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Introduction

There are relatively few cases in which the absolute Galois group of a field is
known explicitly. One such case is the absolute Galois group of a p-adic field
[JW]. A very broad generalization of this case is given by the class of p-adically
projective groups, defined below (Section 4), which can be realized as absolute
Galois groups of "pseudo p-adically closed" (PpC) fields K [HJ4], characterized
by the condition that any absolutely irreducible variety defined over K with a
simple point in every "p-adic closure" of K has a K-rational point. Here we
prove a realization theorem that implies in particular that every p-adically
projective profinite group of at most countable rank is realizable as an absolute
Galois group of an algebraic PpC field. In the more precise form given as
Theorem A below, this has consequences both for the algebraic theory of
(arbitrary) PpC fields and the theory of p-adically projective groups (of arbitrary
rank), given as Theorems B and C below. Of course the realization theorem can
also be viewed as giving the construction of a large family of fields algebraic over
0 whose absolute Galois groups are known explicitly. For this it suffices to give
explicit constructions of p-adically projective groups, which is quite easy. For
example, the absolute Galois group of Op is itself p-adically projective, as is any
free profinite group (indeed, any projective profinite group), the class is closed
under free products, and under taking closed subgroups satisfying a certain
condition (Theorem F).
The main results are as follows. The notation G(K) denotes the absolute

Galois group of a field K.

THEOREM A (Realization Theorem). Let G be a p-adically projective group of

*This work was partially supported by a grant from the G.I.F., the German Israeli Foundation for
Scientific Research and Development, while the author enjoyed the hospitality of the Institute for
Advanced Study at Princeton, New Jersey.
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at most countable rank, K a number field, L a finite Galois extension of K and
n : G ~ W(LIK) an epimorphism satisfying:

for each embedding ri : G(Qp) ~ G there is an embedding 03BE: G(Qp) ~ G(K) such
that resL 0 ( = 03C0 o ~.

Then there is a PpC field E algebraic over K and an isomorphism y: G ~ G(E) such
that resL 0 Y = 1C.

THEOREM B (Group Theoretic Application). Let G be a p-adically projective
profinite group which is not projective. Then G has cohomological dimension 2.

This theorem answers a question of Gregory Cherlin.

THEOREM C (Field Theoretic Application). Let K be a PpC field, v, vl, ... , v,,
p-adic valuations of K. Then K is dense in the p-adic closure K with respect to v, K
is unique up to K-isomorphism, and if v1,... , ve are inequivalent, then they are
independent.

The route from Theorem A to Theorem C goes through model theory.

THEOREM D (Lefschetz Principle). Let 0 be a first order sentence true in all
PpC fields which are algebraic over 0. Then 0 is true in every PpC field.

This theorem has the effect of recoding the Realization Theorem in a directly
applicable form.
One very striking consequence of Theorem B should be noticed. It is well

known that G(C(t)) is a free profinite group and it follows from the work of Krull
and Neukirch [KN] that G(R(t)) is a real free profinite group in an appropriate
sense [HJ2]. On the other hand it follows easily from Theorem B that G(Qp(t)) is
not even p-adically projective (Theorem 6.9), and hence probably not p-adically
free in any reasonable sense. It would no doubt be interesting to make the
obstruction more explicit.
One very useful principle in the PAC, PRC cases is that an algebraic extension

of such a field is again of the same type [FJ and P]. This fails in the PpC case.
However, it is necessary to find the correct version of this principle to prove the
Realization Theorem.

THEOREM E (Algebraic Extension Theorem). Let L be an algebraic extension
of a PpC field K. Then L is PpC if and only if for every p-adic closure K of K,
either L ~ K or LK = K.

The proof (as always in such contexts) uses Weil descent, and generalizes
Heinemann and Prestel’s proof [HP]. We have a group theoretic analog, which
however is not a strict parallel to the field theoretic result:

THEOREM F. Let G be a p-adically projective profinite group and let H be a
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closed subgroup of G. Then H is p-adically projective if and only if for each G  G
with G &#x26;é G(Qp) either G  H or G n H is projective.

This relies on group theoretic construction of Haran [H] analogous to Weil
descent.

At this stage a common framework for theories of "pseudo closed" fields is
beginning to emerge, based on certain special properties largely shared by the
three profinite groups 1, 7L2, and G(G.). It is not surprising that the necessary
properties emerge more clearly in the third case. We take an abstract unifying
approach as far as it can conveniently go at this point, but at present we are still
restricted to taking essentially these groups as our point of departure.
To conclude this introduction we sketch the proof of the Realization

Theorem. We construct in succession four fields K03C3 ~ M03C9 ~ M0 ~ E, algebraic
over Q so that

(la) Ka is PpC and has an explicitly known Galois group.
( 1 b) The Algebraic Extension Theorem applies to each extension successively

(so that all four fields are PpC).
(1c) The desired isomorphism y exists at the level of G(E).

The four fields involved are obtained as follows.

K,: We may assume that the set Embd(G(Qp), G) of all embeddings
~: G(Qp) ~ G is nonempty (else [FJ, Thm. 20.22] applies). Then

03C0° Embd(G(Qp), G)={resL°~i|i=1,...,e} for some ~i~Embd (G(U,), G(K))
and a positive integer e. Let Ki be the fixed field of ~(G(Qp)) in Q. By a theorem of
Neukirch [NI], Ki is p-adically closed. Choose generators 03C3e+1,...,03C3e+m for
Y(L/K) with m &#x3E; 2. We will find U 1, 03C3e+m ~ G(K) such that

(2a) resL03C3e+i = 03C3e+ i for i = 1,..., m,
(2b) the intersection K, of the fields K03C3ii(i  e) and the fixed field of

03C3e+1,..., 6e + m in Ô is a PpC field, and
(2c) G(K03C3) ~ De,m is the free product of e copies of G(Qp) and the free profinite

group on m generators.

In fact the set of 03C3 = (03C31,...,03C3e+m) having properties (2b) and (2c) are of
measure 1 in G(K)e+m.
The remaining steps can be viewed as taking place group theoretically inside

G(K,) = De,m.

M03C9: There is a group 039403C9 called the universal G(Q)p)-group of rank No which
plays the role of the p-adically free group on No generators. Working inside De,.
we find an extension Mw of K, with these properties:
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This is analogous to a construction introduced by Lubotzky-v.d.
Dries/Melnikov [FJ, Sec. 24.3] to recognize the free profinite group of rank X,
as a subgroup of Ê..

Mo : Next find Ao  039403C9 and an epimorphism 0 : 03940 ~ G such that

(7a) no 0 = resL on Ao,
(7b) if H  Ao is isomorphic to G(Qp), then 03B8(H) ~ G(Qp),
(7c) if H1, H2  Ao are isomorphic to G(Qp) and 0(Hi ) = e(H2), then H1 and H2

are conjugate in Ao, and
(7d) for each H  G isomorphic to G(Qp) there is H’  Ao, H’ xé G(QP) with

03B8(H’) = H.

Let Mo be the fixed field of Ao in Õ.

E : Apply p-adic projectivity to get a continuous section y : G - Ao for 0 and let
E be the fixed field of y(G) in Ô.

Notation

Fm = the free profinite group on m generators.
For 0’ = (03C31,...,03C3e) ~ G(K)e, K(a) is the fixed field of 03C31,...,03C3e in K.
F ro = the free profinite group on No generators.
G(K) = absolute Galois group of K.

Qp,alg = Qp ~ Q.
K = the algebraic closure of a field K.
K, = the separable closure of a field K.
Vsim(K) = the set of K-rational simple points of a variety V defined over K.

We use the term "variety" for "absolutely irreducible variety’..

Definitions

A field K is PAC if every variety V defined over K has a rational point.
A field K is PRC if every variety V defined over K with a simple K-rational
point for each real closure K of K has a K-rational point.
A valuation v of a field K is p-adic if the residue field is FI, and p has the smallest
positive value under v.
A field K is p-adically closed if it admits a p-adic valuation and no proper
algebraic extension of K admits one. If K is algebraic over a field K, then K is
said to be a p-adic closure of K.
A field K is PpC if every variety V defined over K with a simple K-rational point
for each p-adic closure K of K has a K-rational point.
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1. h-Universal groups

Lubotzky and v.d. Dries, and independently Melnikov, have shown how to
embed F03C9 as a closed normal subgroup of Fm for m &#x3E; 2 [FJ, Sec. 24.3], using a
characterization of F03C9 due to Iwasawa. In the theory of PRC fields it has been
necessary to extènd Iwasawa’s characterization to real free groups and to apply
it to the embedding of a "universal" real free group as a closed normal subgroup
of a free product of finitely many copies of Z/2Z and Fm (m  2) [HJ3, Lemma
3.4]. We will show how to develop this theory in a general framework which
applies also to the case of p-adically universal groups. Thus we will deal with a
r-universal group, for 0393 a fixed finitely generated profinite group: 0393 = 1 is

Iwasawas’ context, Z/2Z is the context of [HJ3], and G(Qp) is our intended
application. Our main result will be that the G(Qp)-universal group of rank o
embeds in De,m for e &#x3E; 1 and m &#x3E; 2 (Proposition 1.8) which corresponds exactly
to the second step in the proof of the Realization theorem.
For a profinite group G let Subg(G) (resp., Hom(0393, G)) be the set of all closed

subgroups of G (resp., all continuous homomorphisms of r into G). If G is finite,
both Subg(G) and Hom(r, G) are finite. In general Subg(G) = lim Subg(G/N) and
Hom(F, G) = lim(Hom(0393, G/N)), where N ranges over all normal open sub-

groups of G. Thus both Subg(G) and Hom(r, G) are Boolean spaces. The map
Im : Hom(r, G) - Subg(G) which maps each 03C8 E Hom(r, G) onto its image, 03C8(0393),
is continuous. Let D(0393, G) be the set of all subgroups of G which are isomorphic
to r. Let Embd(r, G) be the set of all embeddings of r into G. Since each
epimorphism of r onto a group isomorphic to r is an isomorphism [FJ, Prop.
15.3], Im-1(D(0393, G)) = Embd(0393, G). Hence D(0393, G) is closed in Subg(G) if and
only if Embd(r, G) is closed in Hom(r, G).
The group G acts on Hom(r, G) according to the law: 03C8x(g) = x-103C8(g)x. The

group Aut(r) acts on Hom(r, G) according to the law: 03C803C9 = t/J 0 03C9. Define

03C8, 03C8’ ~ Hom(r, G) to be (G, Aut(r))-equivalent (or just equivalent if G and rare
clear from the context) if there exist x ~ G and co E Aut(r) such that 03C8 = 03C8x03C9.
Since the actions of G and Aut(r) on Hom(r, G) commute, this defines an
equivalence relation on Hom(r, G). We call a subset 7 of Hom(r, G) a

(G, Aut(r))-domain if it is closed under the actions of both G and Aut(r). For
example, Embd(r, G) is a (G, Aut(r))-domain. If y : G - B is an epimorphism,
then the relations y - t/Jx = (y - 03C8)y(x) and y - 03C803C9 = (y - 03C8)03C9 show that y - Embd(r, G)
is a (B, Aut(r))-domain. If, in addition, Embd(r, G) is closed, then so is

y 0 Embd(r, G).
A proper r-embedding problem for G is a triple (9: G ~ A, n : B ~ A, I), where

ç and 03C0 are epimorphisms of profinite groups and 7 is a closed (B, Aut(h))-
subdomain of Hom(r, B) such that 03C0° I = qJ 0 Embd(r, G). The embedding
problem is finite if B is a finite group. A proper solution of the embedding
problem is an epimorphism y : G ~ B such that no y = ç and y - Embd(r, G) = 1.
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The profinite group G is r-universal if Embd(r, G) is nonempty and if each
proper finite r-embedding problem of G is properly solvable.

LEMMA 1.1. Any two r-universal groups G and H of rank 0 are isomorphic.
Proof Each of the groups G and H has a descending sequence of open normal

subgroups whose intersections is 1: G = M’0  M’1  ... and H = N’0  N’1  ···.
By induction we construct two descending sequences of open normal subgroups,
G = M0  M1  ···  Mn and H = N0  N1  ···  Nn such that Mi  M’i and
Ni  N; for i = 1,...,n, and isomorphisms ~i: G/Mi ~ H/Ni such that ~i
induces ~i-1 and ~i° pi ° Embd(r, G) = 03C4i° Embd(r, H), where pi : G - G/Mi ,
03C4i:H ~ H/Ni are canonical.

Initially ~0 is the map 1 ~ 1. To proceed with the (n + l)st step of the induction
consider the group K = M’n+1 ~ Mn and let K: G - G/K and 03C1n: G/K ~ G/Mn be
the canonical maps. Then

qJn ° Pn ° (K ° Embd(r, G)) = ~n ° 03C1n ° Embd(r, G) = 03C4n ° Embd(r, H).

Since H is h-universal there exists an epimorphism 03B3’ : H ~ G/K such that
qJn o 03C1n o y’ = in and y’ o Embd(r, H) = x ° Embd(r, G). Let Nn+1 = N’n+1 n Ker(y’)
and let y : H/Nn+1 ~ G/K be the epimorphism defined by y’. Then

Nn+1  N’n+1, ~n ° 03C1n ° 03B3 = 03C4n+1,n, and 03B3 ° (03C4n+1 ° Embd(0393, H)) = 03BA ° Embd(0393, G).

