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In this note we study the question of when a point on a curve of genus g  2 can
be an nth order Weierstrass point for infinitely many n. We start by setting some
notation:

k a field.

C/k a curve of genus g  2 defined over k.
D an effective divisor of degree d on C.
n a positive integer.
s = 1(nD). (If nd  2g - 1, then s = nd - g + 1.)
C[nD] = {P~C:l(nD - sP)  1}, the set of n th order Weierstrass points

associated to D.

N(D,P) = {n~N:P~C[nD]}.

A point P which lies in infinitely many of the C [nD]’s, n = 1, 2,..., will be
called a multiple D-Weierstrass point. Multiple Weierstrass points do exist, the
simplest example being the branch points on a hyperelliptic curve. More
generally, a number of authors [1, 4, 6, 8, 9, 10, 14] have given criteria under
which fixed points of non-trivial automorphisms are multiple Weierstrass
points. We observe, however, that a Riemann surface of genus at least 2 has only
a finite number of automorphisms, and so looking at fixed points of automorph-
isms can yield only finitely many multiple Weierstrass points.

In fact, a little thought suggests that at least in characteristic zero, the multiple
Weierstrass points should be rather rare. Our first theorem shows that this is
indeed the case.

THEOREM 1. With notation as above, assume that k has characteristic zero.
Assume further that the Jacobian variety J of C is simple; or, more generally, that
the theta divisor 0 c J contains no translates of non-trivial abelian subvarieties of
J.

1 Research partially supported by NSF DMS-8842154 and a Sloan Foundation Fellowship.
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(a) If N(D, P) is infinite, then there is an integer m  1 such that

md(P) - mD.

(Here - denotes linear equivalence of divisors.)
(b) The set N(D, P) is finite for all but finitely many points P E C. (That is, C has

only finitely many multiple D-Weierstrass points.)

Theorem 1 is essentially an assertion concerning Riemann surfaces defined
over the complex numbers. However, our proof of Theorem 1 will depend on
two deep arithmetic results, Raynaud’s proof of the Manin-Mumford con-
jecture and Faltings’ proof of part of the Lang-Mordell conjecture. It would be
extremely interesting to give a purely analytic proof.
The Lang-Mordell conjecture says (roughly) that if a subvariety of an abelian

variety contains infinitely many rational points, then those points lie on finitely
many translates of abelian subvarieties. Faltings [5] has proven this conjecture
in the case that the subvariety contains no translates of abelian subvarieties. It
seems quite likely that Faltings’ proof will be adapted to give a proof of the full
Lang-Mordell conjecture, in both its absolute and relative forms. We will then
be able to prove (b) of Theorem 1 with no restrictions on C.

THEOREM 2. Assume that k has characteristic zero. Assume further that the
absolute and relative Lang-Mordell conjectures are true. (For the precise
statement of these conjectures, see below.) Then N(D, P) is finite for all but finitely
many points P E C.

In positive characteristic, Weierstrass points often behave quite differently
from characteristic zero. As a contrast to Theorem 1, we will prove the following
result.

THEOREM 3. Let k be a finite field, and let P E C(k).

(a) N(D, P) is an infinite set.
(b) Assume that D is non-special. Then the complement of N(D, P) in N is either

empty or infinite.

REMARK. Recall that in characteristic p a divisor is called classical if not every

point is a Weierstrass point. Continuing the notation of Theorem 3, suppose
that the divisor class D - d(P) has order prime to p in Pic’(C), that P ft C[Kc],
and that p &#x3E; 2g - 2. Then using the results in [13], it is not hard to show that
there are infinitely many multiples mD such that mD is classical and P E C[mD].
Theorem 1(a) answers in the affirmative a question raised by Fernando

Cukierman and Joe Harris, at least for curves satisfying the assumptions of
Theorem 1. More generally, they have asked about the validity of the following
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two statements (in characteristic zero):

We will show that both of these statements are false. In fact, we will give an
example showing that the stronger assumption of (i) does not even imply the
weaker conclusion of (ii).

PROPOSITION 4. There exist curves C/C of arbitrarily high genus which
contain points P E C satisfying N(Kc, P) = N and m(2g - 2)(P)  mKc for all
m &#x3E; 1.

