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Introduction

Since Carlson and Griffiths [4] introduced the notion of the infinitesimal
variation of Hodge structure (IVHS for short), several authors obtained the
generic Torelli theorems for hypersurfaces of various varieties (e.g., [7], [10],
[18], [8] and [13]) by showing variational Torelli ([5]). Roughly, their

arguments have two common ingredients:

(1) Interpretation of IVHS by the "Jacobian ring".
(2) Recovering the variety in question from the algebraic data of IVHS rewritten
in terms of its Jacobian ring.

Thus the study of the Jacobian ring played an important role in the case of
hypersurfaces. However, in higher codimensional case (e.g., complete inter-
sections), we do not know much of the generic (or variational) Torelli problem,
probably because we have no proper method to do even (1).
The purpose of this article is to develop a method for the step (1) in the case

that varieties in question are defined by sections of ample vector bundles. More
precisely, we work in the following situation. Let 8 be an ample vector bundle
on a nonsingular projective variety X, 03C0: Y = P(E) ~ X the associated pro-
jective bundle, and Y the tautological line bundle such that 03C0*L ~ iff. Then we
canonically have H0(Y, L) ~ H0(X, 8). Suppose that ueHO(X,8) defines an
irreducible nonsingular subvariety Z of codimension rank 8. Then we can
consider the hypersurface Z defined by ~H0(Y, L) corresponding to u. We
compare the IVHS’s of Z and Z to see that they are isomorphic in some sense.
Since the "Jacobian ring" of Z can be defined by means of the first prolongation
bundle 1:,!l’ of IR as in [10], we then consider it as that of Z and we can study its
duality properties.
The above argument can be applied successfully to complete intersections of

projective hypersurfaces. This gives us a hope in solving the generic Torelli
problem. Of course, the essential difficulty is in the step (2). In the case of
hypersurfaces, we have a strong tool for (2), the Symmetrizer Lemma invented by
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Donagi [7]. In our case, however, it seems that we cannot apply it. We analyze
the infinitesimal Schottky relation [3] to show our generic Torelli theorem
which covers only a few types of complete intersections. We must wait for some
new techniques to proceed further.
The plan of this article is as follows. In §1 and §2, we prepare the fundamental

tools which we shall need later. Especially, the results due to Atiyah [1] and
Morimoto [15] play an important role. In §3, we define the Jacobian ring and
study its duality properties. As mentioned above, this is essentially Green’s work
[10]. In §4 and §5, we compare the IVHS of Z with that of Z. We also give a
sufficient condition to interpret the IVHS in terms of the Jacobian ring
(Proposition 4.7 and Lemma 5.2). In §6, we study the IVHS of a nonsingular
complete intersection in pn and show that its algebraic part can be described in
terms of the Jacobian ring (Theorem 6.1). Finally, in §7, we show the generic
Torelli theorem (Theorem 7.1) for some types of complete intersections in Pn.
We remark that Terasoma [20] showed the generic Torelli theorem for some

complete intersections of projective hypersurfaces of the same degree along an
analogous line. Ours includes his result as a particular case. We also remark that
the infinitesimal Torelli problem for complete intersections was solved by Peters
[16], Usui [21] and Flenner [9].

1. Cohomology of projective space bundles

1.1. Let 6 be a holomorphic vector bundle of rank r on an n-dimensional
compact complex manifold X. We denote by .9,, the fiber of E ~ X over x~X.
We do not distinguish E with the locally free sheaf of its sections. Consider the
holomorphic fiber bundle

where the fiber 03C0-1(x), x ~X, is the space P(gx) of 1-dimensional linear

subspaces of the dual space 6t of Ex. We have the exact sequence of tangent
bundles

where TY/X is the relative tangent bundle. Let 2 be the line bundle of Y whose
dual 2-1 is the subbundle of n*G* given by
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As usual, we call ff the tautological line bundle. Then we have the Euler exact
sequence,

induced by the canonical inclusion 2-1-+n*8* (see, [19, p.108]). By (1) and (2),
we get

The following is well-known.

LEMMA 1.2. Let m be an integer.

