
COMPOSITIO MATHEMATICA

DAVID SCHUBERT
A new compactification of the moduli space of curves
Compositio Mathematica, tome 78, no 3 (1991), p. 297-313
<http://www.numdam.org/item?id=CM_1991__78_3_297_0>

© Foundation Compositio Mathematica, 1991, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1991__78_3_297_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


297

A new compactification of the moduli space of curves

DAVID SCHUBERT

Department of Mathematics, SUNY College at Geneseo, Geneseo, NY 14454

Received 28 March 1990; accepted 3 July 1990

0. Introduction

We work over an algebraically closed field k.
The moduli space 9Jlg for curves of genus g  2 can be constructed by using

Geometric Invariant Theory (GIT) to construct a quotient of either the Chow
variety or the Hilbert Scheme which parameterizes n-canonically embedded
curves in P(2n-1)(g-1)-1 for n , 3. The quotients of the Chow variety and the
Hilbert scheme are complete. Thus the closure of Mg in the quotient gives a
compactification of 9Jlg.
Mumford [Mu2] has shown using the Chow variety, and Gieseker [G] has

shown using the Hilbert scheme that when n  5 the associated compactification
of 9N. is a moduli space for Mumford-Deligne stable curves. The aim of this
paper is to show that when g  3 and n = 3, the associated compactification of
9Jlg is a moduli space for a class of curves which we will call pseudo-stable.
DEFINITION. A reduced connected complete curve is Mumford-Deligne
stable if

(i) it has only ordinary double points as singularities; and
(ii) every subcurve of genus 0 meets the rest of the curve at at least 3 points.

A reduced connected complete curve is pseudo-stable if

(i) it has only ordinary double points and ordinary cusps as singularities;
(ii) every subcurve of genus 1 meets the rest of the curve at at least 2 points;

and

(iii) every subcurve of genus 0 meets the rest of the curve at at least 3

points. D

Our method closely follows that of Mumford and Gieseker. We use 1-

Parameter Subgroups (1-PS’s) of SL(N + 1) to show that when n = 3 the Chow
points of curves which are not pseudo-stable are unstable in the sense of GIT,
and thus are not represented in the compactification of 9X.. The singular curves
are then shown to be represented in the compactification of 9Jlg by considering
degenerations of smooth curves and the completeness of the quotient scheme.

Compositio Mathematica 78: 297-313, 1991.
© 1991 Kluwer Academic Publishers. Printed in the Netherlands.
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In §1 we review Geometric Invariant Theory as it applies to the Chow variety.
In §2 we present modified lemmas of Mumford and Gieseker to show that curves
with bad singularities or multiple components have unstable Chow points. In §3
we show that curves with elliptic tails have unstable Chow points. In §4 we
discuss the relationship between Mumford-Deligne stable curves and pseudo-
stable curves. In §5 we use the previous results to construct a moduli space for
pseudo-stable curves.

This work is a large part of the author’s thesis written under David Gieseker.
The author wishes to thank him again for his guidance and patience.

1. Chow stability

In this section we review Geometric Invariant Theory (GIT) as it applies to the
Chow variety. More complete treatments can be found in [Mul, Mu2 and Mo].
A non-negative Chow cycle X of dimension r in PN is a formal sum X = E aiXi

where each X is a variety of dimension r in PN and each ai is a non-negative
integer. The degree of X is E ai deg Xi . For each r, N and d there is a Chow

variety which parameterizes non-negative Chow cycles in PN of dimension r and
degree d.
The natural action of SL(N + 1) on PN determines a natural action on the

Chow variety. GIT says that on the open subset of what are called semi-stable
points, a quotient of the action by SL(N + 1) can be taken to get a projective
scheme. On the open subset of what are called stable points, this quotient is an
orbit space. We call a Chow cycle stable (resp. semi-stable) if its Chow point is
stable (resp. semi-stable).
We will now consider a method for determining which Chow cycles are stable.
A weighted flag of H0(PN, OPN(1)) is a filtration H0(PN, OPN(1)) = V0 ~ ... ~ VN

where each v is a vector space of dimension N + 1- i and a set of integers
r0  r1  ...  rN = 0. Associated to each weighted flag is a 1-PS Â(t) of SL(N + 1).
If k = E ri and X°, ... , XN are coordinates on PN where v = span{Xi, ..., X},
then A(t)Xi = t(N+ 1)ri - kXi. Note that we may choose a weighted flag by specifying
the ri’S and the X/s.

