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0. Introduction

Let E1, E2 and E3 be elliptic curves defined over a global field,.Xl. In this paper, 1
give a construction of a genus-three curve C on the product X = E1 x E2 x E3,
defined over K. If i is the inverse map for the group law on X, then the cycle
C - iC is homologically equivalent to zero over Jf, and (with certain restrictions
on the Ei) 1 give an easily computible sufficient condition for C - iC to have
infinite order modulo algebraic equivalence. Moreover, 1 show that the

condition is satisfied for an infinite class of examples. If 3i is a number field,
however, the result hinges on the Purity Conjecture for etale cohomology.
The interest in these examples stems from a conjecture of Bloch [4] and

Beilinson [2], which is similar to the Birch/Swinnerton-Dyer conjecture for
curves. Let X be a complete smooth variety over a number field 5i, and let

Griff2(X/K), the Griffiths group, be the group of cycles defined over Yt,
homologically trivial (over C, for example), modulo cycles algebraically equiva-
lent to zero over Jf. Then the conjecture is that Griff2(X/K) has finite rank
equal to the order of vanishing of a certain Irfunction. The evidence for this
conjecture is rather sparse, largely because of the difficulty in producing
examples of nontrivial cycles.

Results of Griffiths [10], Ceresa [5], B. Harris [11] and Clemens [6] show
that the Griffiths group for cycles defined over C, rather than K, is often
nonzero, and may not be finitely generated, even modulo torsion. However there
are only a few examples where the Griffiths group of cycles defined over a
number field is known to contain elements of infinite order. One source of

examples is the following: Given an abelian variety X, let r X ~ X be the inverse
for the group law. If C is a curve on X, then C and i(C) are homologically
equivalent. Harris and Ceresa proved independently that for C a sufficiently
general curve of genus  3 over C, and X its jacobian, the cycle C - i C has
infinite order modulo algebraic equivalence. The first example over a number
field was the case g = 3, C the Fermat quartic. Using transcendental techniques,
Harris [12] proved that C - i C is not algebraically equivalent to zero (over C).
Using arithmetic methods, Bloch [3] showed further that C - iC has infinite
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order in the Griffiths group. In fact, the jacobian of C is isogenous to a product
E x E x E, where E is an elliptic curve with complex multiplication, and Bloch
showed that the image of C - iC gives a class of infinite order in the Griffiths

group of E x E x E. More recently, Top [17] has applied Bloch’s method to
some other elliptic curves with complex multiplication. For some additional

examples related to the Bloch-Beilinson conjecture, and some further re-

ferences, see a recent paper by Schoen [15].
The criterion established here concerns a product of elliptic curves

El x E2 x E3 defined over a global field 5i, and applies only to the case where
for some prime p of 3i, E 1 has good reduction and E2 and E3 both have order 2
multiplicative reduction (their j-invariants have poles of order 2 at p). This
assumption is made for ease of computation and is not crucial to the method.
What is needed is that at least 2 of the elliptic curves have some kind of bad
reduction at p.
To study cycles modulo algebraic equivalence, we need to use the Purity

Conjecture for etale cohomology, which says that the local cohomology of a
regular scheme with supports in a regular Cartier divisor is generated by the
fundamental class of the divisor. The conjecture is known for schemes of equal
characteristics, and for schemes of unequal characteristics and dimension at
most 2, and for schemes of higher dimension which are smooth over a discrete
valuation ring. Thus, the conjecture is valid in our case, if the global field 5i is a
function field. For the case of a number field, however, we need to apply it to an
arithmetic scheme of dimension 4, with bad reduction, a case for which the

conjecture is not known. We take the point of view, suggested by Bloch in [4],
that the Purity Conjecture is much less in doubt than the conjectures about
cycles and L-functions, so it makes sense to accept Purity as a tool for

investigating the other conjectures.
Let 5i be a global field, with ring of integers R, and let p e spec R be a prime

with residue characteristic different from 2. Let n e K n àt, be a uniformizing
parameter for Rp, and let a, fi, y e Jf be p-adic units which are all distinct mod p.
Define elliptic curves over 3i by their affine equations:

1 (normalize at ~)

Think of these as double covers of pl by projecting onto the x-axis. Then the
normalization of C:= E 1 x p1 E2 is a curve of genus three, defined over K,
which embeds in El x E2 x E3.

Let CH2alg(E1 x E2 x E3) be the subgroup of CH2(E1 x E2 x E3) consisting of
cycles algebraically equivalent to zero. Let CHt2trans(E1 x E2 x E3) be the sub-
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group of CH;lg(E1 x E2 x E3) generated by cycles Z’ - Z where Z is one of the
axes" E1 x 0 x 0, 0 x E2 x 0, 0 x 0 x E3 (0 could be any Xp-point of Ei), and Z’ is
a translate (hence the notation "trans") of Z by a -if,,-point of El x E2 x E3.
For a prime q ~ spec R, let k(q) denote the residue field R/q, and N(q) the

number of elements in k(q). The main results are the following:

THEOREM 1. Let e + ~ E1(k(p)) be one of the two points with x = 0. If 16e + ~ 0
in E1(k(p)) (with the point at infinity as origin), then

C - iC ~ CH2trans(E1 x E2 x E3).
THEOREM 2. Assume that the Purity Conjecture for étale cohomology holds for
a regular model, X, of E1 x E2 x E3 over Rp. Suppose the order of e+ ~ E1(k(p)) is
divisible by an odd prime 1 with p t 1. Suppose further that there exist primes
q, r c- spec R satisfying :

(i) q 11 and r  l;
(ii) El, E2, E3 all have good reduction at q and r;

(iii) For all eigenvalues Ài of the geometric Frobenius map on H1(Eik(q), 01), the
products À1 À2À3 are not divisible by N(q) in the ring of algebraic integers;

(iv) If f is the geometric Frobenius map on H3(E1 x E2 x E3k(r), Q) then
1 t det(N(r)2 - f).

Then C - le has infinite order modulo algebraic equivalence.