Again, 03C4n+1,n : H/Nn+1 ~ H/Nn is canonical.
Since G is r-universal there exists an epimorphism qJ’: G ~ H/Nn+1 such that

y o ~’ = K and cP’ ° Embd(r, G) = 03C4n+1 ° Embd(0393, H).
Let Mn+1 = Ker(~’) and let ~n+1: G/Mn+1 ~ H/Nn+1 be the isomorphism

defined by ~’. Then, with canonical 03C1n+1,n; G/Mn+1 ~ G/Mn, we have

03C4n+1,n ° ~n+1 = ~n ° 03C1n+1 ,n

and

~n+1 ° (03C1n+ 1 
° Embd(r, G)) = 03C4n+1 o Embd(r, H).

This completes the induction step.
The compatible sequence of ~0, CPl, ~2,... of isomorphisms induces an

isomorphism ~ : G - H. D

NOTATION 1.2. For a positive integer e let r 1, ... , re be isomorphic copies of
r. Consider the free products (in the category of profinite groups)
De = 03931*···*0393e and De,m = De*m. For each i between 1 and e fix an

isomorphism 03C8i: 0393 ~ 0393i.
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Our next goal is the embedding of a r-universal group in De.m for e  1 and
m  2 (Proposition 1.8).
LEMMA 1.3 (Binz-Neukirch-Wenzel [BNW, p. 105]). Let G = l*IieIGi be the
free product of profinite groups Gi over a finite index set 1. Let H be an open
subgroup of G. For each i E 1 consider the double class decomposition of G:

Then

where

LEMMA 1.4. For e, m  1 let D = De, F = Ê., and G = De,.. Also, let H be an
open normal subgroup of G of index n that contains D. Then H xé Den,1 + n(m - 1).

Proof. If G = ni=1 Hzi, then G = ni=1 DziH and Dzi ~ H = Dzi ~ De for
i = 1,..., n. Since FH = G and (F : F ~ H) = (G : H) = n, the Nielsen-Schreier
formula [FJ, Prop. 15.27] implies that F ~ H ~ F1+n(m-1). As

Lemma 1.3 implies that

From now on we make the following assumption:

ASSUMPTION 1.5. The profinite group r satisfies the following conditions.

(a) r is finitely generated and nontrivial, and
(b) for each e and m, if a subgroup H of De.m is isomorphic to r, then H is

conjugate to ri for some i between 1 and e.
(c) the center of r is trivial, and
(d) r has a finite quotient f such that for each e and m and for each closed

subgroup H of De,m, if H is a quotient of r and f F is a quotient of H, then H is
isomorphic to r. We refer to each quotient of r’ which has f as a quotient as a
large quotient.
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REMARK 1.6. Assumption 1.5 is satisfied if r is a finite group with a trivial
center [HR, Thm. 1] or if 0393 ~ G(Qp) [HJ4, Prop. 12.10]. Part (c) of the

assumption is not used until Section 3. As this assumption excludes the case
r = Z/2Z, these results are not a strict generalization of the real case. It might be
possible to develop the theory under the hypothesis that the center of r is finite,
but such a theory could have no further field theoretic applications.
The first result that uses Part (d) of the Assumption 1.5 is Lemma 2.5.

LEMMA 1.7. Let H be a closed subgroup of De,m which is isomorphic to r.

(a) If Hx = H for some x E De,m, then x E H.
(b) Let d be an integer between 1 and e and let A = 03931 * ... F, * Fm. If H ~ A ~ 1,

then H  A.

(c) If H’ ~ H is another closed subgroup of De,. which is isomorphic to r, then
H ~ H’ = 1.

(d) 1 n the notation of 1.2, 03C81, ... , t/J e represent the equivalence classes of
Embd(r, De.m).

Proof By Assumption 1.5 each of the groups H and H’ is conjugate to some
Fi. Assertion (a) therefore follows from [HR, Thm. B’].
To prove assertion (b), note that De,m = A * B where B = 0393d+1 *···*0393e. We

know that H = ri for some i between 1 and e. If i &#x3E; d, let a : De,m ~ B be the
homomorphism which maps A onto 1 and B identically onto itself. By
assumption, there exists c ~ 0393i, c ~ 1, such that CX E A. Then ccx(x) = a(c’) = 1, a
contradiction. It follows that i  d. But then Ax ~ A ~ 1. Conclude from [HR,
Thm. B’] that x ~ A and therefore H  A.
To prove (c) note, as before, that H’ = 0393yj for some y E De,m. Assume that

H ~ H’ ~ 1. If i ~ j, then map Fi onto 1 and all the other components identically
onto themselves to draw a contradiction. If i = j, then xy-1 E ri (by (a)) and
H = H’, a contradiction.
Next consider the obvious map De,m ~ 03931 x ... x re to conclude that

03931,...,0393e are mutually nonconjugate in De,m. In particular, 03C81,...,03C8e are
nonequivalent.

Finally let 03C8: 0393 ~ De,m be an embedding. By Assumption 1.5, there exists

X C- De,,n such that 03C8(0393)x = Fi. Thus conjugation by x gives an isomorphism [x]
of 03C8(0393) onto fi. Then 03C9 = 03C8-1 ° [x-1] ° c- Aut(r) and 03C803C9x = t/J i’ This means
that 03C8 is equivalent to 03C8i. D

PROPOSITION 1.8. For e &#x3E;, 1 and m  2 let D = De, G = De,., and let K be an
open subgroup of G. Then G contains a closed normal subgroup H of countable
rank which is r-universal such that D  H and KH = G.

Proof. Choose a prime p which does not divide (G : K). Let p : G ~ 7Lp be an
epimorphism such that p(D) = 1. We will show that H = Ker( p) will do.
Note first that H contains D and (G : KH) is a power of p which divides (G : K),
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so G = KH. Also, for each nonnegative integer i, G has a unique open normal

subgroup Gi of index pi which contains H. Since G is finitely generated, H is
countably generated. By Assumption 1.5(b),

Embd(r, Gi) = Embd(r, H).

In particular, since e  1, Embd(0393, H) is nonempty. The proof that each finite
proper r-embedding problem for H is properly solvable has three parts.

PART A: Embedding problem. Let (qJ:H--+A, 03C0: B ~ A, I) be a finite proper

embedding problem for H. In particular Ker(~) is a normal open subgroup of H.
Let N be an open normal subgroup of G such that H ~ N = Ker(~). Then
HN = Gk for some positive integer k. Extend ç to an epimorphism ~ : Gk ~ A
with kernel N. Choose a positive integer ro such that pr° - ro &#x3E; k, let

r = max{p|B|, r0, |I|}, and let n = r + k. Then pr - r &#x3E; k. By Lemma 1.4,
Gn = D’ * F’ where D’ xé De’, F’ éé m’, e’ = epn and m’ = 1 + p"(m - 1). Thus

m’ &#x3E; 2n. (1)

Claim 2. For each 03B1 ~ qJ 0 Embd(r, Gn) there exist at least n nonequivalent
elements 03BE of Embd(r, Gn) such that qJ 0 ( is (A, Aut(r))-equivalent to a.

Indeed, let 03BE be an element of Embd(r, GJ and let a = qJ 0 03BE. For each x ~ Gk the
homomorphism 9 - 03BEx = 03B1~(x) is (A, Aut(r))-equivalent to a. If y E Gk and (X is
(Gn, Aut(0393)-equivalent to (Y, then there exist b E Gn and (ù E Aut(r) such that
03BEx = 03BEyb03C9. Hence (r)x=c(r)Yb. As 03BE(0393) ~ Gn, Lemma 1.7(a) gives a ~ 03BE(0393) such
that x = yba. Hence x ~ y mod Gn. Conclude for representatives gl,..., gpr of Gk
modulo Gn, that 03BExi, i = 1,..., pr are (Gn, Aut(r))-nonequivalent elements of
Embd(r, Gn) which are mapped by 9 onto an element of Hom(r, A) which is
(A, Aut(r))-equivalent to a. As pr &#x3E; n, the claim follows.

PART B: Generators of Gn. Let Ao be the smallest normal subgroup of A that
contains a(r) for each 03B1~~° Embd(r, H). Let Bo be the smallest normal

subgroup of B which contains 03B2(0393) for each 03B2 E I. Let Ho be the smallest closed
normal subgroup of H that contains ~(0393) for each q E Embd(r, H). Deduce from

that



30

Let now Nn = Gn n N and choose xENn - Gn+1. As Ho contains D’, we have

Gn = HoF’. Let therefore x = ho f with ho E Ho and f E F’. Since Ho  Gn+1 we
have

Denote the image of z E Gn under the canonical map Gn ~ Gn/Nn+1 = Gn by z.
Since Gn = Gn+1Nn

In particular |F’|  1 G. = p|A+  n. Use (4) to find generators c1,...,cn of the
subgroup F’ of Gn such that c 1 = f ~ Gn+1. Let cn + 1 = ... = c., = 1. By
Gaschütz Lemma, F’ has generators xl, ... , xm. such that xi = ci for i = 1,..., m’

[FJ, Lemma 15.30]. In particular

and, by (3) and (4),

Also

Finally choose for each i between 1 and e’ a closed subgroup ri of D’
isomorphic to r and an isomorphism 03C8’i: 0393 ~ 0393i such that D’ = 03931 *... * 0393e’.

PART C: Solution of the embedding problem. Define a map

in the following way: First use (6) to choose 03B3(x1),...,03B3(xn)~B such that

n(y(x)) = cp(x) for j = 1,..., n and

By (1), |Ker(03C0)|  |B|  r  n  m’ - n. Hence we can choose 03B3(xn+ 1),..., y(xm,) as
a system of generators for Ker(n).

Finally let 03B21,..., /3s be representative of the (B, Aut(I»-equivalence classes of
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1. Then s|I|n. By Lemma 1.7(d), 03C8’1,...,03C8’e’ represent the equivalence
classes of Embd(r, Gn). Hence, by Claim 2, each 03B1 ~ ~ ° Embd(0393, Gn) is

equivalent to at least n homomorphisms ~ ° 03C8’1,...,~°03C8’e’. By assumption
03C0 ° I = ~ ° Embd(r, Gn). Since there are at most n of the homomorphisms no 03B2i,
we may reenumerate 03C8’1,...,03C8’e’ such that 03C0 ° 03B2i is (A, Aut(r))-equivalent to
~ ° 03C8’i for i = 1, ... , s. Use the surjectivity of n to replace 03B21,...,03B2s if necessary by
equivalent embeddings and assume that 03C0 ° 03B2i = ~ ° 03C8’i for i = 1,..., s. Then
choose 03B2s+1,..., Pe’ ~ I such that 03C0 o /3i = ~ ° 03C8’i for i = s + 1,..., e’. Define y on ri
as 03B2i ° (03C8’i)-1.
The map y extends to a homomorphism y : Gn ~ B such that no y = ~. Since

Ker(03C0)  y(Gn) and qJ(Gn) = A we have 03B3(Gn) = B. Also, y 0 03C8’i = Pi for i = 1,..., e’.
Hence y ° Embd(r, H) = y ° Embd(r, Gn) = I. In particular

Finally, as Gn/H ~ 7Lp, (5) implies that x1H=Gn. By (9) and [HJ3, Lemma
4.2], y(Ho) = Bo. Hence, by (8), 03B3(x1) ~ B0 = 03B3(H0) ~ y(H). Conclude that

y(H) = y«xl)H) = y(Gn) = B.
The restriction of y to H properly solves the embedding problem of

Part A. D

2. The group A.

We now give an explicit construction of the r-universal group of rank No which
we call 039403C9. It will allow us to deduce properties of 039403C9 which are not immediate
from the definition.

For each ordinal number between 1 and co let En be the set of all n-tuples
of 0 and 1. The projection maps 03C0n,m: En~Em, for n  m given by
03C0n,m(03B51,..., En) = (03B51,..., Bm) are compatible with each other and Ero = lim En.
The first three properties of Ero that we list below are included in [HJ3,
Lemma 1.2].

LEMMA 2.1.

(a) Every nonempty open-closed subset of Ero is homeomorphic to Ero.
(b) Let X be an inverse limit of a sequence of finite discrete spaces. Let X0 be a

finite discrete space and let cp: Ero --+ X o and (1: X ~ X o be continuous maps. If
03B1(X) ~ ~(E03C9), then there exists a continuous injection y: X - Ero such that
cp 0 y = (1.

(c) Let cp and a be as in (b). If a(X) = cp(Ero), then there exists a continuous
surjection y : E03C9 ~ X such that (1 0 y = cp.



32

In the rest of this section we construct the r -univers al group as a free product
of the free profinite group F ro of rank No with a free product over Ero of
isomorphic copies of r. The free product 039403C9 we obtain generalizes that of [HJ3]
where r is 7Lj27L but is a special case of those of Gildenhuys and Ribes [GR].
The proof that OW is indeed F-universal is given in Section 4.

Consider the free profinite group FW with a basis {03B31, Y2, Y3, ..} converging
to 1 and let Y03C9 = {y0, Yl, y2,...} with yo = 1. Every continuous map of Yro into a
profinite group G that maps 1 onto 1 uniquely extends to a homomorphism of
F ro into G. For each n  03C9 let Fn be the free profinite group with the basis
{y1,...,yn}.