Let Ox and Cy be the Chow forms of Chow cycles X and Y in PN, and let Â(t)
be the 1-PS of SL(N + 1) associated to a weighted flag F. Then

Further 03A6X = 03A3 03A6X,i where (03A6X)03BB(t) = 03A3i=b i=a ti03A6Xi. We call a the F-weight of X.
Géométrie Invariant Theory says that the point in the Chow variety corre-
sponding to 03A6X is stable (resp. semi-stable) if the F-weight of X is  0 (resp.  0)
for every weighted flag of H°(PN, (9pN(I).
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Note that the F-weight of the cycle X + Y is the sum of the F-weights of the
cycles X and Y

If f(n) is a polynomial of degree r, we denote by n.l.c. ( f ) (the normed linear
coefficient of f ) the integer e such that

Let X be a variety in PN of dimension r, and let F be a weighted flag of
H0(PN, OPN(1)) as above. Let a : X ~ X be a proper birational morphism of
varieties. Let X’ = X x A 1. Let be the ideal sheaf of OX, defined by

J. [03B1*OX(1) ~ OA1] = subsheaf generated by tri03B1*Xi (i = 1, ... , n).

We denote

which is a polynomial of degree r + 1 for n » 0.
We note that Lemma 5.6 of [Mu2] shows that eF(X) = eF(X).
Mumford showed in [Mu2] that the F-weight of a variety X is

If a Chow cycle Y = E ai Yi where the Y, are varieties, we let eF( Y) = 03A3 aieF(Yi).
We now have the following theorem.

THEOREM 1.1. A Chow cycle is stable (resp. semi-stable) iff

for every weighted flag F of HO(PN, (9pN(l».
Proof. This is essentially Theorem 2.9 of [Mu2]. D

We now consider ways to estimate eF(X) for a reduced curve X in pN.

LEMMA 1.2. Let X be an r-dimensional variety in pN. Let F be the weighted flag
determined by X°, ... , XN and r0 ...  rN = 0. Suppose Xj,..., XN vanish on X,
and ro =... = rj-l’ Then eF(X) = (r+ 1) ro deg(X).

Proof. We use the following result which is found in [Mo].
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LEMMA 1.3. Let R be the homogeneous coordinate ring of a variety X in pN. Let
1 be the ideal in R[t] generated by {Xitri |0  i  NI. Then eF(X) = n.l.c.
dimk(R[t]/Im)m where R[t] = ~ i= 1 Ri [t] is the grading for R[t].

Proof. This follows from combining Proposition 3.2 and Corollary 3.3 of
[Mo]. D

Let I = (troX0,..., trNX N) be an ideal of R[t] . Then I = trO(X 0’...’ X N). Then
R[t]/Im)m = Rm[t]/(tmroRm), So

dimk(R[t]/Im)m = rom dimk Rm

Thus eF(X)= (r + 1)r0 deg(X) by Lemma 1.3. D

Let F be a weighted flag determined by X0, ... , X N and r0 ...  rN = 0. Let

oc: X~ X be the normalization of a reduced curve X in PN. Suppose there is an 1
such that 03B1*Xl does not vanish on f and ri = 0. Let f be the ideal sheaf of W g X A1
defined by

of. [03B1*OX(1) 0 OA1] = subsheaf generated by tri03B1*Xi, i (i = 1,..., n).

Note that 19xxAlIJ has finite support, because a*Xl does not vanish on X and
rl=0.

Let P ~X. We denote eF(X)p = n.l.c. dimk(OX’ x A1,P x {0}/(FP x {0})m). Note that
eF (X)=03A3
LEMMA 1.4. I n the above situation, suppose v(03B1*Xi) + ri  a for i=O,...,N
where v is the natural valuation on X,p. Then eF(Î)p &#x3E;, a2.

Proof. Let s generate the maximal ideal of 19x,p Let

Let

where S03BD(Xi) = 0 if v(Xi) = oo Then

Im = ({Sbtcl there exist non-negative integers no,..., nN such that 1 ni  m,
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Thus

dimk(R/Im)  min{03A3 ni03BD(Xi)|there exist non-negative integers
no,..., nN such that 03A3ni  m, 1: niri c}.

We have

So

2. Unstable curves

In this section we consider genus g  3 connected curves of degree d = 6(g -1) in
PN where N = 5(g -1) -1. We show that if such a curve X is Chow semi-stable,
then X must be reduced as a scheme and have only ordinary double points,
ordinary cusps, and tachnodes which involve a line as singularities. We also
show that if the Chow point of a curve X is in the closure of the set of Chow
points of smooth curves Y such that y(l)==0153y , then OX(1) = 03C9X~3.
The proofs in this section are elementary modifications of those of Gieseker

[G] and Mumford [Mu2].

