COMPOSITIO MATHEMATICA

MOSHE JARDEN
Algebraic realization of p-adically projective groups

Compositio Mathematica, tome 79, n° 1 (1991), p. 21-62
<http://www.numdam.org/item?id=CM_1991__79 1_21_0>

© Foundation Compositio Mathematica, 1991, tous droits réservés.

L’acces aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique ’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CM_1991__79_1_21_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Compositio Mathematica 79: 21-62, 1991.
© 1991 Kluwer Academic Publishers. Printed in the Netherlands.

Algebraic realization of p-adically projective groups

Dedicated to the memory of my father, Dr. Dov Jarden

MOSHE JARDEN*

School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel
Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Received 6 March 1989; accepted 18 July 1990

Introduction

There are relatively few cases in which the absolute Galois group of a field is
known explicitly. One such case is the absolute Galois group of a p-adic field
[JW]. A very broad generalization of this case is given by the class of p-adically
projective groups, defined below (Section 4), which can be realized as absolute
Galois groups of “pseudo p-adically closed” (PpC) fields K [HJ4], characterized
by the condition that any absolutely irreducible variety defined over K with a
simple point in every “p-adic closure” of K has a K-rational point. Here we
prove a realization theorem that implies in particular that every p-adically
projective profinite group of at most countable rank is realizable as an absolute
Galois group of an algebraic PpC field. In the more precise form given as
Theorem A below, this has consequences both for the algebraic theory of
(arbitrary) PpC fields and the theory of p-adically projective groups (of arbitrary
rank), given as Theorems B and C below. Of course the realization theorem can
also be viewed as giving the construction of a large family of fields algebraic over
Q whose absolute Galois groups are known explicitly. For this it suffices to give
explicit constructions of p-adically projective groups, which is quite easy. For
example, the absolute Galois group of Q, is itself p-adically projective, as is any
free profinite group (indeed, any projective profinite group), the class is closed
under free products, and under taking closed subgroups satisfying a certain
condition (Theorem F).

The main results are as follows. The notation G(K) denotes the absolute
Galois group of a field K.

THEOREM A (Realization Theorem). Let G be a p-adically projective group of
*This work was partially supported by a grant from the G.LF., the German Israeli Foundation for
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Advanced Study at Princeton, New Jersey.
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at most countable rank, K a number field, L a finite Galois extension of K and
7: G = 9(L/K) an epimorphism satisfying:

for each embedding n: G(Q,) > G there is an embedding {: G(Q,) — G(K) such
that res °o{ =mon.

Then there is a PpC field E algebraic over K and an isomorphism y: G — G(E) such
that resp oy = m.

THEOREM B (Group Theoretic Application). Let G be a p-adically projective
profinite group which is not projective. Then G has cohomological dimension 2.

This theorem answers a question of Gregory Cherlin.

THEOREM C (Field Theoretic Application). Let K be a PpC field, v, v,,..., Ve
p-adic valuations of K. Then K is dense in the p-adic closure K with respect to v, K
is unique up to K-isomorphism, and if v,,...,v, are inequivalent, then they are

independent.

The route from Theorem A to Theorem C goes through model theory.

THEOREM D (Lefschetz Principle). Let 0 be a first order sentence true in all
PpC fields which are algebraic over Q. Then 0 is true in every PpC field.

This theorem has the effect of recoding the Realization Theorem in a directly
applicable form.

One very striking consequence of Theorem B should be noticed. It is well
known that G(C(t)) is a free profinite group and it follows from the work of Krull
and Neukirch [KN] that G(R(z)) is a real free profinite group in an appropriate
sense [HJ2]. On the other hand it follows easily from Theorem B that G(Q,(t)) is
not even p-adically projective (Theorem 6.9), and hence probably not p-adically
free in any reasonable sense. It would no doubt be interesting to make the
obstruction more explicit.

One very useful principle in the PAC, PRC cases is that an algebraic extension
of such a field is again of the same type [FJ and P]. This fails in the PpC case.
However, it is necessary to find the correct version of this principle to prove the
Realization Theorem.

THEOREM E (Algebraic Extension Theorem). Let L be an algebraic extension
of a PpC field K. Then L is PpC if and only if for every p-adic closure K of K,
either L = K or LK = K.

The proof (as always in such contexts) uses Weil descent, and generalizes
Heinemann and Prestel’s proof [HP]. We have a group theoretic analog, which
however is not a strict parallel to the field theoretic result:

THEOREM F. Let G be a p-adically projective profinite group and let H be a



Algebraic realization of p-adically projective groups 23

closed subgroup of G. Then H is p-adically projective if and only if for each G < G
with G = G(Q,) either G < H or G n H is projective.

This relies on group theoretic construction of Haran [H] analogous to Weil
descent.

At this stage a common framework for theories of “pseudo closed” fields is
beginning to emerge, based on certain special properties largely shared by the
three profinite groups 1, Z,, and G(Q,). It is not surprising that the necessary
properties emerge more clearly in the third case. We take an abstract unifying
approach as far as it can conveniently go at this point, but at present we are still
restricted to taking essentially these groups as our point of departure.

To conclude this introduction we sketch the proof of the Realization
Theorem. We construct in succession four fields K, € M, € M, < E, algebraic
over Q so that

(1a) K, is PpC and has an explicitly known Galois group.

(1b) The Algebraic Extension Theorem applies to each extension successively
(so that all four fields are PpC).

(1c) The desired isomorphism y exists at the level of G(E).

The four fields involved are obtained as follows.

K,: We may assume that the set Embd(G(Q,),G) of all embeddings
n:G(Q,)—G is nonempty (else [FJ, Thm. 20.22] applies) Then
n°oEmbd(G(Q,), G)={res °n;li=1,...,e} for some n,e Embd (G(Q,), G(K))
and a positive integer e. Let K; be the fixed field of n(G(Q,)) in @. By a theorem of
Neukirch [N1], K; is p-adically closed. Choose generators G, 1,...,5,4, for

%(L/K) with m = 2. We will find 74,...,0,,,€G(K) such that

(2a) res;0,,.;, =0,+;fori=1,...,m,

(2b) the intersection K, of the fields K{(i <e) and the fixed field of
Ootts--rs0orm in @ is a PpC field, and

(20) G(K,) = D,,, is the free product of e copies of G(Q,) and the free profinite
group on m generators.

In fact the set of ¢ =(o4,...,0,,,) having properties (2b) and (2c) are of
measure 1 in G(K)¢*™,

The remaining steps can be viewed as taking place group theoretically inside
G(KG') = De,m'

M,,: There is a group A, called the universal G(Q,)-group of rank ¥, which
plays the role of the p-adically free group on ¥, generators. Working inside D, ,,

we find an extension M, of K, with these properties:
(3a) K, =M, = K$'n---nKZ,

(3b) LK,n M, = K, and

(Bc) GM,) = A,
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This is analogous to a construction introduced by Lubotzky—v.d.
Dries/Melnikov [FJ, Sec. 24.3] to recognize the free profinite group of rank X,
as a subgroup of F,,.

M,: Next find A, < A, and an epimorphism 0: A, — G such that

(7a) o6 = res; on A,

(7b) if H < A, is isomorphic to G(Q,), then O(H) =~ G(Q,),

(7¢) if Hy, H, < A, are isomorphic to G(Q,) and 6(H,) = 6(H ), then H, and H,
are conjugate in A,, and

(7d) for each H < G isomorphic to G(Q,) there is H' < Ay, H' = G(Q,) with
OH')=H.

Let M, be the fixed field of A, in @.

E: Apply p-adic projectivity to get a continuous section y: G — A, for § and let
E be the fixed field of %(G) in Q.

Notation

F,, = the free profinite group on m generators.

For 6 = (0,,...,0,)e G(K), K(o) is the fixed field of 7,,...,0, in K.
F,, = the free profinite group on ¥, generators.

G(K) = absolute Galois group of K.

Q= Q,n Q.

K = the algebraic closure of a field K.

K, = the separable closure of a field K.

Vim(K) = the set of K-rational simple points of a variety V defined over K.

We use the term “variety” for “absolutely irreducible variety’..

Definitions

A field K is PAC if every variety V defined over K has a rational point.

A field K is PRC if every variety V defined over K with a simple K-rational
point for each real closure K of K has a K-rational point.

A valuation v of a field K is p-adic if the residue field is F, and p has the smallest
positive value under v.

A field K is p-adically closed if it admits a p-adic valuation and no proper
algebraic extension of K admits one. If K is algebraic over a field K, then K is
said to be a p-adic closure of K.

A field K is PpC if every variety V defined over K with a simple K-rational point
for each p-adic closure K of K has a K-rational point.
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1. I'-Universal groups

Lubotzky and v.d. Dries, and independently Melnikov, have shown how to
embed F,, as a closed normal subgroup of ﬁm for m > 2 [FJ, Sec. 24.3], using a
characterization of F,, due to Iwasawa. In the theory of PRC fields it has been
necessary to extend Iwasawa’s characterization to real free groups and to apply
it to the embedding of a “universal” real free group as a closed normal subgroup
of a free product of finitely many copies of Z/2Z and F,, (m > 2) [HJ3, Lemma
3.4]. We will show how to develop this theory in a general framework which
applies also to the case of p-adically universal groups. Thus we will deal with a
I"-universal group, for I' a fixed finitely generated profinite group: I' =1 is
Iwasawas’ context, Z/2Z is the context of [HJ3], and G(Q,) is our intended
application. Our main result will be that the G(Q,)-universal group of rank N,
embedsin D, ,, for e > 1 and m > 2 (Proposition 1.8) which corresponds exactly
to the second step in the proof of the Realization theorem.

For a profinite group G let Subg(G) (resp., Hom(I', G)) be the set of all closed
subgroups of G (resp., all continuous homomorphisms of I" into G). If G is finite,
both Subg(G) and Hom(T", G) are finite. In general Subg(G) = lim Subg(G/N) and
Hom(T', G) =lim(Hom(I', G/N)), where N ranges over all normal open sub-
groups of G. Thus both Subg(G) and Hom(T, G) are Boolean spaces. The map
Im: Hom(I", G) - Subg(G) which maps each yy e Hom(I", G) onto its image, y(I),
is continuous. Let 2(I', G) be the set of all subgroups of G which are isomorphic
to I'. Let Embd(I', G) be the set of all embeddings of I" into G. Since each
epimorphism of I" onto a group isomorphic to I' is an isomorphism [FJ, Prop.
15.3], Im~ Y(2(T', G)) = Embd(T’, G). Hence 2(T’,G) is closed in Subg(G) if and
only if Embd(T", G) is closed in Hom(I", G).

The group G acts on Hom(I', G) according to the law: y*(g) = x ~ 'y/(g)x. The
group Aut(I') acts on Hom(I', G) according to the law: Y = ow. Define
¥, ¥’ e Hom(T", G) to be (G, Aut(I'))-equivalent (or just equivalent if G and I are
clear from the context) if there exist xe G and we Aut(I') such that ¥’ = y**.
Since the actions of G and Aut(I') on Hom(I', G) commute, this defines an
equivalence relation on Hom(I',G). We call a subset I of Hom(I',G) a
(G, Aut(I'))-domain if it is closed under the actions of both G and Aut(I'). For
example, Embd(I', G) is a (G, Aut(I'))-domain. If y: G— B is an epimorphism,
then the relations y o * = (y o)’ and y o y® = (y ° )® show that y e Embd(T", G)
is a (B, Aut(I'))-domain. If, in addition, Embd(I’,G) is closed, then so is
y o Embd(T, G).

A proper I'-embedding problem for G is a triple (¢: G— A, n: B— A, I), where
@ and © are epimorphisms of profinite groups and I is a closed (B, Aut(I'))-
subdomain of Hom(I', B) such that nol = @ Embd(I', G). The embedding
problem is finite if B is a finite group. A proper solution of the embedding
problem is an epimorphism y: G — B such that 7oy = ¢ and yo Embd([, G) = I.
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The profinite group G is I'-universal if Embd(I", G) is nonempty and if each
proper finite I'-embedding problem of G is properly solvable.

LEMMA 1.1. Any two I'-universal groups G and H of rank X, are isomorphic.

Proof. Each of the groups G and H has a descending sequence of open normal
subgroups whose intersections is 1: G=My> M| >--- and H=Ny=N{ > ---.
By induction we construct two descending sequences of open normal subgroups,
G=My=M,=2--2M, and H=Ny,> N, > --- > N,, such that M; < M; and
N;<N; for i=1,...,n, and isomorphisms ¢;: G/M;— H/N; such that ¢,
induces ¢;_,; and @;° p;° Embd(I', G) = 7, Embd(I", H), where p;: G - G/M,,
1;: H— H/N, are canonical.

Initially ¢ is the map 1 — 1. To proceed with the (n+ 1)st step of the induction
consider the group K=M, ,, "M, and let k: G- G/K and p,: G/K - G/M,, be
the canonical maps. Then

@y° Py (ko EmbA(T, G)) = ,° p, > Embd(T, G) = 1, Embd(T, H).

Since H is I'-universal there exists an epimorphism y: H— G/K such that
@,°py°y =1, and y o Embd(T’, H)=x ° Embd(I', G). Let N,,, =N, ,; nKer(y)
and let y: H/N,,; >G/K be the epimorphism defined by y’. Then

Nn+1 <]Vp/t+l, (pnoﬁn°y=1n+1,m and ’))O(Tn+1 OEmbd(F9 H))=K°Embd(r’G)

Again, 1,,, ,: H/N,,, > H/N, is canonical.

Since G is I'-universal there exists an epimorphism ¢’: G- H/N,,, ; such that
yo @ =k and ¢ ° Embd(T, G)=1,,, - Embd(T, H).