LEMMA 2.2. Let p: Yro --+ A be a continuous map into a finite group A such that
A = 03C1(Y03C9) and 03C1(1) = 1. Let n : G~A be an epimorphism from a profinite group
of rank  o. Then there exists a continuous map y : Yro-+G such that p = no y,
G = 03B3(Y03C9) and y(l) = 1.

Proof: (Iwasawa). There exists a positive integer k such that

for each i &#x3E; k + 1. Let go = 1. For each i between 1 and k choose gi E G such that
03C0(gi) = P(Yi)’ Also choose a sequence of generators gk+1, gk+2,..., for Ker(n) that
converges to 1. Then the sequence {g1, gl, g2,...} converges to 1 and generates
G. The map 03B3: Y03C9 ~ G defined by 03C1(yj) = gi, i = 0,1,2,..., is continuous,
03C1(Y) = G and we have 03C0 o 03B3 = p. r-i

Let r be a profinite group. For each n  cv and for each e ~ En take an
isomorphic copy re of r and fix an isomorphism 1/1 e: r --+ r e’ Form the free
product

(in the notation of Section 1, this is the group D2n.n.) For m  n let nn.m also
denote the epimorphism nn.m: 0394n ~ Om defined by

and such that for each en E En and with em = 03C0n,m(en) the restriction of 03C0n,m to r en
coincides with t/J em a 03C8-1en. Now take the inverse limit:

If e ~ E03C9 and en = 03C0n(e), then F, = lim ren is a closed subgroup of 039403C9 and
03C8e = lim 03C8en. Similarly 03C9 = lim Fn is a closed subgroup of 039403C9 and
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039403C9 = 0393e, 03C9e~E03C9 In particular every homomorphism of 039403C9 into a profinite
group is determined by its restriction to the set

LEMMA 2.3. Every continuous map qJ of Z03C9 into a profinite group G such that
ç(1) = 1 and for each eEEro the restriction of qJ to re is a homomorphism uniquely
extends to a homomorphism ~: 039403C9 ~ G.

Proof. Going to the limit reduces the lemma to the case where G is finite. In
this case 039403C9 has an open normal subgroup K such that if z, z’ e Z03C9 and zK = z’K,
then (p(z) = qJ(z’). Choose a positive integer m such that Ker(03C0m)  K. For each
n  m let Zn = UeeEn 0393e ~ {1, y1,..., yn} Define a map gn: Zn ~ G such that
qJn 0 03C0n = 9 on Zro in the following way: First let ~n(yi) = ~(yi) for i = 0,..., n. For
en E En choose e E Ero such that n,,(e) = en. Denote the restriction of n,, to he by n.
As n is an isomorphism define qJn on ren as ~° n-1. If e’ is an another element of
Ero such that 03C0n(e’) = en and the restriction of 7t,, to re. is 03C0’, then

~°(03C0’)-1 = ~ ° n-1. Indeed, for z ~ 0393en let z = 03C0-1(z) and z’ = (n’) - ’(-Z). Then
03C0n(z) = nn(z’) and therefore g(z) = qJ(z’).
We have proved that ç uniquely determines 9,,. The latter map uniquely

extends to a homomorphism ~n: dn --+ G. The compatible collection {~n}nm
defines an extension of ç to a homomorphism (p: 039403C9 ~ G. D

The following lemma allows little changes in Y. while keeping Lemma 2.3
valid.

LEMMA 2.4. Let p be an epimorphism of 039403C9 onto a finite group A. Then dro has
an automorphism qJ whose restriction to each r e is the identity map and such that
03C1~(Y03C9)) = A.

Proof. Since the map 03C1: 039403C9 ~ A is continuous, there exists a positive
integer k such that 03C1(yi) = 1 for each i &#x3E; k. As p is surjective there exist

z1,..., zm ~ ~e~E03C9 0393e such that A = 03C1(y1),...,03C1(yk), 03C1(z1),...,03C1(zm). Define

y’i=yi for i = 0,..., k, y’k+j=yk+jzj for j=1,..., m, and y’i=yi for each i&#x3E;k+ m.

Then limi- 00 y’i = 1 and therefore the map yi H y’i, i = 0,1,2,..., extends to a

homomorphism (p: 039403C9 ~ 039403C9 whose restriction to UeEEro re is the identity map
(Lemma 2.3). Clearly ç is surjective.
To prove that 9 is also injective define for each n a homomorphism

9,,: 0394n ~ 0394n such that ~n(yi) = ?Ln(yi) and whose restriction to r e is the identity
map for each e~En. Then qJn is surjective. Since 0" is finitely generated, qJn is an
isomorphism [FJ, Prop. 15.3]. Conclude that 9 = lim ~n is an automorphism.

Obviously, Lemma 2.3 holds for Z’03C9 = UeEEro reu {y’0, y’1, y’2,...} and we have
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LEMMA 2.5. Suppose that r satisfies Assumption 1.5. Let H be a closed

subgroup of dro which is isomorphic to r. Then

(a) there exists e E Ero such that H is conjugate to r e’
(b) if Hx = H for some x~039403C9, then x E H, and
(c) For a closed subset Eo of E(O let 03940 be the closed subgroup of 1B(0 generated by

Y03C9 and by re, e E Eo. If H is a closed subgroup of 039403C9 which is isomorphic to r
and H ~ 03940 ~ 1, then H  Ao.

(d) if H’ ~ H is another closed subgroup of 039403C9 which is isomorphic to r, then
H ~ H’ = 1.

Proof. In the notation of Assumption 1.5(d) there exists no such that for each
n  no, r is.a quotient of 9n(H). Hence, by Assumption 1.5(d), ~n(H) is conjugate
to ren for some en E En. Now use standard limit arguments to find e ~ E03C9 such
that H is conjugate to re. Parts (b), (c), and (d) follow now also by standard limit
arguments from parts (a), (b), and (c), respectively, of Lemma 1.7. D

For each positive integer n the map e  03C8e maps the finite set En injectively
into Hom(r, 0394n). For various n these maps are compatible with the maps nn,.-
Hence, taking the inverse limit, the map e  03C8e maps E03C9 homeomorphically
onto the closed subset 03A803C9 = {03C8e|e ~ E03C9} of Hom(r, 039403C9). As in the proof of
Lemma 1.7(d) the first statement of the following lemma is a reinterpretation of
Lemma 2.5:

LEMMA 2.6. The set IF. is a closed system of representatives of the (039403C9, Aut(0393))-
equivalent classes of Embd(0393,039403C9), and Embd(0393,039403C9) is a closed subset of
H om(r, 1Bro).
Proof. The map (e, z, Jl) H 03C8z03BCe maps the compact space E(O x 039403C9 x Aut(r)

continuously onto Embd(r, AJ. Hence Embd(r, 039403C9) is closed. D

3. The 0393-structure A.

Let 0393 be a finitely generated profinite group. Recall that a weak I-’-structure is a
system G = G, X, d where G is a profinite group, X is a Boolean space on
which G continuously acts, and d : X - Hom(r, G) is a continuous map such that
d(xg) = d(x)9 for each x E X and g E G [HJ4, Definition 1.1]. Sometimes we denote
X by X(G). The system G is a r-structure if in addition, for each x E X and 9 E G,
xg = x implies g = 1 (i.e., the action of G on X is regular).
A weak h-structure G = G, X, d is said to be finite if both G and X are finite.

Let H = H, Y, d be another weak r-structure. A morphism ~: H ~ G is a pair
consisting of a homomorphism ~: H - G and a continuous map 9: Y - X such
that ~(yh) = ~(y)~(h) and d(~(y)) = ~° d(y) for each y E Y and h E H. We call 9 an
epimorphism if both ~: H - G and 9: Y - X are surjective.
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Consider now the closed subset X03C9 = {03C8ze|e E E03C9, z E 039403C9} of Embd(r, .1(J)). The
action of 039403C9 on X (J) is regular: If 03C8z = 03C8 for 03C8 EX (J) and z E 039403C9, then z belongs to
the centralizer of 03C8(0393) in 039403C9. By Lemma 2.5(b), z belongs to the center of 03C8(0393),
hence, by Assumption 1.5(c), z = 1. Thus .1(J) = 039403C9, X., inclusion) is a r-

structure. Moreover, by Lemma 2.6, ’JI (J) is a closed system of representatives for
the 039403C9-classes of X03C9. We show that 039403C9 is free on 03C803C9  Y..

LEMMA 3.1. Let G = G, X, d be a weak r-structure. Letfo:Y(J)--+G and

f1: 03A803C9 ~ X be continuous maps such that f0(1) = 1. Then there exists a unique
morphism 9: 039403C9 ~ G which coincides with fo on Y. and with fl on 03A803C9 and such that
qJ 0 03C8e = d(f1(03C8e)) for each e E E03C9.

Proof. Suppose that ç exists. Then its value at each element of Z. ((1) of
Section 2) is uniquely determined. Hence the homomorphism ~: 039403C9 ~ G is

uniquely determined. Since ’JI (J) represents the 039403C9-classes of X (J) the map

9: X03C9 ~ X is uniquely determined by its values on IF. and by the homomorph-
ism ~: 039403C9 ~ G. Conclude that ~: 039403C9 ~ G is uniquely determined by ( fo, f,).
To prove the existence of ç define a map ~0: Z03C9 ~ G that coincides with fo on

Y. and for each e ~ E03C9 the restriction of go to re is the homomorphism
d(f1(03C8e)) ° 03C8-e 1. To prove that go is continuous it suffices to prove that go is
continuous on UeEEw re.

Indeed, let N be an open normal subgroup of G. Since d - fl : 03A803C9 ~ Hom(r, G)
is a continuous map there exists a positive integer n such that for each e, e’ E EW

It suffices to prove for this n and for e, e’ E Ew with e’ ~ 1 that

Indeed, the assumption of (2) implies that r 1tn(e) n r 1tn(e’) ~ 1. Hence, by Lemma
1.7(d), 03C0n(e) = 03C0n(e’), and therefore 03C8 = 03C8. Thus

Conclude from (1) that

as desired.

By Lemma 2.3, (po extends to a homomorphism ~0: 039403C9 ~ G. Since

d(fl(t/!e)) = (po ° 03C8e for each e ~ E03C9 conclude from [HJ4, Lemma 2.7] that the pair
(~0, f1) extends to a morphism ~: 039403C9 ~ G of weak r-structures. D
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LEMMA 3.2 ([H, Lemma 1.9]). Let fo be a continuous map from a closed subset
C of a Boolean space E into a finite discrete space X. Then fo extends to a
continuous map f : E ~ X.

NOTATION 3.3. Consider a closed subset Eo of Ero and a closed subset Yo of Y,,,
that contains 1. Let

Then Ao = 03940, Xo, inclusion) is a sub-r-structure of A and ’II 0 is a closed

system of representatives for the Ao-classes of Xo.
The following generalization of Lemma 3.2 may be interpreted as saying that

the sub-r-structure Ao is free on Bf 0 B.:J Yo.

PROPOSITION 3.4. In Notation 3.3. let G = G, X, d) be a weak r -structure.
Suppose that fo: Yo -+ G and fl : Bf 0 --+ X are continuous maps such that f0(1) = 1.
Then there exists a unique morphism ~: 03940 ~ G that coincides with fo on Yo and
with fl on Yo, and qJ 0 te = d(f1(03C8e)) for each e E Eo.

Proof. The uniqueness of ç is proved exactly as in the first paragraph of the
proof of Lemma 3.1.
We prove the existence of ç first for finite X. In this case fo extends to a

continuous map foro: Y03C9 ~ G and fl extends to a continuous map f, 03A803C9 ~ X
(Lemma 3.2). Then Lemma 3.1 gives a morphism ~03C9: 039403C9 ~ G that coincides with
foro on Y03C9 and with f103C9 on 03A803C9, and for each e~E03C9 the restriction of ~03C9 to r e is
d(f103C9(03C8e)) ° 03C8e 1. The restriction of ~03C9 to Ao is the desired morphism 9.

In the general case present G as the inverse limit of finite weak r-structures :

G = lim Gi with Gi = Gi, Xi, di, i E I [HJ4, Lemma 1.3]. For each i~I let

Pi E G --+ Gi be the associated morphism and let fti = 03C1i ° ft, t = 0, 1. By the
preceding paragraph there exists a unique morphism çi : Ao - Gi that coincides
with foi on Yo and with fi on Bf 0’ and for each e E 03A80 the restriction of gi to r e is
d(f1i(03C8e)) ° 03C8e- 1. If j E I is greater than i, then the uniqueness of qJi implies that
gi = 03C1ji o (pj, where pji: Gj ~ Gi is the associated morphism. Therefore, the ~i’s
define a morphism ~: Ao - G, as stated in the proposition. D

4. r-Projective groups

The main result of this section is Proposition 4.4, which constitutes the third step
in the proof of the Realization Theorem.

Let r be a profinite group that satisfies Assumption 1.5. A r-embedding
problem for a profinite group G is a pair (~: G ~ A, 03C0: B ~ A), where is an
epimorphism of profinite groups and ç is a homomorphism such that

~ ° Embd(r, G) z n 0 Hom(r, B). The problem is finite if B is finite. A solution to
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the problem is a homomorphism y : G ~ B such that 7r°y = p. We call G r-

projective if Embd(r, G) is closed in Hom(r, G) and if each finite r-embedding
problem for G is solvable. By the second paragraph of Section 1, this definition is

equivalent to the one given in [HJ4, § 4]. In the case F = G(Qp) we follow the
convention of [HJ4] and refer to "G(Qp)-projective" as p-adically projective.
An embedding problem for a 0393-structure G = G, X, d&#x3E; is a pair

(qJ: G ~ A, n : B ~ A) of morphisms of weak r-structures such that n is a cover
(i.e., 7T: B - A is an epimorphism, n : X(B) - X(A) is a surjective map and for each
x, x’ ~ X(B) that satisfy 03C0(x) = 03C0(x’) there exists b E B such that Xb = x’). The
problem is finite if B is a finite structure. A solution to the problem is a

morphism y : G ~ B such that 03C0 o y = 9. Finally, G is said to be projective if each
finite embedding problem for G is solvable.