Before starting the proof of our theorems, we set a bit more notation and
prove a useful alternative characterization of Weierstrass points.

i the Jacobian variety of C.
ip the embedding C  J, Q  Q) - (P). We extend ip linearly to

divisors.

LEMMA 5. Assume that nD is non-special. Then

P E C [nD] ~ n · iP(D) E Wp.

Proof. Since nD is non-special, we have

deg(nD - sP) = nd - s = nd - l(nD) = g - 1 - l(Kc - nD) = g - 1.

We compute

Proof of Theorem 1. Since k has characteristic zero, we may assume that k is a
finitely generated subfield of C (Lefschetz principle), and then by specialization
we may assume that k is a number field. Let

T(D) = {P~C: N(D, P) is infinite).
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Our aim is to prove that T(D) is finite.
Riemann’s theorem [7, p. 338] says that for any point P E C, the divisor Wp is a

translate of 0, say Wp = 0 + yp. By assumption, 0 contains no translates of
non-trivial abelian subvarieties of J, so the same is true of Wp. By Faltings’
theorem [5], the intersection of Wp with any finitely generated subgroup of J is
finite.

Lemma 5 says that

n~N(D,P)~n·iP(D)~WP,

at least if nD is non-special. In particular, this is true for all n  2g - 1. So if we
let

then the set

is contained in WP. By Faltings’ theorem, the intersection of the finitely
generated (in fact, cyclic) group 7L. ip(C) with Wp is finite, so we conclude that
N(D, P). iP(D) is finite.

It follows that every P E T(D) has the property that ip(D) has finite order in J.
This means that there is some m  1 such that miP(D) = 0 ; or equivalently that
m(D - d(P)) ~ 0. This completes the proof of (a).
We now want to think of the divisor D as fixed and the point P as varying, so

we consider the map

Next we observe that PD is a composition (for any basepoint Po E C)

Hence

03BCD(Cg) = d · 03BCP0(Cg) + 9 · 03BCD(P0)·

But 03BCP0(Cg) is all of J [7, page 235], so also 03BCD(Cg) = J. Thus the image MD(C)
generates J. In particular, MD(C) must be a curve of genus at least 2, and the map
MD: C ~ PD (C) iS finite.

Since MD(C) has genus at least 2, Raynaud’s theorem [12] says that

03BCD(C) n Jtors
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is finite. This implies that 03BCD(T(D)) is finite; and since /ln: C - J is finite-to-one,
we finally conclude that the set T(D) is finite. This completes the proof of (b).

D

Before commencing the proof of Theorem 2, we must remind the reader of the
statement of the Lang-Mordell conjecture. There are two forms of this

conjecture, one for finitely generated fields and one for finitely generated
extensions of arbitrary fields.

ABSOLUTE LANG-MORDELL CONJECTURE. Let K be a field finitely
generated over 0 or Fp, let AIK be an abelian variety, and let V/K c AIK be a
subvariety. Then there is a finite collection U1,..., Ur c A of abelian subvarieties
of A and a finite set of points u 1, ... , u, E A such that

RELATIVE LANG-MORDELL CONJECTURE. Let k be an (algebraically
closed) field, let Klk be a regular extension, let A/K be an abelian variety, let
(Ao, L) be a Klk trace for AjK, and let VIK c AIK be a subvariety. Then there is a
finite collection U1, ... , Ur c A of abelian subvarieties of A and a finite set of
points u1, ... , ur E A such that

REMARK. In both versions of the Lang-Mordell Conjecture, it is possible to
choose the Ui’s to be defined over K and the ui’s to be in A(K). To see this,
suppose that A/K is an abelian variety, and that U c A is an abelian subvariety
defined over some extension of K. Let

be the largest abelian subvariety of U which is defined over K. Then one easily
sees that A(K) n U = B(K). Hence if we choose some XE A(K) n ( U + u), then

V(K) n (U + u) c A(K)~( U + u) = (A(K) n U) + x = B(K) + x.