Let M,,,=Ker(¢’) and let ¢,,,: G/M,,, > H/N,,, be the isomorphism
defined by ¢’. Then, with canonical p, . ,; G/M,+,—G/M,, we have

Tu+10°Pn+1 = Pn®Pu+1n

and

Pn+1° (pn+ 1° Embd(F5 G)) =Tp+1° Embd(ra H)

This completes the induction step.
The compatible sequence of @q, @, @,,... of isomorphisms induces an
isomorphism ¢: G — H. O

NOTATION 1.2. For a positive integer elet I'y, ..., ', be isomorphic copies of
I Consider the free products (in the category of profinite groups)
D,=T *---xI, and De,m=De*ﬁm. For each i between 1 and e fix an
isomorphism ;T - ;.
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Our next goal is the embedding of a I'-universal group in D, ,, for e > 1 and
m = 2 (Proposition 1.8).
LEMMA 1.3 (Binz—Neukirch—Wenzel [BNW, p. 105]). Let G = F,_,G; be the
free product of profinite groups G; over a finite index set I. Let H be an open
subgroup of G. For each i€l consider the double class decomposition of G:

G = [ JG;x;H.

JjeJi
Then

H=[M H (G nH)*F,,

i jeJi
where

m=Y [(G:H)—|J;]]1— (G:H) + 1.

iel

LEMMA 14. Fore,m>1let D=D,, F=F,, and G=D,,,. Also, let H be an
open normal subgroup of G of index n that contains D. Then H = D,, ; i yom-1)-

Proof. If G=)-, Hz;, then G= )., Dz;H and D nH=D* D, for
i=1,...,n Since FH=G and (F:FnH)=(G:H)=n, the Nielsen—Schreier
formula [FJ, Prop. 15.27] implies that FNH = F, , n—1)- As

[(G:H)—n]+[(G:H)— 1] —(G:H)+ 1 =0,

Lemma 1.3 implies that
H = F[ (D**"H)*(FnH) = Den*ﬁl +nm—1) = Den 1 +nem—-1)- O
i=1

From now on we make the following assumption:

ASSUMPTION 1.5. The profinite group I satisfies the following conditions.

(a) T is finitely generated and nontrivial, and

(b) for each e and m, if a subgroup H of D,,, is isomorphic to T, then H is
conjugate to I'; for some i between 1 and e.

(c) the center of T is trivial, and

(d) T has a finite quotient T such that for each e and m and for each closed
subgroup H of D, ., if H is a quotient of T and if T is a quotient of H, then H is
isomorphic to T'. We refer to each quotient of T which has T as a quotient as a
large quotient.
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REMARK 1.6. Assumption 1.5 is satisfied if I" is a finite group with a trivial
center [HR, Thm. 1] or if I' = G(Q,) [HJ4, Prop. 12.10]. Part (c) of the
assumption is not used until Section 3. As this assumption excludes the case
I'=27/27, these results are not a strict generalization of the real case. It might be
possible to develop the theory under the hypothesis that the center of I is finite,
but such a theory could have no further field theoretic applications.

The first result that uses Part (d) of the Assumption 1.5 is Lemma 2.5.

LEMMA 1.7. Let H be a closed subgroup of D, ,, which is isomorphic to T.

(a) If H*=H for some xeD,,,, then xe H.

(b) Let d be an integer between 1 and e and let A=T"; % --- x 'y * F,. IfHNA#1,
then H < A.

(c) If H' # H is another closed subgroup of D, ,, which is isomorphic to I', then
HnH =1.

(d) In the notation of 1.2, Y,,...,¥, represent the equivalence classes of
Embd(T, D, ,,).

Proof. By Assumption 1.5 each of the groups H and H' is conjugate to some
I';. Assertion (a) therefore follows from [HR, Thm. B].

To prove assertion (b), note that D,,,=A* B where B=I,,;*---*+I',. We
know that H =TI for some i between 1 and e. If i > d, let a: D, ,,— B be the
homomorphism which maps 4 onto 1 and B identically onto itself. By
assumption, there exists ceI’;, ¢ # 1, such that c*e A. Then ¢*@=a(c*)=1, a
contradiction. It follows that i < d. But then A*n A # 1. Conclude from [HR,
Thm. B’] that xe A and therefore H < A.

To prove (c) note, as before, that H' =T for some yeD, ,. Assume that
HnH' # 1.1fi # j, then map I'; onto 1 and all the other components identically
onto themselves to draw a contradiction. If i = j, then xy~'eT; (by (a)) and
H = H’, a contradiction.

Next consider the obvious map D,,—I; x --- x I', to conclude that
I'y,..., I, are mutually nonconjugate in D, ,. In particular, ¥,,..., ¥, are
nonequivalent.

Finally let y:I'>D,,, be an embedding. By Assumption 1.5, there exists
xeD,,, such that y(I')* = T';. Thus conjugation by x gives an isomorphism [x]
of y(I') onto I';. Then w=y to[x ]oy;e Aut(l') and Y** = ;. This means
that y is equivalent to ;. O

PROPOSITION 1.8. Fore> landm=>2letD=D, G=D,,, and let K be an
open subgroup of G. Then G contains a closed normal subgroup H of countable
rank which is T-universal such that D < H and KH = G.

Proof. Choose a prime p which does not divide (G:K). Let p: G- Z, be an
epimorphism such that p(D) = 1. We will show that H = Ker(p) will do.

Note first that H contains D and (G : KH) is a power of p which divides (G : K),
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so G = KH. Also, for each nonnegative integer i, G has a unique open normal
subgroup G; of index p' which contains H. Since G is finitely generated, H is
countably generated. By Assumption 1.5(b),

Embd(T, G;) = Embd(T, H).

In particular, since e = 1, Embd(I', H) is nonempty. The proof that each finite
proper I'-embedding problem for H is properly solvable has three parts.

PART A: Embedding problem. Let (p:H— A, n:B— A,I) be a finite proper
embedding problem for H. In particular Ker(¢) is a normal open subgroup of H.
Let N be an open normal subgroup of G such that Hn N =Ker(p). Then
HN =G, for some positive integer k. Extend ¢ to an epimorphism ¢: G, — A4
with kernel N. Choose a positive integer r, such that p®—ry>k, let
r=max{p|B|,ro,|I|}, and let n=r+k. Then p'—r>k. By Lemma 14,

~

G,=D'«F where D'~ D,, F'~F,.,e =ep"and m' =1 + p"(m — 1). Thus
m' > 2n. (1)

Claim 2. For each a€@°Embd(I, G,) there exist at least n nonequivalent
elements { of Embd(I", G,) such that ¢ ( is (4, Aut(I'))-equivalent to a.

Indeed, let { be an element of Embd(I", G,) and let o= ¢ © {. For each x € G, the
homomorphism ¢ o {* = a?® is (4, Aut(I'))-equivalent to a. If ye G, and (* is
(G,, Aut(I'))-equivalent to {*, then there exist be G, and we Aut(I') such that
{*={**. Hence {(T)*={(T)". As {(T') <= G,, Lemma 1.7(a) gives ae{(I') such
that x= yba. Hence x = y mod G,,.. Conclude for representatives g, ..., g,- of G,
modulo G,, that (¥, i=1,..., p" are (G,, Aut(I'))-nonequivalent elements of
Embd(I', G,) which are mapped by ¢ onto an element of Hom(I', A) which is
(4, Aut(I"))-equivalent to a. As p" > n, the claim follows.

PART B: Generators of G,. Let A, be the smallest normal subgroup of A4 that
contains a(I') for each aeq@o°Embd(I', H). Let B, be the smallest normal
subgroup of B which contains S(I') for each fel. Let H, be the smallest closed
normal subgroup of H that contains #(I') for each 7€ Embd(T", H). Deduce from

o U mn)= U a<r>=n(u mr))

neEmbd(I",H) ae@oEmbd(I",H) Pel

that

¢(Ho) = Ao = n(By) 3

(Lemma 4.2 of [HJ3]). Also, D < H, < H.
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Let now N, =G, n N and choose xe N, — G, ;. As H, contains D’, we have
G,= H,F'. Let therefore x = ho f with hoe H, and feF'. Since Hy < G, we
have

fe(F" nHyN,) — G,y 4

Denote the image of ze G, under the canonical map G,— G,/N,,, =G, by z
Since G, =G, . N,

G,=G,/G,.y x G,/N, = Z/pZ x A.
In particular |F'| < |G,| = p|4] <n. Use (4) to find generators c;,...,c, of the
subgroup F’ of G, such that ¢, = f¢G,,,. Let ¢,y = - =cn = 1. By
Gaschiitz Lemma, F’ has generators x,,..., X, such that x;,=c;fori=1,...,m’
[FJ, Lemma 15.30]. In particular

X1¢Guyiy ®)

and, by (3) and (4),

o(xy) = o(f)e p(HoN,) = ¢(H,o) = n(By). (6)
Also
P(Xp11) == (X)) = 1. (7

Finally choose for each i between 1 and ¢ a closed subgroup I'; of D’
isomorphic to I' and an isomorphism ;: "> T ; such that D'=T"; *--- % T",..

PART C: Solution of the embedding problem. Define a map

yrJLiv{xy,....,xp} > B
i=1

in the following way: First use (6) to choose y(x,),...,y(x,)€B such that
n(y(x;) = @(x;) for j=1,...,n and

y(x1) € By. ()

By (1), |Ker(n)| < |B| <r <n<m'— n. Hence we can choose y(x,. ), ..., y(x,) as
a system of generators for Ker(n).
Finally let 3,,.. ., B, be representative of the (B, Aut(I'))-equivalence classes of
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I. Then s<|I|<n. By Lemma 1.7(d), ¥3,..., V. represent the equivalence
classes of Embd(I’, G,). Hence, by Claim 2, each ae¢@°Embd(I,G,) is
equivalent to at least n homomorphisms @°y,...,@°y,.. By assumption
nol = ¢ Embd(T, G,). Since there are at most n of the homomorphisms 7 §;,
we may reenumerate ¥i,..., ¥, such that mof; is (4, Aut(I'))-equivalent to
goyifori=1,...,s. Use the surjectivity of z to replace B, ..., B if necessary by
equivalent embeddings and assume that nof; = @oy; for i=1,...,s. Then
choose B, 1,...,Bs€EIsuchthat o f;=q@oy;fori=s+1,...,¢ DefineyonT;
as Bio (i)'

The map 7y extends to a homomorphism y: G, — B such that moy = ¢. Since
Ker(n) < y(G,) and ¢(G,) = A we have y(G,) = B. Also, yoyi=f;fori=1,... ¢
Hence y° Embd(I', H)=y° Embd(T’, G,) = I. In particular

v( U n(F)> = A ©)

neEmbd(I",H) el

Finally, as G,/H = Z,, (5) implies that {x, >H =G,. By (9) and [HJ3, Lemma
4.2], y(Ho)=B,. Hence, by (8), y(x;)e By = y(H,) < y(H). Conclude that
Y(H) =y(x,)H) =9(G,) = B.

The restriction of y to H properly solves the embedding problem of
Part A. O

2. The group A,

We now give an explicit construction of the I'-universal group of rank N, which
we call A,,. It will allow us to deduce properties of A, which are not immediate
from the definition.

For each ordinal number between 1 and w let E, be the set of all n-tuples
of 0 and 1. The projection maps =,,:E,—E,, for n>m given by
Tyml€1s--+5€) =(€1,...,&,) are compatible with each other and E, = 1@ E,.
The first three properties of E, that we list below are included in [HJ3,
Lemma 1.2].

LEMMA 2.1.

(a) Every nonempty open—closed subset of E, is homeomorphic to E,,.

(b) Let X be an inverse limit of a sequence of finite discrete spaces. Let X, be a
finite discrete space and let ¢: E,— X, and a: X — X be continuous maps. If
X)) = @(E,), then there exists a continuous injection y: X —» E, such that
poy=a.

() Let ¢ and o be as in (b). If a(X)= @(E,), then there exists a continuous
surjection y: E,,— X such that a0y = @.
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In the rest of this section we construct the I'-universal group as a free product
of the free profinite group F, of rank N, with a free product over E, of
isomorphic copies of I'. The free product A, we obtain generalizes that of [HJ3]
where I is Z/2Z but is a special case of those of Gildenhuys and Ribes [GR].
The proof that A, is indeed I'-universal is given in Section 4.

Consider the free profinite group F » with a basis {y;, y,, y3,...} converging
to 1 and let Y,={yo, ¥y, Y2, - ..} With yo, = 1. Every continuous map of Y, into a
profinite group G that maps 1 onto 1 uniquely extends to a homomorphism of
F, into G. For each n<w let F, be the free profinite group with the basis

{Visenns V)

LEMMA 2.2. Let p: Y, — A be a continuous map into a finite group A such that
A =<{p(Y,)) and p(1) = 1. Let n: G — A be an epimorphism from a profinite group
of rank < W,. Then there exists a continuous map y: Y, — G such that p=movy,
G ={(Y,)) and y(1)=1.