Theorem 1 is proved in Sections 1-3. The proof uses intersection theory on a
regular model, X, of El x E2 x E3 over Rp. In particular, X has bad reduction,
with special fiber a union of components Yl, ..., Y8, and there is a specialization
map

where E is a certain quotient of ~ 8i=1 CH2(Yi). We show that if 4e+ ~ 0, then
03C3(C - iC) ~ 03C3(CH2trans(XKq)).
The proof of Theorem 2 uses a map:

which is a sort of arithmetic analog of the Abel-Jacobi map into the

intermediate jacobian. Here CHhom is the group of cycles homologically
equivalent to zero, in the sense of l-adic cohomology. Condition (iii) of the
theorem ensures that the images of CH2trans(XKp) and CH2alg(XKp) under ~ are
the same. This is proved in Section 4. 
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The Purity Conjecture is used to compare the specialization map 6 with a
similar map on étale cohomology, with the upshot being that Theorem 1 implies
~(C - iC) ~ ~(CH2trans(XKp)), and so C - i C is not algebraically equivalent to
zero. This is the content of Section 5.

In Section 6, we discuss the condition for C - i C to have infinite order. For

cycles defined over 9 factors through H1(K, H3(X;R, Z,(2»), and condition
(iv) above ensures that this group is torsion-free. It then follows that no multiple
of ~(C - iC) is in ~(CH2trans(XKp)), and hence C - iC has infinite order.

Since the conditions in Theorem 2 depend only on the reductions of the Ei
modulo three primes p, q, r, any example that satisfies these conditions give rise
to an infinite family of examples, by adding elements of Jf which are zero
modulo pqr to the coefficients a, 03B2, y, n. One such family is exhibited in Section 7.

This work comprised my doctoral thesis at the University of Chicago. 1 would
like to thank my advisor, Spencer Bloch, who suggested the problem, and
contributed many crucial insights, as well as encouragement, toward the

solution.

1. Regular models

With notation as above, let K := Kp, R:= Wp and k := k(p). Let E1, É2 and É3
be the closed subschemes of Pi given by the equations above. Then El is smooth
over R. Let E2 and E3 be the minimal regular models of E2 and É3. Each has
special fiber of Kodaira type 12, and is obtained by blowing up the node at
x=y=03C0=0.

REMARK 1.1. It will be convenient to have the components of the special
fibers of E2 and E3 defined over k. Since we are primarily interested in rational
and algebraic equivalence over -f, we may as well replace Jf by a finite
extension K’. If we take Jf’tobe unramified over p, then the type of reduction

of E1, E2 and E3 will also be unaffected. We will henceforth tacitly assume this
replacement whenever necessary. Thus any particular polynomial can be
assumed to split over k. D

Take 03C0i:Ei~P1R, for i =1, 2, 3, to be projection onto the x-axis. Define

C:= E 1 xP1E2. The affine part of C is given by the two equations:

Note that this is singular along x = oc and x = fi. Let C be the blow-up of C
along the closed subschemes (over R) given by (x=03B1,y1=y2=0) and

(x=03B2, y1=y2=0).
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PROPOSITION 1.2.

(i) C is regular, and C ~ spec(R) is smooth in a neighborhood of the

exceptional divisor.
(ii) CK is a curve of genus 3.

(iii) The map:

extends to a morphism ~3 : C-+E3

Proof. Part (i) is a straightforward but tedious exercise in blowing up
arithmetic schemes; we omit the details. Part (ii) follows from the Riemann-
Hurwitz formula, applied to the degree-two map ~1 : CK-+E1K. The singular
points on C are nodes, from which it follows that 9 1 is ramified only at the four
points of C where x = 0 and x = n. For (iii), note that the subscheme where qJ3 is
not defined is precisely the center of the blow-up from C to C, and z := yl /y2 is a
local parameter near the exceptional divisor. Then

REMARK 1.3. This proposition implies that the exceptional divisor in C meets
the special fiber, Ck, in a finite set of points. Since the cycle class of C in
(El x E2 x E3)k will be determined by intersecting with certain "test" divisors,
which can be chosen to avoid any finite set of points, these points can be ignored,
and we can work with C instead of C, when the time comes. D

COROLLARY 1.4. There is a proper map qJ: C ~ El XR E2 XR E3 which is an
embedding of the generic fiber. D

We need a regular model of E 1 XR E2 XR E3 on which to do intersection
theory. Since El is smooth, if we find a regular model E23 of E2 xR E3, then
E 1 xR E23 will be regular.

Introduce the following notation for the special fiber of either E2 or E3:

A := identity component ( = strict transform of (E.)k)
B := other component ( = exceptional divisor of blow-up)

Note that A ~ B zé Pl and A n B consists of two points which we label +
and - : 
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These two points correspond to the two choices of sign for the coordinate ylx in
the blow-up, which satisfies (y/x)2 = 03B1/03B2 on E2 and (y/x)2 = - y on E3. Hence the
notation + and -.

The geometry of E2 and E3 is illustrated in the following diagram:

Now consider the scheme E2 XR E3 Since E2 and E3 are regular, and one of
them is always smooth over R away from the four points {+, -} x {+, -},
these four points are the only singularities of E2 XR E3. The components of the
special fiber, (E2 XR E3)k, and their intersections are illustrated by the following
incidence graph (edges represent intersection):

Let E23 be the blow-up of E2 xR E3 at the four points { ± 1 x {± }. The special
fiber now has 8 components, which will be denoted as follows:

: = strict transform of A x A, etc.

~ P1k x P§ with 4 points blown up

Also introduce the following notation:
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Note that L1112 are the exceptional Pl’s in Z1Z2=blow-up of Zl XZ2 at
{±}x{±}.
The incidence graph of the components of (E23)k then consists of the

combination of four of the following type, one for each of the exceptional
components Q ± ± :

PROPOSITION 1.5.

(1) E23 is regular.
(2) The closed fiber is the divisor:

(3) Each Q.. is isomorphic to Pl x P’. Moreover, the L’s are generators of
Pic(P1k x Pl), with LAA.. and LBB in one ruling, and LAB.. and LBA in the other.

