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Introduction and notation

There exist extensive classifications of map-germs from n-space (n  2) into the
plane up to contact equivalence (K-equivalence), see for example
[D, Da, G, M, W]. In the present paper we refine a small part of these K-
classifications by studying right-left equivalence classes (d-classes) contained in
certain K-orbits. In particular we obtain a classification of /-simple germs
from (complex and real) n-space (n  2) into the plane (the A-simple germs of
plane curves C - e2 have been classified in [BG]).

Let f k", 0 - kP, 0 be a smooth map-germ (where k = C or R, and where
smooth means analytic in the former and COO or analytic in the latter case). Let
A = Diff(kn, 0) x Diff(kP, 0) denote the group of right-left equivalences, which
acts on the space of smooth terms f as follows: (h, k) · f = h  f  k-1, where
(h, k) E A. Replacing the action on the left, i.e. the composition with elements of
Diff(kp, 0), by composition with elements of Gl(p, k) with entries in Cn (where
Cn = local ring of smooth function germs k", 0 - k, 0) gives the group -le’ of

contact equivalences. A y-orbit U (where % = / or Jf) is said to be adjacent to
another y-orbit V, denoted by U - E if any representative f of U can be
embedded in an unfolding F(u, f (u, x)), where 1(0, x) = f (x), such that the set
{u, x} for which f(u, x) E V contains u = x = 0 in its closure. A y-orbit U is said
to be y-simple if it is adjacent to only a finite number of other W-orbits.

Let Cn and Cp denote the local rings of function-germs in source and target
whose respective maximal ideals are mn and mp. Let Of denote the Cn-module of
vector fields over f, and set On = 03B8(1kn) and 03B8p = 03B8(1kp). One can then define the
homomorphisms

and
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The tangent space to the d -orbit at f can be calculated to be f =
tf(mn ·03B8n) + wf(mp · 03B8p), and the A-codimension of f is cod(A, f)=
dimk mn. 0 fiT d.f.

Let Jk(n, p) denote the space of kth order Taylor polynomials without
constant terms, and write jkf for the k-jet of f. The Lie group Ak:=jk(A) acts
smoothly on Jk(n, p), and we shall write T dk’f for the corresponding tangent
space Tjkf Ak·jkf· A germ f is said to be k-determined if, for any g, jkf = jkg
implies that - g. The calculation of Ak-orbits (using Mather’s Lemma [Ma IV,
Lemma 3.1]) and of the determinacy degree of a germ f (using an estimate of
duPlessis [dP, Corollary 3.9]) are the main tools that we use in the present
classification. See [Rie] for further details on notation and techniques.
We thank the referee for his critical remarks concerning the presentation of

results.

1. Classification of d-simple 1:1-germs from k", 0 to k2, 0, n &#x3E; 1

We can assume that f : k", 0 - k2, 0 is of the form f (x, y) = (x, f2(x, y)), and we
denote by X, Y the coordinates in the target. The following splitting lemma is
almost content-free but clarifies the subsequent discussion (see also [PW,
Prop. 0.6]).

LEMMA 1.1. Every map-germ f:kn, 0 ~ k2, 0, n &#x3E; 1, of corank 1 is A-equivalent
to a germ of the form

where g(0, y1,...,ym)~m3n and 6 = ± 1 ( for k = C, 03B5 = 1); and cod(A, h) =
cod(A, (x, g)) + n - m - 1.

Proof. Any jkf(x, y, z) = (x,f2(x, y, z)) can be reduced to h by right-coordinate
changes of the form zi = ~(x, y, z), where the bar denotes new coordinates and
not complex conjugation. It is also clear that TAk·jkf, k &#x3E; 1, contains all

monomials containing powers of zi except for Zi’ ajay, which implies the last
statement of the Lemma. D

Hence, if we take m = 1 the lemma above reduces the classification of germs
fi kn, 0 - k2, 0 to the classification of germs g: k2, 0 - k2, 0 of corank 1. The A-
simple germs of the plane of corank 1 have been classified by one of the authors
in [Rie]. Next, consider the case m = 2.

LEMMA 1.2. For m = 2 (or indeed for m  2) there are no .91-simple germs
f(x, y) = (x, g(x, y1, ..., ym)), where g(0, y1,..., ym) ~ m3m+1 as in Lemma 1.1.