Proof : (Iwasawa). There exists a positive integer k such that

A=Lp(y1)s...,pye)> and p(y)=1

foreachi>k + 1. Let g, = 1. For each i between 1 and k choose g; € G such that
n(g;) = p(y;). Also choose a sequence of generators gy 1, gk + 2, - - - » for Ker(m) that
converges to 1. Then the sequence {g,,9,,d>,- ..} converges to 1 and generates
G. The map y:Y,—»G defined by p(y)=g;, i=0,1,2,..., is continuous,
{p(Y)> =G and we have oy = p. O

Let I' be a profinite group. For each n < w and for each eeE, take an
isomorphic copy I', of I and fix an isomorphism ¢,: ' ->T,. Form the free
product

An=1;[1“e*fn, Os<n<w

ecEn

(in the notation of Section 1, this is the group D,.,.) For m < n let =, , also
denote the epimorphism =, ,,: A, - A,, defined by

nn,m(yl) = yl)' ey nn,m(ym) = ym7 nn,m(ym+l) = l’ ey nn,m(yn) = 1,

and such that for each e, € E, and with e,, = =, ,(e,) the restriction of =, ,, to I,
coincides with , oy '. Now take the inverse limit:

A,=limA, and =, =Ilimmn,,.

If eeE, and e, =m,(e), then I, =1im I, is a closed subgroup of A, and
Y.=Ilimy, . Similarly F,=1imF, is a closed subgroup of A, and
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A, =<T, F wYeck, 1N particular every homomorphism of A, into a profinite
group is determined by its restriction to the set

Z,=JT,uY,. (1)

ecE

LEMMA 2.3. Every continuous map ¢ of Z,, into a profinite group G such that
@(1) =1 and for each e € E,, the restriction of ¢ to I', is a homomorphism uniquely
extends to a homomorphism ¢: A, — G.

Proof. Going to the limit reduces the lemma to the case where G is finite. In
this case A, has an open normal subgroup K such thatif z,z'e Z, and zK = z'K,
then ¢(z) = ¢(z'). Choose a positive integer m such that Ker(n,,) < K. For each
nzmlet Z, = Jeepg, TV {1, y1,..., ¥,y Define a map ¢,: Z,—G such that
¢,°m, = @ on Z, in the following way: First let ¢,(y;) = ¢(y) fori=0,...,n. For
e, € E, choose ee E,, such that n,(e) = e,. Denote the restriction of «, to I', by 7.
As m is an isomorphism define ¢, on ', as ¢ on~'. If ¢ is an another element of
E, such that =,(¢)=e, and the restriction of =, to I, is =/, then
o) ' =¢@on~' Indeed, for zeT,, let z=n"'(Z) and z' =(n')"'(z). Then
n,(z) = m,(z') and therefore ¢(z) = ¢(2').

We have proved that ¢ uniquely determines ¢,. The latter map uniquely
extends to a homomorphism ¢,: A, - G. The compatible collection {@,},>m
defines an extension of ¢ to a homomorphism ¢: A, - G. O

The following lemma allows little changes in Y, while keeping Lemma 2.3
valid.

LEMMA 2.4. Let p be an epimorphism of A, onto a finite group A. Then A, has
an automorphism @ whose restriction to each T, is the identity map and such that
<plp(Y,)) = A.

Proof. Since the map p:A, — A is continuous, there exists a positive
integer k such that p(y;)=1 for each i>k. As p is surjective there exist
Zyy s Zm€ Jeer, Te such that A={p(yy),...,p0n), p(zy),...,p(z,)). Define
yi=yifori=0,...,k yisj=yi+;z;forj=1,...,m,and y;=y,; foreach i > k + m.
Then lim;_, ., y;=1 and therefore the map y,+y;, i=0,1,2,..., extends to a
homomorphism ¢:A,— A, whose restriction to | J.g, I, is the identity map
(Lemma 2.3). Clearly ¢ is surjective.

To prove that ¢ is also injective define for each n a homomorphism
©.: A, — A, such that ¢,(y;) = n,(y) and whose restriction to I', is the identity
map for each ee E,. Then ¢, is surjective. Since A, is finitely generated, ¢, is an
isomorphism [FJ, Prop. 15.3]. Conclude that ¢ = lim ¢, is an automorphism.

Obviously, Lemma 2.3 holds for Z,, = | Jecg, ToU {¥0, V1, V3, - ..} and we have

<o) (V1) pOV2), - > = Kp(¥1)s - -, P, P(21)s - .., P(20)) = A. g
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LEMMA 2.5. Suppose that T satisfies Assumption 1.5. Let H be a closed
subgroup of A, which is isomorphic to I'. Then

(a) there exists ec E,, such that H is conjugate to T',,

(b) if H* = H for some x€A,, then xe H, and

(c) For a closed subset E, of E,, let A, be the closed subgroup of A, generated by
Y, and by T',, e€ E,. If H is a closed subgroup of A, which is isomorphic to T’
and HNAy#1, then H < A,.

(d) if H' # H is another closed subgroup of A, which is isomorphic to T, then
HnH =1.

Proof. In the notation of Assumption 1.5(d) there exists n, such that for each
n>n,, I is.a quotient of ¢,(H). Hence, by Assumption 1.5(d), ¢,(H) is conjugate
to I',, for some e, € E,. Now use standard limit arguments to find ec E,, such
that H is conjugate to I,. Parts (b), (c), and (d) follow now also by standard limit
arguments from parts (a), (b), and (c), respectively, of Lemma 1.7. O

For each positive integer n the map e+, maps the finite set E, injectively
into Hom(I', A,). For various n these maps are compatible with the maps «, ,.
Hence, taking the inverse limit, the map e+, maps E, homeomorphically
onto the closed subset ¥, ={y.|ecE,} of Hom(,A,). As in the proof of
Lemma 1.7(d) the first statement of the following lemma is a reinterpretation of
Lemma 2.5:

LEMMA 2.6. The set¥, is a closed system of representatives of the (A, Aut(I'))-
equivalent classes of Embd(I',A,), and Embd(I', A,) is a closed subset of

Hom(I, A,).
Proof. The map (e, z, u)— YZ* maps the compact space E, x A, x Aut(I')
continuously onto Embd(T’, A,). Hence Embd(I’, A ) is closed. O

3. The I'-structure A,

Let I be a finitely generated profinite group. Recall that a weak I'-structure is a
system G=<G, X,d)> where G is a profinite group, X is a Boolean space on
which G continuously acts, and d: X - Hom(I', G) is a continuous map such that
d(x?) = d(x)? for each x € X and g € G [HJ4, Definition 1.1]. Sometimes we denote
X by X(G). The system G is a I'-structure if in addition, for each xe X and g€ G,
x? = x implies g = 1 (i.e., the action of G on X is regular).

A weak I'-structure G = (G, X, d) is said to be finite if both G and X are finite.
Let H= {(H, Y,d) be another weak I'-structure. A morphism ¢: H— G is a pair
consisting of a homomorphism ¢: H — G and a continuous map ¢: Y — X such
that o(y") = o(y)*® and d(¢(y)) = ¢ ° d(y) for each ye Y and he H. We call ¢ an
epimorphism if both ¢: H— G and ¢: Y — X are surjective.
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Consider now the closed subset X, = {yZ|ecE,, ze A,} of Embd(T’, A,). The
action of A, on X, is regular: If y*=y for y € X, and ze A, then z belongs to
the centralizer of Y(I') in A,. By Lemma 2.5(b), z belongs to the center of y(I'),
hence, by Assumption 1.5(c), z=1. Thus A, =<A,, X,,, inclusion) is a I'-
structure. Moreover, by Lemma 2.6, ¥, is a closed system of representatives for
the A, -classes of X,. We show that A is free on y, w Y.

LEMMA 3.1. Let G={G,X,d) be a weak T'-structure. Let f,:Y,—> G and
fi:¥,— X be continuous maps such that fo(1)= 1. Then there exists a unique
morphism ¢@: A, — G which coincides with f, on Y,, and withf, on ¥ , and such that

@y, =d(fi(y.) for each e€E,,.
Proof. Suppose that ¢ exists. Then its value at each element of Z,, ((1) of

Section 2) is uniquely determined. Hence the homomorphism ¢:A,— G is
uniquely determined. Since W, represents the A,-classes of X, the map
¢: X, — X is uniquely determined by its values on ¥, and by the homomorph-
ism ¢:A,— G. Conclude that ¢: A,— G is uniquely determined by (f,, f1).

To prove the existence of ¢ define a map ¢,: Z, — G that coincides with f, on
Y, and for each ee€E, the restriction of ¢, to I', is the homomorphism
d(fi(y ) ey, L. To prove that ¢, is continuous it suffices to prove that ¢, is
continuous on ( Jocg, T..

Indeed, let N be an open normal subgroup of G. Since d° f;: ¥ ,—Hom(I', G)
is a continuous map there exists a positive integer n such that for each e, '€ E,,

Ve = Vanier = d(/1(¥)) = d(f1(¥)) mod N. (M
It suffices to prove for this n and for e, ¢'€ E,, with ¢’ # 1 that

zel',, z€el, and m,(2)=7,(2)#1 = @o2) = @o(z)mod N. 2

Indeed, the assumption of (2) implies that I, N I';. ) # 1. Hence, by Lemma
1.7(d), m,(e) = m,(¢’), and therefore ¥, ) = ¥, ). Thus

Ve (@) = Vo Ma(@)) = Y fer(ml2)) = Y2 '(2).

Conclude from (1) that

Po(2) = d(f;(Y )W '(2) = d(f;(W W '(2)
= d(fi)We () = @o(z)mod N,

as desired.

By Lemma 23, ¢, extends to a homomorphism ¢,:A,—G. Since
d(fi(¥.) = @o ° ¥ for each e € E,, conclude from [HJ4, Lemma 2.7] that the pair
(9o, f1) extends to a morphism ¢:A,— G of weak I'-structures. O
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LEMMA 3.2 ([H, Lemma 1.9]). Let f, be a continuous map from a closed subset
C of a Boolean space E into a finite discrete space X. Then f, extends to a
continuous map f:E—X.

NOTATION 3.3. Consider a closed subset E, of E_, and a closed subset Y, of Y,
that contains 1. Let

\PO:{weleEEO}’ A0=<Fe’y|eEEO’yE),O> and X0={'//:IeEEO’ZeAO}‘

Then A, = <Ay, X,, inclusion) is a sub-I'-structure of A and ¥, is a closed
system of representatives for the A,-classes of X,.

The following generalization of Lemma 3.2 may be interpreted as saying that
the sub-I'-structure A, is free on ¥y w Y.

PROPOSITION 3.4. In Notation 3.3. let G = {G, X,d) be a weak I'-structure.
Suppose that f,: Yo > G and f,: ¥, — X are continuous maps such that fy(1) = 1.
Then there exists a unique morphism @: A, — G that coincides with f, on Y, and
with f; on ¥, and @ot,=d(f,(y,)) for each ec E,.

Proof. The uniqueness of ¢ is proved exactly as in the first paragraph of the
proof of Lemma 3.1.

We prove the existence of ¢ first for finite X. In this case f,, extends to a
continuous map f,,: Y, — G and f; extends to a continuous map f;,:¥,— X
(Lemma 3.2). Then Lemma 3.1 gives a morphism ¢,,: A, — G that coincides with
Joo on Y, and with f;, on ¥, and for each e€ E,, the restriction of ¢, to I, is
d(fio(.) ¥, L. The restriction of ¢, to A, is the desired morphism ¢.

In the general case present G as the inverse limit of finite weak I'-structures:
G =lim G; with G;=<G;, X;,d;», iel [HJ4, Lemma 1.3]. For each iel let
p;€G—G; be the associated morphism and let f;=p;°f,, t=0,1. By the
preceding paragraph there exists a unique morphism @;: A; — G; that coincides
with f,; on Y, and with f;; on ¥, and for each e e ¥, the restriction of ¢; to I, is
d(fi: (W) oy, L. If jel is greater than i, then the uniqueness of ¢; implies that
;= pj;°@;, where p;: G;— G; is the associated morphism. Therefore, the ¢,’s
define a morphism ¢: A, — G, as stated in the proposition. O

4. I'-Projective groups

The main result of this section is Proposition 4.4, which constitutes the third step
in the proof of the Realization Theorem.

Let I' be a profinite group that satisfies Assumption 1.5. A I'-embedding
problem for a profinite group G is a pair (¢p: G— A, n: B— A), where = is an
epimorphism of profinite groups and ¢ is a homomorphism such that
¢ °Embd(I", G) < n°- Hom(I', B). The problem is finite if B is finite. A solution to
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the problem is a homomorphism y: G— B such that oy = p. We call G T'-
projective if Embd(I, G) is closed in Hom(T, G) and if each finite I'-embedding
problem for G is solvable. By the second paragraph of Section 1, this definition is
equivalent to the one given in [HJ4,§4]. In the case I'=G(Q,) we follow the
convention of [HJ4] and refer to “G(Q,)-projective” as p-adically projective.

An embedding problem for a I-structure G=<(G, X,d) is a pair
(p: G- A, n: B— A) of morphisms of weak I'-structures such that z is a cover
(i.e., m: B— A is an epimorphism, 7: X(B) — X(A) is a surjective map and for each
x, x'€ X(B) that satisfy 7m(x) = n(x’) there exists be B such that x®=x'). The
problem is finite if B is a finite structure. A solution to the problem is a
morphism y: G — B such that n°y = ¢. Finally, G is said to be projective if each
finite embedding problem for G is solvable.

LEMMA 4.1. Let n: B— A be an epimorphism of weak finite I'-structures. In
Notation 3.3, let ¢: Aq — A be a morphism. Then there exists a morphismy: A, — B
such that mwoy = . In particular A, is a projective I'-structure and A, is a I'-
projective group.