LEMMA 2.1. If X has a triple point, then X is not Chow semi-stable.
Proof. The proof of Proposition 3.1 in [Mu2] shows that such an X cannot

be Chow semi-stable if d/(N + 1)  3/2. D

LEMMA 2.2. If X has a tachnode and a line does not pass through the tachnode,
then X is not Chow semi-stable.

Proof. This amounts to translating the proof of Lemma 5.8 in [G] which
concerns the Hilbert scheme to the case of the Chow variety.

Suppose X has a tachnode at P which does not involve a line. Let f be the
normalization of X. Let Q and R be the inverse image of P in X. We can choose
X °, ... , X N in H0(PN,OPN(1)) such that X1, ... , XN vanish at P and X 2, ... , X N
vanish to order  2 at Q and R. Let r0 = 2, rl =1, and ri = 0 for i  2. The

lower terms.

Finally
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weighted flag determined by the X i’s and the ri’S has eF(X)Q  4 and eF(X)R  4,
so eF(X)  8  = 23 = 2d/(N + 1) E ri. D

LEMMA 2.3. If X has a cusp which is not ordinary, then X is not Chow semi-
stable.

Proof. Suppose X has a cusp which is not ordinary. Let X be the normaliza-
tion of X and let P be the inverse image of the cusp. We can choose X °, ... , X N
in H°(PN, OPN(1)) so that Xi,..., XN vanish to order  2 at P and X 2, ... , X N
vanish to order 4 at P. Let ro=4, ri=2, and ri = 0 for i  2. Then

eF(X)p  16  = 26 = 2d/(N + 1) E ri. D

LEMMA 2.4. If a connected Chow cycle X has any multiple components, then X
is not Chow semi-stable.

Proof. Suppose X = Y + nC where Y is non-negative, Chas no multiple
components, n  2, and Y and C have no common components. Choose
P E Y n C. Choose Xo,..., X N in H°(PN, OPN(1)) such that Xi , ... , XN vanish at
P. Let ro = 1 and ri = 0 for i  1. Then

So X is not Chow semi-stable.

It remains to show the case where X = nC where C is an irreducible curve and

n  2. Choose a smooth point P E C. Choose X °, ... , X N in H0(PN, 19pN(l» such
that X1,..., X N vanish at P and X2, ..., XN vanish to order  2 at P. Let ro = 2,
ri = 1, and ri = 0 for i  2. Then

LEMMA 2.5. Let X be a connected curve in PN which is Chow semi-stable. Let

03C9X be the dualizing sheaf for X. Then

(i) X is embedded by a complete linear system and H°(X, OX(1)) = 0; and
(ii) If X = C1 ~ C2 is a decomposition of X into two sets of components such

that 1Y = Ci U C2 and w = #W (counted with multiplicities), then

Proof. By the previous lemmas we see that X must be generically reduced,
and X is a local complete intersection. Thus cox is locally free.
The proof of this lemma follows almost word for word the proof of

Proposition 5.5 in [Mu2] where 8/7 is replaced by 6/5. The only difference is in
the proof that H1(C1, OC1(1)) = 0 if C 1 is irreducible. Using 6/5 we can conclude
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that if H1(C1, (OC1(1)) ~ 0, then deg(C1) is l, 2 or 3 as opposed to 1 or 2 if 8/7 is
used. If deg(C1) = 3, then C1 must be rational or elliptic of degree 3. It follows
that H1(C l’ UC1(1)) = 0. D

LEMMA 2.6. Suppose X ~ Spec(k[[t]]) is a flat family of curves. Let ~ be the
generic point of Spec(k[[t]]), and let 0 be the special point. Suppose that gr is
embedded w P’ x Spec(k[[t]]) so that X~ is smooth and OX~(1) = 03C9X~ . Suppose
that X0 is Chow semi-stable. Then (OX0(1) = 03C9X0. 

Proof. Let Di, i = 1, ... , m, be the irreducible components of X0. It follows
that OX(1) = co 03 [t]](Y- aidi). We may assume ai 0 for i = 1,..., m, and

min ai = 0. Let C1 = ~ri =0 Di, and let C2 = X0 - C1. Now

which contradicts (ii) of Lemma 2.5 if C2 =1- 0. D

Note that X0 in the above lemma cannot have a tachnode, because a
tachnode would have a line L passing through it. It cannot be that

3. Instability of elliptic tails

In this section we exhibit the weighted flag that shows that a curve X embedded
by 03C9X~3 cannot be Chow semi-stable and have an elliptic tail.
LEMMA 3.1. Suppose X is embedded by T(X, 03C9X~3) in PN (N = 5(g-1)-1), and
X has a subcurve Ci of genus 1 which meets C2 = X - C1 at exactly one point.
Then X is not Chow semi-stable.