LEMMA 4.1. Let n: B - A be an epimorphism of weak finite r-structures. In
Notation 3.3, let 9: 03940 ~ A be a morphism. Then there exists a morphism y : 03940 ~ B
such that 03C0 ° y = qJ. I n particular Ao is a projective F-structure and Ao is a r-

projective group.
Proof. The second part of the last statement follows from the first one by

Proposition 5.4(a) of [HJ4]. To prove the existence of y in the first statement
extend ç first, as in the second part of the proof of Proposition 3.4, to a

morphism qJw: Aw --+ A. By Lemma 2.2 there exists a continuous map yo : Y03C9 ~ B
such that yo(l) = 1 and no yo = ~03C9 on Y.. By Lemma 2.1(c) there exists a
continuous map yl : 03A803C9 ~ X(B) such that 03C0°03B31 = ~03C9. Extend (03B30, 03B31) to a

morphism 03B303C9: 039403C9 ~ B whose restriction to re is 03B31(03C8e)°03C8-1e, for each e~E03C9
(Lemma 3.1 ). The uniqueness part of Lemma 3.1 applied to the morphisms from
Aw to A assures that 03C0 o y. = ~03C9. The restriction y of Yw to Ao is a morphism
which satisfies no y = ç, as desired. D

At this point we tie up the discussion that started in Section 2 with the
universal 0393-groups of Section 1.

PROPOSITION 4.2. The group Aw is r-universal. If G is a r-universal group of
rank No, then Embd(r, G) is closed in Hom(r, G).

Proof The second statement follows from the first one by Lemma 1.1. So, we
have only to prove that every proper r-embedding problem for 039403C9 is properly
solvable. Let 7r: B ~ A be an epimorphism of finite groups. Let I be a (B, Aut(r))-
subdomain of Hom(0393, B) and let ~: 039403C9 ~ A be an epimorphism such that
03C0 o I = qJ ° Embd(r, 039403C9). Denote the subset of aIl /3 E 7 such that 7c o 03B2 ~ 9 - 03A803C9 by
lo. Let I1 = {03B2b|03B2~I0, b~B}. Then B=B, I1,
inclusion) and A = A, 03C0°I1, inclusion) are finite weak structures. Also n

naturally extends to an epimorphism 03C0: B ~ A and ç naturally extends to an
epimorphism 9: Aw --+ A.
Change Y. if necessary to assume that ~p(Y03C9) = A (Lemma 2.4). By Lemma
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2.2 there exists a continuous map 03B3o : Y03C9 ~ B such that 03C0 ° 03B3o = ~ on Y03C9,
B = 03B30(Y03C9) and yo( 1 ) = 1. As 1t ° Io = ç O 03A803C9, Lemma 2.1(c) gives a continuous
surjection y 1: 03A803C9~I0 such that 03C0°03B31 = 9 on 03A803C9.
By Lemma 3.1 there exists a morphism y : 039403C9 ~ B which coincides with yo on

Y03C9 and with y 1 on ’II en and such that for each e ~ E03C9 the restriction of y to re is
y 1 ( tf¡ e) ° tf¡; 1 .
The homomorphism 03B3: 039403C9 ~ B is surjective. Obviously 03C0°03B3 = ç on Yro. Also,

for e~E03C9 we have 03C0 ° 03B3 = 03C0 ° 03B31(03C8e)°03C8-1e = ~°03C8e°03C8-1e = ~ on re. Hence

03C0 ° 03B3 = ~ on 039403C9.
Use Lemma 2.6 to check that I0 = 03B31(03A803C9) ~ 03B3 ° Embd(0393, 039403C9) ~ I. By con-

struction, Io contains representatives for the (B, Aut(r))-equivalence classes of I.
Conclude that y - Embd(r, 039403C9) = I. It follows that Ow is r-universal. D

LEMMA 4.3. Let G be a r-projective group. Then Embd(r, G) has a closed
system Z of representatives to its (G, Aut(0393))-classes. Also, for each such Z, and
with X = {03BEg|03BE E Z, g E G}, G = G, X, inclusion) is a projective r -structure and
G) = {03BE(0393) 1 ç ~ X}.

Proof. By [HJ4, Lemma 5.4(b)], Hom(r, G) has a closed subset X which is
closed under the action of G such that {03C8(0393)|03C8 ~ X} = D(0393, G). Moreover, for
each gl, 03C8’ ~ X, 03C8(0393) = 03C8’(0393) if and only if there exists g e gl(r) such that qlg = 03C8’.
By Assumption 1.5(c), the action of G on X is regular. Hence X has a closed
system Z of representatives for its G-classes [HJ4, Lemma 2.4]. The system Z
represents the (G, Aut(r))-classes of Embd(r, G).

Conversely, if we start from Z and define X as in the Lemma, then [HJ4,
Lemma 5.4(b)] states that G is a projective r-structure. D

PROPOSITION 4.4. Let G be a r-projective group of rank at most N’o. Let A be
a finite group. Suppose that n: G - A and p: 039403C9 ~ A are epimorphisms such that

Then there exists an embedding y : G - Aro such that p 0 y = n.
Moreover, Ero has a closed subset Eo such that y(G) is contained in the closed

subgroup Ao generated by Yro and by the groups r e with e E Eo. Also, y(G) has a
normal complement N in Ao such that for each H ~ D(0393, 03940) there exists

H’ ~ D(0393, 03B3(G)) with NH = NH’.
Proof. Change Yro if necessary to assume that

(Lemma 2.4). Next choose a closed system Z of representatives of the (G, Aut(r))-
equivalent classes of Embd(r, G) (Lemma 4.3). The rest of the proof brakes into
two parts.
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PART A: Replacing Z. Let a E n 0 Z. By (1) and by Lemma 2.6 there exist t/Ja E 03A803C9,
da E Aro and /la E Aut(r) such that a = p 0 03C8d03B103BC03B1-103B1 = (p 0 03C803B1)03C1(d03B1)03BC-103B1. Choose ga E G
such that 03C0(g03B1) = 03C1(d03B1)-1. Then

As Hom(r, A) is a discrete space, the set Z03B1 = {03BE e Z|1 no ( = 03B1} is open-closed in
Z. The map 03BE  03BEg03B103BC03B1 maps Z03B1 homeomorphically onto Z’03B1 = Zg03B103BC03B103B1. Hence
Z =  03B1~03C0zZ03B1 is homeomorphic to Z’ =  In particular Z’ is a closed
system of representatives for the (G, Aut(r))-classes of Embd(r, G). Moreover, if

( E Za, then by (3), 03C0o03BEg03B103BC03B1=03B103C0(g03B1)03BC03B1~03C1 o 03A603C9. It follows that 03C0 ° Z’ ~ 03C1 ° 03A803C9
Replace therefore Z by Z’ if necessary to assume

Let now X = {03BEg|03BE~Z, g ~G}. By Lemma 4.3, G = G, X, inclusion) is a

projective r-structure and Z is a closed system of representatives for the G-
classes of X.

PART B: Construction of y. Use (2) and apply Lemma 2.2 to construct a

continuous map °03B80: Y03C9~G such that 03C0°03B80=03C1 on Y03C9, 00(1) = 1 and

03B8o(Y03C9) = G.
Since rank(G)  No, the space Z is an inverse limit of a sequence of finite

discrete spaces. Apply Lemma 2.1(b) on the maps 03C0: Z ~ Hom(0393, A) and
p : 03A803C9 ~ Hom(r, A). By (4) there exists a continuous injective map 03B8’1: Z ~ 03A803C9
such that p 0 0’ = 03C0 on Z. In particular 03A80 = 0?(Z) is a closed subset of 03A803C9. Let
03B81:03A80 ~ Z be the inverse homeomorphism to 0’. Now consider the sets

Then Ao = 03940, Xo, inclusion is a r-structure and 03A80 is a closed system of

representatives for the Ao-classes of Xo. Apply Proposition 3.4 to extend the pair
(00, (1) to a morphism 0: 03940 ~ G such that for each e E Eo the restriction of
0 : 03940 ~ G to r e is 03B81(03C8e) 03C8-e 1. It satisfies 03C0 o h = p on Ao. Also, 0 : 03940 ~ G is an
epimorphism and 0: 03A80 ~ Z is bijective. So, 0 is a cover. In particular, the
homomorphism 03B8: 03940 ~ G maps each H E D(0393, 03940) isomorphically onto some
fi E D(0393, G).

Since G is projective 0: Ao - G has a section y [HJ4, Lemma 5.2]. It satisfies
po y = n. In particular 03B3(G)  Ao and N = Ker(0) is a normal complement of
y(G) in Ao. If H ~ D(0393, 03940) and H ~ D(0393, G) are as before, then 03B3(H) ~ D(0393, 03B3(G))
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and Ny(H) = Nre. The embedding y : G ~ 039403C9 satisfies the requirements of the
proposition. 0

COROLLARY 4.5. Let G be a 0393-projective group of rank at most 0. Then G can
be embedded in each of the groups De,m with e  1 and m  2.

Proof. Take A = 1 in Proposition 4.4 and observe that since

Embd(0393, 039403C9) ~ 0, condition (1) holds. Hence G can be embedded in 039403C9. By
Proposition 4.2, 039403C9 is r-universal. As there is a unique r-universal group of
rank No (Lemma 1.1), 039403C9 is isomorphic to a closed subgroup of De.m (Proposi-
tion 1.8). Hence, so is G. D

5. Subgroups of r-projective groups

Recall that each closed subgroup of a projective group is projective [FJ, Cor.
20.14]. The same statement holds for real projective groups [HJ1, Cor. 10.5].
However, as r is not isomorphic to any of its proper closed subgroup
(Assumption 1.5(b)) a closed subgroup of 0393 is r-projective if and only if it is
projective. The goal of this section is to generalize this observation to arbitrary
r-projective groups by giving the exact condition for a closed subgroup of a r-
projective group to be r-projective.
To this end we recall some definitions of Haran. In [H, Def. 3.1] he calls a

family X of closed subgroups of a profinite group G separated if for all distinct

H,, H2 C- X

(la) H1 n H2 =, and
(1b) there exist subfamilies ~1, ~2 ~ ~ such that X = ~1  ~2, HiE!!l’ 2, and

~H~~l H is closed in G for i = 1, 2.

REMARK 5.1. If Et is closed in Subg(G), then condition (lb) is automatically
satisfied. Indeed, since ~ is Boolean there exist disjoint closed subsets Xi of ~
such that Hi ~~i for i = 1, 2. So, all we have to prove is that if ~ is closed, then

~H~~ H is closed in G.
Indeed, let g be in the closure of the latter set. For each open normal subgroup

N of G let !!l’ N be the set of all H e EV such that gN n H =1= 0. The set !!l’ N is open
and closed in X and by assumption it is nonempty. If N’  N is another open
normal subgroup of G, then ~’N ~ X,. So, by compactness of X there exists
H ~ ~ whose intersection with gN is nonempty for each open normal subgroup
N of G. Conclude that g E H. n

Haran continues in [H, Def. 4.1] to consider an arbitrary family X of closed
subgroups of a profinite group G and call a triple

(ç : G ~ A, 7T : B ~ A, Con(B)) (2)
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a finite ~-embedding problem if

(3a) a is an epimorphism of finite groups,
(3b) 9 is a homomorphism,
(3c) Con(B) is a family of subgroups of B closed under inclusion and under

conjugation such that
(3d) for each H E PI there is a continuous homomorphism y : H - B that satisfies

03C0 o y = ç on H and y(H) E Con(B).

A solution of this problem is a homomorphism y: G - B such that no y = ç
and y(Et) z Con(B).

Finally if G is a profinite group and X is a separated family of closed
subgroups of G closed under conjugation, then G is projective relative to Et if
every finite ~-embedding problem for G has a solution [H, Def. 4.2].

LEMMA 5.2. If G is a 0393-projective group, then G is projective with respect to the
separated family 2fi(r, G).

Proof. Condition (la) is satisfied by [HJ4, Lemma 4.5(a)] and condition ( 1 b)
is satisfied by Remark 5.1 since 2fi(r, G) is a closed subset of Subg(G). So, all we
have to prove is that with X = 2fi(r, G) the ~-embedding problem (2) has a
solution.