Proof. The second part of the last statement follows from the first one by
Proposition 5.4(a) of [HJ4]. To prove the existence of y in the first statement
extend ¢ first, as in the second part of the proof of Proposition 3.4, to a
morphism ¢,: A, — A. By Lemma 2.2 there exists a continuous map y,: Y, - B
such that y,(1)=1 and ney,=¢, on Y,. By Lemma 2.1(c) there exists a
continuous map y,:%¥,— X(B) such that m°y, =¢,. Extend (yy,7,) to a
morphism y,: A, —B whose restriction to I', is y,(¥,) . !, for each ecE,
(Lemma 3.1). The uniqueness part of Lemma 3.1 applied to the morphisms from
A, to A assures that oy, = ¢,. The restriction y of y, to A, is a morphism
which satisfies 7oy = ¢, as desired. d

At this point we tie up the discussion that started in Section 2 with the
universal I'-groups of Section 1.

PROPOSITION 4.2. The group A, is I'-universal. If G is a I"-universal group of
rank %y, then Embd(T, G) is closed in Hom(I', G).

Proof. The second statement follows from the first one by Lemma 1.1. So, we
have only to prove that every proper I'-embedding problem for A, is properly
solvable. Let n: B— A be an epimorphism of finite groups. Let I be a (B, Aut(I'))-
subdomain of Hom(I', B) and let ¢:A,— A be an epimorphism such that
nol = @ Embd(I', A,). Denote the subset of all fe such that 7o feqp- ¥, by
I,. Let I, ={p"|Bel,, beB}. Then B=<(B,1,,
inclusion) and A = {A4,n°I,,inclusion) are finite weak structures. Also =«
naturally extends to an epimorphism 7: B— A and ¢ naturally extends to an
epimorphism ¢: A, — A.

Change Y, if necessary to assume that {(¢(Y,)>=A4 (Lemma 2.4). By Lemma
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2.2 there exists a continuous map y,: Y,— B such that ncy,=¢ on Y,
B={yo(Y,)> and yo(1)=1. Aswo I, =¥, ,, Lemma 2.1(c) gives a continuous
surjection y,: ¥, — I, such that oy, =¢ on ¥,

By Lemma 3.1 there exists a morphism y: A, — B which coincides with y, on
Y, and with y; on ¥, and such that for each ee E,, the restriction of y to I, is
SUALL

The homomorphism y: A, — B is surjective. Obviously n°y = ¢ on Y. Also,
for ecE, we have ney=moy,(f)oy, =@y, '=¢ on I, Hence
moy = ¢ on A,

Use Lemma 2.6 to check that I,=y,(¥,) <y°Embd(I'’,A,)=I. By con-
struction, I, contains representatives for the (B, Aut(I'))-equivalence classes of I.
Conclude that y e Embd(I’, A,) = I. It follows that A, is I'-universal. O

LEMMA 4.3. Let G be a I'-projective group. Then Embd(I', G) has a closed
system Z of representatives to its (G, Aut(I"))-classes. Also, for each such Z, and
with X ={({?|{e Z,ge G}, G ={G, X, inclusion) is a projective I'-structure and
2(T, G) = (&) | Ee X).

Proof. By [HJ4, Lemma 5.4(b)], Hom(I", G) has a closed subset X which is
closed under the action of G such that {y(I") |y € X} = 9(T, G). Moreover, for
each Y, Y’ e X, Yy(I') = y/'(T') if and only if there exists g e Y(I') such that y? = y'.
By Assumption 1.5(c), the action of G on X is regular. Hence X has a closed
system Z of representatives for its G-classes [HJ4, Lemma 2.4]. The system Z
represents the (G, Aut(I'))-classes of Embd(I’, G).

Conversely, if we start from Z and define X as in the Lemma, then [HJ4,
Lemma 5.4(b)] states that G is a projective I'-structure. d

PROPOSITION 4.4. Let G be a I'-projective group of rank at most NX,. Let A be
a finite group. Suppose that n:G— A and p: A, — A are epimorphisms such that

o Embd(T, G) < po Embd(T, A,). 1)

Then there exists an embedding y: G — A, such that pcy = =.

Moreover, E,, has a closed subset E, such that y(G) is contained in the closed
subgroup A, generated by Y, and by the groups I', with e€ E,. Also, y(G) has a
normal complement N in A, such that for each HeD(T,A,) there exists
H' e 9(I', y(G)) with NH = NH'.

Proof. Change Y, if necessary to assume that

p(Y,)) =A @

(Lemma 2.4). Next choose a closed system Z of representatives of the (G, Aut(I'))-
equivalent classes of Embd(I", G) (Lemma 4.3). The rest of the proof brakes into
two parts.
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PART A: Replacing Z. Let aenoZ. By (1) and by Lemma 2.6 there exist y,€'¥,,,
d,eA, and p,eAut(l) such that o =poy' =(poy )"  Choose g,eG
such that n(g,) = p(d,)~*. Then

o™ po¥,. 3)

As Hom(T', A) is a discrete space, the set Z, = {{eZ|n°{ = a} is open-closed in
Z. The map {—{%"* maps Z, homeomorphically onto Z,=ZJ#- Hence
Z = ")uen-z Z, is homeomorphic to Z' = Uae,,oz Z!. In particular Z’ is a closed
system of representatives for the (G, Aut(I"))-classes of Embd(I", G). Moreover, if
leZ,, then by (3), mo(9H = a™9MecpoW It follows that moZ' Sp-¥,
Replace therefore Z by Z’ if necessary to assume

noZ < po¥,,. )

Let now X ={(?|{eZ, geG}. By Lemma 4.3, G =G, X, inclusion) is a
projective I'-structure and Z is a closed system of representatives for the G-
classes of X.

PArRT B: Construction of y. Use (2) and apply Lemma 2.2 to construct a
continuous map 6,:Y,—>G such that nef,=p on Y, 6,1)=1 and
{0o(Y,)> = G.

Since rank(G) < ¥,, the space Z is an inverse limit of a sequence of finite
discrete spaces. Apply Lemma 2.1(b) on the maps n:Z —Hom(I', 4) and
p:¥,—>Hom(I', A). By (4) there exists a continuous injective map 6;: Z ->¥,,
such that p° 0] = n on Z. In particular ¥, = 01(Z) is a closed subset of ¥,,. Let
0,:¥,— Z be the inverse homeomorphism to 8;. Now consider the sets

E0={e6Ew'l//ee\P0}9 AO=<Fe’ YIeEEo, erw>, and
Xo = {YileeEq, ze Ay},

Then Ay =<{A,, X,, inclusion) is a I'-structure and ¥, is a closed system of
representatives for the A,-classes of X ,. Apply Proposition 3.4 to extend the pair
(6,0,) to a morphism 0: A, — G such that for each eeE, the restriction of
0:Ag—GtoT,is 0,(y,)o . ! It satisfies moh = p on A,. Also, 0: A, — G is an
epimorphism and 6:¥,— Z is bijective. So, # is a cover. In particular, the
homomorphism 6: A, — G maps each He 9(I', A,) isomorphically onto some
He (T, G).

Since G is projective 0: A, — G has a section y [HJ4, Lemma 5.2]. It satisfies
pe°y = n. In particular y(G) < A, and N =Ker(f) is a normal complement of
(G) in A,. If He 9(T', A,) and H e (T, G) are as before, then y(H)e 2(T", y(G))
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and Ny(H)= NT,. The embedding y: G— A, satisfies the requirements of the
proposition. O

COROLLARY 4.5. Let G be a T'-projective group of rank at most X,. Then G can
be embedded in each of the groups D, ,, with e > 1 and m > 2.

Proof. Take A =1 in Proposition 44 and observe that since
Embd(I',A,) # &, condition (1) holds. Hence G can be embedded in A,. By
Proposition 4.2, A, is I'-universal. As there is a unique I'-universal group of
rank X, (Lemma 1.1), A, is isomorphic to a closed subgroup of D, ,, (Proposi-
tion 1.8). Hence, so is G. O

5. Subgroups of I'-projective groups

Recall that each closed subgroup of a projective group is projective [FJ, Cor.
20.14]. The same statement holds for real projective groups [HJ1, Cor. 10.5].
However, as I" is not isomorphic to any of its proper closed subgroup
(Assumption 1.5(b)) a closed subgroup of I' is I'-projective if and only if it is
projective. The goal of this section is to generalize this observation to arbitrary
I'-projective groups by giving the exact condition for a closed subgroup of a I'-
projective group to be I'-projective.

To this end we recall some definitions of Haran. In [H, Def. 3.1] he calls a
family Z of closed subgroups of a profinite group G separated if for all distinct

H,,H,e¥

(layH; nH, =, and
(1b) there exist subfamilies ', ¥, < & such that =%, w¥,, H;e % ,, and
(Unez H is closed in G for i =1,2.

REMARK 5.1. If & is closed in Subg(G), then condition (1b) is automatically
satisfied. Indeed, since & is Boolean there exist disjoint closed subsets &'; of &
such that H,e &, for i = 1, 2. So, all we have to prove is that if Z is closed, then
(nea H is closed in G.

Indeed, let g be in the closure of the latter set. For each open normal subgroup
N of G let Z, be the set of all He % such that gN n H # . The set & is open
and closed in & and by assumption it is nonempty. If N’ < N is another open
normal subgroup of G, then &y = . So, by compactness of Z there exists
H e & whose intersection with gN is nonempty for each open normal subgroup
N of G. Conclude that ge H. O

Haran continues in [H, Def. 4.1] to consider an arbitrary family & of closed
subgroups of a profinite group G and call a triple

(p: G—> A, m: B— A, Con(B)) )
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a finite Z-embedding problem if

(3a) « is an epimorphism of finite groups,

(3b) ¢ is a homomorphism,

(3¢c) Con(B) is a family of subgroups of B closed under inclusion and under
conjugation such that

(3d) for each H € & there is a continuous homomorphism y: H — B that satisfies
neoy = ¢ on H and y(H)e Con(B).

A solution of this problem is a homomorphism y: G — B such that tey = ¢
and y(Z) < Con(B).

Finally if G is a profinite group and & is a separated family of closed
subgroups of G closed under conjugation, then G is projective relative to & if
every finite Z-embedding problem for G has a solution [H, Def. 4.2].

LEMMA 5.2. If G is a I'-projective group, then G is projective with respect to the
separated family 9(I', G).

Proof. Condition (1a) is satisfied by [HJ4, Lemma 4.5(a)] and condition (1b)
is satisfied by Remark 5.1 since 2(I", G) is a closed subset of Subg(G). So, all we
have to prove is that with & = 9(T, G) the Z-embedding problem (2) has a
solution.

Indeed, let X be a closed subset of Embd(I', G), which is closed under the
action of G such that G = (G, X, inclusion) is a projective I'-structure and such
that 2(I,G) = {&I)|ée X} (Lemma 4.3). Choose &,,...,¢,€X such that
@°&y,...,p°¢&,is asystem of representative for the A-equivalence classes of the
finite set X(4)=¢° X. For each i between 1 and e choose ;e Hom(T', G) such
that po¢;=mno°B; and B;(I')eCon(B). Then f,,...,p, is a set of representatives
for the B-equivalence of X(B)={f?|i=1,...,e;beB} and = maps {B;,..., B.}
bijectively onto {n°¢,,...,p°¢,}. Hence A = (4,X(A), inclusion) and
B=<{B, X(B), inclusion) are finite weak I'-structures and =:B— A is a cover.
Also, ¢: G — A is a morphism of weak I'-structures. Since G is projective there
exists a morphism y: G— B such that noy=¢. In particular ¢:G—-B is a
homomorphism that satisfies y o £(I") e Con(B) for each &£ € X. It therefore solves
the given Z-embedding problem. O

THEOREM 5.3. Let G be a I'-projective group. Then a closed subgroup H of G is
[-projective if and only if for each G € (T, G) either G < H or G N H is projective.

Proof. Suppose first that the condition is satisfied. Note that the topology of
Subg(H) coincides with the topology induced by that of Subg(G). Hence
2(I', H) = 2(I', G)n Subg(H) is closed in Subg(H).

By Lemma 5.2, G is projective with respect to the family 2(I", G). By a theorem
of Haran [H, Thm.S5.1], H is projective with respect to the family
# ={GnH|Ge (T, G)}. To prove that H is I'-projective consider a finite I'-
embedding problem, (¢: H— A4, n: B— A), for H. It induces an J#-embedding
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problem (¢: G — A, n: B— A, Subg(B)). Indeed, let Ge 2(T, G). If G < H, then,
by assumption, there exists a homomorphism y: H — B that satisfies t°y = ¢ on
G. Otherwise G H is projective and the existence of y as above is also
guaranteed. Conclude that the embedding problem has a solution and that
therefore H is I'-projective.

Conversely, suppose that H is I'-projective. Let G be a group in 2(I’, G) which
is not contained in H. We have to prove that G n H is projective.

Indeed, by Lemma 5.2 and by Haran’s theorem, G n H is projective with
respect to the family #={G'nGnH|G €2, H)}. Observe that if
G' e (T, H), then G’ # G and therefore G'nG = 1. It follows that & = {1}.
Conclude that G N H is projective. O

6. The cohomological dimension of I'-projective groups

We continue in this section to consider a profinite group I' that satisfies
Assumption 1.5. Using Corollary 4.5, we prove that the cohomological dimen-
sion of each I'-projective group is equal to that of I'. In particular, for I = G(Q,)
we obtain that the cohomological dimension of every G(Q ,)-projective group is
2. We deduce that G(Q,()) is not G(Q,)-projective.

In order to prove these results we need an analogue of the Skolem-
Lowenheim theorem for several properties of profinite groups. We say that a
closed subgroup H of a profinite group G has at most countable corank if H is
the intersection of countably many open subgroups of G. If p: H—G is a
homomorphism of profinite groups and 4 is a G-module, then A is an H-module
and we denote the inflation map of HY(G, 4) into Hi(H, A) by Inf¢.