Now suppose that V(K) c U (Ui + ui) c V as in the Absolute Lang-Mordell
Conjecture. Let Bi c Ui be the maximal K-abelian subvariety of U,, and choose
points xi E V(K) n (Ui + ui). Then the computation we just did shows that

Since also Bi + Xi c Ui + xi = Ui + ui c V, this shows we may replace the Us’s
by the Bi’s and the ui’s by the xi’s. The argument for the Relative Lang-Mordell
Conjecture is similar, the main difference being that the inclusion
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V(K) n ( U + u) c B(K) + x is replaced by the relative inclusion

The Lang-Mordell Conjecture involves translates of abelian subvarieties
contained in a given subvariety. This prompts us to make the following
definitions:

DEFINITION. Let A be an abelian variety, B c A an abelian subvariety, and
V c A an arbitrary subvariety. We define

hB- {x ~ A: B + x ~ V}.
We say that B is a V-maximal abelian subvariety of A if dim B  1, VB ~ QS, but
VB’ = 0 for all abelian subvarieties B g B’ c A.

LEMMA 6. Let A be an abelian variety, and let V c A be a subvariety. Assume
that the Relative Lang-Mordell Conjecture is true. Then A contains only finitely
many V-maximal abelian subvarieties.

Proof. Let k be an algebraically closed field of definition for A and K We
suppose that A contains infinitely many V-maximal abelian subvarieties, say
B1, B2,..., and derive a contradiction. Note that in any case the abelian
subvarieties of A fall into only finitely many isogeny classes. This follows, for
example, from Poincaré’s Complete Reducibility Theorem [11, Corollary 1,
p. 174]. So taking a subsequence of the Bi’s, we may assume that they are all
isogenous to some fixed abelian variety Y We will also fix isogenies 4Ji: Y - Bi.
We now extend scalars and look at A and V as varieties over the function field

k(Y) of Y Equivalently, we let A = A x Y and 1/ = V  Y, so 03C02: A ~ Y

exhibits A as an abelian scheme over Y The sections

correspond to points Pi E A(k(Y)). Notice that the image of this section is Bi x Y
By assumption, VBi ~ 0, so we can choose some bi E A(k) so that Bi + bi ce E

By abuse of notation, we also let bi represent the point in A(k( Y)) corresponding
to the constant section

In other words, we have a natural inclusion A(k) c A(k( Y)), since A/k is a k( Y)/k
trace for A/k( Y).
The point Pi + bi ~ A(k(Y)) corresponds to the section

and we see that 03C8i(Y) = (Bi + bi) x Y c 1/. Hence Pi + bi ~ V(k(Y)).
Now we apply the Relative Lang-Mordell Conjecture. This says that after

replacing the set of Pi + bi’s by some infinite subsequence, there is an abelian
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subvariety U/k( Y) c A/k( Y) and a point u E A(k( Y)) so that

{Pi + bi:i = 1,2,...} c U + u + A(k) ~ + A(k).

[N.B. These are points and varieties defined over the function field k(Y). The
fact that we can choose U and u defined over k(Y) rather than some extension is

explained in the remark given above after the statement of the Relative Lang-
Mordell Conjecture.]
We claim that in fact U is defined over k. To see this, take a model for U over

Y, say u ~ Y, with 4Y c A. Since U is an abelian subvariety of A over k( Y), we
can find an open subvariety Y° c Y so that 4Y° - Y° is an abelian subscheme of
A° ~ y°. But dO splits as A x Y°, so taking fibers of the map u0 ~ Y0 we get
an algebraic map

More precisely, fix a projective embedding of A. By continuity, every fiber of
u0 ~ Y0 is a subvariety of A of a fixed degree. Then we get a rational map from
Y° into the Chow scheme of subvarieties of A of that fixed degree; and further,
the image of that rational map consists of abelian subvarieties of A. But it is easy
to see (e.g. again using Poincaré Reducibility) that A contains only finitely many
abelian subvarieties of bounded degree, so the image of Y° in the Chow scheme
is finite, hence constant.
Thus there is an abelian subvariety U’/k c A/k so that U’ x Y is birational to

u. Equivalently, U’ is isomorphic to U over k(Y), which is just another way of
saying that U itself can be defined over k.
We now know that as varieties over k(Y), we have an inclusion

U + u c h + A(k). This means the following. For any extension K/k(Y) and any
point P E U(K), there is a point a E A(k) such that P + u - a E V(K). The crucial
point here is that the point a is defined over k. We apply this by taking
K = k( U x Y), with k(Y) 4 K corresponding to the projection U x Y ~ Y
Note that there is a generic point P E U(k( U)), and we can consider P to be a

point of U(K) via the inclusion k(U) c K coming from the projection
U x Y - U. For this P we choose an a~A(k) so that P + u - a E V(K). What
does this mean in terms of maps between varieties?