Indeed, let X be a closed subset of Embd(r, G), which is closed under the
action of G such that G = G, X, inclusion is a projective r-structure and such
that D(0393, G) = {03BE(0393)|03BE~X} (Lemma 4.3). Choose such that

~  03BE1,...,~  Çe is a system of representative for the A-equivalence classes of the
finite set X(A) = qJ 0 X. For each i between 1 and e choose fli E Hom(r, G) such
that ~  03BEi = 03C0  03B2i and 03B2i(0393)~Con(B). Then 03B21,...,03B2e is a set of representatives
for the B-equivalence of X(B) = {03B2bi| 1 = 1,..., e; b ~ B} and maps {03B21,..., 03B2e}
bijectively onto qJ 0 03BEe}. Hence A=A,X(A), inclusion) and

B=(B,X(B), inclusion) are finite weak r-structures and 03C0:B~A is a cover.
Also, ~: G ~ A is a morphism of weak r-structures. Since G is projective there
exists a morphism y: G -B such that 03C0  03B3 = ~. In particular ~: G ~ B is a

homomorphism that satisfies y - ç(r) e Con(B) for each 03BE e X. It therefore solves
the given ~-embedding problem. D

THEOREM 5.3. Let G be a 0393-projective group. Then a closed subgroup H of G is
r -projective if and only if for each G ~ D(0393, G) either G  H or G n H is projective.

Proof. Suppose first that the condition is satisfied. Note that the topology of
Subg(H) coincides with the topology induced by that of Subg(G). Hence
D(0393, H) = D(0393, G) n Subg(H) is closed in Subg(H).
By Lemma 5.2, G is projective with respect to the family D(0393, G). By a theorem

of Haran [H, Thm. 5.1], H is projective with respect to the family
H = {G 1 GE D(0393, G)I. To prove that H is r-projective consider a finite r-
embedding problem, (~: H ~ A, 03C0: B ~ A), for H. It induces an /-embedding
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problem (9: G ~ A, 03C0: B ~ A, Subg(B)). Indeed, let G ~ D(0393, G). If G  H, then,
by assumption, there exists a homomorphism y : H ~ B that satisfies no y = cp on
G. Otherwise G n H is projective and the existence of y as above is also

guaranteed. Conclude that the embedding problem has a solution and that
therefore H is r-projective.

Conversely, suppose that H is 0393-projective. Let G be a group in D(0393, G) which
is not contained in H. We have to prove that G n H is projective.

Indeed, by Lemma 5.2 and by Haran’s theorem, G n H is projective with
respect to the family y={G’ ~ G ~ H|G’ ~D(0393, H)}. Observe that if

G’ E D(0393, H), then G’ ~ G and therefore G’ n G = 1. It follows that y = {1}.
Conclude that G n H is projective. D

6. The cohomological dimension of T-projective groups

We continue in this section to consider a profinite group r that satisfies

Assumption 1.5. Using Corollary 4.5, we prove that the cohomological dimen-
sion of each I-’-projective group is equal to that of r. In particular, for r = G(Qp)
we obtain that the cohomological dimension of every G(Qp)-projective group is
2. We deduce that G(Qp(t)) is not G(Qp)-projective.

In order to prove these results we need an analogue of the Skolem-

Lôwenheim theorem for several properties of profinite groups. We say that a
closed subgroup H of a profinite group G has at most countable corank if H is
the intersection of countably many open subgroups of G. If cp: H --+ G is a

homomorphism of profinite groups and A is a G-module, then A is an H-module
and we denote the inflation map of Hq(G, A) into Hq(H, A) by Infg.

Recall that for a prime l, cdl(G)  n if Hq(G, A) = 0 for each q &#x3E; n and each 1-
primary G-module A [R, p. 200]. Since A is the direct limit of finite 1-primary
modules Ai [R, p. 202] and since Hq(G, A) = lim Hq(G, Ai) [R, p. 114], it suffices
to consider only finite 1-primary G modules. Each finite 1-primary module A can
be embedded in the induced module Indt A which has trivial cohomology
[R, p. 146]. Using the method of dimension shifting one can then prove that for
cdl(G)  n to hold it suffices that Hn+1(G, A) = 0 for each finite 1-primary G-
module A.

LEMMA 6.1. Let 1 be a prime, G a profinite group, and K be a closed subgroup of
G of at most countable corank. Then G has a closed normal subgroup N of at most
countable corank which is contained in K such that cdl(G/N)  cd,(G).

Proof. If cdl(G) = oo take N = K. So, suppose that cdl (G) = q - 1 for some
positive integer q. Present K as an intersection K = nn=1 Kn of open subgroups
of G. Inductively define a descending sequence G  N1  N2  ··· of open
normal subgroups of G and for each n order the finite 1-primary G/Nn-modules



43

in a séquence Anl, An2, ... such that for each n, NnKn, and the module
An = O 1i,jnAij satisfies

InfG/NnG/Nn+1 Hq(G/Nn, An) = 0. (1)

Indeed, suppose that Ni and Ai j has already been constructed for each i  n

and each j. Then lim Hq(G/M, An) = Hq(G, An) = 0, where M ranges over all

normal subgroups which are contained in Nn and the maps between the
cohomology groups are the corresponding inflations [R, p. 114]. As

Hq(G/Nn, An) is a finite group, G has an open normal subgroup
Nn+1  Kn+1  Nn such that InfG/Nn G/Nn+1 x = 0 for each x ~ Hq(G/Nn, An). Now
order the countably many finite l-primary modules of G/Nn+1 in a sequence
An+1,1, An+2,2,....
We have to prove that the closed normal subgroup N = n=1 Nn of G satisfies

Hq(G/N, A) = 0 for each finite l-primary G/N-module A. Indeed, since the action
of G/N on A is continuous there exists a positive integer i such that the action of
Ni /N on A is trivial. Thus, A is a G/Ni-module and therefore there is j such that
A = Aij. Let n = max{i,j}. Then A is a direct summand of An. Since Hq(G/Nn,.) is
an additive functor [R, p. 118]], (1) implies that InfG/NnG/Nn+1Hq(G/Nn, A) = 0.
Conclude that Hq(G/N, A) = 0. D

LEMMA 6.2. Let G be a profinite group and let 1 be a prime. Then G has a closed
normal subgroup No of at most countable corank such that cdl(G/N)  cdl(G) for
each closed normal subgroup N of G contained in No.

Proof. Let S be the set of all positive integers q such that cdl(G)  q. For each
q E S there exists a finite l-primary module Aq such that Hq(G, Aq) ~ 0. Choose a
closed normal subgroup Nq of G which acts on Aq trivially. Since

lim Hq(G/M, Aq) = Hq(G, Aq) ~ 0, where M ranges over all open normal sub-
groups of G which are contained in Nq, there exists an open normal subgroup
Mq contained in Nq such that Hq(G/M, Aq) ~ 0 for each closed normal subgroup
M of G which is contained in Mq. The closed normal subgroup No = nqes Mq
satisfies Hq(G/N, Aq) ~ 0 and therefore cdl(G/N)  q for each closed normal
subgroup N of G contained in No and for each q~S. Conclude that

cdl(G/N)  cd1(G) for each closed normal subgroup N  No. D

PROPOSITION 6.3. Let G be a profinite group. Let K be a closed subgroup of G
of at most countable corank. Then G has a closed normal subgroup N contained in
K of at most countable corank such that cd1(GjN)=cd1(G) for each prime 1.

Moreover, if N  M1  M2  ··· is a decreasing sequence of closed normal
subgroups such that cd1(GjMi)=cd1(G) for each 1 and i, then their intersection M
has the same property.

Proof. List the set of primes in a sequence l1, l2, l3,.... Combine Lemmas 6.1
and 6.2 to inductively produce a descending sequence K  N1,1  N1,2  ..., of
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closed normal subgroups of at most countable corank such that

cdlj(G/N1j)cdlj(G) and such that cdlj(G/N)cdlj(G) for each closed normal
subgroup N  N1j and for j = 1, 2, 3, ....

Let N1 = j=1 N1j. Use Lemma 6.1 to inductively construct a descending
sequence N1  N2,1  N2,2  ··· of closed normal subgroups of at most

countable corank such that cdlj(G/N2j)  cdlj(G) for j = 1, 2, 3, ....
Let N2 =  N2j and repeat this construction for i = 1, 2, 3, .... In part-

icular, cdlj(G/Nij)  cdzj(G). Take N = n?= 1 Ni. Then cdl(G/N)  cdl(G) for each
prime 1. Also, if 1 = lj, then N =  1 Nij. Hence, if A is a finite l-primary G/N-
module, then it is a G/Nij-module for all large i. Thus, if q &#x3E; cdl(G), then
Hq(GjN)= lim Hq(G/Nij)=0. Conclude that edl(G/N) = cdl(G).
A similar argument proves the last statement of the proposition. D

It is a consequence of Krasner’s lemma that QQp = Op- The following lemma
gives an analogue of these statements for arbitrary r-projective groups.

LEMMA 6.4. For each r-projective group G there exists a closed normal

subgroup N of countable rank such that for each H ~ D(0393, G) we have H n N = 1.
Proof. For a positive integer n let 0393n be the intersection of all open subgroups

of r of index at most n. Each H e D(0393, G) has a unique open normal subgroup Hn
such that H/Hn ~ r/rn. Take an open normal subgroup M of G such that
M n H = Hn. If H’ ~ D(0393, G) satisfies MH’ = MH, then

H’/M ~ H’ ~ MH’/M = MH/M ~ H/Hn ~ 0393/0393n

and therefore M n H’ = H’n. Use the compactness of f0(r, G) to conclude that
there are finitely many open normal subgroups M1,..., Mm of G such that for
each H ~ D(0393, G) there exists i between 1 and m such that Mi n H = Hn . The
open normal subgroup Nn = M1 n ’" n Mm satisfies Nn n H  Hn for each
H ~ D(0393, G). Let N = n=1 Nn. As  0393n = 1, also Hn = 1 for each
H e f0(r, G). Conclude that N n H = 1 for each H e D(0393, G). D

We say that a finite r-embedding problem (: G ~ Â, n:  ~ Â) of a profinite
group G dominates another finite r-embedding problem (~: G~A, 03C0:B~A) if
there exist homomorphisms (1: Â~A and 13: B --+ B such that 03C0  03B2 = 03B1   and
~ = (10 . Then every solution y of the former embedding problem gives rise to a
solution /3 0 Y of the latter one.

LEMMA 6.5. Let (~i: G~Ai, 03C0i: Bi~Ai) be a finite r -embedding problem,
i = 1, 2. Let 03B1: A2 ~ A1 be a homomorphism such that 03B1  ~2 = ~1. Then there
exists a finite r-embedding problem (~2: G ~ A2, 03C0: B~A2) which dominates the
given embedding problems.

Proof. Let B = B1 XA1 B2 be the fibred product of B1 and B2 over A1 [FJ,
Section 20.2]. Denote the projection of B onto Bi by pi, i = l, 2. We prove that
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(~2: G ~ A2, 03C02  03C12: B~A2) is a r-embedding problem, which obviously
dominates the two given ones.

Indeed, for ( e Embd(r, G) there exists /3i E Hom(r, Bi) such that ni 0 /3i = ~i  03BE.
By [FJ, Prop. 20.6(b)] there exists /3 E Hom(r, B) such that P2 ’ fi = P2 and
therefore n2 0 P2 0 P = qJ2 0 (. 

LEMMA 6.6. Let G be a 0393-projective group and let K be a closed subgroup
of at most countable corank. Then G has a closed normal subgroup of at most
countable corank N contained in K such that GIN is F-projective and

v - Embd(r, G) = Embd(r, G/N), where v : G - GIN is the canonical epimorphism.
Proof. Apply Lemma 6.4 to assume without loss that K is normal and that

H n K = 1 for each H ~ D(0393, G). (2)

Let K1, K2, K3, ... be a sequence of open normal subgroups whose inter-
section is K. We construct by induction a descending sequence,

G  N1  N2  N3 ···, of open normal subgroups such that Nn  Kn,
n = 1, 2, 3,..., and for each i we order the finite r-embedding problems of the
form (G~G/Ni, 03C0: B - G/Ni) in a sequence

(G ~ GINI, 7iij: Bij GINi), (3)

j = 1, 2, 3,..., such that for each n and for each i, j  n there is a solution of the 0393-

embedding problem (3) which factors through G/Nn+1.
Indeed, suppose that Ni, Bij, and 03C0ij have already been constructed for i  n

and for each j. Choose by Lemma 6.5 a finite r-embedding problem (G ~ GIN,,,
03C0: B~G/Nn) which dominates (3) for each i, j  n. As G is r-projective, this
problem has a solution y. Then Nn+1= Ker(03B3) ~ Kn+1 satisfies the requirements
of the induction.

Let N = Nn. To prove that G/N is r-projective note first by (2) that
v - Embd(r, G) is a closed subset of Embd(r, G/N). Let n : B - A be an epimorph-
ism of finite groups and let 9: GIN--+ A be a homomorphism such that

qJ 0 v - Embd(r, G) ~ Hom(r, B). We prove that there exists a homomorphism
y : G/N - B such that 7c°y = 9.
As the kernel of ç contains NIIN for some i, we may take the corresponding

fibred product as in the proof of Lemma 6.5 and assume that A = GINi and that
9 is the canonical map. Then (~  v: G ~G/Ni, 03C0: B~G/Ni) is a r-embedding
problem for G. Therefore, in the above notation, B = By and 03C0 = 03C0ij for some j.
For n = max{i, j} the solution of this problem factors through G/Nn+1 and
therefore also through G/N.

