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Introduction and notation

There exist extensive classifications of map-germs from n-space (n > 2) into the
plane up to contact equivalence (X -equivalence), see for example
[D, Da, G, M, W]. In the present paper we refine a small part of these -
classifications by studying right-left equivalence classes («/-classes) contained in
certain X -orbits. In particular we obtain a classification of «7-simple germs
from (complex and real) n-space (n > 2) into the plane (the .o/-simple germs of
plane curves C — C? have been classified in [BG]).

Let f:k", 0 — kP, 0 be a smooth map-germ (where k = C or R, and where
smooth means analytic in the former and C*® or analytic in the latter case). Let
o/ = DIiff(k", 0) x Diff(k?, 0) denote the group of right-left equivalences, which
acts on the space of smooth terms f as follows: (h, k) f=hofok™! where
(h, k) e /. Replacing the action on the left, i.e. the composition with elements of
Diff(k?, 0), by composition with elements of Gl(p, k) with entries in C, (where
C, = local ring of smooth function germs k", 0 — k, 0) gives the group 4~ of
contact equivalences. A 4-orbit U (where ¥ = o/ or X') is said to be adjacent to
another %-orbit V, denoted by U — V, if any representative f of U can be
embedded in an unfolding F(u, f(u, x)), where f(0, x) = f(x), such that the set
{u, x} for which f(u, x) e V contains u = x = 0 in its closure. A %-orbit U is said
to be ¥-simple if it is adjacent to only a finite number of other %-orbits.

Let C, and C, denote the local rings of function-germs in source and target
whose respective maximal ideals are m, and m,. Let 0, denote the C,-module of
vector fields over f, and set 6, = 0(1;.) and 6, = 6(1,,). One can then define the
homomorphisms

:0,—-6;, f(y)=Df ¥,

and
wfi0,-0,,  wf(@)=¢°f

2Research partially supported by Vitae, CNPq and British Council.



100 J. H. Reiger and M. A. S. Ruas

The tangent space to the ./-orbit at f can be calculated to be T/ f=
tf(m,-60,) + wf(m, 0,), and the /-codimension of f is cod(«, f)=
dim,m, 0,/Tsf -f.

Let J*(n,p) denote the space of kth order Taylor polynomials without
constant terms, and write j*f for the k-jet of f. The Lie group o/*:= j*(«/) acts
smoothly on J*(n, p), and we shall write T.«7*-f for the corresponding tangent
space Ty, /% j*. A germ f is said to be k-determined if, for any g, j*f = j*g
implies that f ~ g. The calculation of .«/*-orbits (using Mather’s Lemma [Ma IV,
Lemma 3.1]) and of the determinacy degree of a germ f (using an estimate of
duPlessis [dP, Corollary 3.9]) are the main tools that we use in the present
classification. See [Rie] for further details on notation and techniques.

We thank the referee for his critical remarks concerning the presentation of
results.

1. Classification of .«/-simple X'-germs from k", 0 to k2,0, n > 1

We can assume that f:k",0 - k2, 0 is of the form f(x, y) = (x, f,(x, y)), and we
denote by X, Y the coordinates in the target. The following splitting lemma is
almost content-free but clarifies the subsequent discussion (see also [PW,
Prop. 0.6]).

LEMMA 1.1. Every map-germf: k", 0 — k?,0,n > 1, of corank 1 is o/-equivalent
to a germ of the form

n-m—1
h(x, y, Z)=<x, g% Y15 s Ym) + .Zl 823),

where ¢(0,y,,...,ymem; and e = +1 (for k=C, ¢ =1); and cod(s#,h)=
cod(«, (x,9) +n—m— 1.

Proof. Any j*f(x, y, z) = (x, f>(x, y, 2)) can be reduced to h by right-coordinate
changes of the form z; = ¢(x, y, z), where the bar denotes new coordinates and
not complex conjugation. It is also clear that T.o/*-j*, k > 1, contains all
monomials containing powers of z; except for z;- 0/0Y, which implies the last
statement of the Lemma. O

Hence, if we take m = 1 the lemma above reduces the classification of germs
f k", 0> k2,0 to the classification of germs g: k2,0 — k2, 0 of corank 1. The /-
simple germs of the plane of corank 1 have been classified by one of the authors
in [Rie]. Next, consider the case m = 2.