Recall that for a prime [, ¢d,(G) < n if HYG, A)=0 for each q > n and each I-
primary G-module A [R, p.200]. Since A is the direct limit of finite [-primary
modules 4; [R, p. 202] and since HY(G, 4) = lim HY(G, 4;) [R, p. 114], it suffices
to consider only finite I-primary G modules. Each finite [-primary module A can
be embedded in the induced module Ind§ A which has trivial cohomology
[R, p. 146]. Using the method of dimension shifting one can then prove that for
¢d,(G) < n to hold it suffices that H"* (G, A) =0 for each finite l-primary G-
module A.

LEMMA 6.1. Let | be a prime, G a profinite group, and K be a closed subgroup of
G of at most countable corank. Then G has a closed normal subgroup N of at most
countable corank which is contained in K such that cd,(G/N) < cd,(G).

Proof. If ¢d,(G) = oo take N = K. So, suppose that cd,(G) =q — 1 for some
positive integer g. Present K as an intersection K = ()2, K, of open subgroups
of G. Inductively define a descending sequence G=N, >N, >--- of open
normal subgroups of G and for each n order the finite /[-primary G/N,-modules
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in a sequence A,;,A,,,... such that for each n, N,<K,, and the module
An = @ 1<ij<n Aij satisfies

Infg§%:+ 1Hq(G/Nrn A") = 0 (1)

Indeed, suppose that N; and A;; has already been constructed for each i <n
and each j. Then lim HYG/M, A,)=H*%G, A,)=0, where M ranges over all
normal subgroups which are contained in N, and the maps between the
cohomology groups are the corresponding inflations [R,p.114]. As
HYG/N,,A,) is a finite group, G has an open normal subgroup
N,+1 <K,+;nN, such that InfgN x=0 for each xe H(G/N,, A,). Now
order the countably many finite [-primary modules of G/N,,; in a sequence
Apr1,00Ansr 2,250 -

We have to prove that the closed normal subgroup N = (), N, of G satisfies
HYG/N, A)=0 for each finite I-primary G/N-module A. Indeed, since the action
of G/N on A is continuous there exists a positive integer i such that the action of
N;/N on A is trivial. Thus, A is a G/N;-module and therefore there is j such that
A = A;j. Let n = max{i, j}. Then A is a direct summand of A4,. Since HYG/N,,,") is
an additive functor [R,p.118]], (1) implies that Inf&N~ H%G/N,, A)=0.
Conclude that H{G/N, A) =0. O

LEMMA 6.2. Let G be a profinite group and let | be a prime. Then G has a closed
normal subgroup N of at most countable corank such that cd,(G/N) = cd,(G) for
each closed normal subgroup N of G contained in N,,.

Proof. Let S be the set of all positive integers g such that cd,(G) > g. For each
q € S there exists a finite [-primary module 4, such that HYG, A,) # 0. Choose a
closed normal subgroup N, of G which acts on A, trivially. Since
lim HYG/M, A))=H*G, A,) # 0, where M ranges over all open normal sub-
groups of G which are contained in N, there exists an open normal subgroup
M, contained in N, such that HY(G/M, A,) # 0 for each closed normal subgroup
M of G which is contained in M,. The closed normal subgroup Ny = (),es M,
satisfies HYG/N, A,) # 0 and therefore cd,(G/N) > q for each closed normal
subgroup N of G contained in N, and for each geS. Conclude that
¢d;(G/N) = cd,(G) for each closed normal subgroup N < N,. O

PROPOSITION 6.3. Let G be a profinite group. Let K be a closed subgroup of G
of at most countable corank. Then G has a closed normal subgroup N contained in
K of at most countable corank such that cd,(G/N)=cd,(G) for each prime L.
Moreover, if N>M,>M,>--- is a decreasing sequence of closed normal
subgroups such that ¢d,(G/M;)=cd,(G) for each | and i, then their intersection M
has the same property.

Proof. List the set of primes in a sequence I, [, [3,.... Combine Lemmas 6.1
and 6.2 to inductively produce a descending sequence K >N, ; > N, , > ---, of
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closed normal subgroups of at most countable corank such that
cd;,(G/N ;) < cd,,(G) and such that cd, (G/N) > cd, (G) for each closed normal
subgroup N < N,;and for j=1,2,3,....

Let N, =(){2; N;;. Use Lemma 6.1 to inductively construct a descending
sequence N, >N, >N, ,>-- of closed normal subgroups of at most
countable corank such that cd;,(G/N,;) <cd,,(G) for j=1,2,3,....

Let N, = ()2, N,; and repeat this construction for i=1,2,3,.... In part-
icular, cd; (G/N;)) < cd,;(G). Take N = ()21 N;. Then cd,(G/N) = cd,(G) for each
prime . Also, if | =1;, then N = ({2, N;;. Hence, if A is a finite l-primary G/N-
module, then it is a G/N;-module for all large i. Thus, if g > cd,(G), then
H%G/N)= lim H(G/N;)=0. Conclude that cd,(G/N)=cd,(G).

A similar argument proves the last statement of the proposition. O

It is a consequence of Krasner’s lemma that CDQ,, = @p. The following lemma
gives an analogue of these statements for arbitrary I'-projective groups.

LEMMA 6.4. For each T-projective group G there exists a closed normal
subgroup N of countable rank such that for each H e 9(I', G) we have HN N = 1.

Proof. For a positive integer n let I', be the intersection of all open subgroups
of " of index at most n. Each H € 2(I', G) has a unique open normal subgroup H,
such that H/H, ~ T'/T,. Take an open normal subgroup M of G such that
MnH=H, If H e (T, G) satisfies MH' = MH, then

H'/M~H ~MH/M=MH/M~H/H,~T/T,

and therefore M n H' = H,. Use the compactness of Z(I', G) to conclude that
there are finitely many open normal subgroups M, ..., M,, of G such that for
each He 2(T, G) there exists i between 1 and m such that M;n H = H,. The
open normal subgroup N,= M, n---n M, satisfies N,n H < H, for each
He9(,G). Let N= ()2, N,. As (=, T, =1, also (), H,=1 for each
He 9(T', G). Conclude that N n H = 1 for each He 9(T, G). O

We say that a finite '-embedding problem (¢: G — A, #t: B— A) of a profinite
group G dominates another finite I'-embedding problem (¢: G — A4, n: B— A) if
there exist homomorphisms a: A — 4 and f: B— B such that 7o = «o# and
¢ = a° @. Then every solution 9 of the former embedding problem gives rise to a
solution o} of the latter one.

LEMMA 6.5. Let (¢;:G— A, n;: Bi— A) be a finite I'-embedding problem,
i=1,2. Let a: Ay » A, be a homomorphism such that o.° ¢, = @,. Then there
exists a finite I'-embedding problem (¢,: G — A,, n: B— A,) which dominates the
given embedding problems.

Proof. Let B = B, x,, B, be the fibred product of B, and B, over A, [FJ,
Section 20.2]. Denote the projection of B onto B; by p;, i = 1,2. We prove that
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(p:G—>A,,my0p,: B> Ay) is a I'-embedding problem, which obviously
dominates the two given ones.

Indeed, for { e Embd(I", G) there exists ;€ Hom(T', B;) such that 7;° f; = ¢;° (.
By [FJ, Prop. 20.6(b)] there exists fe Hom(I', B) such that p,°f =, and
therefore ny°op,°of = @,°(. O

LEMMA 6.6. Let G be a I'-projective group and let K be a closed subgroup
of at most countable corank. Then G has a closed normal subgroup of at most
countable corank N contained in K such that G/N is TI'-projective and
vo Embd(I", G)=Embd(I", G/N), where v: G — G/N is the canonical epimorphism.

Proof. Apply Lemma 6.4 to assume without loss that K is normal and that

HnN K =1 for each He2(I', G). 2

Let K,, K,, K;,... be a sequence of open normal subgroups whose inter-
section is K. We construct by induction a descending sequence,
G=N;>N,>N;>--, of open normal subgroups such that N,<K,,
n=1,2,3,..., and for each i we order the finite I'-embedding problems of the
form (G— G/N;, n: B— G/N)) in a sequence

(G » G/N;, m;: B;;—> G/N)), 3)

j=1,2,3,...,such that for each n and for each i, j < n there is a solution of the I'-
embedding problem (3) which factors through G/N,,, ;.

Indeed, suppose that N;, B;;, and =;; have already been constructed for i <n
and for each j. Choose by Lemma 6.5 a finite I'-embedding problem (G — G/N,,,
n: B— G/N,) which dominates (3) for each i,j<n. As G is I'-projective, this
problem has a solution y. Then N, , ; =Ker(y)n K, satisfies the requirements
of the induction.

Let N =) N,. To prove that G/N is I'-projective note first by (2) that
ve Embd(I’, G) is a closed subset of Embd(I", G/N). Let n: B— A be an epimorph-
ism of finite groups and let ¢:G/N—>A be a homomorphism such that
@°ve Embd(I', G) < Hom(I', B). We prove that there exists a homomorphism
y: G/N - B such that noy = ¢.

As the kernel of ¢ contains N;/N for some i, we may take the corresponding
fibred product as in the proof of Lemma 6.5 and assume that 4 =G/N; and that
¢ is the canonical map. Then (p°v: G— G/N;, n: B— G/N;) is a I'-embedding
problem for G. Therefore, in the above notation, B = B;; and & = m;; for some j.
For n=max{i,j} the solution of this problem factors through G/N,,, and
therefore also through G/N.

Consider the closed subset 2 = {w({(I'))|{ e Embd(’, G)} of 2(I',G/N). We
have proved, in the notation of [HJ4], that each finite 2-embedding problem for
G/N is solvable. By [HJ4, Lemma 4.5], G/N is I'-projective, 2 =2(T’, G), and
therefore ve Embd(T", G) = Embd(T’, G/N). O
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PROPOSITION 6.7. Let G be a T'-projective group and let K be a closed
subgroup of at most countable corank. Then G has a closed normal projective
subgroup N contained in K such that ¢d,(G/N)=cd,(G) for each primel, G/N is I'-
projective, H N = 1 for each H € (T, G), and v° Embd(I’, G) = Embd(T’, G/N),
where v: G— G/N is the canonical epimorphism.

Proof. Apply Lemma 6.4 to assume that K is normal and that HNK =1 for
each H € 2(T', G). Then the same statement holds for every closed subgroup of K.
Now use Proposition 6.3 and Lemma 6.6 to inductively construct a descending
double sequence K > M, > N, > M, > N, > --- of closed normal subgroups of
G of at most countable coranks such that cd,(G/M;)=cd,(G) for each i and each
prime I, the group G/N, is I'-projective and the canonical homomorphism
v;: G— G/N; maps Embd(T’, G) bijectively onto Embd(I’, G/N,).

Let N = () M;= (") N;. Proposition 6.3 states that M, can be chosen in such a
way that cd,(G/N)=cd,(G) for each prime I.

Now consider the closed subset v e Embd(I', G) of Embd(I", G/N). To prove the
last two statements of the proposition it suffices by [HJ4, Lemma 4.5(a)] to
prove that each finite embedding problem (¢: G/N — A, n: B— A) for which
¢@°ve Embd(I', G) € m o Hom(T, B) has a solution.

Indeed, choose i such that N; = Ker(¢). Then ¢ = ¢ V;, where p:G/N; > Ais a
homomorphism and ¥;: G/N - G/N; is the canonical epimorphism. By
assumption

@°Embd(I', G/N,) = @°v;°o Embd(I’, G) = ¢ cve Embd(I’, G) = n°> Hom(I", B).

Since G/N; is I'-projective there exists a homomorphism y;: G/N; — B such that
n°y; = @. Hence y;°v; solves the above embedding problem.

Finally observe by Theorem 5.3 that N is ['-projective. Since 2(I", N) is empty,
N is projective. O

Our main result of this section answers a question of Gregory Cherlin.

THEOREM 6.8. If G is a TI'-projective group and 9(T,G)# J, then
cd,(G) = cd,(') for each prime | that divides the order of T. If | does not divide the
order of T, then c¢d,(G) < 1. In particular, if G is a p-adically projective group and
2(G(Q,), G) # &, then cd(G) =2 for each prime L.

Proof. Assume, by Proposition 6.7, that rank(G) < NX,. By assumption G has
a closed subgroup H which is isomorphic to I'. By Corollary 4.5, G is isomorphic
to a closed subgroup of D, ,. Hence, by [R, p. 204], cd,(I') < ¢d,(G) < cdy(D, ).
Thus, it suffices to prove that if g=max{2,1+cd,(I')}, then HYD, ,, A)=0 for
each finite [-primary D,; ,-module A.

But,as D, , =T'* F, and since cd,(F,)=1 a theorem of Neukirch [N2, Satz
4.2] states that

HYD, ,, A) = HYT, A)® HI(F,, A) = 0. O
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Let C be an algebraically closed field of characteristic zero and let ¢ be a
transcendental element over C. It is a well known consequence of Riemann
existence theorem that G(C(t)) is a free profinite group [R, p. 80]. In particular
G(C(t)) is projective [FJ, Example 20.13]. Krull and Neukirch [KR] have
examined the action of the complex conjugate on G(C(t)). Their results have been
generalized to an arbitrary real closed field R by Schuppar [Sp] and by [DR].
As a result [HJ1, Thm. 4.1] proves that G(R(t)) is a real free profinite group and
in particular G(R(t)) is real projective [HJ1, Cor. 3.3].

The analogy between the real and the p-adic case has gone a long way.
Surprisingly enough Theorem 6.8 obstructs it to extend to the absolute Galois
group of Q,(¢):

THEOREM 6.9. Let K be a formally p-adic p-adically closed field and let t be a
transcendental element over K. Then G(K(t)) is not p-adically projective. In
particular the group G(Q,(t)) is not p-adically projective.