The point P E U(K) = U(k( U x Y)) corresponds to the map

The point u E A(k(Y)) corresponds to a rational map 03BB: Y ~ A; and if we want to
treat u as a point in A(K), then it is the map

U x Y ~ A, (t, y) H 03BB(y).
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The point a E A(k) c A(K) corresponds to the constant map

So the inclusion P + u - a E V(K) means that when we combine these three
maps, we end up lying in V:

In other words.

Next we observe that Y and A are abelian varieties, so 03BB: Y ~ A is a

homomorphism followed by a translation [11, Corollary 1, p. 43]. Hence we can
write

for some abelian subvariety Xlk c A/k and some point x~ A(k). (We allow the
possibility that X consists of a single point.) Hence

as subvarieties over A/k. Now U + X is an abelian subvariety of A, and we have
just shown that a translate of U + X lies in V Therefore

On the other hand, we know from above that

Since the bi’s are in A(k), we see that

Recalling that the point Pi corresponds to the section (oi x 1): Y ~ A, and that
u E A(k( Y)) corresponds to the map 03BB: Y ~ A with image 03BB(Y) = X + x, this

means that ~i(Y) = Bi is contained in a translate of U + X. But Bi and U + X
are subgroups of A, so Bi itself is contained in U + X:

Further, since the Bi’s are distinct, we see that U + X has dimension strictly
larger than the Bi’s, so

This combined with VU+X ~ 0 contradicts the assumption that the Bi’s are V-
maximal, which completes the proof of Lemma 6. D

Proof of Theorem 2. As in the proof of Theorem 1, we may assume that k is
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finitely generated over Q. We again let

and we will show that T(D) is finite. We know Wp is a translate of 0. Hence the
Wp-maximal abelian subvarieties of J are the same as the 0-maximal abelian
subvarieties of J. We denote this set by M(). From Lemma 6, M() is finite.

Again we observe from Lemma 5 that the set

is contained in Wp. By the Absolute Lang-Mordell Conjecture, the intersection

is contained in finitely many translates of abelian subvarieties of J which lie in
WP. More precisely, there are points yB,P ~ J, one for each B ~ M(), such that

We can thus divide N(D, P) into a finite union of sets

Suppose that N(D, P) is infinite, i.e. P E T(D). This means that for some B ~ A(8),
there are infinitely many n ~ N such that n · iD(P) E B + yB,P. If nl and n2 are two
such integers, then (n2-n1)·iD(P)~B. Thus if N(D, P) is infinite, then there is
some B~M() such that infinitely many multiples of iD(P) lie on B. We are thus
reduced to the following assertion:

For each BE A(8) and each P E C, let

Then the set

is a finite subset of C.

Note that since B is a group, we could equally well have defined T(D, B) to
consist of those points such that n · iD(P) E B for some n ~ 0. For the remainder of
this proof we fix some B E At(8). The idea of the proof is to apply the Lang-
Mordell Conjecture and Raynaud’s Theorem to the quotient variety J/B.
We consider the map

as in the proof of Theorem 1, and the projection map



132

This shows that

We claim that (03C003BCD): C ~ J/B is finite onto its image. We need to show that