(1) There is a canonical isomorphism

where sm8 is m th symmetric tensor product of 8.
(2) Let Y be any holomorphic vector bundle on X. Then,

1.3. By Lemma 1.2, we have the natural isomorphism H0(X, E’) ~ H0(Y, L). For
the later use, we describe this explicitly. Take a sufficiently small open subset U
of X over which ol is trivial and let ei, ... , er be a frame of S on U. If 03C3 ~ H°(X, 8)
is given locally by 03C3 = 03A3i03C3iei then the section 03C3 ~ H0(Y, L) corresponding to 0"
can be written as 03A3i03C3iei, where we regard e’s as homogeneous fiber

coordinates on P(E)|U ~ U x Pr-1. We call 03C3 the adjoint section of 0". Let Z and
Z be the zero varieties of 0" and cr, respectively. We call Z the adjoint hypersurface
of Z.

LEMMA 1.4. Let v be a holomorphic vector bundle on X and m an integer. Put

Y/x ̂jT*Y/X. Then the group Hq(Y, 03A9PY ~ ym ~ 03C0*v) vanishes provided that

holds for any i satisfying max(O, p + 1 - r)  i  min(n, p).
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Proof. The dual sequence of (1) induces a filtration F. for 03A9PY:

whose successive quotients are given by

Tensoring Lm Q 03C0*V with these, we get a spectral sequence

We note that E1i,j-i vanishes unless 0  i  n, 0  p - i  r - 1. Thus the
assertion follows immediately from this spectral sequence. q.e.d.

LEMMA 1.5. Let V and m be as in Lemma 1.4. If one of the following conditions
is satisfied, then Hq(Y, 03A9PY/X ~ Lm Q 7r*Y) vanishes.

Proof From the dual sequence of (2), we get an exact sequence

for each integer v with 1  03BD  r - 1. Tensoring this with Lm ~ 03C0*V, we get

Consider the exact sequence (3) for 03BD = p - i, where 0  i  P - 1. Then we find
that Hq - i(03A9p-iY/X 0 ffm 0 03C0*V) = 0 if Hq - i(03C0*( A p-iS 0 TT) 0 Lm-p+i) = 0 and
Hq-i-1(03A9p-i-1Y/X ~ Lm 0 03C0*V) = 0. Thus, by an inductive argument, we see that
(1) is sufficient to imply Hq(03A9pX/Y 0 ffm 0 03C0*V) = 0. Similarly, consider the exact
sequence (3) for v = p + i, where 1ir-1-p. Then we find that

Hq+i-1(03A9p+i-1Y/X ~ Lm ~ 03C0*V) if Hq+i-1
and Hq+i(03A9p+iY/X 0 Lm 0 03C0*V) = 0. Thus (2) is also sufficient. q.e.d.

From Lemmas 1.4 and 1.5, we get the following:

PROPOSITION 1.6. Let V be a holomorphic vector bundle on X and m~Z.
Then Hq(Y,03A9YP~ Lm~03C0*V) vanishes provided that one of the following con-
ditions is satisfied.
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2. Automorphism groups of principal bundles

2.1. Here we summarize the results due to Atiyah [1] and Morimoto [15]. Let
X be as before an n-dimensional compact complex manifold and e a holom-
orphic vector bundle of rank r on X. We denote by Aut(X) the group of all
holomorphic automorphisms of X. As is well-known, it is a complex Lie group.
Let PE* be the principal holomorphic fiber bundle associated with the dual
bundle 03C00:E* ~ X of 8. We denote by F(PE*) the group of all fiber preserving
holomorphic automorphisms of PE*. Here we call a biholomorphic map f of
98* fiber preserving if it satisfies f(x· g) = f(x) · g for all x e X and g e GL(r, C).
By a result of Morimoto [15], the group F(PE*) is a complex Lie group, too.
We can identify it with the group consisting of f = (fE*, fx) e Aut(8*) x Aut(X)
such that the diagram

commutes and fE* induces a linear isomorphism on each fiber of 03C00. Thus we get
a homomorphism of Lie groups 03A0E*: F(PE*)~Aut(X) which sends (f8*, fx) to
fX.