Proof. All statements are local on E2 XR E3, so we can replace both É2 and E3
by the R-scheme E given by:

Blowing-up at the ideal (x, y, n) gives a scheme:

Here A is given by p = 0 and B by x = 0. Then E2 XR E3 is locally isomorphic to:

The singular locus, {+, -} x {+, -} = (A n B) x (A n B), is the subscheme

corresponding to the ideal (x2, P2, x3, P3). Then E23 corresponds to the blow-up
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at this ideal. Introduce homogeneous coordinates X 2, P2, X3, P3 on the blow-

up, satisfying X2/P2=x2/p2, X3/P2=x3/p2 and P3/P2=p3/p2. These then
satisfy X2P2 = X3P3
The exceptional divisor, Q, is given by X2=p2=x3=P3=03C0=0:

Since this is smooth, and it is a Cartier divisor on E xR E, (1) is proved. To see

(3), note that the components of (E23)k, other than Q, are given by:

which are equations of the desired rulings on the quadric (*).
In (2), the only point that is not obvious is the multiplicity of the Q’s. To check

this, we may localize to the open set where P 2 :f= 0. Then X2 = (X2lP2)P2,
P3 = (P3lP2)P2 and x3 = (X3/P2)P2, SO P2 = 0 is the local defining equation for
Q. Moreover, we have:

Therefore vanishes to order 2 along Q. This proves (2). D

2. Specialization map

If V is any scheme over spec R such that the components of Vk are regularly
embedded in E we let Vie denote the disjoint union of the components of Yk. Let
i : k ~ V be the natural map (projection onto Vk followed by inclusion in V). Let
j : VK  V be the inclusion. Since the components of Vk are regularly embedded in
E there is a pull-back map i* on Chow groups. Let p := i*i*. Then, for any
q  1, we get the following diagram, with exact row:
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Thus we get a specialization map:

induced by the pull-back i*.
Now let X : = E 1 X R E2 3 . Then X is a regular scheme whose special fiber Xk,

with its reduced structure, is a divisor with normal crossings. Therefore the
preceding paragraph applies to X. X k has eight components:

These are all of the form E1k x S, with S a rational surface over k. Standard
computations of the Chow ring of a blow-up show that

It then follows easily that

In particular,

For cycles homologous to zero, the interesting part of this is the first direct
summand. To compute this, we use the following description of the Chow
groups of the components of E23k:

(here * denotes any point of 0:»1) with rulings chosen so that:

and:
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where CH1(P1 x P’) is identified with its image under pulling back along the
blow-down map: Bl{±}x{±}(P1 x P1) ~ P1 x P1. Recall that on the component
AA = Bl{±}x{±}(A x A), we denote by A + the strict transform of A x {+}, etc.
Then we have the following relations, for each Z2, Z3 = A or B and each a = +
or - :

With these conventions, the map i*i*: CH0(23k)~CH1(E23k) is given by
Table 1. Specifically, each row and column of Table 1 corresponds to a
component of (E23)k. The entry in row R and column C is the class of R n C as a
divisor on the component C. The self-intersections are computed using Propo-
sition 1.5 and the fact that each component has zero intersection with the divisor

(n). Then 03A31(E23) is the quotient of CH1(23k) by the row vectors of Table 1.
For computation, it is convenient to use a certain quotient of SI(E23): The

action of E2(K) x E3(K) on (E2 x E3). by translation can be extended to an
action on E23, which therefore induces an action on 1:1(E23)’ and we take the
coinvariants. The action is discussed in [7]. However, since we will not need to
use this geometric description, we just describe the quotient of E’(E23) directly.

First take 03A0 ~ Z8 with basis {u1, U2, v1, V2, l+ +, l+-, 1- +, 1- - ), and define a
surjective map CH1(23k)~03A0 by:

Here the notation [U]V means the class of the divisor U on the component V of
E23k-



Table 1. Intersection of components of E 23k
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We denote by 03A3(E23) the push-out in the diagram:

Thus £(E23) has generators ul, u2, Vl, v2, 1+ +, 1+ -, 1- +, 1- -, with relations
obtained by projecting the rows of Table 1 by the map given in (2.1). This is
easily seen to give just the one relation:

We write £:= CH1(E1k) Q 03A3(E23). By composing with the specialization map 0",
we obtain the following:

PROPOSITION 2.1. There is a specialization map

Taking generators u1, U2, v1, V2, l+ +, l+-, l- +, l-- for 7L7, with the relation:

then Q is given by taking closure in XR and intersecting with components of Xk,
followed by the map (2.1) tensored with the identity on CH1(E1k). D

Let i be the involution on EiK given by (x, y) ~ (x, - y), and let 1: = l1 X l 2 X l3
on XK . This is the inverse for the group law, for a suitable choice of origin on the
Ei.

PROPOSITION 2.2. There is an automorphism i* of 2 such that the following
diagram commutes:
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Moreover, i* = ii if 23, where Z!3: 03A3(E23) -+ 03A3(E23) fixes u1, U2, Vl, V2, inter-
changes 1 + + and 1- -, and interchanges 1 + - and 1- + (notation as in Proposition
2.1).

Proof. Each i; acts on the smooth (over R) points of Ei, because that is the
Neron model. For i = 1, this is all of E1 For i = 2 or 3, ii acts by -1 on the group
of components Ei/EOi, which in our case is Z/2Z, so the components are fixed.
Each component is isomorphic to Pl, and the map is t H 1/t. It is straightfor-
ward to show that this map extends to all of Ei. It is then clear that the singular
points + and - of the fiber are interchanged. It follows that Z2 x 13 on E2 x E3
lifts to the blow-up E23, since the center of the blow-up is its own scheme-
theoretic inverse image under 12 x l3 The lifted map stabilizes the components
AA, AB, BA, BB and interchanges Q + + with Q - - and Q + - with Q-+. Thus for
Y one of the components AA, AB, BA, BB, i * acts on

CH1(Y) = CH1(b14pts(P1 x P1)) as the identity on CH1(P1 x P1) and by permut-
ing the exceptional lines. Specifically, [L++] and [L - - ] are switched, as are
[L+-] and [L-+]. The action on CH1(Q++) = CH1(P1 x P1) is to take

[LAA] = P1 x *]Q++ to [LAA] = [P1 x *]Q--, and [LAB] = [* x P1]Q++ to [LAB
= [* x P1]Q--. Referring to (2.1), this gives the proposition. 0

3. Specialization of C - iC

Recall that C = E1 xl?i E2 and C is its normalization. There is a

map cp:C-+E1xRE2 xRE30 Let 03C0i : Ei ~ P1 be the degree 2 maps given by
projecting onto the x-axis. Notice that 9: C ~ E1 x E2 x E3 is compatible with
all the ni, so ç factors through El Xpl E2 Xpl E3. In fact C is one of the two

components of the scheme E 1 x Pi E 2 x Pi E.
The following is straightforward.

PROPOSITION 3.1. The special fiber Ck has 3 components, E, B+, and B_,
with:

E = normalization of E1k Xpi A

where A and B are the components of E2k. All three components have multiplicity 1
in Ck. E is an elliptic curve isogenous to E1k, and B+ ~ B- ~ P1k. They intersect
as in the following diagram:
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To avoid confusion in what follows, I will denote the components of E2k by
A2, B2, and those of E3k by A3, B3.