LEMMA 1.2. For m =2 (or indeed for m = 2) there are no </-simple germs
f(x’ J’) = (X, g(x’ Viseo- ’ym))9 where g(O, Viseoos ym)em31+1 as in Lemma 1.1.
Proof. The 2-et of f 1is, by the hypothesis on g, given by j*f=
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(x,ax? + bxy, + cxy,), which can either be reduced to (x, xy,), provided that
either b or ¢ is nonzero, or else to (x, 0). First, we show that the .«/3-orbits over
j*f = (x, xy,) are at least uni-modal. Note that we can reduce any 3-jet over
(x,xy;) to h:=(x,xy, + ay} + byly, + cy,y3 + dy3). There are exactly four
generators, namely wh(X,Y) — th(x,0,0), th(0,y,,0) — th(x,0,0) + wh(X, 0),
th(0,0, y,), and th(0, 0, y,), for the subspace V:= k{(0, y} y4),i + j = 3} of T/ - h,
leading to the following matrix of coefficients:

a b ¢ d
3a 2b ¢
b 2c 3d

b 2c 3d

which doesn’t have maximal rank (because (row 4)—3 x (row 1)= —(row 2)). It
follows from Mather’s lemma [MalIV] that V is foliated by (at least) a 1-
parameter family of .«/3-orbits.

The .o/3-orbits over (x, 0) are adjacent to those over (x, xy,), hence they are
also non-simple.

For m > 2 the .o/2-orbits are still those of (x, xy,) and (x, 0), and the modality
of the .«/3-orbits over (x, xy,) and (x, 0) is clearly greater than or equal to one.
Lemma 1.2 now follows. O

Using the results of [Rie] we get the following classification.

PROPOSITION 1.3. An .o/-simple map-germ f: k", 0 — k2, 0 (n > 1) of corank 1
is equivalent to one of

Type f 0, 215y 2y_g)= cod(s, f)
1 (x, y) 0

2 (x, y*+Zezd) n—1

3 (x, xy+y* + Zez?) n

4, (x, y*+ e Ixky + Zez?), k>1 n+k—1
5 (x, xy + y* + Zezd) n+1

6 (x, xy+y>+ey” +Xez?) n+2

7 (x, xy+y° +Zezd) n+3
Waeer (o xy?2 +y*+y* 1+ Zezd), k>1  n+k
12 (x, xy*+y° +y° +Zez?) n+3
13 (x, xy?+y° +ey° + Zez) n+4
14 (x, xy* +y° + Zez}) n+5
16 (x, x*y + y*+ey° +Zez?) n+3
17 (x, x?y+y* + Zez?) n+4

(Where ¢ = +1 for k=R, and ¢ = 1 for k = C).
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REMARK 1.4. A deformation of a germ as in 1.1 does not increase m. The «/-
classes of 1.3 are hence simple for all n, because they can only be adjacent to
other (m = 1)-germs.

2. Classification of of-simple 2,0 germs from k", 0 to k2, 0

The main result in this section is the following classification.

PROPOSITION 2.1. Any simple germ f-k",0 — k2,0 (for n > 1) of corank 2 is
o -equivalent to some member of the following series of germs:

@) k=R L%=x*+y""L 2+ x>, I>m=>1, or
II’2,2=(x2_y2+x21+13 x.y)’ 121;
(i) k=C: L =x*+y*"L 2+ x* ), I>m> 1.

The o/ -codimension of 15% and 114 , are | + m + 2 and 2(I + 1) respectively.

To prove this statement we classify .o7-orbits contained in J# -simple orbits of
germs f: k", 0 — k2,0 of corank 2. Such 2 -simple germs have been classified in
[D, M, Da]. In the present classification of .«/-simple germs we can discard all
A -orbits adjacent to some J -orbit that doesn’t contain any .«/-simple orbits.

2.1. Classification of of-orbits in A (x2, y?), for k = C or R

PROPOSITION 2.1.1. Any germ contained in the A -orbit of (x2,y?) is -
equivalent to some member of the series

I o= (2 + y? Ly 4 X2 I>m> 1.

The 15 are (21 + 1)-determined, and cod(</, I5™) =1 + m + 2.