Let TPE* denote the tangent bundle of PE*. Since GL(r, C) acts on PE*, it
also acts on TPE*. We put 1:8 = TPE*/GL(r, C) so that a point of it is a field of
tangent vectors to PE*, defined along one of its fiber, and invariant under the
action of GL(r, C). Then one can show that 03A3E has a natural vector bundle
structure on X (see, [1, p. 187] where 03A3E is denoted by Q). The vector bundle
associated to PE* by the adjoint representation of GL(r, C) is isomorphic to
End(E*) and we get an exact sequence of vector bundles on X:

([1, Theorem 1]) whose extension class is known as the Atiyah class. The exact

cohomology sequence derived from (4) is closely related to rlg.. We in fact have
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the following diagram (see, [15]):

where, for a complex Lie group H, we denote by Lie(H) the Lie algebra of H.

2.2. Let J1(E) denote the 1 jet bundle of 8. Then we see that J1(E) is a subbundle
of 03A3E* ~E. Let Q c- HO(X, 8) and consider its 1-jet extension j(03C3) c- H’(X, Jl(8».
Since

we get a homomorphism Es --+,0 defined by the contraction with j(a). We now
describe it. Since the problem is local, we work in a sufficiently small open subset
U of X over which 8 is trivial. We take a system of local coordinates (x 1, ... , xn)
on U and a frame (e1,...,er) of 81u We write If we consider

(e 1, ... , er) as a system of fiber coordinates on E*|U, then

forms a local frame of 03A3E. Thus a local section D of 03A3E can be expressed as

Then we get

Thus, if 6 is transversal to the zero section of 9, that is, the zero variety Z = Z03C3 of
a is nonsingular with codimension rank s, then the map is
surjective. We denote its kernel by 03A3E Z) so that the sequence

is exact. Further, we have the following:
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LEMMA 2.3. Assume that the zero variety Z of a c- H’(X, E) is nonsingular and
has codimension r = rank E. Then the sequence

is exact, where

Proof. We employ the notation in 2.2. Since Z is nonsingular with codimen-
sion r, we can assume that ai = xi for all 1  i  r. Then we have

If D is a local section of Et ( -Z), then bi(x) = - 03A31jraij(x)xj for any i. This
means that 0 = 1: biojoxi is a local section of Tx(- log Z). Moreover, if b’s are
zero, then the linear map defined by the matrix (aij) sends a to zero. Thus we get
the sequence in the statement, and it is straightforward to check the
exactness. q.e.d.

2.4. Let Y = P(6) be the projective bundle as in §1 and assume that the zero
variety Z of 03C3 ~ H0(X, E) is nonsingular and has codimension r. By the
description of the adjoint section à of a in 1.3, we see that its zero variety Z is a
nonsingular hypersurface of Y Since £f is a line bundle, (4), (5) and Lemma 2.3
give the following exact sequences.

These will play an important role in our consideration. We remark that the

Atiyah class of (6) is - 2ni- îcl(y).
LEMMA 2.5. With the above notation and assumptions, the following hold.
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(3) For any holomorphic vector bundle Y on X, the diagram

commutes.

Proof. We show (1). Let q be a positive integer. Since Hq(TPr-1) = o, we have
Rq03C0*, TX/Y = 0. It follows from (1) that Rq03C0*,TY = 0, and thus we have Rq03C0*03A3L= 0
by (6). We show that 03C0*03A3L~ 03A3E. Since the problem is local, we work over a
small open subset U ce X as in 2.2 and use the notation there. We cover the fiber
Pr-1 by open subsets Wi = {ei~ 0}. Then, on U x W, the local frame of Ty is
given by ~/~xj;, 1 j  n, ~/~(ek/ei), k ~ il. We see from (6) that these together
with elô/ôei form a local frame of 03A3L, where we regard ei as a frame of If on
U x W . Thus D c- H0(03C0-1(U), 03A3L) can be written as

Thus we get 03C0*03A3L~ 03A3E. We next show (2). It follows from (1) and (7) that
Rq03C0*TY (- log Z) = 0 for q , 2. Further, we have the following commutative
diagram by (1) and Lemma 1.2, 1):

This implies that R103C0*TY(- logZ) = 0 and n*TY(-logZ)~03A3E-Z&#x3E;. The
assertion (3) follows from (1) and (2). q.e.d.