Proof. Suppose X satisfies the hypotheses of the lemma. From previous
lemmas, we may assume that P = C1 ~ C2 is an ordinary double point. Hence
(O(1)|C1= OC1(3P). We can choose X0,..., XN in H°(PN, OPN(1)) such that XN and
XN-1 vanish on C2, and XN vanishes to order 3 at P on Ci. Let rN=0, rN-1 = 2
and ri = 3 for iN-3.
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4. Pseudo-stable curves

In this section we discuss the relationship between Mumford-Deligne stable (M-
D stable) curves and pseudo-stable (p-stable) curves which were defined in the
introduction.

LEMMA 4.1. Let X be an M-D stable curve of genus  3. Then there is a unique
connected subcurve C of X such that

(i) X - C = u Ci where each Ci is connected and has genus 1;
(ii) # (Ci ~ X - Ci) = 1 and Ci ~ Cj = ~; and
(iii) every connected genus 1 subcurve D of C satisfies -* (D n X - D)  2.

Proof. To show existence choose a subcurve C of X minimal with respect to
satisfying (i) and (ii). Suppose D is a connected genus 1 subcurve of C. If D = C
and (D n X - D)  1, then X has genes  2 which violates the assumption that
X has genus  3. If *(D~C-D)= 1 and # (D~X - C ) = o, then C - D satisfies
(i) and (ii) which contradicts the minimality of C. Thus

and C satisfies condition 3.

Suppose that C’ also satisfies conditions (i), (ii) and (iii). Let Y be a connected
component of X - C.

Claim. Y is irreducible.

Proof of Claim. Let Z be the irreducible component of Y which intersects C.

Suppose Z has genus 0. Then no connected component of Y - Z has genus 0,
because such a connected component would have to intersect with Z three times

which would imply that Y has genus  2. Since Y has genus 1 and Y - Z has no
connected components of genus 0, we must have Y - Z as genus 1 and

#(Z~ Y-Z)=1. But then #(Z~X -Z)= (Zn C)+ #(Zn Y-Z)=2 im-
plies that X is not M-D stable.
Thus Z must have genus 1 and Y - Z must be the union of connected

components of genus 0, each of which intersects Z exactly once. Thus Y - Z = 0
since X is M-D stable. So the claim holds.

Now (iii) implies that Y ~ X - C’ . Since this is true for all connected

components of X - C, we have C’ c C. The minimality of C with respect to
conditions (i) and (ii) implies that C’ = C. D

LEMMA 4.2. Let Y and Z be p-stable curves of the same genus  3. Let
P1, ... , Pn e Y be points where Y has an ordinary cusp. Let Q1,..., Qm c- Z be
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points where Z has an ordinary cusp. Then there exists an M-D stable curve X of
the same genus as Z and a morphism f : X ~ Z such that:

(i) f is an isomorphism over Z - {Q1,..., Q.1;
(ii) f -’(Qi) is a connected genus 1 subcurve of X such that

Furthermore, if there exists a morphism g : X ~ Y such that:

(i) g is an isomorphism over Y - {P1,..., Pn}; and
(ii) g- ’(Pi) is a connected genus 1 subcurve of X such that

then Z is isomorphic to Y

Proof. We can choose irreducible open neighborhoods Ui of Qi in Z such that
Ui - {Qi} is nonsingular for i = 1, ... , m. By replacing each Ui with the

normalization of Ui, we get a curve C and a morphism 03C0: C ~ Z such that
03C0-1(Qi) is a non-singular point of C, and 7r is an isomorphism over

Z - {Q1,..., Qm} Let X be the curve obtained by attaching non-singular elliptic
curves Ei to C at the points 03C0-1(Qi) such that each E, n C is an ordinary double
point. Let f : X ~ Z be the morphism which sends each Ei to Qi and such that
flc = n.

Since the only singularities of Z which are not ordinary cusps are ordinary
double points, the only singularities of X are ordinary double points. Suppose D
is a connected genus 0 subcurve of X. Then D c C and the genus of 03C0(D) is equal
to the number of cusps in 03C0(D). Also

because Z is p-stable and has genus  3. Hence X is M-D stable.
Now suppose we have a morphism g : X ~ Y as in the second half of the

lemma.

Proof of Claim. We will show that both subcurves of X satisfy the conditions
of Lemma 4.1.
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Conditions (i) and (ii) follow immediately from the requirements for each
f -1(Qi) and each g -l(Pi). 