Proof. The 2-jet of f is, by the hypothesis on g, given by j2f =
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(x, ax2 + bxy1 + CXY2), which can either be reduced to (x, xy1), provided that
either b or c is nonzero, or else to (x, 0). First, we show that the d3-orbits over
j2f = (x, xy1) are at least uni-modal. Note that we can reduce any 3-jet over
(x, xy1) to h:= (x, xyl + ayi + by21y2 + cy1y22 + dy2). There are exactly four
generators, namely wh(X, Y) - th(x, 0, 0), th(0, y1, 0) - th(x, 0, 0) + wh(X, 0),
th(o, 0, y1), and th(o, 0, Y2), for the subspace V := k{(0, yi1yj2), i + j = 3} of TA3·h,
leading to the following matrix of coefficients:

which doesn’t have maximal rank (because (row 4) - 3 x (row 1) = -(row 2)). It
follows from Mather’s lemma [Ma IV] that V is foliated by (at least) a 1-

parameter family of A3-orbits.
The A3-orbits over (x, 0) are adjacent to those over (x, xy1), hence they are

also non-simple.
For m &#x3E; 2 the A2-orbits are still those of (x, xyi) and (x, 0), and the modality

of the A3-orbits over (x, xy,) and (x, 0) is clearly greater than or equal to one.
Lemma 1.2 now follows. D

Using the results of [Rie] we get the following classification.

PROPOSITION 1.3. An A-simple map-germ f: kn, 0 ~ k2, 0 (n &#x3E; 1) of corank 1
is equivalent to one of

(where 8 = + 1 for k = R, and 8 = 1 for k = C).
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REMARK 1.4. A deformation of a germ as in 1.1 does not increase m. The .YI-

classes of 1.3 are hence simple for all n, because they can only be adjacent to
other (m = 1 )-germs.

2. Classification of A-simple L2,0 germs from kn, 0 to k2, 0

The main result in this section is the following classification.

PROPOSITION 2.1. Any simple germ f: kn, 0 ~ k2, 0 ( for n &#x3E; 1) of corank 2 is
A-equivalent to some member of the following series of germs:

The d-codimension of Il,m2,2 and II2,2 are 1 + m + 2 and 2(l + 1) respectively.

To prove this statement we classify -W-orbits contained in Je-simple orbits of
germs f: kn, 0 ~ k2, 0 of corank 2. Such f--simple germs have been classified in
[D, M, Da]. In the present classification of d-simple germs we can discard all
K-orbits adjacent to some K-orbit that doesn’t contain any .91 -simple orbits.

2.1. Classification of sl-orbits in K(x2, y2), for k = C or R

PROPOSITION 2.1.1. Any germ contained in the %-orbit of (X2,y2) is .91-

equivalent to some member of the series

The Il,m2,2 are (21 + 1)-determined, and cod(A, Il,m2,2) = 1 + m + 2.
Proof. Any k-jet (x2 + 03A3 ai,jxiyj, y2 + 03A3 bi,jxiyj), where the xiyj are of degree

k &#x3E; 1, can be reduced to (x2 + ao,kyk, y2 + bk,oxk) by the right-coordinate
change

Now, suppose k = 21: the left-coordinate changes X = X - aO.21 yi and Y=
Y- b21.OX’ give (X2, y2), which is the single d21-orbit over j2l-1f = (X2, y2). If
k = 21 + 1, we have three A2l+1-orbits over j2lf = (X2, y2): (i) (x2 + y2l +1,
y2 + x2l+ 1), (ii) (X 2, y2 + x2l+ 1), and (iii) (X2, y2). By a result of du Plessis [dP,
Example 3.18], (~2 + y2l+1, y2 + x2l+1) is (21 + 1)-determined. Now, consider
Ak-orbits over j2m+1 f = (x2,y2 + x2m+l). If k = 21 &#x3E; 2m + 1, we find a single
d21-orbit (X2,y2 + x2m+l), by the same coordinate changes as above; and if
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k = 21 + 1 &#x3E; 2m + 1, we can reduce to (x’ + ao,2l+1 y2l+1, y2 + x2m+1) leading
to two A2l+1-orbits given by ao,2l+1 = 0, 1. Now, Il,m2,2 is (21 + 1)-determined,
again by [dP, Example 3.18]. (see also [BPW, Example 6.7]). Finally, we check
that

forms a free basis for mn · Of ITd f, where f = Il,m2,2, which proves the proposition.

2.2. Classification of A-orbits contained in K(x2 - y2, xy) over R

PROPOSITION 2.2.1. Any germ contained in the -’,f-orbit of (X2 - y2, xy) is .91-
equivalent to some member of the series

The IIl2,2 are (21 + 1)-determined, and cod(A, IIl2,2) = 2(1 + 1).
Proof. The calculations are entirely routine and we omit them. The (21 + 1)-

determinacy of IIl2,2 and its codimension follow from 2.1, since the family IIl2,2
is equivalent over C to Il,l2,2.

2.3. Other K-orbits of type 03A32,0 do not contain A-simple orbits

The equidimensional case (n = p = 2) and the non-equidimensional case (n &#x3E; 2,
p = 2) are considered respectively in Proposition 2.3.1 and Proposition 2.3.2.