From Lemma 2.5, 1), we get H°(X, 03A3E) ~ HO(Y, 03A3L). In view of 2.1, this implies
that Lie(F(PE*)) ~ Lie(F(PE-1)).
LEMMA 2.6. With the above notation and assumptions, there is an isomorphism

for any holomorphic vector bundle Y on X such that the following diagram
commutes.
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Proof. Tensoring (6) with 03C0*V ~ L-1, we get

From the derived cohomology exact sequence, we get H0(Y,03C0*~

for any q by Lemma 1.2. By the exact cohomology sequence derived from (1)
tensored with 03C0*v ~ L-1 we have

since H0(Y, 03C0*(V ~ T,) ~ L-1 = 0 by Lemma 1.2. Similarly, by the co-

homology exact sequence derived from (2) tensored with x*Y (&#x26; Y-’, we have
In summary, we get a

homomorphism

defined by the composition

Now, it is easy to see that a is nothing but the map obtained by the contraction
with 0". q.e.d.

3. The Jacobian rings

In this section, we recall the definition of the Jacobian ring due to Green [10]
and study its duality properties. Similar computations are already found in [10]
and [13].

3.1. In the rest of the paper, we freely use the notation in the preceding sections
and fix the following set-up.

( 1 ) X is a projective manifold and dim X = n  3.
(2) cC is a vector bundle of rank r on X, which is ample in the sense of

Hartshorne [11] and satisfies 2  r  n - 1.
(3) Y is the projective bundle P(E) associated with 0 and 03C0: Y ~ X is the

projection map.
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(4) There exists a section Q e H°(X, 9) whose zero variety Z = Z03C3 is irreducible
nonsingular and has codimension r in X.

By (2), the tautological line bundle S on Y = P(8) is ample ([11, Proposition
(3.2)]). Thus the adjoint hypersurface Z of Z is an ample divisor. Further, it is
nonsingular by (4). We denote by m: Z -+ X the restriction of 1t to Z.

DEFINITION 3.2 ([10]). Lct cr be the adjoint section of a in 3.1, (4). For any
coherent (OY-module IF, we define the pseudo-Jacobian system JF as the image
of the map

derived from (7) tensored with Y - 10 F. In particular, if F= La~Kby, we set

We call J = ~ Ja,b and R = EeRa,b the Jacobian ideal and the Jacobian ring of
Z = Z03C3, respectively.

3.3. From the dual sequence of (7), we can construct the following Koszul exact
sequence as in [10]:

Observe that we have

where 03A9vY(logZ) is the sheaf of meromorphic v-forms on Y with at most
logarithmic pole along Z. The exact sequence (8) tensored with Ln+r-a ~ K1-bY
breaks into the short exact sequences

where we set
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Consider now the cohomology exact séquences derived from (9). Since we have

^n+r03A3L* = KY from (6), we see Thus

by the Serre duality, and

We further have a homomorphism

defined by the composition of the coboundary maps

The following is straightforward.

PROPOSITION 3.4. The map da,b is injective f

I t is surjective if

COROLLARY 3.5. The map da,b is injective provided that the following con-
ditions are satisfied for 1  s  n + r - 2:

The map da,b is surjective provided that the following conditions are satisfied for
2sn+r-1.

Proof. From the dual sequence of (6), we have
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for each j ~N. Thus, for any vector bundle V on Y, we have

Hi(Y, ~ Y) = 0 if Hi(Y ni y ~ V = Hi(Y, 03A9iY ~ Y) = 0.

This in particular implies the assertion by virtue of Proposition 3.4. q.e.d.

REMARKS 3.6. (1) The extension class of (10) is 2nJ=1cl(2). Thus the
coboundary map Hi03A9Yi-1),Hi+1(Y,03A9jY) is (essentially) given by the cup-
product with c1(L).