Let D be a connected genus 1 subcurve of f-1(Z- Q1,..., Qm}). Let N be the
number of cusps in f(D). Let gf(D) be the genus of f(D). Then 1 + N = gf(D). Also

We have gf(D) + # (f(D)~Z - f(D))  3, because Z is p-stable of genus  3.
Hence

and f -1(Z- Q1,... , Qm}) satisfies conditions (iii) of Lemma 4.1. A similar

argument shows that g -1( Y - P1,..., Pn}) satisfies the same condition.
Let C = f-1(Z-{Q1,..., Q.1) = g -1(Y- P1, ... , Pn}). For any point Re C

we have g(R) is a cusp if and only if R~X - C. Thus both Wy and 19z can be
identified with the same subsheaf of (9c, so Y and Z are isomorphic. p

For the rest of this section we take R to be a discrete valuation ring which
contains its residue field k. We let K denote the quotient field of R. When X is an
R-scheme, we use Xo to denote the special fiber and X~ to denote the generic
fiber.

LEMMA 4.3. Let X be an integral projective R-scheme such that Xi is a non-
singular curve and X o is generically reduced. Then X is normal iff X0 is reduced.

Proof. Note that every point P ~ X such that dim(OX,P) = 1, (OX,P is regular.
This is clear if P~X~, since X,, is an open non-singular subscheme of X. We
have X is flat over Spec(R), because X is integral and Xi * 0. Hence
dim(Xo) =dim(X~) = 1. If PeXo and dim(l9x,p)= 1, then P contains a closed
point Q such that X o is smooth at Q, because X o is generically reduced. Thus

OX,Q is regular, because the ideal of X o in U9x,Q is principal. Hence (9x,p is the
localization of a regular local ring, so (OX,P is regular.

It follows that X is normal iff for every point P ~ X such that dim(l9x,p) = 2, we
have depth(OX,P) = 2. If dim(OX,P) = 2, then P is a closed point of Xo. We have
depth(l9x,p) = depth(OX0,P) + 1. Since Xo is generically reduced, it follows that
depth(OX0,P) = 1 iff X Q is reduced. D

LEMMA 4.4. Let X and Y be projective R-schemes which are flat over R.
Suppose X o and Yo are reduced curves. Suppose that there is an isomorphism of K
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schemes 9: XI -+ Y,,. Suppose that X, and Y~ are non-singular connected curves.
Then there is a projective R-scheme Z which is flat over R and R-morphisms
nl:Z-+X, 03C02 : Z ~ Y such that:

(i) n 1 Iz, is an isomorphism;
(ii) 03C02 o 03C01|X-1~ = w ;

(iii) If P is a generic point of Zo, then either 03C01(P) is a generic point of Xo, or
n2(P) is a generic point of Yo;

(iv) Zo is reduced; and
(v) Z is flat over R.

Proof. Let W be the closure of the image of X~ in X XR Y under the map
id x 9, and give W the reduced induced subscheme structure.
Note that since X~ ~ Y~ ~ W~ are integral, we have X and Y are integral by

flatness. Since W is the closure of an irreducible subset, W is irreducible. Thus W
is integral, since W is reduced. Note that W is projective over R, because X, Y
and X x R Y are.

Let Z be the normalization of W Then Z is integral and projective, because W
is so. Since both Z and W are integral, they are flat over Spec(R) proving
assertion (v). Let 03C8 : Z ~ W be the natural map of Z to W. Let 03C01 be 03C8 composed
with the projection of W onto X, and let 03C02 be 03C8 composed with the projection
of W onto Y

Suppose P is a generic point of Zo, and suppose 1tl(P) is a closed point Q of
Xo. Then 03C8(P) E Wo is generic, because the morphism 03C8 is finite. Since 03C8(P) lies in

{Q} x Yo, the projection of 03C8(P) onto Y must be a generic point of Yo. Thus 03C0(P)
is a generic point of Y0, and assertion (iii) holds.

Since X and Y are normal by Lemma 4.3, Zariski’s main theorem applies.
Thus each 03C0i is an isomorphism over a neighborhood of a point P if Jtj l(P) is
finite. This is true for all generic points of Xo and Yo, because Z is flat over R
implies Zo has dimension 1. Assertion (iii) now implies that every generic point P
of Zo is contained in an open set U of Z which is isomorphic to either 03C01(U) or
03C02(U). Thus Zo is generically reduced. So Zo is reduced by Lemma 4.3, and
assertion (iv) holds.
We have W, is non-singular, since it is isomorphic to X~. Hence the morphism

qJ: Z -+ W is an isomorphism over W~, and assertion (i) follows. Assertion (ii)
follows immediately from the construction of Z and W

LEMMA 4.5. Let X, Y, Z, 03C01 and 03C02 be as in Lemma 4.4. Suppose PeXo is a
closed point such that 03C01 is not an isomorphism over any open neighborhood of P.
Let E=03C0-11(P), and let F = Zo - E. Let C = 03C02(E). Then the map 03C02 : Z ~ Y is an
isomorphism over an open neighborhood of each point Q e C - {03C02(Q’) 1 Q’ e E n FI.