PROPOSITION 3.2. ~: Ck -+ Elk X E2k X E3k is determined by the following:

Proof. The only thing left to check is the information about ~3. Since

03C03 ° ~3 = nl 0 91, the finiteness and ramification data for qJ31E are clear. In

particular, 03C03 ° ~3|E finite implies that ~3|E maps into A 3 .
Similarly, n3 0 ~3|B± = nl 0 ~1|B+ = {0} (constant map) implies that ~3|B±
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maps into B3. To see that these are isomorphisms, recall that qJ3 is induced by
the (rational) map El XP1RE2 ~ É3, given by the algebra homomorphism:

After blowing up the ideal (x, y, 03C0) in É3 and (x, Y2, n) in El X Pl Ê2, and
restricting to exceptional divisors, the map becomes (writing X, Y, P for x, y, 03C0 as
elements of S’(I), where I is the ideal):

where y’ = -cxpy, the two choices of yi corresponding to B+ and B -. This map
is clearly an isomorphism. Q

CONVENTION 3.3. Recall that 03C0-11(0) = {e+, e-} and that we are writing
{+, -} for both A2 n B2 and A3 n B3. Proposition 3.2 implies that

~3({e+} x {+, -}) = {+, -} Fix the labeling of the points + and - so that:

From (3.1) it then follows that ~3(e03B51, 82)=8182 for 03B51, 03B52 = + or -. D

Notice that

Therefore ~ lifts to a map ~’:B1{e±}x{±}(C)~X.
LEMMA 3.4. Let C03B51,03B52 be the exceptional divisor over (eEl, E2) in
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and qJ’(Cel,e2) does not meet Elk x A2B3 or E1k x B2A3, but meets E1k x A2A3 and
E lk x B2B3 transversall y in one point each.

Proof. The first statement is clear from Convention 3.3. The rest is easily
checked from the equations of the pertinent schemes. D

This lemma, together with Proposition 3.2, implies that each component of
~’(C’k) is contained in exactly one component of Xk. Thus qJ’ induces a map
fjJ: ’k ~ k of the normalizations (= disjoint union of the components). Then
03C3([CK]) can be computed using the following commutative diagram:

and computing the image of *[C’k].
Let E, B + and B- denote also the strict transforms of the components of Ck,

in Ck.

PROPOSITION 3.5. The map *:CH0(’k)~CH2(k) is given by:

Proof. ip*([E]) is the strict transform of ~*([E])~CH2(E1k x A2 x A3)-
Clearly, CPIE has degree 1 since already C ~ E1 xP1 E2 has degree 1. Therefore

(p.([E]) = lw(E)1.
Suppose
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with D 1 and D2 divisors on E1k. Let pr1: E1k x A2 x A3 ~ E1k be the projection.
Then:

since deg(g: E~ E1k) = 2

Since

where bl: k ~ E1k x E2k X E3k is the blow-down map, this proves (i).
Since the compositions:

are isomorphisms, it is clear that:

Similarly,

Now using:

weget(ii).
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It follows from the proof of Lemma 3.4 that deg(~’|C03B51,03B52) = 1, so

~’*([C03B51,03B52]) = [~’(C03B51,03B52)]. Suppose:

in CH2(Elk x Q03B51,03B52,03B53). Take p ~ E1k with

p e {e03B51} ~ supp(D1) ~ supp(D2).

Then it is clear that:

Let pr1: E lk x Qt2.tlt2 -+ E1k be the projection. Then:

by Lemma 3.4 and the fact that [LAB] = [LBA] = [* x P1] in CH1(Q). Also,

by the lemma and the fact that pr1 ° ~(C03B51,03B52) = e03B51. This proves (iii). D

Since (e03B51, e2) E Ck is a double point of the special fiber of C, but is regular on C,
the exceptional divisor C£1,£2 has multiplicity 2 in [C’k]. Thus we have:

Applying Proposition 3.5 and the description of the map CH1(k) ~ 03A3 given in
Proposition 2.1, we get:

PROPOSITION 3.6. The specialization of [CK]eCH2(XK) in 2 is given by:
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Now applying the action of the inversion map i * on 1:, as given in Proposition
2.2, we get:

THEOREM 3.7.

in 2. 1 n particular, this is nonzero if and only f 2([e+] - [e-]) ~ 0 in

CH’(Elk)- D

If we take the group structure on El with the point at infinity as the identity
then e+ = -e-. Thus if we identify E1(k) with Pic°(E 1 k) in the usual way, then:

COROLLARY 3.8. Suppose 16e+ ~ 0. Let CH2trans(XK) C CH2hom(XK) be the
subgroup generated by cycles of the following forms:

with xi, x’i ~Ei(K). Then 03C3([CK] - 11 CKI) e 03C3(CH2trans(XK)).

Proof. If x is a K-point of Ei for i = 2 or 3, then its closure (over R) will meet
the special fiber at a smooth point, that is, it will not pass through either of the
points + or - in Eik. This implies that the closure of any of the above cycles will
not meet the components Q++, Q+-, Q-+, or Q-- of Xk. Therefore, for any
Bf E CH2 the coefficient of V1 in 03C3(03A8) is zero. But the coefficient of V1 in
a-([CK] - [iCK]) is -16e+ ~ 0. D

REMARK. If CK is hyperelliptic, then iCK is a translate of CK, so one might
expect that 03C3([CK] - [iCK]) = 0. It can be shown that CK is hyperelliptic if and
only if 03B1/03B2=(03B1+03B2-03C0)03B3. This condition does in fact imply that e+ is a point of
order 4 on E1k

4. Algebraic equivalence

We study the map

introduced in [3]. See [14] for a precise definition of this map. It arises by
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combining the cycle class map CH2(XK) ~ H4(XK, ZI(2» with projection onto
one of the graded pieces in the Hochschild-Serre spectral sequence:

LEMMA 4.1. Let Y be a variety of dimension d over K, and reCH2(y x XK) a
correspondence defined over K. Let

and

Then ~ restricted to CH2 XK) factors:

Proof. This follows from functoriality of the usual cycle class, and the

resulting commutative square:

DEFINITION 4.2. Let S be the set of all pairs (K r), where V is a variety over
K, and r E CH2(Y x XK) is a correspondence defined over K. Then define

CH 2 to be the subgroup of CH2(XK) generated by all 0393*CHdimVhom(V), as
( V, r) ranges over S. Similarly, define Malg to be the subgroup of H3(XK, Zl(2))
generated by all 0393*H2dimV-1(VK, Z,(dim V)), as (V, r) ranges over S. ~

REMARK. Note that CHâ,g(XK) may be smaller than the subgroup of cycles
defined over K which are algebraically equivalent to zero over K. However,
these two groups will agree up to torsion, so the smaller group will suffice for our

purposes. This question is discussed further in Section 6. D
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COROLLARY 4.3. The map ~ restricted to CHâlg(XK) factors through
H1(K, Malg).