(2) We have the following commutative diagram by the Poincaré residue

sequence and the dual sequences of (6), (7):

LEMMA 3.7. Assume that the following conditions are satisfied:

Then Rn+r,2 ~ C and da,b is induced by the pairing

Proof. By Proposition 3.4, the conditions (1) and (2) imply that

do,o : Rn+r,2 - (Ro,o)* is an isomorphism. We show Ro,o - C. For this purpose, it
suffices to show that Consider the cohomology exact
sequence derived from (6) tensored with L-1. By Lemma 1.2, we have
H0(Y,L-1)=0 On the other hand, since S is ample, it follows from [14,
Theorem 8] that H°(Y, Ty ~ L-1) = 0. Thus we get H0(Y, 1: Ii’ ~ L-1) = 0. The
rest is clear from the construction of da,b. q.e.d.

4. Hodge structures

DEFINITION 4.1. The inclusion Z q X induces the homomorphism
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H*(X, Z) ~ H*(Z, Z). We set

and call it the variable part of Hq(Z, Q). Similarly, we define the variable part of

Hq(Z, Q) by

REMARK 4.2. We see that Hqvar(Z) is isomorphic to the usual primitive
cohomology Hprim(Z) defined by means of the ample class c1(L|Z Thus it

admits a polarized Hodge structure of weight q. On the other hand, it seems that
Hq.,(Z) is closely related to the primitive cohomology defined in [2] by means of
the Chern classes ci(8Iz).

PROPOSITION 4.3 (cf. [20]). There is a canonical isomorphism of the Hodge
structures

Proof. We consider the Leray spectral sequences

Since we have

we see that Rjm*C is given by

Similarly, we have
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Thus both spectral sequences degenerate at E2. Since we have E2i,j =’E2i,j
unless j = 2r - 2, we get a homomorphism

which is an isomorphism of Hodge structures.

4.4. We recall some results on the Hodge structure of ample hypersurfaces (see,
[3] or [17]). The Poincaré residue operator gives an exact sequence of

complexes

By a result of Deligne [6], the spectral sequence

degenerates at E 1 term. Thus the exact sequence of hypercohomology can be
identified with the Gysin sequence (see, [17, p. 444]):

where

(1) i * is the map induced by the inclusion i : Y - Z Y,
(2) the residue map R is the dual of the "tube over cycle map",
(3) g is (essentially) the Gysin map,
(4) the group Hq(Y - Z) has a mixed Hodge structure [6] with 2-stage weight

filtration: Wq = i*Hq( Y) and Wq+1 = Hq( Y - Z),
(5) the maps i*, Rand gare morphisms of mixed Hodge structures.

LEMMA 4.5. The homomorphism

is a zero map. Thus

is an isomorphism of Hodge structures of pure weight n + r.
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Proof. We show that the map of E 1-terms

of the Hodge-to-de Rham spectral sequence is a zero map for p + q =
n+r-1 = dim Y Since Y - Z is an affine variety, we have ’E1p,q = 0 for q &#x3E; 0.

Since r  2, we have

by Lemma 1.2. Thus we get E1n+r-1=H0(Y,KY)=0. Thus i * is a zero map.
From this, we have

By the Poincaré duality, we get the second assertion.

The above observations are summarized in the following:

PROPOSITION 4.6. There are canonical isomorphisms

of Hodge structures. I n particular, for r  p  n,

PROPOSITION 4.7. Let R be the Jacobian ring of Z and fix p satisfying
r  p  n. If the following conditions are satisfied, then Hvarn- P(Z, 03A9ZP- r) ~ Rn +r- p,1·

Proof We consider the exact sequences (9) for a = p, b =1. In view of the
derived cohomology exact sequences, the conditions (1) and (2) are sufficient to
imply

for 1sn+r-2-p, and
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Thus we get

where the last isomorphism follows from Proposition 4.6. q.e.d.

COROLLARY 4.8. holds if the following conditions
are satisfied.

Proof. See the proof of Corollary 3.5.

COROLLARY 4.9. Assume that 9 is a direct sum of ample line bundles. Then
Hvarn-p(Z, n’ - r)~Rn+r-p,1 holds if the following conditions are satisfied.