Consider the closed subset -9 = {v(03BE(0393)) 1 (E Embd(r, G)j of D(0393, GIN). We
have proved, in the notation of [HJ4], that each finite D-embedding problem for
G/N is solvable. By [HJ4, Lemma 4.5], G/N is 0393-projective, D=D(0393, G), and
therefore v 0 Embd(r, G) = Embd(r, G/N). D
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PROPOSITION 6.7. Let G be a 0393-projective group and let K be a closed

subgroup of at most countable corank. Then G has a closed normal projective
subgroup N contained in K such that cdz(GIN)=cdz(G) for each prime l, GIN is F-

projective, H n N = 1 for each H E D(0393, G), and v 0 Embd(F, G) = Embd(F, GIN),
where v: G ~ GIN is the canonical epimorphism.

Proof. Apply Lemma 6.4 to assume that K is normal and that H n K = 1 for
each H E f0(r, G). Then the same statement holds for every closed subgroup of K.
Now use Proposition 6.3 and Lemma 6.6 to inductively construct a descending
double sequence K &#x3E; M1  Ni a M2  N2  ··· of closed normal subgroups of
G of at most countable coranks such that cdl(G/Mi) =cd, (G) for each i and each

prime 1, the group GINi is r-projective and the canonical homomorphism
v;: G ~ G/Ni maps Embd(r, G) bijectively onto Embd(h, G/Ni).

Let N = n Mi = n N;. Proposition 6.3 states that Ml can be chosen in such a
way that cdl(G/N) = cdl(G) for each prime 1.

Now consider the closed subset v - Embd(r, G) of Embd(r, G/N). To prove the
last two statements of the proposition it suffices by [HJ4, Lemma 4.5(a)] to
prove that each finite embedding problem (~: G/N ~ A, 03C0: B ~ A) for which
~  v  Embd(r, G) ~ no Hom(r, B) has a solution.

Indeed, choose i such that Ni ~ Ker(p). Then ç = ip 0 ïB, where ~:G/Ni ~ A is a
homomorphism and vi : G/N ~ G/Ni is the canonical epimorphism. By
assumption

~  Embd(r, G/Ni) = ~  Vi 0 Embd(r, G) = qJ 0 v 0 Embd(r, G) ~ 03C0  Hom(r, B).

Since GIN, is r-projective there exists a homomorphism yi : G/Ni ~ B such that
03C0  yi = ~. Hence Yi 0 vi solves the above embedding problem.

Finally observe by Theorem 5.3 that N is r-projective. Since D(0393, N) is empty,
N is projective. 0

Our main result of this section answers a question of Gregory Cherlin.

THEOREM 6.8. If G is a r-projective group and D(0393, G) ~ 0, then

cdl(G) = cdl(0393) for each prime 1 that divides the order of F. If 1 does not divide the
order of 0393, then cdl(G)  1. In particular, f G is a p-adically projective group and
D(G(Qp), G) ~ QS, then cdl(G) = 2 for each prime 1.

Proof Assume, by Proposition 6.7, that rank(G)  No. By assumption G has
a closed subgroup H which is isomorphic to r. By Corollary 4.5, G is isomorphic
to a closed subgroup of D1,2. Hence, by [R, p. 204], cdl(0393)  cdl(G)  cdl(D1,2).
Thus, it suffices to prove that if q = max{2, 1 + cdl(0393)}, then Hq(D1,2, A) = 0 for
each finite 1-primary D 1.2-module A. 

But, as D1,2 ~ r * F2 and since cdz(F 2) = 1 a theorem of Neukirch [N2, Satz
4.2] states that
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Let C be an algebraically closed field of characteristic zero and let t be a
transcendental element over C. It is a well known consequence of Riemann

existence theorem that G(C(t)) is a free profinite group [R, p. 80]. In particular
G(C(t)) is projective [FJ, Example 20.13]. Krull and Neukirch [KR] have
examined the action of the complex conjugate on G((t)). Their results have been
generalized to an arbitrary real closed field R by Schuppar [Sp] and by [DR].
As a result [HJ1, Thm. 4.1] proves that G(R(t)) is a real free profinite group and
in particular G(R(t)) is real projective [HJ1, Cor. 3.3].
The analogy between the real and the p-adic case has gone a long way.

Surprisingly enough Theorem 6.8 obstructs it to extend to the absolute Galois
group of Qp(t):
THEOREM 6.9. Let K be a formally p-adic p-adically closed field and let t be a
transcendental element over K. Then G(K(t)) is not p-adically projective. I n

particular the group G(Qp(t)) is not p-adically projective.
Proof. The group G(K) is p-adically projective [HJ4, Thm. 15.1]. For each

prime 1 Theorem 6.8 states that cd,(G(K» = 2. Hence cdi(G(K(t))) = 3 [R, p. 272].
Conclude from Theorem 6.8 that G(K(t)) is not p-adically projective. D

7. Algebraic extensions of pseudo closed fields

Weil descent has been used to prove that algebraic extensions of PAC or PRC
are again PAC or PRC, respectively [FJ, Cor. 10.7, and P, p. 148]. This principle
fails in the PpC case. The difficulty is caused by the following situation: L/K
algebraic, K a p-adic closure of K, and L  K, LK ~ K. Obviously this will not
occur when K is the algebraic closure or a real closure of K. However, the
method used in a different case by Heinemann and Prestel [HP, §2] can be
extended to a general result which contains the correct version of this principle
in the PpC case as well.
We take as our setting a field K with a distinguished family K of separable

algebraic extensions of K, playing the role of all admissible "closures" of K. We
will always tacitly assume that 3i is closed under the action of G(K). We say that
K is pseudo K-closed (P %C) if every nonempty variety V defined over K with
simple point over each K e MT has a simple K-rational point. Here and in the
sequel we use the term "variety" to mean that is absolutely irreducible.

If for each K ~ K and each variety defined over K the existence of a simple
K-point of V implies that V(K) is Zariski dense in E then a necessary and
sufficient condition for K to be PJTC is:

Every nonempty variety V defined over K with a K-simple rational point for
each K ~ K has a K-rational point.
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In fact, if the latter condition is satisfied and V is a nonempty variety defined
over K, then V(K) is Zariski-dense in K in particular V. ,i.(K) e 0. Indeed, if U is
a Zariski open nonempty set of Y, then we may replace it, if necessary, by a

complement of a hypersurface defined over K. Then U is isomorphic to a variety
(even affine) defined over K. By assumption, for each gc-,If-, Usim(K) =F 0.
Hence U(K) ~ 0.
The assumption made in the last paragraph about K holds if K is real closed

(a standard consequence of [L, p. 282]) or if K is p-adically closed [PR, p. 145].
This gives the following examples of PMTC fields.

EXAMPLE 7.1.

(a) If K ~ {Ks}, then K is PAC.
(b) If Jf is the family of all real closures of K, then K is PRC.
(c) If l*’ is the family of all p-adic closures of K, then K is PpC.

Given a finite separable extension E of a field K, Weil’s descent method
uniformly associates with each variety V defined over E a variety W defined over
K: Suppose that [E : K] = d and denote the d distinct K-embeddings of E into K
by 03C31,...,03C3d. Choose a basis w1,...,wd for E/K. For each i between 1 and d

define a map 03BBi: And ~ An at a point y = (yjk|1  j  d, 1  k  n) by 03BBi(y) = xi,
with

The map A = (03BB1,..., 03BBd) from And into A n X ... x A n (d factors) is a linear
isomorphism. Moreover, for each variety V defined over E in A nthere exists a
variety W defined over K in A nd such that A(W) = 0"1 Vx ... x 03C3dV [FJ, Prop.
9.34]. Assume without loss that 03C31 = 1. Then Â, maps W(K) into V(E).
Moreover, if y E W im, then x = A(y) is simple on 0"1 V x ... x QdV and therefore
x1 E Vsim. Hence

Consider the family K(E) = (KE K ~ K} of separable algebraic extensions of
E. It is closed under the action of G(E).

LEMMA 7.2. In the above notation suppose that K is pseudo closed with respect
to a family ff of separable algebraic extensions. Then E is pseudo closed with
respect to K(E).

Proof. Let V be a variety defined over E such that Vsim(E) ~ QS for each
EEf(E). Consider K ~ K. We prove that Wsim(K) ~ QS.
To do so choose a primitive element z for EIK and let f = irr(z, K).
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Decompose f into irreducible factors over K : f = f1 ··· fm and let dr = deg( fr),
r = 1,..., m. For each r between 1 and m choose ir E G(K) such that fr(irz) = 0.
Then choose 03C1r1,..., 03C1r,dr ~ G(K) such that 03C1r103C4rz,..., p,,drirz are the roots of fr.
Since K is closed under the action of G(K), Er = s/ 1(K)E belongs to K(E) and
therefore there exists ar E V;m(Ér). Also, ir(Ér) = K - irE.
The restriction of the set {03C1rs03C4r 1 r = 1, ... , m, s = 1, ..., drl to E coincides with

{03C31,.., 03C3d}. Hence, the simple point (03C1rs03C403C4ar)r,s of 03C31 V  ··· x 0" d V uniquely
corresponds to a simple point b of W such that for k = 1, ... , n

To prove that b is K-rational apply p E G(K) on (3):

Observe that irark, 03C4rwj ~ K · 03C4rE = K(03C4rz) and P, 11 ... , Pr,dr are the distinct K-
embeddings of K (irz) into K. Hence for each k and r, the set of (d + 1 )-tuples

is a permutation of the set

It follows that the unique solution (blk, ..., bdk) of the linear system (3) coincides
with that of (4). So pb = b and b is K-rational.
By assumption W has a simple K-rational point. By (2), Vsim(E) ~ 0.

Conclude that E is P %(E)C. D

To generalize Lemma 7.2 to infinite extensions we have to introduce a

topology on the family of all separable algebraic extensions of K. The topology
of the latter space is dual to that of all closed subgroups of G(K). Thus, a basic

open neighborhood of a separable algebraic extension L of K is determined by a
finite Galois extension N of K. It is the set of all separable algebraic extensions
whose intersections with N is L n N. In particular the topology is compact. For
the rest of this section we make the following assumption:

ASSUMPTION 7.3. The family Jf is closed in the space of all separable
algebraic extensions of K.

Consider also a separable algebraic extension L of K.
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LEMMA 7.4. The field L is pseudo-K(L)-closed.
Proof. Assume that L is not pseudo closed with respect to K(L). Then there

exists a variety V defined over L which has a simple L-rational point for each
L ~ K(L) but has no simple L-rational point. Let K’ be a finite extension of K
contained in Lover which V is defined. Then Vsim(E) = 0 for each finite
extension E of K’ contained in L. Let S(E) = {K e K | Vsim(KE) = }. By Lemma
7.2, S(E) is nonempty.
Suppose that M belongs to the closure of S(E) but not to S(E). Then Mejf

and therefore Vsim(ME) ~ 0 (otherwise M e S(E)). Take a finite extension Mo of
K contained in M such that Vsim(M0E) ~ 0. Let N be a finite Galois extension
of K that contains MoE. Then there exists K e S(E) such that K n N = M n N.
In particular M0E ~ KE and therefore Vsim(KE) ~ 0, a contradiction.

Conclude that S(E) is closed.
If F is a finite extension of E contained in L, then S(F) ~ S(E). By compactness

there exists K which belongs to S(E) for all E. Then KLeJf(L) but

Vsim(KL) = 0, a contradiction. Conclude that L is pseudo-K(L)-closed. D

Consider now the family L = {L e K|L ~ L}. It is closed under the action of
G(L) and closed in the space of all separable algebraic extensions of L. We give
some conditions for L to be P 2C.

LEMMA 7.5. L is PLC if and only if KL is P 2(K)C for each K~K.*
Proof. Suppose first that L is P 2C. Consider K ~ K and let V be a variety

defined over KL such that Vsim(LK) ~ 0 for each L~ 2. As LKL = LK and

since by, Lemma 7.4, KL is PL(KL)C, this implies that Vsim(KL) ~ 0. Conclude
that KL is P 2(K)C.

Conversely, suppose that

KL is P2(K)C for each K ~ K. (5)

Let V be a variety defined over L such that Vsim(L) ~ 0 for each L~ 2. Given

K~K, this implies that VsimLK ~  for each L~L. Hence, by (5),
Vsim(KL) ~ 0. As, L is PK(L)C (Lemma 7.4), this implies that Vsim(L) ~ 0.
Conclude that L is P 2C.

COROLLARY 7.6. Each of the following conditions suffices for L to be P 2C.

(a) K~K implies L ~ K or KL = Ks,
(b) K1K2 = Ks for each K1, K2 eJf, K1 ~ K2, and K has a Galois extension N

such that N n L = K, NL = Ks and for each K~K there exists L~K such
that L ~ L and N  K = N  L.

Proof. Assume first that condition (a) holds. Consider K~K. If L ~ K, then

*D. Haran called my attention to this lemma.
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K E 2. Hence KL E 2(K) and therefore, by definition, KL is P 2(K)C. If L  K,
then KL = K, is a PAC field [L, p. 76]. Conclude from Lemma 7.5 that L is
P2C.

Now assume that condition (b) holds. We prove condition (a):

Let K be a field in f’ that does not contain L. Then N n K = N n L for some
L ~ 2. In particular K ~ L. By Galois theory

Conclude from the first paragraph, L is P 2C. D

The converse of Corollary 7.6(a) is true under certain conditions.

COROLLARY 7.7. Suppose that L is P 2C and satisfies the following conditions:

(a) K1, K2E% and K1 ~ K2 implies that K1K2 = K,.
(b) No proper separable algebraic extension E of a field K E K is PAC unless

E = Ks.

