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Introduction

In this note we give a geometrical approach to the theory of Jacobi forms, which
was originated in an analytic way by Eichler and Zagier (cf. [4]). There Jacobi
forms are introduced as holomorphic functions on e x C (~: upper half-
plane) satisfying a certain transformation law with respect to the semi-direct
product 0393  Z2 (I-’: subgroup of finite index in SL2(Z» and having distinguished
Fourier expansions at the cusps.
We start in the first section by recalling some basic facts about the elliptic

modular surface Xr associated to r following the article [9]. To simplify the
exposition, we restrict ourselves to the cases, where r acts without fixed points.

In the second section, we characterize the space of Jacobi cusp forms of weight
ke2N, index m ~ N with respect to r as the space of global sections of a
distinguished subsheaf Fk,m of a certain line bundle OX0393(Dk,m) on Xr.

In the third section, we prove the ampleness of the line bundle (9x,(Dk,.) for
k, m being large enough. By using the Riemann-Roch Theorem for the surface
Xr, we then determine the dimension of HO(Xr, OX0393(Dk,m)). By proving the
vanishing of H1(X0393,Fk,m), we are finally in position to derive a formula for the
dimension of the space of Jacobi cusp forms, which can be made more explicit
under the extra hypothesis that the least common multiple of all the cusp widths
divides m. Formulas for the dimension of the space of Jacobi cusp forms were

already obtained for r = SL2(Z), r o(p) (p a prime) by analytic methods in [4],
[6] and in full generality, by using a trace formula for Jacobi-Hecke operators
(cf. [11]), in the preprint [10]. Our final formula is identical with the one given
by Skoruppa in [10].

1. Notations and Definitions

Let 0393 be a subgroup of finite index in SL2(Z) and Jf the upper half-plane.
Assume that r acts without fixed points and -1 ~ 0393. Let Yr be the modular
curve associated to r, i.e. the compactification of rBJf by adding the cusps.
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Denote by u, the number of cusps and by nj the cusp width of the jth cusp

Assume furthermore that Yr has no cusps of the second kind.
Denote by X r the elliptic modular surface associated to r, by n : X0393 ~ Yr the

natural projection and by 0": Yr - Xr the zero section. From [5], §8 or [9], Part
II, we know the following: Because of our assumption on r, the only singular
fibres of n lie above the 6r cusps of Yr; these are nj-gons, i.e.

where ~j,v ~ pl is embedded into X r with self-intersection number - 2, and
otherwise

(here and below, v, v’ have to be understood modulo nj).
In terms of local coordinates the situation above the cusp Pj can be described

as follows: j,v c Xr can be covered by two affine charts Uj?v, W1j,v c Xr, where
the coordinates uj,v, vj,v of Wjov can be chosen such that j,v|w0j,v is given by the
equation vj,v = 0 (uj,v-axis) and hence the coordinates of W1j,v are u-1j,v, u2j,vvj,v
(note that 0398j,v. 0398j,v = -2). Because 0398j,v+1 and 0398j,v intersect transversally, we
deduce from this the following relations

Furthermore we note

with q. = e203C0iM-1j03C4/nj, 03BEj = e2niz/( -Cj! + aj) (03C4 E Jf ZEe)
By gr resp. Pa we denote the genus of Yr resp. the arithmetic genus of X r. We

have the formulae (cf. [5], §12 or [9], pp. 35-36)
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Finally, we denote by KY0393 resp. KXr the canonical divisor of Yr resp. Xr.

2. Geometrical characterization of Jacobi forms

Let k ~ 2N and m~N. From [4], we recall the following

DEFINITION 2.1. A holomorphic function f:Jf x C - C is called Jacobi

cusp form of weight k, index m with respect to r, if it satisfies the following
properties:

(ii) At the cusp Pj ( j = 1, ... , 6r), f has a Fourier expansion of the form

The C-span of these functions is denoted by Jcuspk,m(0393).
We are now going to describe the elements of Jcuspk,m(0393) as distinguished

sections of a certain line bundle over Xr. We put Y00393:=0393BH and

XI:= 0393Z2BH x C. We make the following observation: It is immediately
checked that

define two 1-cocycles, whence two 1-cohomology classes yl, y2 resp. of

H1(0393Z2, C*) ~ H1(X00393, (9*o - Pic(Xr) (cf. [7], Appendix to 1.2). The classical
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theory of modular forms shows that the isomorphism class in Pic(X’) corre-
sponding to y 1 can be represented by the line bundle

Now let [2] be the isomorphism class in Pic(X’) corresponding to y2. By
restricting [2] to an arbitrary fibre Et of ri E yro, we obtain an isomorphism
class of line bundles on the elliptic curve E,. The corresponding 1-cohomology
class of H1(E03C4, O*E03C4) ~ H1(, C*) (where A is the lattice Z03C4 Ef) Z) is determined by
the 1-cocycle