Proof. We first note that the condition (1) of Corollary 4.8 holds for any p by
virtue of the vanishing theorem of Kodaira-Nakano, since we have assumed
that 2 is ample. We show that (3) and (4) imply 4.8, 4). From Proposition 1.6, we
see that the following condition is sufficient to imply 4.8, 4):

Sincei -j-p+1 s-r -r, wecanassumei-j-p+ 1 a 0 by Lemma
1.2. Thus (*) is equivalent to

for max(0,p+s-r)  i  min(p+s- 1, n),

1 jmin(i-p+1)

Since i  p + s - r, we have
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Thus, since 8 is a direct sum of ample line bundles, we see that (**) follows from
the vanishing theorem of Kodaira-Nakano unless (i,j)=(p+s-r, 1),
(p+s-r+1, 1). Putting v = s - r, s - r + 1, respectively, we see that (3) and (4) are
sufficient to imply 4.8, (4). Similarly, we can show that (1) (resp. (2)) implies (1)
(resp (2)) of 4.8. q.e.d.

5. The period maps and the IVHS

5.1. Let * be the open subset of H0(X, E) consisting of 0" satisfying (4) of 3.1.
Then we have a family L = {Za}uEq of nonsingular subvarieties defined by
sections of 8 and a period map

03C3~ the polarized Hodge structure on

where -9 is the corresponding Griffiths period domain and r is the monodromy
group. The group F(PE*) acts naturally on H0(X,E) and e is invariant with
respect to this action. Since Z03C3 and Z03C3, should be isomorphic if a and Q’ are in
the same F(PE*)-orbit, we are led to considering another period map

Our concern is to know whether P is "generally" injective. However, since -4Y
does not necessarily have a good structure such as a quasi-projective variety, the

meaning of "generic" is not clear at all. By a result of [5], we can find a dense

open subset 4Yo of 0/1 such that

(1) the geometric quotient -4fo = U0/F(PE*) exists,
(2) -4Yo and each F(PE*)-orbit are smooth,
(3) there exists a family of varieties in question over vito, and
(4) the period map

is well-defined holomorphic map.
Thus we can say that P is generically injective if so is Po. Further, by Lemma

2.5, we can make the following identifications.

(5) The tangent space at 6 of the F(PE*)-orbit through a is
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(6) the tangent space of -U0 at [03C3] is

Coker{H0(X, 1:tf) -+ H0(X,E)} ~ Rl,o,

where [03C3] ~U0 is the equivalence class of or.

LEMMA 5.2. Let p : Rl,o ~ H1(Z, Tz) be the Kodaira-Spencer map at [03C3] ~U0

(1) p is injective provided that the following conditions are satisfied.

(2) p is surjective provided that the following conditions are satisfied.

Proof. We first show the assertion (1). By definition, we consider R1,0 as a
subspace of H1(X,03A3E ~-Z~). From the cohomology exact sequence derived
from the exact sequence in Lemma 2.3, we see that

is injective if H1(X, Ker(8* ~ E ~ 8» = 0. We consider the Koszul resolution

and the spectral sequence

Thus (i) implies H1(X, Ker(8* ~ E~E)) = 0. From the Koszul exact sequence

we see that (ii) is sufficient to imply H1(X, TX(- Z)) = 0. Thus the cohomology
exact sequence derived from

([12]) implies that H1(TX(- log Z)) ~ H1(TZ) is injective. Thus we get (1). We next
show (2). It follows from (5) that R1,0~H1(03A3E-Z&#x3E;) holds if H1(03A3E) = 0. This
last follows from the conditions H1(End(t9’*» = 0 and H1(TX) = 0 by (4). The rest
can be shown along an analogous line as in the proof of (1). q.e.d.
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REMARK 5.3. We can explain the meaning of Lemma 5.2 in a slightly different
way. Consider the diagram

where the horizontal sequence arises from

and r’s are restriction maps. As is well-known, the Kodaira-Spencer map for the
family L~ U in 5.1 at a is given by 03B4*o r2. The condition (1), (i) of Lemma 5.2
implies

Similarly, the condition (1), (ii) of 5.2 implies that the restriction map ri is

surjective. Since the map H°(Z, Txlz) ~ H’(Z, Nzlx) is given by the contraction
withj(u)lz, we see

if we denote by T03C3, the image of the Kodaira-Spencer map.