PROPOSITION 2.3.1. Let f: (k2, 0) ~ (k2, 0), (k = R, C) be an A-finitely
determined germ of type 03A32,0. If f is d-simple then the K-orbit of f is of type 12.2
or II2,2.

PROPOSITION 2.3.2. Let f:(kn, 0) ~ (k2, 0), n  3, k = R, C be any A-finitely
determined germ of type 03A32,0. Then f is non-simple.

When n = p = 2, the Jf-orbit of any 03A32 germ not of type 12.2 or 112.2 is

adjacent either to I2,3 or IV3 (see [L., Theorem 2.1], for the description of the
adjacencies of real K-orbits of types 03A31 and 03A32,0, and [G] for the complex case).
Therefore, Proposition 2.3.1 will follow from Lemma 2.3.3 and 2.3.4 below,
where we show that I2,3 and IV3 have no d-simple orbits.

LEMMA 2.3.3. The d -orbits within I2,3 are all non-simple.
Proof. A germ f within 12.3 is K-equivalent to (x2 + y3, xy) ([M, VI]). We

show that there is no open A-orbit within K(x2 + y3, xy), which will imply that
this K-orbit is filled up entirely with non-simple A-orbits.
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After some simple coordinate changes, we may assume that any A-finitely
determined germ in I2,3 has the form:

One easily checks that m3203B8f c TK·f.
Now, the relevant relations in T d4.f are given by tf(xiyi,0), tf(0, xiyi),

i + j = 1, 2, 3, wf (X, 0), wf(Y, 0), wf (0, X), wf (0, Y).
Thus there are only 22 generators for the vector subspace m2203B8f/m5203B8f, which

has dimension 24. In particular, T A4·f  m3203B8f/m5203B8f, and the modality of the
A-orbit of f within K(x2 + y3, xy) is greater than one. D

LEMMA 2.3.4. The d-orbits within IV3 are all non-simple.
Proof The proof follows immediately, since K(x2 + y2, x3) (type I V3) is

adjacent to K(x, y6) (type A5) ([L, Theorem 2.1]), which in turn is entirely filled
up with non-simple A-classes (This follows from Proposition 1.3, but see [Rie]
for details). D

We consider now the case n  3, p = 2.
It is well known that if n  4, the K-modality of a pair of quadrics is greater

or equal to one ([W]). Therefore, we only have to consider the case n = 3, p = 2.
In the complex case, there is only one X-orbit of type 03A32,0, whose normal

form is (~2 + y2, y2 + z2).

PROPOSITION 2.3.5. Any A-orbit of a finitely determined germ within

K(x2 + y2, y2 + Z2) is at least 1-modal.
Proof. Let f: (C3, 0) --+ (C2, 0) be any A-finitely determined germ within

K(x2 + y2, y2 + z2). Then, with simple coordinate changes, j3f can be reduced
to:

As before, the result follows from the information given by T f3 f and
T S13.f. 

(i) Tf.f + m4203B8f  M30
(ii) Inspecting TA3·f we see that the elements of degree three are given by

tf(x, 0, 0), tf(0, y, 0), tf(0, 0, z), 1 3[tf(x, y, z) - 2wf(X, 0) - 2wf(0, Y)] and by
J(f). m2 (where J(f) is the Jacobian ideal) (Mod M40 f).

They generate the following subspace of m32/m4203B8f :

C {all mixed terms of degree three, (X3, X3), (y3, 0), Z3
and (ax3 + cz3, by3)1 (Mod m4203B8f).
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Hence TA3·f  m2e f, and comparing with (i) we get the result. D

REMARK 2.3.6. K(x2 + y2, y2 + z2) splits into various real orbits. These real
Jf-orbits do not have open A-orbit either. In fact, if the condition

were true for any such real germ, we should have:

where fc is its complexification. This clearly contradicts the above lemma.

Proposition 2.3.2 will follow from the above discussion.

3. Adjacencies of d -simple 03A32,0-germs f: k2, 0 ~ k2, 0

The adjacencies between d-simple E 1-germs from C2 to C2 are shown in [Rie].
For corank 2 terms we have the following

PROPOSITION 3.1. Figures 1 and 2 show the adjacencies of d-simple E2,()

germs f: k2, 0 - k2, 0 for k = C and k = R, respectively. (To denote d-classes we
use the notation of Propositions 1.3 and 2.1).

Proof. As in [Rie] we use three invariants m( f ), c(f), and d(f), which are
upper-semicontinuous under deformation, to rule out certain adjacencies. Let Y-
and A denote the critical set and the discriminant of f, which are both germs of
plane curves, and let b(C) denote the well-known ô-invariant of a germ of a plane
curve C (see [Mi]). The three invariants of f can then be calculated as follows:
m( f ) = dimk Cn/f*mp, c(f) = dimk Cn/I (where I = ideal defined by the vanish-

ing of 2 x 2 minors of [ Df and d(f) = 03B4(0394) - 03B4(03A3) - c(f). (For erms : C2

Fig. 1.
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Fig. 2.