Proof. As mentioned in the proof of the previous lemma, X and Y are normal
by Lemma 4.3, so Zariski’s main theorem applies.
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Suppose Q e C, and n2 is not an isomorphism over Q. Then n21(Q) is a
connected subcurve of Zo. There are no common components of n2 ’(Q) and E
by assertion (iii) of Lemma 4.4. Hence 03C0-12(Q) ce F. Since QeC = n2(E), there is a
point Q’ e n21(Q) n E c F n E, and the lemma holds. 0

LEMMA 4.6. Suppose X, Y, Z, 03C01 and 03C02 are as in Lemma 4.4. Suppose PeXo is
a closed point, and U is an open neighborhood of P e X such that 03C01 is an

isomorphism over U - {P}. Let W be the R-scheme obtained by glueing X - {P}
and 03C0-11 (U) by the isomorphism

Then W is projective over R.

Proof. Our proof follows the method of the proof of Theorem IL7.17 of [H].

Claim. There exists a coherent ideal sheaf f c 19x such that:

(i) W ~ P(J), where Y is the graded Wx-algebra OX ~ J ~ J2 ~ ···; and
(ii) OX/J has support only at P.

Proof of Claim. First note that we only need to describe J in a neighborhood
of P, since we can extend J to all of X by 19x. Note that we are free to shrink U
as much as necessary as long as it remains an open neighborhood of P.
We may assume U is affine. Let S = (9(U) and let F be the quotient field of S.

Then there is a graded ring T = 0 Ti such that: To = S ; T is finitely
generated by Ti as a To-algebra; and 03C0-11(u) ~ Proj(T). There is an S-

morphism of Tl into F, because Z and X are birational. There exists an f e S
such that f Tl eS when Tl is considered as a submodule of F. Let J = f Tl. Then
T ~ S ~ J ~ J2 ~ ···. Since T1 ~ 0 and S is integral, there are at most finitely
many height-1 prime ideals of S which contain J. Since X is normal, we may
shrink U so that every height-1 prime ideal which contains J is principal. We can
then find xe S so that I = {a| ax e J} is not contained in any height-1 prime ideal.
Then T ~ S ~ I ~ I2 ~ ···, because In is isomorphic to J" via multiplication by
x". We can shrink U so that I is not contained in any maximal ideal of S which
does not correspond to P. Now I induces the claimed ideal sheaf.
Theorem 5.5.3 of [Gr] now implies that W = P(Y’) where Y’ is a coherent

graded OSpec(R)-algebra. Hence W is projective over R, because Spec(R) is

affine. D

LEMMA 4.7. Let X, Y, Z, 03C01 and 03C02 be as in Lemma 4.4. Let P be a closed point of
X o Suppose that either X o is non-singular at P, or P is an ordinary double point.
Then if nl is not an isomorphism over any open neighborhood of P, ni 1(P) is a
curve of genus 0.

Proof. We can choose an open neighborhood U of P such that 03C01 is an
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isomorphism over U - {P}. Then the R-scheme W obtained by glueing ni 1(U)
and X - {P} by ni is projective by Lemma 4.6. Let n be the morphism from W to
X We have W is flat over R because W is integral as Z and X are. Hence X o and
Wo have the same genus, and 03C0|W0 is and isomorphism over Xo - {P}. The lemma
now follows. D

LEMMA 4.8. Let X, Y, Z, ni and rc2 be as in Lemma 4.4. Suppose that Xo is an
M-D stable curve and that Yo is a p-stable curve of genus  3. Then:

(i) 7r,: Z ~ X is an isomorphism;
(ii) 03C02 : Z - Y is an isomorphism over Y - {P |P ~ Y0 is a cusp).
(iii) If P E Yo is a cusp, then E = ni l(P) is a connected curve of genus 1 and

# (E ~ Z0 - E) = 1.
Proof. Since Xo is M-D stable, all points in Xo are either non-singular or

ordinary double points. Hence, if P E X o is a closed point for which 03C01 is not an
isomorphism over any open neighborhood of P in X, E = 03C0-11(P) is a connected
curve of genus 0 by Lemma 4.7. Let C = 03C02(E), and let F = Zo - E. Then 03C02 is an
isomorphism over an open neighborhood in Y of each point in

C - {03C02(Q’) 1 Q’ e E n FI by Lemma 4.5. Since P is either non-singular or an
ordinary double point, there are at most two points in E n F.