5.4. We recall here the definition of the infinitesimal variation of Hodge
structure (IVHS for short). For the theory of IVHS, see [3].

The data (Hz, Hp,q, Q, T, 03B4 is called an IVHS of weight k if

(1) (Hz, Hp’q, Q) is a Hodge structure of weight k polarized by Q,
(2) T is a complex vector space and the linear map

satisfies the properties

Returning to the situation we are interested in, let T03C3 denote the image of the
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Kodaira-Spencer map p: T03C3(U) ~ H1(Z03C3, TZ03C3). Then, the polarized Hodge
structure on Hvarn-r(Z) together with the linear map

induced by the cup product Tz ~ 03A9PZ~ 03A9P-1Z gives an IVHS. This is nothing but
the information comming from the differential at [a] of the period map Po.
Proposition 4.7 and Lemma 5.2 show that the algebraic part of the IVHS can be
interpreted in terms of the Jacobian ring, under the suitable conditions.

6. IVHS of complète intersections

We now restrict ourselves to nonsingular complete intersections in Pn and study
IVHS applying the results in the preceding sections.
We put X = Pn and 0 = Q i =1 OX(di). We assume di  2 for 1  i  r, and

2  r  n - 2. Thus Z = Z03C3, 03C3 ~H0(X,E), is an (n - r)-dimensional nonsingular
complete intersection of type (dl, d2, ... , d,). We further set

The purpose of this section is to show the following:

THEOREM 6.1. Let Z be as above and R = ~Ra,b its Jacobian ring.

(1) Hvarn-p(Z, 03A9Zp-r ~ Rn+r-p,l holds for any r  p  n.
(2) If 1;, denotes the image of the Kodaira-Spencer map as in 5.4, then

R1,0~ Ta. Further, R1,0 ~ H1(Z, Tz) holds unless Z is a K3 surface.
(3) The cup-product map

can be identified with the multiplication map

(4) The cup-product pairing

can be identified with
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except possibly in the case that Z is an odd dimensional complete intersection of
type (2, 2).

Proof. To see (1) and (2), apply Bott’s theorem to Corollary 4.9 and Lemma
5.2. The assertion (3) follows from (1) and (2). The assertion (4) will be shown
below. q.e.d.

LEMMA 6.2. Rn+r-p,1~(Rp,1)* for any r  p  n.
Proof. Without loosing generality, we can assume 2p  n + r. We show the

map d p,1: Rn+r-p,1~(Rp,1)* in 3.3 is an isomorphism. Since we saw in Theorem
6.1, (1) that Rn+r-p,1 Z)), it suffices to check the conditions
in Proposition 3.4 for s  p putting (a, b) = (p, 1). We first assume s  p and

consider the conditions in Corollary 3.5. The condition (1) of 3.5 becomes

By Proposition 1.6, (1), it suffices to show

which is equivalent to

by Lemma 1.2. By the vanishing of Kodaira-Nakano, this is reduced to showing
Hn-S(X, 03A9SX ~ det 6* ~ Sp-s-r E* = 0 for 1  s  p - r. This last follows from

Bott’s theorem. We can check the other conditions in Corollary 3.5 similarly.
(The condition (2) follows directly from the vanishing theorem of Kodaira-
Nakano.) We next assume s = p and consider the conditions in Proposition 3.4.
We remark that H’(Y, 03A9jY) = 0 unless i = j, since Y is a projective space bundle
on X = Pn. Thus, by the proof of Corollary 3.5, we see that the group

Hq( Y, p03A3L*, where q =n+r-1-p or n + r - p, vanishes except in the cases
2p = n+r-1, n + r. If 2p =n+r-1, then we have the commutative diagram
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coming from (9), (10) and the Poincaré residue sequence. Thus Hp(Y, 
does not vanish. However, as we have seen in Lemma 4.5, 
~ Hp(03A9pY(log Z)) is a zero map. Thus

is injective. If 2p = n + r, then we have an exact sequence

Since we have by the Hard Lefschetz theorem, we get
In any way, we see that dp,1 is an isomorphism

for any p with 2p  n + r. q.e.d.

