two
dimensional local domain with a separably closed residue field k of character-
istic p &#x3E; 0 and with the quotient field K of characteristic 0. Without loss of
generality, we assume that if p ~ 2 (resp. p = 2) K contains a primitive p th (resp.
4th) root of unity ([15]).

First of all, we have

PROPOSITION 1.

Proof. Let p be a prime ideal of A such that ht(k) = 1 and char(K(ft)) = 0, and
let Kk be the quotient field of the henselization of the local ring of A at p. Then
we have

Hence it remains to prove that cdp(K) ~ dimk(03A91k) + 2. In the rest of this
paper, we assume dimk(03A91k)  oo. Let r = dimk(03A91k) (so [k:kp] = pr).
We fix an algebraic closer K of K, and r elements bl, b2, ... , br of A such that

the residue classes bi of bi (1 ~ i ~ r) form a p-basis of k. Then we can pick up
elements {bi,j; 1 ~ i ~ r, j = 0, 1, 2,...} of K which satisfy the following
conditions:
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For integers n (n = 0, 1, 2, ... , oo), we define extensions A(n) (resp. K(n)) of A
(resp. K) by

PROPOSITION 2.

Proof. In Lemma 1 below, we shall prove that A(~) is an excellent henselian
local domain. Since the residue field of A(oo) is algebraically closed, cdp(K(OO») = 2
(cf. [12] §5 Th. the excellence of A(oo) is needed here). Let (poo be a subgroup of K*
which consists of all roots of unity of p-primary orders. Then cdp(K(~)(03B6p~)) ~ 2
([14]).
On the other hand, the field K(~)(03B6p~) is a Galois extension of K and the

Galois group of K("0)(Cp.)IK is isomorphic to Zr+1p (Zp is the ring of p-adic
integers). Then we have inequalities

LEMMA 1. A(~) is an excellent henselian two dimensional local ring.
Proof. By [9], A is finite over R[[X]] where R is a complete discrete

valuation ring with mixed characteristic containing bl, b2, ... , br whose residue
field is the same as that of A, and X is a variable. So we may assume that
A = R[[X]], bl, b2, ..., br~R. We define rings R (n) = R[bi,n; 1 ~ i ~ r] for
integers n ~ 0 and R(oo) = U:,= 0 R (n), and fix a prime element n of R.

First, we will prove that A(~) is Noetherian.
It is enough to show that every prime ideal pjJ of A("0) is finitely generated ([9]).

Since A(~) is a two dimensional ring, every prime ideal ~(0) is either maximal or
of height one. Assume U is a maximal ideal of A(~). Then -4Y n R(n)[[x]] is a
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maximal ideal of R(")[[X]] for all integers n ~ 0. Hence U n R(n)[[x]] = (n, X)
for all n ~ 0, and this implies U = (n, X). On the other hand, if P is a prime
ideal of A(~) of height one, 9 n R(n)[[X]] is (03C0) or (Xm + a1Xm-1 + ··· + am) (m
is a positive integer and ai are elements of the maximal ideal of R(") for 1 ~ i ~ r)
for all integers n ~ 0. When P n R[[X]] = (7), .9 n R(n)[[x]] = (03C0) also. This
implies Y = (n). When P n R[[X]] ~ (n), the degree m of the above polynomial
becomes stable for sufficiently large integers n. So P is generated by an element
which generates 9 n R(n)[[x]] for integers n » 0. Thus A(oo) is Noetherian.

Secondly, recall that, a Noetherian local ring S is excellent, if and only if, S is a
G-ring and universally catenary (cf. [9] Ch. 13, 34).

It is easily deduced that A(~) is universally catenary from the fact that A(~) is
the union of subrings which are finite over the excellent ring A. And A(~) is a G-
ring when Â(oo) ~A(~) L is regular for any prime ideal 9 of A(oo) and any finite
extension L of 03BA(P). The regularity is easy and we omit the proof.

We have shown that cdp(K) is r + 2 or r + 3. To prove that cdp(K) = r + 2, it
is sufficient to show that the Galois cohomology groups Hr+3(L, Z/pZ) vanish
for all finite extension fields L over K.

LEMMA 2. The cohomology symbol map (cf. [6]11)

is surjective.
Proof. In the first place, we consider the fact (*).

(*) Let k be a field, S a Galois extension of k of infinite degree, p a prime number
which is invertible in k, and q ~ 0 an integer. Suppose that cdp(Gal(S/k)) ~ q and
cdp(S) ~ 2, and that for any open subgroup J of Gal(S/k), the cup product

is surjective. Then, hq+2k is surjective.