One checks that this 1-cocyle differs only by a 1-coboundary from the 1-cocyle
defined by

where

By the theorem of Appel-Humbert, we find that [2] lE. = L(H, 1) (cf. [7],
p. 20) and therefore can be represented by OE03C4(2m · O), where 0 denotes the origin
of E,. Hence [Y] can be represented by the line bundle

OX0393(2m03C3(Y0393))|X00393. (2)

The problem now consists in finding appropriate extensions of the line bundles
(1), (2) to the whole of Xr. To solve it, we determine the divisor of a suitably
chosen (meromorphic) Jacobi form of weight k, index m with respect to r.
We first recall two elementary lemmas.

LEMMA 2.2. The theta function
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satisfies the functional equation

LEMMA 2.3. The eta function

satisfies the functional equation

We put x:= (X1X2l)2m and denote by (9Y,(Mk,î) the line bundle associated to
holomorphic modular forms of weight k and character ~ with respect to r; its
degree is given by k03BC/12. For example, for X = 1, we have

PROPOSITION 2.4. For any f E Jcuspk,m(0393), we have

where - means linear equivalence of divisors.
Proof. Let g be any holomorphic modular form of weight k and character ~
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with respect to r and put

By construction we have

To complete the proof, we have to compute div 0 1, 1 and div ~. The only non-
trivial part of this calculation is the determination of the multiplicities of 01,1 on
the components 0398j,v: From the Fourier expansion of 01,1 we obtain

hence the multiplicity of 61 . on 8i.v equals

Summing up, we get

as claimed.

THEOREM 2.5. The map f - div f induces an injection

where

(Ilxll ~ meaning the distance of x to the nearest integer and [x] the greatest integer
~ x).
Proof. Let f E Jcuspk,m(0393). By definition div lx- is effective; therefore it remains
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to determine the multiplicities of f on the components 8j.v: By Definiton 2.1(ii),
we obtain

hence the multiplicity of f on 0398j,v is bigger or equal to

From Proposition 2.4 and the above computation we get

This completes the proof of Theorem 2.5. D

To describe the subspace im i g H°(Xr, (9x,(Dk,.» corresponding to the space
Jcuspk,m(0393), we have to introduce some definitions:
For x~R, denote by x the nearest integer of x. For j = 1, ... , 6r and

v = 0, ... , nj - 1 define integers v-  0, v +  0 satisfying the properties

(i) the integers in the interval

form a complete set of representatives of the residue classes modulo 2m,

is minimal.
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Finally, define the subsheaf 197k,. of (9x,(Dk,,,,) to consist of those sections s
having the property that in their Taylor expansions

on Woj,v, i.e. around the vertices Qj,v: = 0398j,v-1 ~0398j,v of the nj-gons 03C0-1(Rj), the
coefficients bj,v(k, l) vanish for

where 03C1:= k - 1 + 03B2j,v+1 - 03B2j,v is running from

( j = 1, ... , 6r; v = 0, ... , nj - 1). We note that Fk,m is not an (9x,-submodule of
OX0393(Dk,m) in general.
With these definitions we prove

THEOREM 2.6. There is an isomorphism

Proof. Let s ~ H0(X0393, (9x,(D,,.» be a global section belonging to im 1. From

the proof of Theorem 2.5 we know that the Fourier expansion at the cusp Pj of
the Jacobi form corresponding to s is obtained by taking one of the Taylor
expansions (3) of s (around the vertices 6;, y), multiplying it by u03B2j,vj,v+1v03B2j,vj,v
and substituting uj,v, vj,v by qj-v03BEj, qv+1j03BE-1j respectively; putting p:=

k-l+03B2j,v+1-03B2j,v, we find the Fourier expansion

The above analysis shows: SE im 1, if and only if the coefficients bj,v(k, 1) in the
Taylor expansions (3) vanish for

(j=1,...,03C30393; v=0,...,nj-1). The number of the conditions (5) can now be
minimized as follows: By the argument of [4], p. 23, we know that (5) has to be
fulfilled only for p running through a complete set of representatives of the
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residue classes modulo 2m. Observing that the nj Taylor expansions (3) around
the vertices Qj, 0, . - - , Qj,nj-1 determine the Fourier expansion of the correspond-
ing Jacobi form at the cusp Pj, we optimize the problem by distributing the
conditions (5) in a minimal way among the nj Taylor expansions (3). Recalling
the definitions preceding Theorem 2.6, we see that the optimal result is achieved
by imposing at each vertex Qj,v the conditions bj,,(k, 4 = 0 for

where p is running from

i.e., s c- im 1, if and only if s ~ H0(X0393, 57k,.)-
REMARK 2.7. From inequality (4) and the estimate

we note that the number Cj of conditions for each cusp Pj, which define the
sheaf Fk,m as a subsheaf of OX0393(Dk,m), is given by the formula