Proof. Any k-jet (x* + Za; ;x'y’, y* + Z b, ;x'y’), where the x'y’ are of degree
k> 1, can be reduced to (x? + ag )%, y* + by ox*) by the right-coordinate
change

(-)_C’j]) =
(x —HaoX T an VY, Y=o X+ bos )

Now, suppose k = 2I: the left-coordinate changes X = X — a, ,,Y' and Y=
Y — by, 0 X' give (x?, y?), which is the single o/%-orbit over j2~!f = (x?, y?). If
k =21+ 1, we have three .«/?'*!-orbits over j2f = (x2,y?): (i) (x? + y*'*},
¥+ X2+, (i) (x2, y? + x2'*1Y), and (iii) (x?, y?). By a result of du Plessis [dP,
Example 3.18], (x? + y?'*1, y2 + x2'*1) is (2] + 1)-determined. Now, consider
/*-orbits over j2mH1f = (x2, y* + x?™*1). If k = 21 > 2m + 1, we find a single
o/?*"-orbit (x2,y? + x®™*1), by the same coordinate changes as above; and if
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k=2l +1>2m+ 1, we can reduce to (x> + dg 5+, y* "%, y? + x*™*!) leading
to two o7+ Lorbits given by dg 5,11 =0, 1. Now, I4™ is (2] + 1)-determined,
again by [dP, Example 3.18]. (see also [BPW, Example 6.7]). Finally, we check
that

forms a free basis for m,,- 0,/T/ - f, where f = I %™, which proves the proposition.
U

2.2. Classification of of-orbits contained in A (x* — y?, xy) over R

PROPOSITION 2.2.1. Any germ contained in the A -orbit of (x> — y*, xy) is /-
equivalent to some member of the series

I, =0 —y* +x*" xy), I>1

The 114 , are (21 + 1)-determined, and cod(sZ, 114 ;) = 2(1 + 1).

Proof. The calculations are entirely routine and we omit them. The (2] + 1)-
determinacy of 11} , and its codimension follow from 2.1, since the family I1} ,
is equivalent over C to I%,.

2.3. Other A -orbits of type £2:° do not contain o/ -simple orbits

The equidimensional case (n = p = 2) and the non-equidimensional case (n > 2,
p = 2) are considered respectively in Proposition 2.3.1 and Proposition 2.3.2.

PROPOSITION 23.1. Let f:(k?, 0)—> (k% 0), (k=R, C) be an </-finitely
determined germ of type £*°. If f is of -simple then the A -orbit of f is of type I, ,
or 11, ,.

PROPOSITION 2.3.2. Let f:(k",0) = (k2,0), n = 3, k = R, C be any </-finitely
determined germ of type £*°. Then f is non-simple.

When n = p = 2, the & -orbit of any £* germ not of type I, , or II,, is
adjacent either to I, ; or IV; (see [L., Theorem 2.1], for the description of the
adjacencies of real 2/ -orbits of types ! and £2'°, and [G] for the complex case).
Therefore, Proposition 2.3.1 will follow from Lemma 2.3.3 and 2.3.4 below,
where we show that I, ; and IV; have no «/-simple orbits.

LEMMA 2.3.3. The /-orbits within I, 5 are all non-simple.

Proof. A germ f within I, 5 is A -equivalent to (x> + y3, xy) ([M, VI]). We
show that there is no open .&-orbit within 2" (x? + y*, xy), which will imply that
this o -orbit is filled up entirely with non-simple «/-orbits.
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After some simple coordinate changes, we may assume that any .o/-finitely
determined germ in I, ; has the form:

(% + > + axy? + bxy® + cy* + ®(x, y), xy), Pem)

One easily checks that m30, = TA -f.

Now, the relevant relations in T./*-f are given by tf(x'y’,0), tf(0, x'y),
i+j=1,2 3 w(X,0), wf(Y,0), wf(0, X), wf(0,Y).

Thus there are only 22 generators for the vector subspace m36 I /m30 ', which
has dimension 24. In particular, T/*-f 2 m30,/m30,, and the modality of the
o/-orbit of f within 2 (x? + y3, xy) is greater than one. O

LEMMA 2.3.4. The <«/-orbits within IV; are all non-simple.

Proof. The proof follows immediately, since J#'(x2 + y%, x3) (type IV3) is
adjacent to #(x, y°) (type .« 5) ([L, Theorem 2.17), which in turn is entirely filled
up with non-simple «/-classes (This follows from Proposition 1.3, but see [Rie]
for details). O

We consider now the case n > 3, p = 2.