Then, for each K E K, either L 9 K or KL = K,.
Proof. Let K be a field in K that does not contain L. Then KL is a proper

separable algebraic extension of K. By Lemma 7.4, KL is pseudo-L(KL)-closed.
If L~L, then L ~ L and therefore L ~ K. By (a), LK = KS. Hence

L(KL)={LKL|L~L,K~}~{Ks}. By Example 7.1(a), KL is PAC.

Conclude from (b) that KL = Ks. D

8. Algebraic extensions of PpC fields

To apply the results of Section 7 to p-adic fields we need a special case of a
theorem of Pop [Po].

LEMMA 8.1. Let E be a formally p-adic field. If G(E) ~ G(Qp), then E is p-
adically closed.

Proof Note first that G(Qp) is isomorphic to no proper closed subgroup of
itself. Otherwise Qp.alg would have a proper algebraic extension L such that
G(L) ~ G(Qp). By a theorem of Neukirch [NI], L is p-adically closed. Hence L is
isomorphic to (0p,alg- By [FJ, Lemma 18.19], Qp,alg = L, a contradiction.
By assumption E has a p-adic closure E. Since G(E) ~ G(Qp) the first

paragraph implies that E = E. Thus E is p-adically closed. D

The following lemma is implicit in [HJ4] (especially [HJ4, Lemma 10.3(a)]).
We give here a direct proof based on Krasner’s lemma and on Lemma 8.1.

LEMMA 8.2. For a field K, the set K of all p-adic closures of K is closed in the
space of all algebraic extensions of K.
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Proof. Suppose that a field E belongs to the closure of MT. We show first that
it is formally p-adic. Otherwise there would exist x 1, ... , xn~E, a polynomial
f(x1,...,xn) with integral coefficients, and a positive integer a which is

relatively prime to p such that pf(y(x 1), ... , y(x,,» = a, where y(X) is the Kochen

operator [PR, p. 99, with 0 being the localization of Z at p]. Take a finite Galois
extension N of K that contains xl, ... , xn. By assumption, there exists K ~ K
such that K n N = E n N. In particular x1,..., xn ~ K and therefore K is not
formally p-adic. This contradiction shows that E is formally p-adic.
Now we show that G(E) and G(0p) have the same finite quotients. Consider a

finite Galois extension F of E. Take a finite Galois extension N of K such that

Fo = F n N is a Galois extension of Eo = En N and F = EFo. Take K e MT with
K n N = Eo. Then y(KF0/K) ~ y(F0/E0) ~ W(FIE). But G(K) ~ G(Qp) [HJ4,
Corollary 8.6]. So, each finite quotient of G(E) is a finite quotient of G(Qp).

Conversely, let G be a finite quotient of G(Qp). By Krasner’s lemma
[Ri, p. 197], there exists a polynomial g~Z[X] whose Galois group over Qp,alg
and therefore over every p-adically closed field is isomorphic to G. (The
intersection of each p-adically closed field with Ô is isomorphic to Qp,alg [PR,
Thm. 3.2].) Let N be the splitting field of g over K and take K as before. Then
E(NEIE) -- ie(NKIK) -- G. So G(E) and G(Qp) have the same finite quotients.
As G(Qp) is finitely generated [S, p. III-30], G(E) ~ G(Qp) [FJ, Prop. 15.4].

Conclude from Lemma 8.1 that E is p-adically closed. D

PROPOSITION 8.3. Let L be an algebraic extension of a PpC field K. Then L is
P pC f and only if for each p-adic closure K of K we have: L ~ K or KL = K.

Proof. Use Lemma 8.2 and apply Lemma 7.6(a) to the family Jf of all p-adic
closures of K to prove the "if" part of the proposition.
To prove the "only if" part we have to verify conditions (a) and (b) of Lemma

7.7.

By [HJ4, Thm. 15.1(a)], G(K) is a p-adically projective group. Therefore
condition (a) of Lemma 7.5 follows from [HJ4, Lemma 4.5(b)]. Finally, since
each p-adically closed field is Henselian [PR, Thm. 3.1], condition (b) of Lemma
7.7 is a special case of a theorem of Frey and Prestel [FJ, Thm. 10.14]. D

An algebraic extension L/K is totally p-adic if L can be embedded over K in
each p-adic closure of K. (Since there is a bijective correspondence between 0-
sites of a field and the isomorphism classes of its p-adic closures this definition
coincides with the one given in [HJ4, Section 12].)

COROLLARY 8.4. Let L be an algebraic extension of a PpC field K. Then L is
PpC if at least one of the following conditions is satisfied:

(a) L is a totally p-adic Galois extension of K, or
(b) K has a Galois extension N such that N n L = K, NL = K and for every p-

adic closure K of K there exists a p-adic closure L of L such that

NnK = NnL.
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Proof. If (a) holds, then every p-adic closure of K contains L, and we may
apply Proposition 8.3. As mentioned in the proof of Proposition 8.3, condition
(c) of Lemma 7.7 holds for the family W of p-adic closures of K. Hence, if (b)
holds, then L is PpC by Lemma 7.6(b). 0

COROLLARY 8.5. Let L be a finite extension of a PpC field K. If L is PpC, then
L is contained in every p-adic closure of K.

Proof. Let K be a p-adic closure of K. Then KL is a finite extension of K. Since
K is an infinite extension of K it follows from Proposition 8.3 that L ~ K. 0

EXAMPLE 8.6. An algebraic extension of a PpC field with p-adically projective
absolute Galois group which is not PpC. Let E be the maximal unramified
extension of 0., Then 100 [E : Qp] for each prime 1. Hence H = G(E) is a

projective group [R, p. 291] and therefore p-adically projective. However, as E is
not algebraically closed the "only if" part of Proposition 8.3 implies that E is not
PpC. n

REMARK 8.7. It follows easily from either Proposition 8.3 or Theorem 5.3 that
a closed subgroup H of a p-adically projective group G which satisfies G  H or
G n H = 1 for all G~D(0393, G) is again p-adically projective. Proposition 8.3 and
Theorem 5.3 strengthen this result in two distinct ways; the field theoretic and
the group theoretic results are not strictly comparable. The descent argument on
which the proof of Proposition 8.3 is based has a parallel in the group theoretic
technique introduced in [H], on which the proof of Theorem 5.3 is based. D

REMARK 8.8. It is a simple observation that the family of real closures of a
field is closed. Therefore, Lemma 7.6(a) gives a proof of Prestel’s extension
theorem for PRC fields which does not use elimination of quantifiers for real
closed fields. D

9. The Realization theorem

From now on we let the group r be G(Qp). Proposition 12.10 of [HJ4] states
that this group satisfies Assumption 1.5. For a field K denote the set of all

embeddings 03BE: G(Qp)~G(K) such that the fixed field of 03BE(G(Qp)) in K is p-
adically closed by Embdp(G(Qp), G(K)). It is still an open question whether
Embd,(G(U,,), G(K)) = Embd(G(Qp), G(K)) (see [Po]). However, if K is PpC, this
is the case [HJ4, Cor. 15.2].
The first step toward the Realization theorem is recorded as the main result of

[EJ]:

PROPOSITION 9.1. Let K be a countable Hilbertian field having e p-adic
closures K1,..., Ke (not necessarily distinct). Then for almost all (JE G(K)e+m (in
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the sense of the Haar measure) the field

is PpC with e nonequivalent p-adic valuations which are induced by K03C31, ..., K03C3e
and G(K,) De,m.

THEOREM 9.2. Let L be a finite Galois extension of a countable Hilbertian field
K. Let G be a p-adically projective group of at most countable rank. Suppose that
n: G~y(L/K) is an epimorphism such that

7c o Embd(G(Qp), G) ~ res, - Embdp(G((Qp), G(K)).

Then there exists a PpC field E, algebraic over K and there exists an isomorphism
03B3:G~G(E) such that resL ° y = 03C0.

Proof. If Embd(G(Qp), G) is empty, then G is a projective group. In this case
the theorem reduces to [FJ, Thm. 20.22]. So, assume that Embd(G(Qp), G) ~ 0.

Let 03BE1,...,03BEe be elements of Embd(G(Qp), G) such that 03C0  03BE1,..., 03C0  03BEe
represent the (W(LIK), Aut(G(Qp)))-classes of no Embd(G(OP), G). For each i

between 1 and e there is, by assumption, ~i E Embd,(G(U,), G(K)) such that
resL ° ~i = n  (i. Denote the fixed field of ~i(G(Qp)) in K by Ki. It is a p-adic
closure of K. Choose generators 03C3e+1,..., 03C3e+m, ... ,of y(L/K) such that m  2.

By Proposition 9.1, and in the notation of 9.2, there exists 03C31,..., 03C3e+m ~ G(K)
such that resL03C3i = 1 for i = 1,..., e and resL03C3i=03C3i for i = e+1,...,e+m, the
field K. is PpC with e p-adic valuations which are induced by K03C3ii, i = 1, ... , e
and G(K03C3) ~ De,m. In particular Ka n L = K. Rename Kri as Ki, if necessary, to
assume that ui= 1 for i = 1,..., e.
By Lemma 1.1 and Propositions 1.8 and 4.2, K, has a Galois extension M03C9

such that G(M03C9) ~ 039403C9, LK03C3 n Mw = K03C3, and M03C9 ~ Ki for i = 1,..., e. It follows
from Corollary 8.4(a) that Mw is PpC. Also, resL : G(M03C9) ~ y(L/K) is an

epimorphism and no Embd(G(G.), G) g resL ° Embd(G(Qp), G(M03C9)).
By Proposition 4.4 there is an embedding y : G ~ G(Mw) such that reSL - y = 03C0.

All we still have to prove is that the fixed field E of y(G) in K is PpC.
Indeed, Proposition 4.4 also states that EW has a closed subset Eo such that E

contains the fixed field (in K) Mo of the closed subgroup generated by Y. and by
G(Qp)eo for all eo E Eo. Moreover, Mo has a Galois extension N such that
N nE = Mo, NE = K, and for each p-adic closure Mo of Mo there exists a p-
adic closure E of E such that N n Mo = N n E.

Let Mw be a p-adic closure of M03C9. By Lemma 2.6(c), either M0 ~ M03C9 or
MMo = K. Hence, by Proposition 8.3, Mo is PpC. Conclude from Corollary
8.4(b) applied to Mo and Mw instead of K and L that E is PpC. 0

COROLLARY 9.3. Let L be a finite Galois extension of a countable Hilbertian
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field K. Suppose that F is a countable PpC field that contains K. Then K has an
algebraic extension E which is PpC and there exists an isomorphism
y : G(F) ~ G(E) such that resÈ/L 0 y = resi/Le

Proof. The group G(F) is p-adically projective [HJ4, Prop. 15.1] and count-
ably generated. Let K’ = L n F. Then the map resL: G(F) - y(L/K’) is surjective.
In order to apply Theorem 9.2 (replacing K by K’ and x by resL) we have only to
prove that resL 0 Embd(G(U,), G(F)) ~ resL 0 Embdp(G(U,), G(K’)).

Indeed, let 03BE: G(Qp) ~ G(F) be an embedding. Then the fixed field F of (G(O ))
in F is p-adically closed [HJ4, Cor. 15.2]. Hence, K = K n F is also p-adically
closed and KF = F [HJ4, Prop. 6.4 and Cor. 6.6]. In particular the map
resK: G(F) - G(K) is an isomorphism. Let il = res (. Then

ri E Embp(GQp), G(K’)) and resL 0 ( = reSL - ~. Q

COROLLARY 9.4. Let K be a countable formally p-adic Hilbertian fceld. Let G
be a p-adically projective group of at most countable rank. Then there exists a PpC
field E, algebraic over K, such that G(E) ~ K.

Proof. Take K = L in Theorem 9.2 and observe that Embdp(G(Op), G(K)) is
nonempty. Hence, the assumption

7T o Embd(G(Qp, G) z resk - Embd(G(Op), G(K)) of that theorem is satisfied.
D

REMARK 9.5. Covers of p-adic Galois structures. Let F be a Galois extension
of a field E such that G(F/E) is a projective G(Op)-structure. Let

y : G(F/E) ~ G(E) be a section to the cover res: G(E) ~ G(F/E) [HJ4, Lemma 5.2]
and let L be the fixed field of 03B3(y(F/E)) in E. Then the conditions of Corollary
8.4(b) are satisfied (with E replacing K). Hence, if E is PpC, then so is L.

This is actually the situation in the proof of Theorem 9.2, with Mo, N and E
replacing E, F and L, respectively. The same situation occurs in the proof of
[HJ4, Thm. 15.3] with E 1, F 1 and K 1 replacing E, F and L. So, we can deduce
now that K 1 is PpC and spare the additional transcendental construction done
in that proof. D

We use the notation of [HJ4, Remark 10.5] and denote the space of all -sites
of a field M by X(M).

COROLLARY 9.6. Let K be a formally p-adic countable Hilbertian field. Let X
be a Boolean space of at most countable weight. Then K has a PpC algebraic
extension M such that X(M) is homeomorphic to X.