Using the fact that h2k is surjective for any field k ([10]), the arguments in the
proof of Proposition 3 of [6]II, §1.3 can be used to prove (*) (we replace
cdp(S) ~ 1 (resp. hq+1k) by cdp(S) ~ 2 (resp. hq+2k)).
We apply (*) to k = K, S = K(~)(03B6p~) and q = r + 1. From the proof of

Proposition 2, cdp(K(~)(03B6p~)) ~ 2, cdp(Gal(K(~)(03B6p~)/K)) = r + 1 and

Gal(K(~)(03B6p~)/K) ~ Zr+1p. Any open subgroup of Zr+1p is isomorphic to Zr+1p and
the cup product
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is surjective. Hence the assumption of (*) is satisfied. This lemma is

proved.

We consider the condition.

(* *) A is regular and there exist two elements u and v of A which generate the
maximal ideal of A, such that p is invertible in A[1/uv].

We distinguish two cases;

case (I) char( K(ftu)) = char(x(kv)) = p

case (II) char(K(ftu)) = 0, char(K(,h,» = p.

LEMMA 3. Assume (**). Let

Then 0 = 0.

Proof. For integers i ~ 0 and j &#x3E; 0, we define

In the case (I) (resp. (II)), we deduce A = 0 from the following facts,

Proof of (1). This is easy and we omit the proof.

Proof of (2). We can define the homomorphism

by



162

If pj, by the following calculation in K2(K), the map XI is surjective.

In the case p|j and pli, we can define the homomorphism

by

Then every element of 0394i,j/0394i,j+ 1 is a sum of elements of the images of XI and X2.
On the other hand, the equalities char(K(ftv)) = p and [03BA(kv): K(ftv)P] = pr+1

imply 03A9r+2Av = 0.

([7] II). Then we have 0394i,j = 0394i,j+ 1.

Proof of (3). Let c be the element of A* such that p = cufu(p-1)/pvfv(p-1)/p. We
can take a solution x E A of the equation Xp + cX - a = 0 for any a E A. Then,

Thus the proof of Lemma 3 is complete.

LEMMA 4. Assume (**). Let

where mA is the maximal ideal of A.
Then A’ = 0.

Proof. As is easily seen, 1 + mA is generated by elements of the form 1 - aw
(a E A *) for w = u or v. From this, we see that A’ is generated by elements of the
forms {1 - aw, bl, ... , br, c, d} with a, b1,..., b, and c E A*, d~A[1/uv]* and
w = u or v such that b1,..., br-l and br form a p-basis of k.
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Hence it suffices to prove

for a, b1,..., b,, c and d as above. Let

and L be the quotient field of B. Since B/vB = (AlvA)IIP, there exist elements
c’ E B* and c" ~ B such that c = (c’)p(1 + c"v). We apply Lemma 3 to B,

With NIIK denoting the norm map, we have

LEMMA 5. Assume (**). Let

Then A" = 0.

Proof.

Hence it suffices to prove

for a1,..., ar+1, b and c as above. Since ài = ai mod mA (1 ~ i ~ r + 1) cannot

be p-independent, there exists s such that 1 ~ s ~ r and as+ 1 E kp(a1, ... , as). Let

and L be the quotient field of B. Since the residue field of B contains à’IP there
exist elements a’ E B* and a" ~ mB (mB is the maximal ideal of B) such that
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as+1 = (a’)’(l + a"). By applying Lemma 4 to B, we have

We follow the method of [12] §5.

LEMMA 6. Let  ~ Spec(A) be a proper birational morphism with regular such
that Y= X DA A/mA is a reduced divisor with normal crossing on X ([1], [5]).
Then,

where Yo denotes the set of closed points of Y and for each x E Yo, Kx denotes the
quotient field of the henselization of Dx,x.

Proof. Let À: Spec(K) -  be the inclusion map and put F = R03BB*(Z/pZ). By
the proper base change theorem, we have

where i: Y --+ X is the inclusion map. From this, we obtain an exact sequence

where 11 ranges over all generic points of Y and K~ denotes the quotient field of
the henselization of D~,~. For each x ~ Yo, we have an exact sequence

where v ranges over all generic points of the henselization of Spec(DY,x), and Kv
denotes the quotient field of the henselization of the discrete valuation ring of Kx
corresponding to v.

Since cdp(K~) = cdp(Kv) = r + 2 ([8]), we have
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On the other hand, from the classical approximation theorem for a finite

family of discrete valuation on K* and Kx, the maps

are subjective. By [3] §5, the cohomological symbol maps

and

are subjective. Hence the maps

and

are also subjective.
Putting these things together,

and

These isomorphisms induce the isomorphism of Lemma 6.

PROPOSITION 3. For r = dom (n’),

Proof. By Lemma 2 and 6, we have
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For any family of fixed elements a1, a2,..., ar + 3 E K *, we can take 3E such that
the union Z of Y with the supports of the divisor of a1,..., ar+2 and ar + 3 on X is
normally crossing divisor ([5]). Then, by Lemma 5,

for any x ~ Yo. This shows that

We are now in the position to complete the proof of our theorem. By
Proposition 1 and 2, cdp(K) = r + 2 or r + 3. For any finite extension field K’
over K,

by Proposition 3. Hence cdp(K) = r + 2 ([14]).
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