3. Dimension computations

To compute dim H°(Xr, OX0393(Dk,m)) and dim H0(X0393, Fk,m), we need the following
LEMMA 3.1. Define 03B1j,v and 7j,v by

for j =1, ... , a, and v = 0, ..., nj-1, extended to all v E 7L by periodicity in v with
period nj, and



10

Proof. The case m = nj being easily treated by direct computation, we assume
from now on m &#x3E; n;. With 0  p;_v  1, (7) equals

Introducing the polynomial Pj (v): = - mv(nj - v)/nj+mnj/6-1 and Âj: = 2m/nj,
we can rewrite (8) as

Observing

Noting that for all real x and

which by periodicity also holds for all real x and 03BE, we obtain (by taking
x=03BBj-2 and 03BE=03BBjv)

This completes the proof of the lemma. r-i

PROPOSITION 3.2. If k  m + 4 and m  nj (all j), the line bundle

lPxr(Dk.m - KXr) is ample.
Proof. We have (cf. Theorem 2.5 and (7))

By the criterion of Nakai-Moishezon, we have to show that the intersection
numbers of Dk,m - KX0393 with all irreducible curves C c X r are positive. We
distinguish the following three cases:
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C = E, a regular fibre of n, i.e. an elliptic curve
C = 0398j,v (all j, v)
C is a horizontal divisor, i.e., 03C0(C) = Yr.

In the first case, we have

In the second case, we have by Lemma 3.1

Before treating the last case, we recall from [5], §12 that KXr=n*(KYr-F)
with F E Div( Yr), deg F = - pa -1; with the adjunction formula we therefore
obtain

For the last case we distinguish C = 6(Yr) and C ~ a(Yr). In the first subcase, we
have

The formulae for the genus gr and the arithmetic genus pa given in the first
section and the relation Jlr = 03A3jnj now imply

For the second subcase, we first note that 8j.v. C equals zero for all but one
v =:vj, where we have 0398j,vj. C = 1. We now obtain the estimate

This finishes the proof of the proposition.
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THEOREM 3.3. If k  m + 4 and m  nj (all j), we have the dimension formula

Proof. By Proposition 3.2 the line bundle lPxr(Dk.m - Kxr) is ample and
therefore we have by the Kodaira Vanishing Theorem

dim H1(X0393, OX0393(Dk,m)) = dim H2(X0393, (9x,(Dk,.» = 0.

Now we obtain by the Riemann-Roch Theorem

We denote by k,m the quotient sheaf OX0393(Dk,m)/Fk,m. It is a skyscraper sheaf
supported on the vertices Qj.v of the nj-gons 03C0-1(Pj). By definition we have

with Cj given by (6). We are now able to prove

THEOREM 3.4. If k » 0 and m  nj (all j), we have the dimension formula

Proof. Consider the exact sequence of sheaves

If we are able to show H1(X0393, Fk,m) = {0}, the long exact sequence in
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cohomology associated to (10) implies

The claim then follows immediately from Theorems 2.6, 3.3 and formula (9).
We are left to show H1(X0393, Fk,m) = {0}. This will be done in two steps:

lst step. We introduce an auxiliary subsheaf F’k,m of Fk,m as follows: With
03C1(±):= v(±) - 2mv/nj put

Define the OX0393-submodule F’k,m of OX0393(Dk,m) to consist of those sections s having
the property that in their Taylor expansions (3) around the vertices Qj,v of the nj-
gons 03C0-1(Pj), the coefficients bj,v(k, l) vanish for

( j = 1,..., 03C30393; v = 0,..., nj - 1). By construction F’k,m is a subsheaf of Fk,m and
the quotient OX0393(Dk,m)/F’k,m is again a skyscraper sheaf ’k,m supported on the
vertices QJ,y. We have the following exact sequences of sheaves

The first part of the long exact sequence in cohomology associated to (11) leads
to the diagram
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From (12) we easily derive that H1(X0393, F’k,m) = {0} implies H1(X0393, Fk,m) = {0}.
2nd step. To prove the vanishing of H1(X0393, F’k,m), we introduce the auxiliary
line bundle L’k,m:= OX0393(D’k,m) with

From the exact sequence of (9x,-modules

we deduce that the vanishing of H1(X0393, L’k,m) and H1(X0393, L’k,m) implies the
triviality of H1(X0393, F’k,m). The vanishing of H1(X0393, L’k,m) follows from the
ampleness of the line bundle Uxr(Dk,m - Kxr) for k being large enough, which is
proved along the same lines as Proposition 3.2; a crude estimate shows