Proof. By Lemma 2.1(b), X is homeomorphic to a closed subset Eo of Ero. In
Notation 3.3 take Yo to be any subset of Y03C9. By Lemma 4.1, Ao is a r-projective
group. Hence, by Corollary 9.4 there exists an algebraic extension M of K such
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that G(M) ~ Ao. As Eo is a closed set of representatives of Do it is homeomor-
phic to X(M). 0

EXAMPLE 9.7. A generalization of Example 8.6. Take e p-adically closed fields
K1,..., K,, algebraic over Q, such that K = K 1  ··· n Ke is PpC and G(K) = De
(Proposition 9.1). Let L1 be the maximal unramified extension of Ki. By
Example 8.6, G(L1) is projective but L1 is not PpC. By Proposition 8.3,
L = L1 n K2  ··· n Ke is not PpC. On the other hand a theorem of Haran and
Lubotzky [HL, Prop 4] implies that G(L) is isomorphic to the free product
G(L)*De-1. Hence G(L) is p-adically projective. 0

10. The Lefshetz principle for PpC fields

Recall that a family of fields is elementary if it can be axiomatized by sentences of
the first order language of fields. Condition (1) below is a convenient way to
prove the existence of a set of axioms for the theory of PpC fields without writing
them down explicitly.*

LEMMA 10.1. The family of PpC fields is elementary.
Proof. By [BS, p. 151] it suffices to prove that

(la) The family of PpC fields is closed under the formation of ultraproducts and
(1b) under elementary equivalence.

However, by Frayne’s lemma [BS, p. 161], (1b) follows from (la) and from these
statements:

(2b) If a field E is an elementary subfield of a PpC field F, then E is also PpC.
(2c) The family of PpC fields is closed under isomorphisms.

So, it suffices to prove (la) and (2b).

Proof of (la). Suppose that Fi is a PpC field for each i in a set I. Let -9 be an
ultrafilter of 1 and let F = rlic, Fi/D. To prove that F is PpC consider a variety V
defined over F and which has a simple F-rational point for each p-adic closure F
of F. We have to prove that V has an F-rational point.

Indeed, we may present V as an ultraproduct V = II Vi/D, where Vi is a
variety defined over Fi for each i that belongs to a subset I o of 1 which belongs to
D. Let J be the set of all i E 1o for which Fi has a p-adic closure Fi such that
v,sim(Fi) = . If J ~ D choose for each i E J such an Fi and consider the
ultraproduct F’ = II Fi/D. As the family of p-adically closed fields is axiomat-
izable in the language of ordered fields [PR, p. 85] F’ is a p-adically closed field
that contains F and Vsim(F’) = 0. But then F = f n F’ is a p-adic closure of F

*Grob gives an explicit set of axioms for the theory of PpC fields [Gr, p. 45].
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[PR, Thm. 3.4] and V;m(F) = 0. This contradiction proves that I - J ~ D. Since
Fi is PpC the variety Vi has an Fi-rational point for each i E 1- J. Conclude that
V(F) :0 0.
Proof of (2b). Let V be a variety defined over E such that Vsim(É) ~ QS for

each p-adic closure E of E. Since F is an elementary extension of E, the variety V
is also defined over F. If F is a p-adic closure of F, then E=EnFis a p-adic
closure of E. Hence Vsim(E) ~ 0 and therefore Vsim(F) ~ 0. As F is PpC, V has
an F-rational point. Hence V has also an E-rational point. Conclude that E is
PpC. n

The following embedding lemma is a special case of [Po, Lemma 5.5].

LEMMA 10.2. Let E and F be field extensions of a common field L. Suppose that
E is countable and that F is PpC and 1-saturated. Suppose further that there
exists a homomorphism cp: G( F) --+ G( E) such that resL~(03C3) = resL03C3 for each
0" E G(F). Then there exists an L-embedding 03A6: E ~ f such that

03A6(~(03C3)x) = 03C3(03A6(x), for each x~E and each 03C3~G(F). (1)

REMARK 10.3. Pop’s proof is modeled on the proof of [FJ, Lemma 18.2]. The
main new ingredient is the observation that if F is a p-adic closure of F and
cp(G(F)) = G(E), then E is a p-adic closure of E. Indeed, L = L n F is a p-adically
closed field and resî(G(È» = G(L) ~ G(Qp). As G(E) ~ G(OP) is finitely gen-
erated, the map resl: G(E) ~ G(L) is an isomorphism. So, Pop’s theorem
[Po, Thm. 4.2] applies and E is a p-adically closed field. Note that if E is PpC
(the only case we need for the elementary equivalence theorem), then we may as
well apply [HJ4, Cor. 15.2]. D

Denote the first order language of fields with e valuations and with a constant
symbol for each element of a field L by 2e(field, L).

Suppose that wl, ... , we are p-adic valuations of F. For each i between 1 and e
choose a p-adic closure Fi of F with respect to wi. Let Ei be the p-adic closure of
E such that cp(G(FJ) = G(Ei) and let vi be the p-adic valuation of E induced by E;.
Then (D maps the structure (E, v1,..., ve) onto a substructure of (F, wl, ... , we).
Moreover, 0(EJ = 03A6(E) n Fi is a p-adic closure of 03A6(E) with respect to the
restriction of wi to 03A6(E).

PROPOSITION 10.4 (the elementary equivalence theorem). Let (E, vl, ... , ve)
and (F, w1,..., we) be PpC fields with e p-adic valuations. Let L be a common
sufbield of E and L. Suppose that there exists an isomorphism 9: G(F) - G(E) such
that resL~(03C3) = resL03C3 for each a c- G(F). Suppose further that Ei (resp., Fi) is a p-
adic closure of E (resp., F) with respect to vi (resp., wi) such that ~(G(Fi)) = G(Ei),
i =1, ... , e. Then (E, v1,..., 1 VI) is elementarily equivalent to (F, w1,..., we) over L.

Proof. Only finitely many elements of L are involved in each sentence of
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Le(field, L). We may therefore suppose that L is a countable field. Further,
replace E and F by ultrapowers *E = EN/D and *F = FN/D. By [FJ, Lemma
18.4], ~N/D induces an isomorphism *~:G(*F)~G(*E) such that

resL*~(03C3) = ReslO" for each 03C3~G(*F). Moreover, for each i between 1 and e,
~N/D maps G(FNi/D) isomorphically onto G(ÉNi/D). Let *Fi = *F 
and let  Then restriction maps G(ENi/D) isomorphically onto
G(*Ei ) and maps G(/D) isomorphically onto G(*Fi). Hence *9 maps G(*Fi)
isomorphically onto G(*Ei). So, without loss assume that (E, vl, ... , ve) and
(F, wl, ... , we) are Ni-saturated [FJ, Lemma 6.14].
Use the Skolem-Lôwenheim theorem [FJ, Prop. 6.4] to construct a

countable elementary substructure (E 1, v1,1,..., v1.e) of (E, v1,..., ve) such that
L ~ E1. Let E1j=E1nEj, j=l,...,e. By Lemma 10.2, there exists an L-
embedding 03A61: E1 ~ F such that 03A61(~(03C3)x) = 03C303A61(x) for each x E E 1 and u E G(F).
In particular E’1=03A61(E1)~F and 03A61(E1j) = E’1  Fj. So 03A61 maps Vl.j onto the
restriction of Wi j to E’1, j = 1, ... , e.

Let ~1: G(E’1)~G(E1) be the isomorphism induced by 03A61. It satisfies

03A61(~1(03C3)x) = 03C303A61(x) for each 03C3~G(E’1) and x ~ E1. In particular, for 03C3~G(F),
03C3 = resE’1 03C3 and x~E1 we have 03A61(~(03C3)x) = 03C303A61(x) = 03A61(~1)(03C3)x). Hence

resE1~(03C3) = ~1(03C3).
This means that we can now change the roles of E and F. Use the back and

forth method and induction to construct two towers of structures of correspond-
ing p-adic closures. The union of these towers will give an elementary
substructure (E03C9, v. 1, .. , , Vroe) of (E, vl, ... , Ve) which is isomorphic over L to an
elementary substructure (F03C9, w03C91,..., w03C9e) of (F, w1,..., we) [FJ, Lemma 6.3].
Conclude that (E, v1,...,ve) is elementarily equivalent to (F,Wl’...’We)
over L. D

PROPOSITION 10.5. Let K be a countable Hilbertian field. Let (F, w1,..., we)
be a countable PpC extension of K with e p-adic valuations. Then (F, Wl,’ .., We) is
K-elementarily equivalent to an ultraproduct  1 (En, vn1, ..., vne)/D of PpC
fields with e p-adic valuations where En is perfect and algebraic over K and
G(En) ~ G(F), n = 1, 2, 3, ....

Proof. If F is not formally p-adic, then it is PAC. In this case the proposition
reduces to [FJ, Prop. 20.23]. So, assume that F is formally p-adic. For each i

between 1 and e choose a p-adic closure Fi of F with respect to w;.
Let L1 ~ L2 ~ L3 ~···be an ascending sequence of finite Galois extensions of

K whose union is K. For each n the intersection Kn = Ln n F is a countable
formally p-adic Hilbertian field. Apply Corollary 9.3 with Ln/Kn replacing L/K
to find a PpC field En and an isomorphism ~n which makes the following
diagram commutative:
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For each i between 1 and e let Eni be the p-adic closure of En such that
qJn( G(Fi)) = G(Eni)’ Denote the p-adic valuation of En that Éni induces by Vni’

Let -9 be a nonprincipal ultraproduct of N and let

and

By [FJ, Lemma 18.4], n ~n/D:  G(F)N/D ~ G(En)/D induces, by restriction, an
isomorphism ç that makes the following diagram commutative:

For each i between 1 and e let *(Ei) = II Eni/D and let *Ei be the algebraic
closure of *E in *(Ei). It is the p-adic closure of *E with respect to vi. Also, let
*(Fi) -NI-q and let *Fi be the algebraic closure of *F in *(Fi). It is the p-adic
closure of *F with respect to *Wi. Then II ~n/D maps G(*(Fi)) onto G(*(Éi)) and
therefore ~(G(*Fi)) = G(*Ei). By Lemma 10.1, *E and *F are PpC fields. Hence,
by Proposition 10.4, (*E, v1,...,ve) ~k(*F,*w1,...,*we). Conclude that

(*E, vl, ... , ve) ~K(F, w1,..., we). 

PROPOSITION 10.6. Let K be a countable Hilbertian field. Let 9 be a family of
p-adically projective groups with this property: If E and F are two elementarily
equivalent PpC fields and if G(F)~P, then G(E)~p. Then a sentence 0 of
fil e (field, K) is true in all PpC fields (F, wl, ... , we) with e p-adic valuations such
that K ~ F and G(F) E 9 if and only if 0 is true in all PpC fields (E, vi , ... , ve) with
e p-adic valuations such that E is algebraic over K and G(E) E 9.

Proof. Suppose that the latter condition holds. Let (F, wl, ... , we) be a PpC
field containing K with e p-adic valuations such that G(F) E 9. By the Skolem-
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Lôwenheim theorem, (F, wl,.. -, We) has a countable elementary substructure

(Fo, W01,..., woe) that contains K. By Proposition 10.5,

(Fo, wol, ... , W0e) *K H (En, Vnl, ... , vne)/D

with En a perfect PpC field, algebraic over K, and G(En) ~ G(Fo), for each n E N.
By assumption G(En) e Y. Hence 0 is true in (En, vnl, ... , vne) for each n, and
therefore 0 is true in (F, wl, ... , we). D

Apply Proposition 10.6 to the family of all p-adically projective groups:

THEOREM 10.7. A sentence 0 of 2 e(field) is true in each PpC field of
characteristic 0 with e p-adic valuations if and only if 0 is true in each PpC field
with e p-adic valuation which is algebraic over O.
Here is an algebraic application of Theorem 10.7.

THEOREM 10.8. Let F be a PpC field and let v, vl, ... , Ve be distinct p-adic
valuations of F. Then

(a) v(F X) is a 7 -grou p,
(b) the Henselization of F with respect to v is p-adically closed, in particular all p-

adic closures of F with respect to v are F-isomorphic,
(c) F is dense in the p-adic closure F with respect to v, and
(d) v1,..., ve are independent.

Proof. Each of the statements (a) and (d) is equivalent to a conjunction of
sentences in the language Le(field). As each p-adic valuation of an algebraic field
over U is discrete those statements hold for every algebraic PpC field with e p-
adic valuations. Conclude from Theorem 10.7 that they also hold for F.

Statement (b) follows from (a) by [PR, Thm. 3.2].
As F is the Henselization of F with respect to v, statement (c) is equivalent to

the conjunction of countably many sentences in 2 e(field). The nth statement
says that for every polynomial f of degree at most n and for every a such that
v(a)  0, v(f(a)) &#x3E; 0 and v(f’(a)) = 0, and for every nonzero b there exists c such
that v(c) &#x3E; 0 and v( f (a + c))  v(b) [D, p. 108]. Since each of these sentences is
true for every algebraic field Theorem 10.7 implies that it also holds for F.
Conclude that F is v-dense in F. D

REMARK 10.9.

(a) Parts (b) and (c) of Theorems 10.8 have been proved by Grob [Gr, pp. 38 and
34, respectively] by different methods.
(b) A formally p-adic field K is said to be maximal if it has no proper algebraic
totally p-adic extension. If K is PpC, then this condition can be reformulated in
terms of G(K): "For each proper open subgroups U of G(K) there exists
H E D(G(CDp), G(K)) which is conjugate to no subgroup of U." As the theory of



61

maximal PpC is elementary [Gr, p. 40], Proposition 10.6 implies that Theorem
10.7 holds for maximal PpC field with e valuations. Again, this is a result of
Grob [Gr, p. 92]. (However, Grob does not include predicates for valuation in
her language.)
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