Proof. The group G(K) is p-adically projective [HJ4, Thm. 15.1]. For each
prime [ Theorem 6.8 states that cd,(G(K)) = 2. Hence cd,(G(K(?))) = 3 [R, p. 272].
Conclude from Theorem 6.8 that G(K(t)) is not p-adically projective. O

7. Algebraic extensions of pseudo closed fields

Weil descent has been used to prove that algebraic extensions of PAC or PRC
are again PAC or PRC, respectively [FJ, Cor. 10.7, and P, p. 148]. This principle
fails in the PpC case. The difficulty is caused by the following situation: L/K
algebraic, K a p-adic closure of K, and L ¢ K, LK # K. Obviously this will not
occur when K is the algebraic closure or a real closure of K. However, the
method used in a different case by Heinemann and Prestel [HP, §2] can be
extended to a general result which contains the correct version of this principle
in the PpC case as well.

We take as our setting a field K with a distinguished family 2" of separable
algebraic extensions of K, playing the role of all admissible “closures” of K. We
will always tacitly assume that " is closed under the action of G(K). We say that
K is pseudo J -closed (P#"C) if every nonempty variety V defined over K with
simple point over each K e ¢ has a simple K-rational point. Here and in the
sequel we use the term “variety” to mean that V is absolutely irreducible.

If for each K € " and each variety V defined over K the existence of a simple
K-point of V implies that V(K) is Zariski dense in ¥, then a necessary and
sufficient condition for K to be P#"C is:

Every nonempty variety V defined over K with a K-simple rational point for
each K e A" has a K-rational point.
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In fact, if the latter condition is satisfied and V is a nonempty variety defined
over K, then V(K) is Zariski-dense in V, in particular V;,(K) # . Indeed, if U is
a Zariski open nonempty set of ¥, then we may replace it, if necessary, by a
complement of a hypersurface defined over K. Then U is isomorphic to a variety
(even affine) defined over K. By assumption, for each Ked, Ui(K) # &.
Hence U(K) # .

The assumption made in the last paragraph about K holds if K is real closed
(a standard consequence of [L, p. 282]) or if K is p-adically closed [PR, p. 145].
This gives the following examples of P2 "C fields.

EXAMPLE 7.1.

(a) If A = {K,}, then K is PAC.
(b) If A is the family of all real closures of K, then K is PRC.
(c) If o is the family of all p-adic closures of K, then K is PpC.

Given a finite separable extension E of a field K, Weil’s descent method
uniformly associates with each variety V defined over E a variety W defined over
K: Suppose that [E: K] = d and denote the d distinct K-embeddings of E into K
by 04,...,0,. Choose a basis w,,...,w, for E/K. For each i between 1 and d
define a map A;: A" — A" at a point y = (y; |1 <j<d, 1 <k<n) by 4(y)=x;,
with

d
Xik = _Zl (inj)}’jk‘ (1)

The map A=(4,,...,4,) from A™ into A" x --- x A" (d factors) is a linear
isomorphism. Moreover, for each variety V defined over E in A" there exists a
variety W defined over K in A™ such that A(W) = o,Vx --- x g,V [FJ, Prop.
9.34]. Assume without loss that ¢, =1. Then A, maps W(K) into V(E).
Moreover, if y € W, then x = A(y) is simple on ¢,V X --- x g,V and therefore
X, € V;,- Hence

Wil K) # & = Viml E) # . @

Consider the family o#(E) = {KE|K e 4"} of separable algebraic extensions of
E. 1t is closed under the action of G(E).

LEMMA 7.2. In the above notation suppose that K is pseudo closed with respect
to a family A" of separable algebraic extensions. Then E is pseudo closed with
respect to A (E).

Proof. Let V be a variety defined over E such that V,,_(E) # & for each
Ee A (E). Consider K € #". We prove that W,,.(K) # .

To do so choose a primitive element z for E/K and let f = irr(z, K).
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Decompose f into irreducible factors over K: f = f; --- f,, and let d, = deg(f,),
r=1,...,m. For each r between 1 and m choose 7, G(K) such that f,(z,z) =0.
Then choose p,y, ..., p,q4, € G(K) such that p,,1,z,..., p, 47,z are the roots of f,.
Since ¢ is closed under the action of G(K), E, = 1, (K)E belongs to #'(E) and
therefore there exists a, € V,,(E,). Also, 1,(E,)=K ‘1,E.

The restriction of the set {p,.7,|r=1,...,m,s=1,...,d,} to E coincides with
{o,,...,0,. Hence, the simple point (p,r.a,),, of ¢,V x --- x ¢,V uniquely
corresponds to a simple point b of W such that for k=1,...,n

d
PrsTrlric = 3, (PrsTW b, r=1,....,m;s=1,...,d,. 3)
j=1

To prove that b is K-rational apply pe G(K) on (3):

d
PPyrsTrlrk = Z (pprsrrwj)pbjka r= 1,- . .,d; s = 1,- .. ,d,. (4)
j=1

Observe that t,a,, 1,w;eK -1,E = K(1,2) and p,q, ..., p, 4, are the distinct K-
embeddings of K(z,z) into K. Hence for each k and r, the set of (d+ 1)-tuples

(pprsrrark’ PPrsTWis-- oty pprsrrwd)7 s = 1, cer dr

is a permutation of the set

(prsrrark’ PrstWis -+ prsrrwd)a s = 19 cees dr'

It follows that the unique solution (b, . . ., by) of the linear system (3) coincides
with that of (4). So pb=b and b is K-rational.

By assumption W has a simple K-rational point. By (2), V,.(E) # &.
Conclude that E is P& (E)C. O

To generalize Lemma 7.2 to infinite extensions we have to introduce a
topology on the family of all separable algebraic extensions of K. The topology
of the latter space is dual to that of all closed subgroups of G(K). Thus, a basic
open neighborhood of a separable algebraic extension L of K is determined by a
finite Galois extension N of K. It is the set of all separable algebraic extensions
whose intersections with N is L n N. In particular the topology is compact. For
the rest of this section we make the following assumption:

ASSUMPTION 7.3. The family 2 is closed in the space of all separable
algebraic extensions of K.
Consider also a separable algebraic extension L of K.
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LEMMA 7.4. The field L is pseudo-A"(L)-closed.

Proof. Assume that L is not pseudo closed with respect to 2#°(L). Then there
exists a variety V defined over L which has a simple L-rational point for each
Le (L) but has no simple L-rational point. Let K’ be a finite extension of K
contained in L over which V is defined. Then V, (E) = & for each finite
extension E of K’ contained in L. Let S(E) = {K € | V,;n(KE) = &}. By Lemma
7.2, S(E) is nonempty.

Suppose that M belongs to the closure of S(E) but not to S(E). Then M et
and therefore V,, . (ME) # & (otherwise M € S(E)). Take a finite extension M, of
K contained in M such that V,; (MyE) # J. Let N be a finite Galois extension
of K that contains M, E. Then there exists K € S(E) such that Kn N = M N N.
In particular MyE < KE and therefore V,,(KE)# &, a contradiction.
Conclude that S(E) is closed.

If F is a finite extension of E contained in L, then S(F) < S(E). By compactness
there exists K which belongs to S(E) for all E. Then KLeX'(L) but
V.m(KL) = (&, a contradiction. Conclude that L is pseudo-#"(L)-closed. [}

Consider now the family & = {Le % | L < L}. It is closed under the action of
G(L) and closed in the space of all separable algebraic extensions of L. We give
some conditions for L to be P.ZC.

LEMMA 7.5. L is PZC if and only if KL is P#(K)C for each K e X .*

Proof. Suppose first that L is P#C. Consider K € #" and let V be a variety
defined over KL such that V(LK) # & for each Le #. As LKL = LK and
since by, Lemma 7.4, KL is P#(K L)C, this implies that V, (KL) # &. Conclude
that KL is PZ(K)C.

Conversely, suppose that

KL is PZ(K)C for each Ke X' (5)

Let V be a variety defined over L such that V(L) # & for each Le #. Given

Kex, this implies that V, LK # ¢ for each LeL. Hence, by (5),
Vim(KL) # &. As, L is PA(L)C (Lemma 7.4), this implies that V(L) # .
Conclude that L is PZC.

COROLLARY 7.6. Each of the following conditions suffices for L to be P#C.

(a) Kex implies L< K or KL = K,

(b) K,K, =K, foreachK,,K,eA, K, # K,, and K has a Galois extension N
such that NnL = K, NL = K, and for each K e X there exists Le X" such
that Lc Land NnK=NnL.

Proof. Assume first that condition (a) holds. Consider K e .. If L = K, then

*D. Haran called my attention to this lemma.
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K € #. Hence KL € #(K) and therefore, by definition, KL is P#(K)C.If L & K,
then KL = K is a PAC field [L, p. 76]. Conclude from Lemma 7.5 that L is
PZC.

Now assume that condition (b) holds. We prove condition (a):

Let K be a field in ¢ that does not contain L. Then N n K = N L for some
Le #. In particular K # L. By Galois theory

KL=K-NNnK)L=K-(NNnLL=K-L=K,

Conclude from the first paragraph, L is P#C. (]

The converse of Corollary 7.6(a) is true under certain conditions.
COROLLARY 7.7. Suppose that L is P C and satisfies the following conditions:
(a) K, K;eA and K, # K, implies that K, K, = K.

(b) No proper separable algebraic extension E of a field K e A is PAC unless
E =K,
Then, for each K e A, either L = K or KL = K.

Proof. Let K be a field in & that does not contain L. Then KL is a proper
separable algebraic extension of K. By Lemma 7.4, KL is pseudo-#(K L)-closed.
If Le¥, then L< L and therefore L#K. By (a), LK = K,. Hence
LKL ={LKL|Lc L, Lex’} = {K,}. By Example 7.1(a), KL is PAC.
Conclude from (b) that KL = K. |

8. Algebraic extensions of PpC fields

To apply the results of Section 7 to p-adic fields we need a special case of a
theorem of Pop [Po].

LEMMA 8.1. Let E be a formally p-adic field. If G(E) = G(Q,), then E is p-
adically closed.

Proof. Note first that G(Q,) is isomorphic to no proper closed subgroup of
itself. Otherwise @, ,,, would have a proper algebraic extension L such that
G(L) = G(Q,). By a theorem of Neukirch [N1], L is p-adically closed. Hence L is
isomorphic to Q, ;.. By [FJ, Lemma 18.19], Q,, ,,, = L, a contradiction.

By assumption E has a p-adic closure E. Since G(E)= G(Q,) the first
paragraph implies that E = E. Thus E is p-adically closed. O

The following lemma is implicit in [HJ4] (especially [HJ4, Lemma 10.3(a)]).
We give here a direct proof based on Krasner’s lemma and on Lemma 8.1.

LEMMA 8.2. For a field K, the set A" of all p-adic closures of K is closed in the
space of all algebraic extensions of K.
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Proof. Suppose that a field E belongs to the closure of #". We show first that
it is formally p-adic. Otherwise there would exist x,,...,x,€E, a polynomial
f(X,,...,X,) with integral coefficients, and a positive integer a which is
relatively prime to p such that pf(y(x,), .. -, y(x,)) = a, where p(X) is the Kochen
operator [PR, p. 99, with O being the localization of Z at p]. Take a finite Galois
extension N of K that contains x,, ..., x,. By assumption, there exists K € 4
such that K "N = En N. In particular x,,...,x,€K and therefore K is not
formally p-adic. This contradiction shows that E is formally p-adic.

Now we show that G(E) and G(Q,) have the same finite quotients. Consider a
finite Galois extension F of E. Take a finite Galois extension N of K such that
Fo=F NN is a Galois extension of E, = ENnN and F = EF,,. Take K € 4" with
KN = E,. Then 9(KF,/K) = %(F,/E,) = 4(F/E). But G(K) =~ G(Q,) [HJ4,
Corollary 8.6]. So, each finite quotient of G(E) is a finite quotient of G(Q,).

Conversely, let G be a finite quotient of G(Q o By Krasner’s lemma
[Ri, p. 197], there exists a polynomial ge Z[ X] whose Galois group over Q, ;.
and therefore over every p-adically closed field is isomorphic to G. (The
intersection of each p-adically closed field with @ is isomorphic to Q,.a15 [PR,
Thm. 3.2].) Let N be the splitting field of g over K and take K as before. Then
%(NE/E) ~ 9(NK/K) = G. So G(E) and G(Q,) have the same finite quotients.

As G(Q,) is finitely generated [S, p. III-30], G(E) = G(Q,) [FJ, Prop. 154].
Conclude from Lemma 8.1 that E is p-adically closed. O

PROPOSITION 8.3. Let L be an algebraic extension of a PpC field K. Then L is
PpC if and only if for each p-adic closure K of K we have: L < K or KL = K.

Proof. Use Lemma 8.2 and apply Lemma 7.6(a) to the family 2" of all p-adic
closures of K to prove the “if” part of the proposition.

To prove the “only if” part we have to verify conditions (a) and (b) of Lemma
7.7.

By [HJ4, Thm. 15.1(a)], G(K) is a p-adically projective group. Therefore
condition (a) of Lemma 7.5 follows from [HJ4, Lemma 4.5(b)]. Finally, since
each p-adically closed field is Henselian [ PR, Thm. 3.1], condition (b) of Lemma
7.7 is a special case of a theorem of Frey and Prestel [FJ, Thm. 10.14]. O

An algebraic extension L/K is totally p-adic if L can be embedded over K in
each p-adic closure of K. (Since there is a bijective correspondence between ©-
sites of a field and the isomorphism classes of its p-adic closures this definition
coincides with the one given in [HJ4, Section 12].)