(03C003BCD)(C) is not a point, which is equivalent to showing that 03BCD(C) is not

contained in a translate of B. During the proof of Theorem 1, we showed that

03BCD(Cg) = J, so the image 03BCD(C) generates J. In particular, since B is a proper
abelian subvariety of J, 03BCD(C) cannot be contained in any translate of B. This

proves our claim that (03C003BCD): C - J/B is finite onto its image.
We next claim that the image (03C003BCD)(C) has genus at least 2. Suppose not. Since

an abelian variety contains no rational curves, it would follow that E = (03C003BCD)(C)
is a curve of genus 1. Let X be the connected component of the inverse image
03C0-1(E) which contains JlD(C), Then X - E exhibits X as a fiber product over an
elliptic curve with fibers isomorphic to the abelian variety B. It follows that X is
the translate of an abelian subvariety of J, and that X is isogenous to E x B.
Next we note that MD(C) c X. As observed above, MD(C) generates J, from

which it follows that X = J. But

(The last inequality follows from the fact that some translate of B is contained in
the divisor 0, and 0 itself is not an abelian variety, so B must have codimension
at least 2 in J.) This contradiction shows that (03C003BCD)(C) cannot have genus 1, so its

genus must be at least 2.

We can now finish the proof of Theorem 2. Since (03C003BCD)(C) has genus at least 2,
Raynaud’s theorem [12] says that

is finite. From above, this implies that (03C003BCD)(T(D, B)) is finite. But the map

03C003BCD: C ~ JIB is finite, so we conclude that T(D, B) is finite. 

The easiest way to prove Theorem 3 is to observe that points of C which map
to torsion points of J (under the map P - iP(D)) are always multiple Weierstrass
points for D. This leads us to make the following slight generalization of a notion
introduced by Coleman [3].

DEFINITION. The torsion packet associated to the divisor D is the set
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(As usual, - denotes linear equivalence of divisors.)
Notice that Raynaud’s theorem says that if k has characteristic 0, then every

torsion packet F(D) is finite.

LEMMA 7. If P E F(D), then P is a multiple D- Weierstrass point. More precisely,
there is an integer m  1 so that N(D, P) contains m N.

Proof. We have

Since 0 E WP, we see that nm · ip(D) E W, for all n  1. By Lemma 5, this means
that P E C[nmD] for all ne fl, at least provided that nmD is non-special.
Replacing m by a multiple of m (such as (2g-1)m), we can ensure that nmD is
non-special. Then N(D, P) contains m N.

Proof of Theorem 3. (a) Since ip(D) E J(k), and every element of J(k) has finite
order (since k is a finite field), we see that every point P E C(k) is in 3(D). Hence
from Lemma 7, N(D, P) is infinite.

(b) Suppose N(D, P) ~ N, and choose some r ~ N with r ~ N(D, P). This means
that P e C[rD], so from Lemma 5 (note D is non-special by assumption), we see
that r · iP(D) ~ WP . As in (a), we also know that ip(D) has finite order in J(k), say
m · ip(D) = 0. Then for every integer j = 1, 2, ... we have

Hence the arithmetic progression r + mN is contained in the complement of
N(D, P). D

Proof of Proposition 4. Let X/C be a curve of genus at least 1, let s  5 be an
integer, and choose s generic points x,, ... , xs E X. [In fact, it is only necessary to
choose points so that the differences (xi)-(xj) do not have finite order in

Pic°(X).] Let n : C - X be a double cover of X which is ramified above each of
the xi’s. For example, take any function f E e(X) with simple zeros at the xi’s,
and let C be a smooth model for the field C(X)(f).

Let i be the involution of C given by switching the sheets of n : C - X. Then
the points Pi = 03C0-1(xi) are fixed points of i. Since there are at least 5 fixed
points, Lewittes’ theorem [10] implies that the Pi’s are ordinary Weierstrass
points. That is, Pi E C[Kc]. Further, a result of Accola [2, Theorem 6.20],
applied to our automorphism of order 2, implies that Pi ~ C[nKc] for all n  2.
Hence each Pi satisfies N(Kc, Pi) = N.
On the other hand, suppose that there are integers mi, mj  1 for indices i ~ j

such that

Subtracting appropriate multiples of these equations yields
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Hence (Pi) - (Pj) has finite order in Pic’(C).
But the covering 03C0:C~X induces a map ir: Pic°(X) ~ Pic’(C) with finite

kernel; and 03C0((xi)-(xj)) ~ (deg 03C0)((Pi) - (Pj)). It would follow that (xi) - (xj) has
finite order in Pic°(X), contradicting the choice of the xi’s. Therefore at most one
of the Pi’s can satisfy m(2g - 2)(P)~mKc; and all of the other Pi’s provide
examples which prove Proposition 4. D
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