Let D = Yo - C. Note that if Q E C n D, then there is a point 6’eEnF such
that Q = n2(Q’). This is clear if 03C02 is an isomorphism over a neighborhood of Q
and follows from the above otherwise. Thus # (C ~ D) = 0, 1 or 2. We will

consider these three cases.

Case #(C~D) = 0: Then we have Y0 = C, since Yo is connected. Then there
are at most two points in C which do not have any open neighborhoods in C
over which n21E: E ~ C is an isomorphism.
Suppose n2lE is an isomorphism. Then C = Yo has genus 0, which contradicts

Yo has genus  3.
Suppose that there is exactly one point Q E C such that n2lE is not an

isomorphism over any open neighborhood of Q in C. Then Q must be either a
cusp or an ordinary double point. If Q is a cusp, then Yo = C has genus 1, which
is a contradiction. If Q is an ordinary double point, then Q has two pre-image
points in E. Then C = Yo has genus 1, which is a contradiction.

Suppose that there are two points Q1, Q2 e C which do not have open
neighborhoods in C over which n2lE is an isomorphism. Both Ql and Q2 have at
most one pre-image point in E, because E n F contains at most two points and
each n2 l(Qi) c F. Thus Q, and Q2 are cusps. In this case Yo = C has genus 2
which is a contradiction.

Case #(C~D) = 1. The morphism 03C01|E : E ~ C is an isomorphism over an
open neighborhood of C n D in C, because C is non-singular at this point. There
is at most one point Q e C which does not have an open neighborhood in C over
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which 7r21E is an isomorphism, because E n F consists of at most two points, one
of which gets mapped to C n D.

If 03C02|E is an isomorphism with C, then C is a genus 0 subcurve of Yo such that

#(C~Y0-C)  3, and Yo is not p-stable.
Suppose there is exactly one point Q ~ C which does not have an open

neighborhood in C over which n2lE is and isomorphism. Then Q must be a
cusp, because #(03C0-1(Q)~E)  1. So C is a genus 1 subcurve of Yo with

#(C~ Yo - C)  2, and Yo is not p-stable.
Case #(C n D) = 2. Then n2 IE: E --+ C must be an isomorphism over an open

neighborhood of the points in C n D, because C is non-singular at these points.
Then rc2l E must be an isomorphism, because of the restriction that E n F

contains at most two points. Hence C is a genus 0 subcurve of Yo such that

#(C~ Yo - C)  3, and Yo is not p-stable.
We have now proved that there is no point P ~ X such that 03C0-11(P) is infinite.

Hence 71:1 is an isomorphism, and assertion (i) holds.
It follows from (i) that Zo is an M-D stable curve. Let Q e Yo be an ordinary

double point or a closed point at which Yo is non-singular. Suppose there is no
open neighborhood of Q over which 03C02 is an isomorphism. Then E = 03C0-12 ’(Q) has
genus 0 by Lemma 4.7. If Yo is non-singular at Q, then

This implies that Zo is not M-D stable. If Q is an ordinary double point, then

Again, this implies that Zo is not M-D stable. We have now proved assertion (ii).
If P E Yo is a cusp, then 03C02 cannot be an isomorphism over P, because Zo does

not have any cusps. We can choose an open neighborhood U of P in Y such that
03C02 is an isomorphism over U - {P}. Let W be the scheme obtained by glueing
n2 ’(U) and Y - {P} via the isomorphism

Then W is projective over R by Lemma 4.6. Let n be the morphism from W to Y
We have W is flat over R, W is integral as Y and Z are. Hence Wo has the same

genus as Yo. We have that P has one pre-image point Q E Wo - 03C0-12(P), because a
cusp has only one pre-image point in the normalization of a reduced curve. The
curve F = 03C0-1(U - {P}) is non-singular at the pre-image of P, because Zo which
contains only ordinary double points as singularities. Hence the genus of F is
one less than the genus of Yo. Then 03C0-1(P) must have genus 1, because
# (F n n - l(P» = 1. Thus assertion (iii) holds. D
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5. The moduli space of pseudo-stable curves

In this section we will construct the moduli space of pseudo-stable curves, and
show that it is complete.

THEOREM 5.1. If C is a smooth curve embedded by a complete linear system of
degree d &#x3E; 2g, then C is Chow stable.

Proof. This is Theorem 4.15 of [Mu2]. D

It follows that any smooth curve C of genus g &#x3E; 2 embedded by r(C, ccyo3) is
Chow stable.