COROLLARY 84. Let L be an algebraic extension of a PpC field K. Then L is
PpC if at least one of the following conditions is satisfied:

(@) L is a totally p-adic Galois extension of K, or

(b) K has a Galois extension N such that NN L = K, NL = K and for every p-
adic closure K of K there exists a p-adic closure L of L such that
NnK=NnL
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Proof. If (a) holds, then every p-adic closure of K contains L, and we may
apply Proposition 8.3. As mentioned in the proof of Proposition 8.3, condition
(c) of Lemma 7.7 holds for the family ¢ of p-adic closures of K. Hence, if (b)
holds, then L is PpC by Lemma 7.6(b). O

COROLLARY 8.5. Let L be a finite extension of a PpC field K. If L is PpC, then
L is contained in every p-adic closure of K.

Proof. Let K be a p-adic closure of K. Then KL is a finite extension of K. Since
K is an infinite extension of K it follows from Proposition 8.3 that L = K. [J

EXAMPLE 8.6. An algebraic extension of a PpC field with p-adically projective
absolute Galois group which is not PpC. Let E be the maximal unramified
extension of @Q,. Then [*|[E:Q,] for each prime I. Hence H=G(E) is a
projective group [R, p. 291] and therefore p-adically projective. However, as E is
not algebraically closed the “only if” part of Proposition 8.3 implies that E is not
PpC. O

REMARK 8.7. It follows easily from either Proposition 8.3 or Theorem 5.3 that
a closed subgroup H of a p-adically projective group G which satisfies G < H or
GnH =1 for all Ge 2(T', G) is again p-adically projective. Proposition 8.3 and
Theorem 5.3 strengthen this result in two distinct ways; the field theoretic and
the group theoretic results are not strictly comparable. The descent argument on
which the proof of Proposition 8.3 is based has a parallel in the group theoretic
technique introduced in [H], on which the proof of Theorem 5.3 is based. ]

REMARK 8.8. It is a simple observation that the family of real closures of a
field is closed. Therefore, Lemma 7.6(a) gives a proof of Prestel’s extension
theorem for PRC fields which does not use elimination of quantifiers for real
closed fields. O

9. The Realization theorem

From now on we let the group I" be G(Q,). Proposition 12.10 of [HJ4] states
that this group satisfies Assumption 1.5. For a field K denote the set of all
embeddings {: G(Q,) > G(K) such that the fixed field of {(G(Q,)) in K is p-
adically closed by Embd,(G(Q,), G(K)). It is still an open question whether
Embd,(G(Q,), G(K)) = Embd(G(Q,), G(K)) (see [Po]). However, if K is PpC, this
is the case [HJ4, Cor. 15.2].

The first step toward the Realization theorem is recorded as the main result of
[EJ]:

PROPOSLITION 9.1. Let K be a countable Hilbertian field having e p-adic
closures K, ..., K, (not necessarily distinct). Then for almost all 6 € G(K)**™ (in
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the sense of the Haar measure) the field
K,=K3n KN K(0ps1y-eer00in)

is PpC with e nonequivalent p-adic valuations which are induced by K°', ..., K¢
and G(K,) = D, .

THEOREM 9.2. Let L be a finite Galois extension of a countable Hilbertian field
K. Let G be a p-adically projective group of at most countable rank. Suppose that
n: G—>9(L/K) is an epimorphism such that

7o Embd(G(Q,), G) < res; - Embd,(G(Q,), G(K)).

Then there exists a PpC field E, algebraic over K and there exists an isomorphism
y:G — G(E) such that res; oy = m.

Proof. 1f Embd(G(Q),), G) is empty, then G is a projective group. In this case
the theorem reduces to [FJ, Thm. 20.22]. So, assume that Embd(G(Q,), G) # &.

Let {y,...,{. be elements of Embd(G(Q,),G) such that mn°{,,...,n°(,
represent the (9(L/K), Aut(G(Q),)))-classes of m°Embd(G(Q,), G). For each i
between 1 and e there is, by assumption, n,€ Embd,(G(Q,), G(K)) such that
res o n; =m°{;. Denote the fixed field of #,(G(Q))) in Kby K, Itis a p-adic

closure of K. Choose generators G, 4 1,...,004m - - -,0f %(L/K) such that m > 2.
By Proposition 9.1, and in the notation of 9.2, there exists g4, . .., 0,4, € G(K)
such that res;o;,=1for i=1,...,e and res;0,=0; for i=e+1,...,e+m, the

a

field K, is PpC with e p-adic valuations which are induced by K&, i=1,...,e
and G(K,) = D, . In particular K, n L = K. Rename K¢ as K,, if necessary, to
assume that g, =1fori=1,...,e.

By Lemma 1.1 and Propositions 1.8 and 4.2, K, has a Galois extension M,
such that G(M ) =~ A,, LK,nM_ =K,,and M, K;fori=1,...,e. It follows
from Corollary 8.4(a) that M, is PpC. Also, res;: G(M,)— % (L/K) is an
epimorphism and 7 ° Embd(G(Q),), G) < res; ° Embd(G(Q,), G(M,,)).

By Proposition 4.4 there is an embedding y: G - G(M ) such that res; oy = 7.
All we still have to prove is that the fixed field E of (G) in K is PpC.

Indeed, Proposition 4.4 also states that E,, has a closed subset E, such that E
contains the fixed field (in K) M, of the closed subgroup generated by Y,, and by
G(Q,),, for all eoeE,. Moreover, M, has a Galois extension N such that
NN E = M,, NE = K, and for each p-adic closure M, of M, there exists a p-
adic closure E of E such that Nn M,=NnE.

Let M, be a p-adic closure of M,. By Lemma 2.6(c), either M, < M, or
MM, = K. Hence, by Proposition 8.3, M, is PpC. Conclude from Corollary
8.4(b) applied to M, and M, instead of K and L that E is PpC. O

COROLLARY 9.3. Let L be a finite Galois extension of a countable Hilbertian
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field K. Suppose that F is a countable PpC field that contains K. Then K has an
algebraic extension E which is PpC and there exists an isomorphism
v: G(F)— G(E) such that resg/ °y = resg,

Proof. The group G(F) is p-adically projective [HJ4, Prop. 15.1] and count-
ably generated. Let K’ = L N F. Then the map res, : G(F) - 9(L/K’) is surjective.
In order to apply Theorem 9.2 (replacing K by K’ and = by res; ) we have only to
prove that res, e Embd(G(Q),), G(F)) < res; ° Embd,(G(Q,), G(K")).

Indeed, let {: G(Q,) —» G(F) be an embedding. Then the fixed field F of {(G(Q »)
in F is p- adlcally closed [HJ4, Cor. 15.2]. Hence, K =K N F is also p-adically
closed and KF = F [HJ4, Prop. 6.4 and Cor. 6.6]. In particular the map
resg: G(F)— G(K) is an isomorphism. Let n =resg o (. Then

ne Embd,(G(Q,), G(K')) and res o =res, on. O

COROLLARY 94. Let K be a countable formally p-adic Hilbertian field. Let G
be a p-adically projective group of at most countable rank. Then there exists a PpC
field E, algebraic over K, such that G(E) =~ K

Proof. Take K =L in Theorem 9.2 and observe that Embd,(G(Q,), G(K)) is
nonempty. Hence, the assumption

n° Embd(G(Q,, G) < resg e Embd(G(Q,), G(K)) of that theorem is satisfied.
|

REMARK 9.5. Covers of p-adic Galois structures. Let F be a Galois extension
of a field E such that G(F/E) is a projective G(Q,)-structure. Let
y: G(F/E)— G(E) be a section to the cover res: G(E) —» G(F/E) [HJ4, Lemma 5.2]
and let L be the fixed field of y(%(F/E)) in E. Then the conditions of Corollary
8.4(b) are satisfied (with E replacing K). Hence, if E is PpC, then so is L.

This is actually the situation in the proof of Theorem 9.2, with M,, N and E
replacing E, F and L, respectively. The same situation occurs in the proof of
[HJ4, Thm. 15.3] with E,, F, and K, replacing E, F and L. So, we can deduce
now that K, is PpC and spare the additional transcendental construction done
in that proof. O

We use the notation of [HJ4, Remark 10.5] and denote the space of all ®-sites
of a field M by X(M).

COROLLARY 9.6. Let K be a formally p-adic countable Hilbertian field. Let X
be a Boolean space of at most countable weight. Then K has a PpC algebraic
extension M such that X(M) is homeomorphic to X.

Proof. By Lemma 2.1(b), X is homeomorphic to a closed subset E, of E,,. In
Notation 3.3 take Y, to be any subset of Y. By Lemma 4.1, A, is a I'-projective
group. Hence, by Corollary 9.4 there exists an algebraic extension M of K such
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that G(M) = A,. As E, is a closed set of representatives of A, it is homeomor-
phic to X(M). O

EXAMPLE 9.7. A generalization of Example 8.6. Take e p-adically closed fields
K,,..., K, algebraic over Q, such that K = K, n---nK_ is PpC and G(K) = D,
(Proposition 9.1). Let L, be the maximal unramified extension of K;. By
Example 8.6, G(L,) is projective but L, is not PpC. By Proposition 8.3,
L=L,nK,n--nK,isnot PpC. On the other hand a theorem of Haran and
Lubotzky [HL, Prop 4] implies that G(L) is isomorphic to the free product
G(L)* D, _,. Hence G(L) is p-adically projective. O

10. The Lefshetz principle for PpC fields

Recall that a family of fields is elementary if it can be axiomatized by sentences of
the first order language of fields. Condition (1) below is a convenient way to
prove the existence of a set of axioms for the theory of PpC fields without writing
them down explicitly.*

LEMMA 10.1. The family of PpC fields is elementary.
Proof. By [BS, p. 151] it suffices to prove that

(1a) The family of PpC fields is closed under the formation of ultraproducts and
(1b) under elementary equivalence.

However, by Frayne’s lemma [BS, p. 161], (1b) follows from (1a) and from these
statements:

(2b) If a field E is an elementary subfield of a PpC field F, then E is also PpC.
(2¢) The family of PpC fields is closed under isomorphisms.

So, it suffices to prove (1a) and (2b).

Proof of (1a). Suppose that F; is a PpC field for each i in a set I. Let 2 be an
ultrafilter of I and let F = IT,; F;/9. To prove that F is PpC consider a variety V
defined over F and which has a simple F-rational point for each p-adic closure F
of F. We have to prove that V has an F-rational point.

Indeed, we may present V as an ultraproduct V =1I1V,/9, where V; is a
variety defined over F, for each i that belongs to a subset I, of I which belongs to
9. Let J be the set of all iel, for which F; has a p-adic closure F; such that
VigmlF:) = &. If JeP choose for each ieJ such an F; and consider the
ultraproduct F' =TI F;/9. As the family of p-adically closed fields is axiomat-
izable in the language of ordered fields [PR, p. 85] F’ is a p-adically closed field
that contains F and V,,(F') = &. But then F = F n F’ is a p-adic closure of F

*Grob gives an explicit set of axioms for the theory of PpC fields [Gr, p. 45].
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[PR, Thm. 3.4] and V,;(F) = . This contradiction proves that I —J € 9. Since
F;is PpC the variety V; has an F;-rational point for each ie I —J. Conclude that
V() + 2. ]

Proof of (2b). Let V be a variety defined over E such that V,,(E) # J for
each p-adic closure E of E. Since F is an elementary extension of E, the variety V
is also defined over F. If F is a p-adic closure of F, then E=ENF is a p-adic
closure of E. Hence V,;,(E) # J and therefore V,,.(F) # &. As F is PpC, V has
an F-rational point. Hence V has also an E-rational point. Conclude that E is
PpC. (|

The following embedding lemma is a special case of [Po, Lemma 5.5].

LEMMA 10.2. Let E and F be field extensions of a common field L. Suppose that
E is countable and that F is PpC and N ,-saturated. Suppose further that there
exists a homomorphism ¢: G(F)— G(E) such that resiq@(o)=resfo for each
o€ G(F). Then there exists an L-embedding ®: E — F such that

®(@p(0)x) = 0®(x), for each xeE and each o e G(F). (1)

REMARK 10.3. Pop’s proof is modeled on the proof of [FJ, Lemma 18.2]. The
main new ingredient is the observation that if F is a p-adic closure of F and
@(G(F)) = G(E), then E is a p-adic closure of E. Indeed, L = L n F is a p-adically
closed field and res;(G(E)) = G(L) = G(Q,). As G(E) =~ G(Q,) is finitely gen-
erated, the map resj: G(E) — G(L) is an isomorphism. So, Pop’s theorem
[Po, Thm. 4.2] applies and E is a p-adically closed field. Note that if E is PpC
(the only case we need for the elementary equivalence theorem), then we may as
well apply [HJ4, Cor. 15.2]. O

Denote the first order language of fields with e valuations and with a constant
symbol for each element of a field L by % (field, L).

Suppose that w, ..., w, are p-adic valuations of F. For each i between 1 and e
choose a p-adic closure F; of F with respect to w;. Let E; be the p-adic closure of
E such that ¢(G(F;)) = G(E;) and let v; be the p-adic valuation of E induced by E,.
Then ® maps the structure (E,v,...,0,) onto a substructure of (F,w,,...,w,).
Moreover, ®(E;) = ®(E) F, is a p-adic closure of ®(E) with respect to the
restriction of w; to ®(E).