0 ~ C2, 0 these invariants have the following geometrical meaning: m( f ) is the
number of preimages of a target point off the discriminant 0 of f; and c( f ) and
d(f) are the numbers of cusps and transverse fold crossings of a generic
deformation of f).
For 03A31-germs thèse invariants have been calculated in [Rie] and for the A-

simple 03A32,0-germs of the classification in §2 we have the following
LEMMA 3.2. The invariants m, c, and d associated with the members of the series
of germs Il,m2,2 and IIl2,2 have the values:

and

These expressions also make sense for the "stems" of these series

I~,~2,2 = (x2,y2), I~,m2,2 = (x2, y2 + x2m+ 1) and IIf.2 = (X2 - y2, xy).
Proof. These are just a trivial calculation. Note that the critical sets and the

discriminants of the germs Il,m2,2 consist of two branches, so that d(03A3) and 03B4(0394) are
sums of 03B4-invariants of each branch and the (local) intersection numbers of the
branch pairs. Also note that, as complex-analytic germs, IIl2,2 ~ Il,l2,2 (and that
the dimensions of the relevant local algebras are not altered by complexifying).

Also notice that the Milnor number 03BC of the critical sets of the germs Il,m2,2 and
IIl2,2 is equal to one. The upper semicontinuity of thèse invariants and the
adjacencies of K-classes described in §2.3, together with the following lemma,
conclude the proof of Proposition 3.1.
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LEMMA 3.3

(i) k = C: the degenerate mono-germs in a versal deformation of I’:’ are of type
42; and

(ii) k = R: the degenerate mono-germs in a versal deformation of 12;2 are of type
42 , and there are no degenerate mono-germs in a deformation of IIt2’

Proof. We consider A-versal unfoldings F: kd x k2, 0 ~ kd x k2, 0, given
by F(u, x, y) = (u, f(u, x, y)), where f(0, x, y) = I2,22,2 or II22,2. The set B:=

{u E (kd, 0): c(f(u, 0, 0))  21 gives all degenerate mono-germs in a deformation of
I1,12,2 or II12,2, because c  2 for any degenerate mono-germ of the plane and the
origins in source and target are preserved under .si. Let m1(x, y), m2(x, y), and

m3(x, y) denote the determinants of the 2 x 2 minors of  x, x y)1 where
D is the differential of f with respect to x and y.
Now c(f(u, 0, 0)) = dimk Cnj(ml’ m2, M3)  2 if and only if

m1(0, 0)=m2(0,0)=m3(0,0)=0

and the 2 x 2 minors of

vanish. The six equations define an ideal 1 in k[u1,..., ud].
First, consider the A-versal deformation f(u, x, y) = (u, x2 + y3 + u1x + u2y,

y2 + x3 + u3x + U4Y) of I1,12,2. One calculates that 1 = (Ul U3 - u24, u1u4 - U2U3,
u21 - u2u4, u4(3u1u3 + 2u2) + Mi(4Mi + 3u22), u4(3u23 + 4Mj + ul(2u3 + 3u2u4),
-(4Ul + 3u22)(3u23 + 4U4) + (3u1u3 + 2u2)(2u3 + 3u2u4)), and, calculating a

standard basis for 1 with respect to some lexicographical ordering of the
variables in k[ul, ... , U4]’ one finds the following set of degenerate mono-germs:
B = {u~(k4,0):u1 = U4 = U2U3 = 0}. Now, by direct coordinate changes,
/(0, U2, 0, 0, x, y) - 42 for u2 E R - {0} and f(O, 0, u3,0, x, y) - 42 for

U3 E R - {0} (in the case k = R), and f(0, U2, 0, 0, x, y) -/(0,0, u3, 0, x, y) - 42 for
u2, u3 ~ C - {0} (for k = C).

Finally, we consider the d-versal deformation

f(u, x, y) = (x2 - y2 + X3 + U1X + U2Y, xy + U3X + u4y)

of the real germ IIà,2’ Repeating the calculations above, one finds that

B = {u~(R4,0):u1 = U2 = U3 = U4 = 0}. Hence there are no degenerate mono-
germs in a versa1 deformation of II12,2, and the lemma follows.
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Proof of Proposition 3.1; conclusion. Lemma 3.3 says that I2;2 and IIt2 are
not adjacent to the E 1-germ (x, xy + y4), which is the open A-orbit in the Jf-
class A3. From the adjacencies in [Rie] of 03A31-germs it follows that none of the
germs Il,2m,2 and IIl2,2 is adjacent to some A-orbit in A3’ Finally, one checks that
II12,2 ~ 3. D
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