Recall that CH2trans(XK) is generated by differences of translates of an "axis" of
the product Ei x E2 x E3. This can also be described as the image of a certain
correspondence from a variety A ~ X2 to X. Specifically, let A1 = E2 x E3,
A2 = Ei x E3, A3 = Ei x E2, and take A = A1 x A2 x A3. Since X ~ Ei x Ah there
are isomorphisms:

Consider the cycle:

Here Av denotes the diagonal in V x Jt: If (ai, bi) is a point of Ai, then:

Hence if we let T ~ CH6hom(A) be the subgroup of cycles supported on K-points,
then 0393*(T) = CH2trans(XK).
LEMMA 4.4. With A and r as above, the map:

is injective, and its image is ~i~j H1(Ei, Zl(1)) Q H2(Ej, Zl(1)) in the Künneth
decomposition for H3(XK, Zl(2)).

Proof. That the image is as stated is a straightforward computation. Injectiv-
ity then follows by comparing ranks. D

PROPOSITION 4.5. Suppose

Then
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Proof. Consider the following commutative diagram:

where, as above, T is the subgroup of cycles supported on A(K). From this, we
see that it suffices to show that the map T - H1(K, H11(Aj(, Zl(6))) is surjective.
If E is one of the elliptic factors of A, then the inclusion i : E 4 A (with 0
in the other components) induces i*: Pic°(EK) ~ T c CH6hom(AK) and also

i*:H1(K, H1(EK, Zl(1))) ~ H1(K, H11(AK, Zl(6))). But H1(K, H11(AK, Zl(6))) is

the direct sum of the images of these i*, as E ranges over all the factors of A.
Thus it suffices to show ~: Pic0(EK) ~ H1(EK, Zl(1))) surjective. ~ comes
by inverse limit from a map Pic0(EK) ~ H1(K, H1(EK, 03BCln)). We have

Pic°(EK) = E(K) and H1(E j(, 03BCln) = lnE(K) ( = kernel of multiplication by In), and
9 can be identified with the connecting homomorphism in the Galois coho-
mology of the sequence:

Specifically, the long exact sequence for Galois cohomology gives:

Since K is a local field, it is well-known that E(K) ~ R ~ F, where R is the ring
of integers in K, and F is a finite group. Therefore, since l ~ Rx, we get
E(K)/lnE(K) ~ F[l] (:= 1-primary part of F) for n sufficiently large.
By [16], H’(K, E(K)) ~ Hom(E(K), Q/Z), so:

for n sufficiently large. Therefore the exact sequence above gives the following
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short exact sequence of inverse systems:

for n » 0. Since the maps in the inverse system on the left are surjective, we get a
short exact sequence of inverse limits:

Since F[l] is finite, no element (except zero) is infinitely divisible by 1, so

Tl(F[l]) = 0. This completes the proof. D

Recall that Jf is our global field, with ring of integers R. We show that
condition (iii) of Theorem 2 implies that the situation is indeed as described
above.

LEMMA 4.6. Let

be the Zl-submodule generated by images r *H2d-l(VK, lL,(d» with r and Y defined
over -Ir and d = dim V. If My is a direct summand of H3(XK, lL,(2», then
MK = Malg.

Proof. Clearly MK ce Malg. In fact, Malg/M:K is finite, since any corre-

spondence over K can be specialized to give a correspondence defined over a
finite extension of -1t. Then the result follows from the observation that

H3(XK, Z,(2» is torsion-free. 1:1

PROPOSITION 4.7. Suppose there is a prime q c- spec R such that q t l, X has
good reduction at q, and none of the products 03BB103BB203BB3 is divisible by N(q) in the ring
of algebraic integers. Here each 03BBi is an eigenvalue of the geometric Frobenius map
on H1(Eik(q), Ql). Then
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and hence

Proof. Since X has good reduction at q, we have H3(XK) = H3(XK) =
H3(Xk(q). Moreover, Malg is generated by images of correspondences over k(q),
because a correspondence r: y %----+ X, can be extended over R, and then
reduced mod q to give a correspondence over k(q). This works even if V has bad
reduction, because the transposed correspondence r’: Xk(q)  Jtk(q) always
induces a map 0393’*: H 3(X) -+ H1(V), since by the smoothness of X, the direct
image H"(V x Xk(q) ~ Hn-6(Vk(q» can be defined as zero on Hn-i(V) ~ Hi(X) for
i ~ 0, and by the trace map on H6(Xk(q)) for i = 6; then 0393*: H1(Vk(q))* ~ H3(Xk(q))
can be taken to be the dual of 0393’*.

Given a correspondence 0393~CH2(V x Xk(q)), the map

is Gal(k(q)/k(q))-invariant, where d=dim(V). Thus if fg is the geometric
Frobenius map on either V or X, then the map

satisfies fg ° 0393* = N( q)2 - d . 0393* ° fg. We can always take V to be a (possibly
singular) curve, so we find that the eigenvalues of f g on

must be divisible by N(q) in the ring of algebraic integers.
The conclusion of the proposition is equivalent to

Therefore it suffices to find a good-reduction prime q for which none of the
eigenvalues of the geometric Frobenius automorphism on

is divisible by N(q). These eigenvalues are products 03BB103BB203BB3 of eigenvalues on

H1(Eik(q), 0,), for i = 1, 2, 3, so the proposition is proved. D
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5. Specialization in étale cohomology

In this section, we let Y:= (X k)red be the special fiber with its reduced structure
and U := XK be the generic fiber. Note that Y c X is a divisor with normal
crossings. Let Y1,..., Y8 be the components of Y
Given a prime number l ~ char(k), there is a long exact sequence in étale

cohomology:

Denote

Then there is the following commutative diagram with exact rows:

Here the vertical map in the middle is defined by pulling back to each

component, and 1:h is defined to be the cokernel of the first map in the bottom
row.