To prove H1(Xr, ’k,m) = {0}, we note (after a short calculation) that the quotient
L’k,m = F’k,m/L’k,m is isomorphic to

whence

because 0398j,v ~ pl has self-intersection number - 2 and hi &#x3E; 0 (all j). This
finishes the proof of the theorem. D

From Theorem 3.4 we are able to deduce an explicit formula for dim Jcuspk,m(0393)
assuming k » 0 and nj|m (all j). To do this, we use a slight generalization of the
lemma proved in [4], p. 124. Actually, we will prove a little more than we finally
need. As in [4] we introduce the function

LEMMA 3.5. For positive integers n, N, we have the formula



15

where H(A) denotes the Hurwitz class number, i.e. the (weighted) number of SL2(Z)
equivalence classes of all positive definite, integral, binary quadratic forms of
discriminant A.

Proof. First suppose (n, N) = 1 and N is a prime. Then, as in [4], p. 124, we
observe that the cases N = 2 and N - 1 mod . 4 are trivial; in the case N ~ 3

mod . 4, we obtain for the left-hand side of (13)

by the quadratic reciprocity law and Dirichlet’s class number formula. The case
of composite N and (n, N) = 1 is then treated following the sketch given in [4],

nx2
p. 125. To prove (13) in the general case, we observe that the function N is
periodic in K with period N/(n, N); this gives

Now formula (13) follows from the preceding case.

LEMMA 3.6. For m, nj as above, the following formula holds

where Q(N) denotes the largest integer, whose square divides N.
Proof. Applying Lemma 3.5 with n = nj and N = 4m, we obtain

Observing that the function n’x 2 is periodic in K with period 2m/(m, nj), we
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can rewrite the left-hand side of (14) to

A short calculation shows that this equals

which completes the proof of the lemma.

Finally, we need

LEMMA 3.7. If nj|m, we have

Proof. We have

and, by symmetry,

for v = 0,..., nj - 1. Therefore we have max(O, - p + /3j.V+ 1 - /3j.v) = 0 for p
running from v - - 2mv/nj,..., v+ - 2mv/nj, and we obtain

We now prove

THEOREM 3.8. If k » 0 and nj|m (all j), we have the dimension formula
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Proof. Because nj|m (all j), we have

whence

By Theorem 3.4 and Lemma 3.7, we then obtain

Using Lemma 3.6, we have

By substituting (16) into (15), we derive the desired formula. D

REMARK 3.9. The formula for dim Jcuspk,m(0393) proved in Theorem 3.8 is identical
with the one given by Skoruppa in [10], derived by means of a trace formula (cf.
[11]).

4. Concluding remarks

1. A particularly simple situation is the so-called geometric case, where
0393 = 0393(m) is the full congruence subgroup of level m  3. Then nj = m for all j, and
Lemma 3.7 shows Ci = 0, i.e.,

and therefore
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2. Because we were only able to find explicit formulas for the numbers 03B1j,v and
Ci in the case nj|m (all j), it is still an open problem to derive Skoruppa’s formula
for dim Jcuspk,m(0393) of [10] in the more general case m  nj by geometrical methods,
using Theorem 3.4 and Lemma 3.6.

3. If we allow Yr to have elliptic fixed points and cusps of the second kind (still
assuming - 1 e F), we have in addition to take into account the following new
types of singular fibres (cf. [5], §6)

II, II*; III, III*; 7K IV*; I*nj.

Using the corresponding local coordinates, which are explicitly given in [5], §8,
we easily find the appropriate modifications of Theorems 2.5 and 2.6. The
dimension computations are more delicate; one needs analogues of Lemma 3.1
and Proposition 3.2. We have not touched this problem.

If we allow in addition -1 ~ 0393, the surface Xr will not be elliptic any more; the
fibres of 03C0 become rational curves. Respecting the changed geometrical nature of
Xr, we are able to find the analogues of Theorems 2.5 and 2.6. Again, the
dimension computations are more difficult to handle; we have done this in the
simple case r = SL2(Z), where we rediscover the formula for dim Jcuspk,m(0393) given
in [4].

4. We finish this series of remarks by mentioning the following problem: The
Jacobi-Hecke operators, introduced in [4], can be interpreted as being induced
by certain correspondences of the elliptic surface Xr on the space of sections

H0(X0393,Fk,m). Although the sheaf Fk,m is not an OX0393-module, we wonder if the
trace of the Jacobi-Hecke operators can be computed by means of the

Lefschetz-Verdier trace formula (cf. [12], p. 133).
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