PROPOSITION 10.4 (the elementary equivalence theorem). Let (E,v,,...,0,)
and (F,wy,...,w,) be PpC fields with e p-adic valuations. Let L be a common
sufbield of E and L. Suppose that there exists an isomorphism ¢: G(F)— G(E) such
that resj (o) = resga for each o € G(F). Suppose further that E, (resp., F,) is a p-
adic closure of E (resp., F) with respect to v; (resp., w;) such that ¢(G(F;))=G(E),
i=1,...,e. Then(E,v,,...,v,) is elementarily equivalent to (F,w,,...,w,) over L.

Proof. Only finitely many elements of L are involved in each sentence of
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Z (field, L). We may therefore suppose that L is a countable field. Further,
replace E and F by ultrapowers *E=EN/2 and *F = FN/%. By [FJ, Lemma
184], ¢“/2 induces an isomorphism *¢@:G(*F)— G(*E) such that
resp*¢p(o) = Resjo for each o€ G(*F). Moreover, for each i between 1 and e,
®™/2 maps G(FY/®) isomorphically onto G(EN/2). Let *F, = *F A*I1F N9
and let *E;=*ENTIEY/9. Then restriction maps G(EY/2) isomorphically onto
G(-"E) and maps G(ITFY/2) isomorphically onto G(ﬁ’:). Hence *¢ maps G(*F;)
isomorphically onto G(*_E—i). So, without loss assume that (E,v,,...,v,) and
(F,wy,...,w,) are N,-saturated [FJ, Lemma 6.14].

Use the Skolem-Lowenheim theorem [FJ, Prop. 6.4] to construct a
countable elementary substructure (Ey, v, j,...,0;,) of (E,vy,...,0,) such that
L<E,. Let E;=E,nE;, j=1,...,e. By Lemma 10.2, there exists an L-
embedding @, : E, — F such that ®,(¢(c)x)=o®,(x) for each x € E, and ¢ € G(F).
In particular E{ =®,(E;) < F and <I>1(E“)=E’1 NF;. So ®, maps v, ; onto the
restriction of w, ; to Ef,j=1,...,e.

Let ¢,:G(E})>G(E,) be the isomorphism induced by ®,. It satisfies
®,(¢,(6)x)=5®,(x) for each 5eG(E}) and xeE,. In particular, for ¢ G(F),
o =resg, 0 and xeE, we have ®,(¢(6)x)=0®,(x)=®d,(¢,@)x). Hence
resg, (o) = ¢4(0).

This means that we can now change the roles of E and F. Use the back and
forth method and induction to construct two towers of structures of correspond-
ing p-adic closures. The union of these towers will give an elementary
substructure (E,, Uy - - - 5 Uge) Of (E, Uy, ..., U,) Which is isomorphic over L to an
elementary substructure (F,, Wy, ..., W) of (F,w,,...,w,) [FJ, Lemma 6.3].
Conclude that (E,v,,...,v,) is elementarily equivalent to (F,w,,...,w,)
over L. O

PROPOSITION 10.5. Let K be a countable Hilbertian field. Let (F,w,,...,w,)
be a countable PpC extension of K with e p-adic valuations. Then (F,w,,...,w,)is
K-elementarily equivalent to an ultraproduct T1 - | (E,, Up1s .-, Us0)/2 of PpC
fields with e p-adic valuations where E, is perfect and algebraic over K and
G(E,) = G(F),n=1,2,3,....

Proof. If F is not formally p-adic, then it is PAC. In this case the proposition
reduces to [FJ, Prop. 20.23]. So, assume that F is formally p-adic. For each i
between 1 and e choose a p-adic closure F; of F with respect to w;.

Let L, L,=L;<---be an ascending sequence of finite Galois extensions of
K whose union is K. For each n the intersection K, =L, F is a countable
formally p-adic Hilbertian field. Apply Corollary 9.3 with L,/K, replacing L/K
to find a PpC field E, and an isomorphism ¢, which makes the following
diagram commutative:
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G(E)
ar
G “—— 9(L,/K,)

For each i between 1 and e let E,; be the p-adic closure of E, such that
©.(G(F;)) = G(E,;). Denote the p-adic valuation of E, that E,; induces by v,,.
Let 2 be a nonprincipal ultraproduct of N and let

(*E’ Ugsenes Ue)=1—I(En’ Untsee s vne)/'@
and

(*F’*wla---a*we):(Fawl,---’we)N/g'

By [FJ, Lemma 18.4], I1 ¢,/2: 1 G(F)N/2 - G(E,)/% induces, by restriction, an
isomorphism ¢ that makes the following diagram commutative:

G(*E)

(p res
G(*F)—— G(K)
res

For each i between 1 and e let *(E)=II1E,;/2 and let *E; be the algebraic
closure of *E in *(E)). It is the p-adic closure of *E with respect to v;. Also, let
*(F,)= FN/92 and let *F, be the algebraic closure of *F in *(F). It is the p-adic
closure of *F with respect to *w;. Then IT ¢,/ maps G(*(F;)) onto G(*(E,)) and
therefore p(G(*F,)) = G(*—E,-). By Lemma 10.1, *E and *F are PpC fields. Hence,
by Proposition 104, (*E,v,,...,v,)=x(*F*w,,...,*w,). Conclude that
(*E,vy,...,0,) =g (F,wq,...,w,). O

PROPOSITION 10.6. Let K be a countable Hilbertian field. Let 2 be a family of
p-adically projective groups with this property: If E and F are two elementarily
equivalent PpC fields and if G(F)e?, then G(E)e?. Then a sentence 0 of
Z . (field, K) is true in all PpC fields (F,wy,...,w,) with e p-adic valuations such
that K c F and G(F)e 2 if and only if O is true in all PpC fields (E,v,,...,v,) with
e p-adic valuations such that E is algebraic over K and G(E)e 2.

Proof. Suppose that the latter condition holds. Let (F, w,,...,w,) be a PpC
field containing K with e p-adic valuations such that G(F)e 2. By the Skolem—
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Lowenheim theorem, (F,w,,...,w,) has a countable elementary substructure
(Fo,Wo1s- - - » Woe) that contains K. By Proposition 10.5,

(F07 Wogs---s WOe) EKI-I(Em Upts--- ’vne)/@

with E, a perfect PpC field, algebraic over K, and G(E,) =~ G(F,), for each ne N.
By assumption G(E,)eZ. Hence 0 is true in (E,,v,,...,,,) for each n, and
therefore 6 is true in (F, wy, ..., w,). ]

Apply Proposition 10.6 to the family of all p-adically projective groups:

THEOREM 10.7. A sentence 6 of 2 (field) is true in each PpC field of
characteristic 0 with e p-adic valuations if and only if 0 is true in each PpC field
with e p-adic valuation which is algebraic over Q.

Here is an algebraic application of Theorem 10.7.

THEOREM 10.8. Let F be a PpC field and let v,v,,...,v, be distinct p-adic
valuations of F. Then

(@) v(F*)is a Z-group,

(b) the Henselization of F with respect to v is p-adically closed, in particular all p-
adic closures of F with respect to v are F-isomorphic,

(c) F is dense in the p-adic closure F with respect to v, and

(d) vy,...,v, are independent.

Proof. Each of the statements (a) and (d) is equivalent to a conjunction of
sentences in the language %, (field). As each p-adic valuation of an algebraic field
over Q is discrete those statements hold for every algebraic PpC field with e p-
adic valuations. Conclude from Theorem 10.7 that they also hold for F.

Statement (b) follows from (a) by [PR, Thm. 3.2].

As F is the Henselization of F with respect to v, statement (c) is equivalent to
the conjunction of countably many sentences in & (field). The nth statement
says that for every polynomial f of degree at most n and for every a such that
v(a) = 0, v(f(a)) > 0 and v(f'(a)) =0, and for every nonzero b there exists ¢ such
that v(c) > 0 and v(f(a + ¢)) = v(b) [D, p. 108]. Since each of these sentences is
true for every algebraic field Theorem 10.7 implies that it also holds for F.
Conclude that F is v-dense in F. |

REMARK 10.9.

(a) Parts (b) and (c) of Theorems 10.8 have been proved by Grob [Gr, pp. 38 and
34, respectively] by different methods.

(b) A formally p-adic field K is said to be maximal if it has no proper algebraic
totally p-adic extension. If K is PpC, then this condition can be reformulated in
terms of G(K): “For each proper open subgroups U of G(K) there exists
H e 2(G(Q,), G(K)) which is conjugate to no subgroup of U.” As the theory of
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maximal PpC is elementary [Gr, p. 40], Proposition 10.6 implies that Theorem
10.7 holds for maximal PpC field with e valuations. Again, this is a result of
Grob [Gr, p. 92]. (However, Grob does not include predicates for valuation in
her language.)

Acknowledgement

The author is indebted to Ido Efrat for valuable suggestions that improve a
former version of this work.

References

[A] J. Ax, The elementary theory of finite fields, Ann. Math. 88 (1968), 239-271.

[BNW] E. Binz, J. Neukirch and G. H. Wenzel, A subgroup theorem for free products of profinite
groups, J. Algebra 19 (1971), 104-109.

[BS] J. L. Bell and A. B. Slomson, Models and Ultraproducts, North-Holland/American
Elsevier, Amsterdam/New York, 1974.

[D] L. P. D. v.d. Dries, Model theory of fields, Thesis, Utrecht, 1978.

[DR] L.P.D. vd. Dries and P. Ribenboim, An application of Tarski’s principle to absolute
Galois groups of function fields, Queen’s Mathematical Preprint No. 1984-8.

[EJ] I. Efrat and M. Jarden, Free pseudo p-adically closed field of finite corank, J. Algebra
133 (1990), 132-150.

[F] M. D. Fried, Irreducibility results for separated variables equations, J. Pure and Applied
Algebra 48 (1987), 9-22.

[FJ] M. D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik. III. 11, Springer,
Heidelberg, 1986.

[G] W.-D. Geyer, Galois groups of intersections of local fields, Israel J. Math. 30 (1978), 382—
396.

[GR] D. Gildenhuys and L. Ribes, A Kurosh subgroup theorem for free pro-C-products of pro-
C-groups, Transactions of AMS 186 (1973), 309—-329.

[Gr] C. Grob, Die Entscheidbarkeit der Theorie der maximalen pseudo p-adisch abgeschlos-
senen Korper, Dissertation, Konstanz, 1988.

[H] D. Haran, On closed subgroups of free products of profinite groups, Proc. Lon. Math. Soc.
(3) 55 (1987), 266—298.

[HJ1] D. Haran and M. Jarden, The absolute Galois group of a pseudo real closed field, Annali
della Scuola Normale Superiore — Pisa, Serie 1V, 12 (1985), 449-489.

[HJ2] D. Haran and M. Jarden, Real free groups and the absolute Galois group of R(z), J. Pure
Appl. Algebra 37 (1985), 155-165.

[HJ3] D.Haran and M. Jarden, The absolute Galois group of a pseudo real closed algebraic field,
Pac. J. Math. 123 (1986), 55-69.

[HJ4] D.Haran and M. Jarden, The absolute Galois group of a pseudo p-adically closed field, J.
fiir die reine und angewandte Math. 383 (1988), 147-206.

[HL] D. Haran and A. Lubotzky, Maximal abelian subgroups of free profinite groups,
Mathematical proceeding of the Cambridge Philosophical Society 97 (1985), 51-55.

[HP] B. Heinemann and A. Prestel, Fields regularly closed with respect to finitely many
valuations and orderings, Can. Math. Soc. Conf. Proc. 4 (1984), 297-336.

[HR] W. Herfort and L. Ribes, Torsion elements and centralizers in free products of profinite
groups, J. fiir die reine und angewandte Math. 358 (1985), 155-161.

] M. Jarden, The algebraic nature of the elementary theory of PRC fields, manuscripta
mathematicae 60 (1988), 463—-475.



62 Moshe Jarden

Dwl
[KN]

(L]
[N1]

[N2]
[P]
[Po]
[PR]
[PZ]
[R]
[Ri]
[s]

[Sp]

U. Jannsen und K. Wingberg, Die Struktur der absoluten Galoisgruppe p-adischer
Zahlkorper, Inventiones mathematicae 70 (1982), 70—98.

W. Krull and J. Neukirch, Die Struktur der absoluten Galoisgruppe tiber dem Korper R(t),
Math. Ann. 193 (1971), 197-209.

S. Lang, Introduction to algebraic geometry, Interscience Publishers, New York, 1958.

J. Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkorper,
In. Math. 6 (1969), 296-314.

J. Neukirch, Freie Produkte pro-enlicher Gruppen und ihre Kohomologie, Arch. der. Math.
22 (1971), 337-357.

A. Prestel, Pseudo real closed fields, Set theory and Model theory, Springer’s Lecture Notes
872 (1981), 127-156, Springer.

F. Pop, Galoissche Kennzeichnung p-adisch abgeshlossener Korper, Dissertation, Heidel-
berg, 1987.

A. Prestel and P. Roquette, Formally p-adic fields, Lecture Notes in Mathematics 1050,
Springer, Berlin, 1984.

A. Prestel and M. Ziegler, Model theoretic methods in the theory of topological fields, J. fiir
die reine und angewandte Math. 299/300 (1978), 318-341.

L. Ribes, Introduction to profinite groups and Galois Cohomology, Queen’s papers in Pure
and Applied Maths 24, Queen’s University, Kingston, 1970.

P. Ribenboim, Théorie des valuations, Les Presses de 'Université de Montréal, Montréal,
1964.

J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Maths. 5, Springer, Heidelberg,
1965.

B. Schuppar, Elementare Aususagen zur Arithmetik und Galoistheorie von Funktionen-
korpen, J. fiir die reine und angewandte Math. 313 (1980), 59-71.