It is well known that if n > 4, the #"-modality of a pair of quadrics is greater
or equal to one ([W]). Therefore, we only have to consider the case n = 3, p = 2.

In the complex case, there is only one # -orbit of type £*°, whose normal
form is (x* + y%, y* + z?).
PROPOSITION 23.5. Any /-orbit of a finitely determined germ within
H(x? + y2, y* + z2) is at least 1-modal.

Proof. Let f:(C3, 0)—(C?, 0) be any .7-finitely determined germ within
H(x? + y2, y? + z?). Then, with simple coordinate changes, j3f can be reduced
to:

(x2 + y* + ax® + ¢z, x* + 22 + by?)
As before, the result follows from the information given by T2¢3-f and
AR

() TA -f + m30, > m30,.

(ii) Inspecting T.o/3-f we see that the elements of degree three are given by
tf(x,0,0), ¢(0,,0), (0,0, 2), 3[¢f(x,y,2) — 2wf(X,0) — 2wf(0, Y)] and by
J(f)-m, (where J(f) is the Jacobian ideal) (Mod m36).

They generate the following subspace of m3/m30

C{all mixed terms of degree three, (x>, x3), (3, 0), (0, z*)
and (ax® + cz*, by®)} (Mod m36 ).
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Hence T.o/3-f 2 m30,, and comparing with (i) we get the result. O

REMARK 2.3.6. A (x? + y?, y* + z?) splits into various real orbits. These real
A -orbits do not have open .o7-orbit either. In fact, if the condition

tf(m,0,) + f*(m,)0, = tf (m,0,) + wf(m,0,)

were true for any such real germ, we should have:

tfc(m;05) +f?:(m2)0fc = tfc(m,0,) + wic(m,0,),

where fc is its complexification. This clearly contradicts the above lemma.

Proposition 2.3.2 will follow from the above discussion.

3. Adjacencies of o/-simple £*%-germs f: k%, 0 — k?, 0

The adjacencies between o7-simple Z!-germs from C? to C? are shown in [Rie].
For corank 2 terms we have the following

PROPOSITION 3.1. Figures 1 and 2 show the adjacencies of /-simple £?-°-
germs f: k%, 0 > k2,0 for k = C and k = R, respectively. (To denote o/-classes we
use the notation of Propositions 1.3 and 2.1).

Proof. As in [Rie] we use three invariants m(f), c(f), and d(f), which are
upper-semicontinuous under deformation, to rule out certain adjacencies. Let
and A denote the critical set and the discriminant of f, which are both germs of
plane curves, and let 6(C) denote the well-known d-invariant of a germ of a plane
curve C (see [Mi]). The three invariants of f can then be calculated as follows:
m(f) = dim, C,/f*m,, c¢(f) = dim, C,/I (where I = ideal defined by the vanish-

D,
ing of 2 x 2 minors of [V!lﬁ;l])’ and d(f) = §(A) — 8(Z) — c(f). (For germs f: C2,
(1) k=c
A-codim 1 2 3 4 5 6 7
2 3 e fy e dy e Ay 4y g !
_____________ T TTTH
I:’;"‘_’n'_’;:"_l;.;‘_ 20
NN
Bie— B3 —
L7 = (@ 4y 4 2 N

(>m>1

Fig. 1.
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(2) k=R
A-codim 1 2 3 4 5 6 7 8
/ ‘\/4:\ /42\ /
! 2 3 e Qg 4l 4 4y ——
720 \H: 1z, 113, —
Ly Bie— B3 Ly I3 —
BT = (27 + g4 g7 4 2274 \ \ \ \
£>m>1 122:;___ l:f;' 1;22 ”
”5,2 =@l -y+ zu“‘:y) 1;.:.__
£>1
Fig. 2.

0 — C?, 0 these invariants have the following geometrical meaning: m(f) is the
number of preimages of a target point off the discriminant A of f; and ¢(f) and
d(f) are the numbers of cusps and transverse fold crossings of a generic
deformation of f).