As in Section 1, we write E for coker(CH1(Y) ~ (B CH2(Yi)).
PROPOSITION 5.1. There is a commutative cube:

Proof. The front and back faces commute by definition. The cycle class maps
can be defined using the K-theoretical description of the Chow groups [4]. Or,
since we are going to assume purity for étale cohomology in any case, one can
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define these maps as in [9]. Then the top and left faces commute by functoriality
of the cycle classes, except that we must check that clu: CH2(U) ~ H4(U, Zl(2))
really does factor through H4(U, Z,(2»o. This follows from surjectivity of
CH2(X) ~ CH2(U) and exactness of the sequence:

Commutativity of the top face implies that:

Now the existence of cl03A3 making the cube commute follows, once we note that,
by exactness of the localization sequences for CH2 and H4, the following two
sequences are exact:

To study the map cl03A3, we first investigate ~ cly,. Recall that each Yi ~ Elk x Si
for some rational surface Si over k.

PROPOSITION 5.2. Let k be a finite field and E a smooth projective curve over
k. Let l ~ char(k) be a prime. Then

Proof. From the Kummer sequence 0 ~ 03BCln ~ Gm ~ ln Gm -+ 0, it follows that

Taking inverse limits, one finds that H1(Ek,Zl(1)) ~ T Pic’(El) and this is an
isomorphism of Gal(k/k)-modules. Now consider the short exact sequence of
Galois modules:

Taking cohomology, we get an exact sequence

Now Pic0(Ek) = {k-points of Pic0(Ek)} is a finite group (since k is finite);
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hence T Pic’(Ek) = 0 and ,n PicO(Ek) = Pic’(Ek) ~ Zl for n sufficiently large. So
all that remains is to show that H1(k, H1(Ek, Zl(1))) is torsion. Write

H1(Ek, Zl(1)) = M ~ torsion, where M is a free ZI-module (~ Z2gl if g = genus of
Ek). Then it suffices to show that H1(k, M) is torsion. From the exact sequence:

and the fact that H°(k, M Q Ql/Zl) is torsion, we are reduced to showing that
H1(k, M ~ Ql) = 0. Now since k is finite,

where Fe Gal(k/k) is the Frobenius automorphism. But M ~ Ql ~ HI(EK, Ql(1)),
so all eigenvalues of F on M ~ C, have absolute value q1/2 ~ 1 (here q:= #(k)).
Therefore (1- F) is injective, hence also surjective. D

PROPOSITION 5.3. Let k be a finite field, 10 char(k) a prime. Let E be a
complete smooth curve over k, such that E(k) ~ Ø and Hr(Ek, Zl) is torsion-free,
for all r. Let S be a complete smooth surface over k which is k-birational to p2,
such that Gal(k/k) acts trivially on CH1(Sk). Then for each r, the cycle class map
cl : CHr(E x S) ~ Z,-+ H2r(E x S, Zl(r)) is an isomorphism.

Proof. We have

Since H·(Ek, Zl) and H.(Sk, Zl) have no torsion and Ht(Sk, Zl) = 0 if t is odd, we
have also,

The map CH’(E x S) -+ H2F(E x Sk, Z,(r» is compatible with these decom-

positions. Furthermore,

are isomorphisms for all t and CH1(E) ~ Z,-+ H2(Ek, Zl(1)) is surjective since E
has a k-point. This proves that CH"(E x S) Q Zl ~ H2r(E x Sk, Zl(r)) is surjective
and therefore the Galois action on H2r(E x Sk, Zl(r)) is trivial. Now,
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From the Hochschild-Serre spectral sequence, using cdl(k) = 1, we get that

Putting all this together gives the following commutative diagram with exact
rows:

0 -+ H’(k, H2r-l(E x Sk, Zl(r)) ~ H2r(E x S, ZI(r»,HO(k, H2r(E x Sk, Zl(r-1))~0

Now

and H2r-2(Sk, Zl(r-1)) ~ CHr-1(S) 0 Z, is a free Z,-module with trivial Galois
action. Therefore

From Proposition 5.2 it now follows that:

which proves the proposition. D

COROLLARY 5.4. The cycle class map:

is an isomorphism.
Proof. Each Yi ~ E lk x Si, where Si is either P1 x pl or B14pts.(P1 x P1). Since

the branch points of7Ci 1 were chosen to be defined over R, E1k has k-points. Since
the four points being blown up on P1 x pl are defined over k, the Galois action
on CH1(Si) is trivial. Therefore Proposition 5.3 applies. D

To study H4Y(X, Zl(2)), we use the spectral sequence:

where Ht denotes the local cohomology sheaf, with support in Y For q  2, this
is isomorphic (after a shift in degrees) to the Leray spectral sequence for the
inclusion map j : U 4 X. To analyze this spectral sequence, we need the

following conjecture of Grothendieck’s, which is known for schemes of equal



343

characteristics and for arbitrary schemes of relative dimension one over a
discrete valuation ring [8], but not for schemes of unequal characteristics of
higher dimension. Thus the results of this section are unqualified if K is a

function field, but rely on a conjecture if Y is a number field.

CONJECTURE 5.5 [Purity]. Let V be a regular scheme, D c V a regular
Cartier divisor, j: (VBD)  V the inclusion map and le char(V) a prime. Then

Rqj*(Z,)=0 for q  2. 

The following is well known (see [1] and [9]):

PROPOSITION 5.6. Let V be a regular scheme and assume D c V is a Cartier
divisor with normal crossings, with components Dl, .., D, and j : (VBD) 4 V the
inclusion. Then:

(i) The adjunction map Zl ~ j*j*(Zl) is an isomorphism.
(ii) R1j*(Zl) ~ ~si=1 Zl(-1)Di.
(iii) Assuming purity, the cup product gives an isomorphism

COROLLARY 5.7. Let {Yi(q)}i be the components of all intersections of q distinct
components of Y Then

Proof. For q=0 or 1, see [13]. For q  2, there is an isomorphism
Rq-1j*(j*F) ~ HqY(X, F) for any sheaf F. Taking 5’ = Zl(2), we get:
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But for every il  ...  iq-1, the components of ¥il n ’" n Yiq-1 1 are disjoint.
Therefore

Note also that for any il  i2  i3  i4, we have Y1 n ¥i2 n ¥i3 n ¥i4 = 0. This
gives the stated result. Q

We now analyze the spectral sequence (S.1). For p + q = 4, we have the
following:

Therefore we get a short exact sequence:

From the Hochschild-Serre spectral sequence, we have:

Now H’(k, H1((Y(2)i)k, Zl)) = 0. Since all the Yi(2) are defined over k, the Galois
action on HO«Yi(2»k, Z,) is trivial. Therefore:

Thus
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Similarly,

By Proposition 5.3, H2((Yi)k, Zl(1)) is generated by cycles defined over k.
Therefore the Galois action is again trivial, and so

Thus

PROPOSITION 5.8. The following diagram commutes:

Specificall y,

Proof. Let p,q be the Leray spectral sequence of the inclusion map j : U 4 X.
There is a homomorphism of spectral sequences pq-1 ~ Epqr which is an

isomorphism for r = 2 and q  2. Thus it suffices to compute the differential on

1,22. This can be deduced from the following lemma, applied to the pairs
(V, D) = (X, Yi) and (V, D) = (Yi, Yi n Yj):
LEMMA 5.9. Let V be a regular scheme and assume that the Purity Conjecture
holds on v: Let D ce V be a regular irreducible Cartier divisor, with j : VBD  V the
inclusion. Let 039B = Z/lnZ and let Epqr ~ Hp+q(U, 039B(1)) be the Leray spectral
sequence for j. Then the map:

is minus the Gysin map.
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Proof. Take an injective resolution A(1) ~ J. There is a short exact sequence
of complexes of sheaves on V:

Taking natural resolutions of these complexes and applying 0393(V, ·), we get a
short exact sequence of bicomplexes:

These bicomplexes give rise to spectral sequences:

By purity, E’2 is degenerate, with E’p,q2=0 if q ~ 2. Also, E"p,q2=0 unless q = 0 or
q = 1. Taking cohomology of (5.2) with respect to the second differential (du)
gives a connecting map H1II(K") ~ H2II(K’), which induces a homomorphism

which we denote by ô. Then ô is an isomorphism, by the degeneracy of Ep,q2.
The Gysin map is defined as the composition

Thus we need to show that the composition

is equal to - d2.

where d = di + du. This means 03B1 = 03B1p,1 +03B1p+1,0, with 03B1i,j c- K"i,j satisfying:
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First we compute d2([03B1]). It is represented by d(03B1) ~ Z"p+2,02. But (5.3) implies
d(03B1) = dI(03B1p+1,0). Thus dI(d(03B1)) = 0. This then gives also dII(d(03B1))=0. Therefore
d(03B1) = dI(03B1p+1,0) also represents a class in Hp+2IH0II(K"). If we make the identifi-
cation Hp+2IH0II(K") ~ E"p+2,02 then this class corresponds to d2([03B1]).
To compute the Gysin map, first note that under the identification

E"p,12 ~ HpIH1II(K"), the class [03B1] is represented by 03B1p,1. Choose 03B2i,j ~ Ki,j lifting
03B1i,j. Under the connecting homomorphism HpIH1II(K") ~ HpIH2II(K’), we have
[03B1p,1] ~ [dII(03B2p,1)]. Now it is easy to check that d(03B2p,1) + dII(03B2p+1,0) ~ Z’p,q2
represents [dII(03B2p,1)] under the identification HpIH2II(K’) ~ E’p,22 . We need to find
the image of this class in Hp+2(K’) ~ E;p,2.
The degeneracy of E’ gives E’p,22 ~ E’p,2~, which is equivalent to

Thus there exists 03B3 ~ Fp+1K’p+2 such that d(03B2p,1) + dII(03B2p+1,0) + 03B3~Z’p,22. That is:

and so dII(03B2p+ 1,0) + 03B3 represents the desired class in Hp + 2(K’ ). We use the same
notation also for the class in Hp+2(K·).
We need to find the image of this class under the isomorphism

Hp+2(K·) = Fp+2Hp+2(K·) ~ Ep+2,0~. We have Ep+1,1~ = 0, which means that
Zp+1,1~ = Fp+1d(Kp+1) + Zp+2,0~. Thus dII(03B2p+1,0) + 03B3 = d(03B4) + 03B5, for some

03B4 ~ Kp+1 and 03B5 ~ Zp+2,0~. Then [03B5] will be the image of [dII(03B2p+1,0) + 03B3] in Ep+2,0~.
Write 03B3 = 03B3p+1,1 + 03B3p+2,0, with 03B3i,j ~ K’ij. From (5.4), we get:

This implies:

Therefore dn(fJP + 1,0) + 03B3p+1,1 represents a class in Hp+1IH1II(K··). But this is

isomorphic to Ep+1,12=0. Thus there exist 03B6p,1~ker(dII)~Kp,1 and

~p+1,0 E K p+ 1,0 such that
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From this we get the following relations in Hp+2(K·):

But now 03B3p+2,0 - dI(~p+1,0) ~ Zp+2,0~, so we can take this for B above. Finally, if
we denote the map K~ K" by n and the Gysin map by g, then:

Now let and define

and

Therefore a ~ Z"p,12. Recall that then aP,l represents [a] ~ HpIH1II(K"). Since

03B2p,1 + 03B6p,1 ~ Kp,1 is a lifting of aP’ 1, the connecting homomorphism
ô : HpIH1II(K") ~ H PH2(K’) maps [a] to:

But we know that ~ is an isomorphism. Therefore [a] = [03B1] in E"p,12. Then we get

PROPOSITION 5.10. E1,3~ = 0.
Proof. We will show that the map described in Proposition 5.8 is injective. Let

{Zi} be the components of E23k and {Z(2)i} the components of pairwise
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intersections of the Z’is, so that Yi = E1k x Zi and Y(2)i = E1k x Z(2)i. Then:

and the map described above clearly decomposes as idEl ~ Ô, where

maps a component Z(2)i of Zr n ZS to the class [Z(2)i]Zr + [Z(2)i]Zs. It is therefore
enough to show that b is injective. Recall that the components of E23k are:

Writing S, S’ ~ (A, B) and 8, 03B5’ ~ {+, -}, the intersections are:

and all other intersections are empty. Recall also that S + is the strict transform
of S x { +} in B1{±} x {±}(S x S’). With our usual identification S x S’ ~ P k 1 x P k , 1
we have S x {+} = P1 x *, a line passing through the two points ( +, +) and
( -, + ) of the center of the blow-up. A similar analysis holds for + S, S - and
- S The result is:

Take an element

Then,
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Now suppose £5«() = 0. Then we get, for all S, S’, B, E’ :

From this we get, for all S, S’, e, 8’:

This implies, in particular, that aS,03B5 = as,,,, and b,:,s = b,,,s, for all S, S’, E, 8’. Then
the first two relations give aS,e = bS,03B5 = 0, for all S and E D

From this proposition and the remarks above, we get:

COROLLARY 5.11. E2,2~ ~ H4Y(X, Zl(2)). D

To calculate E2,2~, note that the only nonzero differential is do3: E0,3, E2,22,
so E2,2 ~ E2,2~. By Proposition 5.3, we have

From the definition of the cycle class map in [9], one sees that the following
diagram commutes:

Recall that Eh is defined to be the cokernel of the composition:

Then we get the following.