LEMMA 6.3. With the above notation, Rn+r, 2~ holds unless Z is an odd

dimensional complete intersection of type (2, 2).
Proof. We consider the conditions in Corollary 3.5. We only treat the

condition (1), since the other cases are quite similar. We first consider the case
s  r. By Proposition 1.6, (1), it suffices to check the following condition for
1sr:

By Lemma 1.2, this is equivalent to the conditions

which follows from Bott’s theorem. We next consider the case s &#x3E; r. By
Proposition 1.6, (2), the condition

is sufficient. By Lemma 1.2, it suffices to check the following conditions for
rsn+r-2:



293

We remark that 0  n + r - 2 - s + j  n. Thus, in view of Bott’s theorem, these
do not vanish only when n + r - 2 - s + j = i and the degree of a direct

summand of

is 0. Since d03BD  2 for any 1  03BD  r, the degree of each direct summand of A is
not less than 2s - n - 1. Since 2s + 2 - n - r  0, we only have to consider the
cases

If (a) or (b) is the case, then we have i = j + s which contradicts the condition
i  s. Thus only (c) is the exception. q.e.d.

7. Generic Torelli theorem

The following is our main result.

THEOREM 7.1. The generic Torelli theorem holds for complete intersections of
type (dl, ... , dr) in pn provided that the following conditions are satisfied.

For the proof, we need some lemmas.

LEMMA 7.2. Suppose that the canonical bundle Kz of Z is ample, i.e., d &#x3E; n + 1.

Then H0(Z, KmZ) ~ Rmr,m for any m~ tBJ.
Proof. We set K = Kx ~ det E. By Lemma 2.6, it suffices to show

We consider the Koszul resolution

Since Hi(X, ) = 0 for 1  i  r, we see H1(X, Km(-Z)) = 0.
Further, since Hi-1(X, ~iE* ~ Km)=0 for 2  i r, we see that
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H°(X, S* © À"’)-H°(X, À"’( - Z)) is surjective. Since H1(X,Km)=0, it follows

The proof of the following lemma is easy and we left it for the reader.

LEMMA 7.3. Suppose that the canonical bundle Kz of Z is ample and consider
the canonical mapl&#x3E;K:Z-+pdimIKzl. If 2d - 2n - 2 &#x3E; dmax, then the homogeneous
ideal of 03A6K(Z) is generated by quadrics.

LEMMA 7.4. Let Z be as above. The map

is injective if the condition (2) of Theorem 7.1 is satisfied.
Proof. We only have to check the conditions (1) and (2) of Corollary 3.5

putting (a, b) = (n - r, 0). This can be carried out in a similar way as in the proof of
Lemma 6.3, using 1.6, (1) (resp. (2)) if s  n (resp. if s &#x3E; n). Hence we omit it.

Proof of Theorem 7.1. We recover Z from the IVHS (Hvarn-r(Z), Ta, 03B4). By
Theorem 6.1, we are given the following data:

(1) The multiplication maps

(2) The perfect pairing

Applying all the mn-p in succession, we have

Combining with the polarization Q, we get

Thus we get a bilinear map
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or a linear map

Thus Ker(03BB) is an invariant of the IVHS and called the infinitesimal Schottky
relation in [3]. Since 03BB, is induced by the multiplication map, we get the following
factorization of it:

where p is the multiplication map and v is the dual of the multiplication map
Sn-r R1,0~Rn-r,0. Since Sn-r HO(X, 8)-+HO(X, Sn-rE) is surjective, we see that v
is injective. Moreover, since dn-r,0 is injective by Lemma 7.4, we conclude that
Ker(03BB) ~ Ker(03BC). By Lemma 7.2, 03BC is nothing but the natural map

S2H°(Z, Kz)-+ HO(Z, K’). Thus Ker(03BC) can be identified with the set of all

quadrics through the canonical image of Z. In summary, we see that Z can be
reconstructed from the infinitesimal Schottky relation Ker(03BB.) by virtue of
Lemma 7.3. This completes the proof of Theorem 7.1, because Variational
Torelli implies Generic Torelli ([5]).

We list d1,...,dr satisfying the conditions of Theorem 7.1 when n - r = 2, 3.
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