For X!-germs these invariants have been calculated in [Rie] and for the .o/-
simple £%:°-germs of the classification in §2 we have the following

LEMMA 3.2. The invariants m, ¢, and d associated with the members of the series
of germs I5™ and 114 , have the values:

m(I5m) = 4, o(I5m) = 3, dism) =1+ m;

and
m(I14 ;) = 4, c(II’m) =3, d(I1, ;) = 2I.

These expressions also make sense for the “stems” of these series
I95° = (x%, ), I3 = (x2, y? + x™* Y and 113, = (x> — 2, xy).

Proof. These are just a trivial calculation. Note that the critical sets and the
discriminants of the germs I5™ consist of two branches, so that §(X) and 5(A) are
sums of d-invariants of each branch and the (local) intersection numbers of the
branch pairs. Also note that, as complex-analytic germs, 115 , ~ I%', (and that
the dimensions of the relevant local algebras are not altered by complexifying).

Also notice that the Milnor number y of the critical sets of the germs 15 and
I, , is equal to one. The upper semicontinuity of these invariants and the
adjacencies of A -classes described in §2.3, together with the following lemma,
conclude the proof of Proposition 3.1.
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LEMMA 3.3

() k = C: the degenerate mono-germs in a versal deformation of 15’} are of type
4,; and

(ii) k = R: the degenerate mono-germs in a versal deformation of 15’ are of type
45, and there are no degenerate mono-germs in a deformation of 113 ,.

Proof. We consider o/-versal unfoldings F:k?xk? 0— k?xk? 0, given
by F(u,x,y) = (u, f(u,x,y)), where f(0,x,y)=133 or II,. The set B:=
{ue(k?, 0):c(f(u, 0,0)) > 2} gives all degenerate mono-germs in a deformation of
I35 or I13 ,, because ¢ > 2 for any degenerate mono-germ of the plane and the
origins in source and target are preserved under /. Let m,(x, y), m,(x, y), and

Df (@, x, ) ] here

ms(x, y) denote the determinants of the 2 x 2 minors of I:
’ VI Df(u, x, y)
D is the differential of f with respect to x and y.

Now ¢(f(u,0,0)) = dim, C,/(m,, m,, m3) > 2 if and only if
ml(Os 0) = mZ(O’ 0) = m3(07 0) =0

and the 2 x 2 minors of

om,(0, 0)/0x dm,(0, 0)/0y
0m,(0, 0)/0x 0m,(0, 0)/0y
0m5(0, 0)/0x 0m5(0, 0)/0y

vanish. The six equations define an ideal I in k[u,,...,u,].

First, consider the «-versal deformation f(u,x,y)=(u, x>+ y>+u;x+u,y,
y? + x3 + uyx + u,y) of I3:5. One calculates that I = (uyuz — u3, uyu, — usus,
u? — uyuy, uyBuyus + 2u,) + uy(duy + 3ud), u (3ud + duy) + uuy + 3ujuy),
—(4u, + 3u3)(3u3 + 4uy) + (Buyusy + 2u,)(2uy + 3u,u,), and, calculating a
standard basis for I with respect to some lexicographical ordering of the
variables in k[u,, ..., u,], one finds the following set of degenerate mono-germs:
B = {ue(k*,0):u, = u, = uyu; =0}. Now, by direct coordinate changes,
f(0,u,,0,0,x,y) ~4; for u,eR—{0} and f(0,0,u3,0,x,y)~4, for
us€R — {0} (in the case k = R), and f(0, u,, 0,0, x, y) ~ f(0,0, u3,0, x, y) ~ 4, for
u,, uz€ C — {0} (for k = C).

Finally, we consider the .«/-versal deformation

fu,x,y) = (x* = y* 4+ x> + uyX + uy), Xy + usx + uy))

of the real germ II,. Repeating the calculations above, one finds that
B = {ue(R*0):u; = u, = uy = u, = 0}. Hence there are no degenerate mono-
germs in a versal deformation of 11} ,, and the lemma follows.



108 J. H. Reiger and M. A. S. Ruas

Proof of Proposition 3.1; conclusion. Lemma 3.3 says that I3} and II} , are
not adjacent to the X'-germ (x, xy + y*), which is the open o/-orbit in the -
class A;. From the adjacencies in [Rie] of £!-germs it follows that none of the
germs I5™ and 1} , is adjacent to some .2/-orbit in 4. Finally, one checks that
I3, - 3. 0
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