Let g  3, d = 6(g-1), and N = 5(g -1 ) -1. Let H be the Hilbert scheme

parameterizing connected subcurves of PN with Hilbert polynomial
P(n) = dn + 1- g. Let Ch be the Chow variety parameterizing 1-cycles of degree d
in P’. Let H3 c H be the subscheme of 3-canonically embedded curves of genus
g in P’. Let Ch, be the open subset of Ch consisting of GIT-stable points under
the action of SL(N+ 1). Theorem 5.10 of [Mul] says that there is a morphism
03A6:H~Ch. Let Uc = 03A6-1(Chs)~H3. Let Z ~ H be the universal curve over H,
and for h E H, let X h denote the fiber over h of Z ~ H.

LEMMA 5.2. If hEU c, then Xh is p-stable.
Proof. There is a morphism Spec(k[[t]]) ~ Uc such that the special point

maps to h and gr = Z x Uc Spec(k[[t]]) has a smooth generic fiber over

Spec(k[[t]]). Let gr fi denote the generic fiber and X0 = Xh denote the special
fiber. Since gr 0 is Chow semi-stable, it follows from the lemmas in §2 that gr 0 has
no triple points, no cusps which are not ordinary, no tachnodes which do not
involve a line, and is generically reduced. Lemma 2.6 shows that OX0 ~ 03C9X0~3.
It follows that gr 0 does not contain any lines, so it does not have any tachnodes.
Further gr 0 cannot have any rational subcurves that meet the rest of the gr 0 at 1
or 2 points. Lemma 3.1 show that gr 0 does not have any elliptic tails. Thus X0
must be p-stable. D
The map 03A6|Uc: Uc - Ch is one-to-one and therefore quasi-affine. Now

Proposition 1.8 of [Mul] shows that the points in Uc are GIT-stable under the
action of SL(N + 1) on the Hilbert scheme induced by 03A6: H ~ Ch, because

Uc c 03A6-1(Chs) and 03A6|Uc is quasi-affine.
Let Q be the GIT-quotient of Uc by the action of SL(N + 1). The following

lemma shows that Q is a moduli space for p-stable curves.

LEMMA 5.3. Suppose C is a p-stable curve. Then there is an hEU c such that
Xh - C.

Proof. Let Yo be the M-D stable curve associated to C as in Lemma 4.2. There
is a morphism Y ~ Spec(k[[t]]) such that the generic fiber 1’:, is smooth and the
special fiber is Yo. Embed 1’:, in P’(,» by 0393(Y~, 03C9~3Y~) and let 03A8(Y~) denote its image
there. Then Lemma 5.3 of [Mu2] says that by replacing k[[t]] with some finite
extension and choosing a suitable basis of 0393(Y~, 03C9~3Y~) we may assume that the
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closure X in PNk[[t]] of 03A8(Y~) satisfies

(i) XI = §; and
(ii) Xo is Chow stable or Chow semi-stable with positive dimensional

stabilizer.

The proof of the last lemma shows that Xo must be p-stable. Lemma 4.8 says
there is a Spec(k[[t]])-morphism X ~ Y with properties that lead us to conclude
X0 ~ C by Lemma 4.2.

It is easy to see that any p-stable curve C with genus  3 has only finitely
many automorphisms. Each subcurve birational to P’ contains 3 points which
are cusps or ordinary double points of C. Each subcurve birational to an elliptic
curve contains at least 2 points which are cusps or ordinary double points of C.
Thus the p-stable curve Xo must be Chow stable and not just Chow semi-stable.
Thus X o corresponds to a point in Uc. D

We are now ready to prove

THEOREM 5.4. The GIT-quotient Q of Uc is a complete moduli space for p-
stable curves.

Proof. It remains to show that Q is complete. Let Q’ be the quotient of the
semi-stable points of Uc. Then GIT says that Q’ is complete, and we have
QcQ’.
We will show Q = Q’. Let P be a point of Q’. Then there is a curve Y c: P’

such that § is smooth with the 03C9~3Y~ embedding and Yo corresponds to P e Q’.
Thus Y induces a map Spec(k[[t]]) ~ Q’ where the special point is mapped to P.
Lemma 5.3 of [Mu2] says that by replacing k[[t]] with some finite extension
and choosing a suitable embedding 03A8 : Y~ ~ PNk((t)), we may assume that the
closure X of 03A8(Y~) in PNk[[t]] is such that

(i) xi = ’¥(y;,) is embedded by r(Xn, 03C9~3X~); and
(ii) Xo is Chow stable. 

X,

Now Y and X induce the same mapping of Spec(k[[t]]) to Q’. But Xo
corresponds to a point in Q. Thus P E Q. D
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