PROPOSITION 5.12. The cycle class map:
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induces an isomorphism :

Proof. By the remarks above, there is the following commutative diagram
with exact rows:

Since the left-most vertical map is surjective and cl is an isomorphism by
Proposition 5.4, we find that cl, is an isomorphism. D

be as in Section 3 and let

be the map discussed in Section 4.

THEOREM 5.13. If there exists an odd prime 1 dividing the order of e+ in E1(k),
then qJ( C - i C) e ~(CH2trans(XK)).

Proof. Let W = CH’ ~ Zl. Since i* stabilizes CH 2 we can
decompose W as W+ (D W_ , where W+ and W- are the + 1 and -1 eigenspaces
for l*. If IF c- W+, then i*~(03A8) = ~(i*03A8) = ~(03A8). But i* = -1 on

H1(K, H3(XK, Zl(2))) and 1 is odd, so we get qJ(W+) =0. So it is enough to show
that ~(C - iC)~~(W_). So assume 03A8 ~ W_ We must show that

~([C - iC] - ’11) i= 0; that is,

From the Hochschild-Serre spectral sequence and the fact that cdl(K) = 2, we
have:

and hence i* acts trivially on this kernel. On the other hand,
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so it suffices to show that clx([C - iC] -03A8) ~ 0. But

since cl1: is an isomorphism and 03C3([C - iC] - 03A8) ~ 0 by Corollary 3.8. D

6. Infinite order

Let f be a global field, with ring of integers W and let X be an integral scheme
which is flat and proper over R, with smooth generic fiber.

PROPOSITION 6.1. Suppose there is a prime q c- spec PÃ not dividing l, such that
X has good reduction at q and 11 det(N(q)’ - f,), where fg is the geometric
Frobenius map on H3(Xk(q), Zl). Then H1(f, H3(X%, Zl(2))) is torsion-free.

Proof. From the short exact sequence of Gal(K/K)-modules:

we find

Therefore it suffices to prove that

Since X has good reduction at q, we have:

so it suffices to show that

Since k(q) is finite, the Weil conjectures give

from which it follows that:
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Now if fa(2) is the arithmetic Frobenius automorphism acting on

H3(Xk(q), Zl(2)), then to show H1(k(q), H3(Xk(q), Zl(2)))=0, it suffices to show
that det(fa(2)-1)~Zxl. If fg is the geometric Frobenius automorphism acting on

H3(Xk(q), Zl) (note the untwisting), then fa(2)=N(q)2·f-1g Since det(fg) ~ Zxl, it
suffices to check whether det(N(q)2 - fg) e Zxl.

Proof of Theorem 2. Denote

simply by H. Write ç for the map CH2hom(Xkp) ~ H1(Kp, H) and write ç, for
the corresponding map on CH2hom(XK) The galois group Gal(Kp/Kp) is

naturally contained in Gal (K/K) as the decomposition group of a prime over
p. The inclusion map induces a morphism of the respective Hochschild-Serre
spectral sequences. Then functoriality of the cycle-class map gives a commu-
tative square:

Now suppose some multiple m·(C - iC) were algebraically equivalent
to zero over 3i. Then this would be true already over a finite extension E9 of
3i. By pushing everything down to Xy, we would get that n.(C-lC) is alge-
braically equivalent to zero over Jf, where n = m · [L : K]. Then

n · ~K(C - iC) ~ H1(K, Mk), with M, as in Section 4. But by Lemma 4.6 and
Proposition 4.7, M % = M alg is a direct summand of H. Since H1(g, H) is

torsion-free by the above proposition, this implies that already
~K(C - i C) e H1(K, Malg). But then also 9, (C - i C) E H1(K, Malg) by commutat-
ivity of (6.1). Again by Proposition 4.7, we get (PK (C - 1 C) e ~K(CH2trans(XK)). But
this contradicts Theorem 5.13. Therefore no multiple of C - iC is algebraically
equivalent to zero over XI D

7. A family of examples

THEOREM 7.1. Let K = Q and let a, b, c, d be arbitrary integers. Let El, E2, E3
be as in the Introduction, with
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Then Theorem 2 applies, with 1 = 3, p = 23, q = 29 and r = 13. Thus, assuming the
Purity Conjecture holds, the cycle C - iC c- CH2hom(E1 x E2 x E3), defined over C,
has infinite order modulo algebraic equivalence over 0

Proof. It is clear that a, fi, y are 23-adic units which are distinct mod 23 and
that n is a uniformizing parameter. It is easy to check that the point e + eE1(1F23)
given by x = 0, y = -03B103B203B3 has order 1 = 3. Moreover,

so X has good reduction at both 29 and 13. Thus it remains to verify
hypotheses (iii) and (iv).
By counting points, one finds the following eigenvalues for the geometric

frobenius map on H1(EiF29, Zl):

These generate an extension of degree 8 over Q. The coefficient of - 35 in
ÂlÂ2Â3 is + 8, which is not divisible by 29. Thus (iii) is satisfied.
The eigenvalues of Frobenius on H1(EiF13, Z,) are as follows:

From the Kunneth decomposition, the eigenvalues of Frobenius on

H 3(E, x E2 x E3F13, Z,) are of the forms 1303BBi (on H’(E,) ~ H0(Ej) ~ H 2(Ek», and
03BB103BB203BB3 (on H’(E,) ~ H’(E2) ~ H1(E3)). Thus the determinant of fg-132 is the
product of the six factors 1303BBi-132 and the eight factors 03BB103BB203BB3 - 132 (with all
possible choices of ± in the 03BBi). Since all the 03BBi are in Z[-1 and 3 is prime in
Z[-1], then 3 divides det(fg - 132) if and only if it divides one of the factors.
But it is easily seen that this is not the case. Thus (iv) also holds. 0
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