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0. Introduction

The purpose of this article is to study the extensions of function fields defined by
Gauss maps of ordinary elliptic curves and curves of higher genus with a small
number of cusps in projective spaces defined over an algebraically closed field of
positive characteristic p.

For elliptic curves, we shall prove

THEOREM 0.1. Let C be an elliptic curve, let 1 be a morphism from C to a
projective space P, birational onto its image, and let C’ be the normalization of the
image of C under the Gauss map of C in P via 1. If 1 is unramified, then C' is also an
elliptic curve. Furthermore, if C is ordinary, then the dual of the natural morphism
C— C' as an isogeny of abelian varieties is a cyclic, étale cover.

(See Section 2.)

We first note that the latter assertion is the main part of this result, and the
former assertion is already known (see [5, Theorem 4.1]). But we shall show the
former in a different way.

In the previous article [5], we gave a sufficient condition for a proper subfield
K’ of the function field K(C) of an ordinary elliptic curve C to have an
unramified 1 from C to some P, birational onto its image, such that the extension
of function fields defined by the Gauss map coincides with K(C)/K’ (see [5,
Theorem 5.1]). The main part of our Theorem 0.1 asserts that the condition
given in [5] turns out a necessary condition as well. In fact, one can easily verify
that the conclusion of Theorem 0.1 is equivalent to the assumption of [5,
Theorem 5.1] with K(C)=K’ (see, for example, [6, Chapter 12] or [12, §§13-
157). We here note that it is known that a curve C has a 1 with birational Gauss
map if and only if the characteristic p # 2 (see, for example, [5, Corollary 2.3] or
[2, Exposé XVII, §1.2 and Proposition 3.3]).

*Partially supported by Grant-in-Aid for Encouragement of Young Scientists, The Ministry of
Education, Science and Culture, Japan.
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Our main result for higher genus case is

THEOREM 0.2. Let C be a curve of genus g, let 1 be a morphism from C to P,
birational onto its image, let Q¢ p be the sheaf of relative differentials of C over P
via 1, and let 7y be the degree of Q¢ p as a torsion sheaf. If

y<29-—2,

then the Gauss map of C in P via 1 has separable degree 1.
(See Section 3.)

We here note that if y < 2g — 2, then g > 2 since y > 0 by definition, and the
following facts are well-known: in case of p # 2, y is equal to the number of cusps
of the image (C); and, in case of p = 2, y is double the number of cusps (see, for
example, [7, I, C] or [14, §3]). If we denote by r,, the m-rank of C in P via 1 (see,
for example, [14, §37]), then the assumption of Theorem 0.2 is equivalent to the
condition,

2ro <1y

because we have r; =29 — 2 + 2rq — 7.

On the other hand, the conclusion above tells us that there are only a finite
number of multiple tangents of C in P via i1, that is, lines in PP tangent at two or
more points to some smooth branches of i(C).

Theorem 0.2 will give an improvement and another proof for the previous
result [5, Corollary 4.4]. We shall give an example to show that the improve-
ment is nontrivial (see Example 3.1).

Furthermore, we shall show that it is impossible to weaken the hypothesis on
y in Theorem 0.2. For any curve C’' with the p-rank being not zero and for any
positive integers s indivisible by p and , taking a suitable curve C of genus g over
C’, we shall construct a morphism 1 from C to some [P, birational onto its image,
such that C — C’ coincides with the natural morphism defined by the Gauss map
as in Theorem 0.1, y =2g — 2, and the Gauss map has separable degree s and
inseparable degree p' (see Example 4.1).

1. Preliminaries

Let C be a smooth, connected, complete curve defined over an algebraically
closed field k of positive characteristic p.

We use the same notations as in the previous article [5]. Recall that, for a
morphism 1 from C to a projective space P, birational onto its image, we denote
by H°(P, Op(1)) ®,Og— 2 the universal quotient bundle of the Grassmann
manifold G consisting of 2-dimensional quotient spaces of H%(P, Op(1)), by 2
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the pull-back of 2 to C by the Gauss map C— G defined via 1, and by C’ the
normalization of the image of C — G. Assuming that (C) is not a line in P, we
have a natural, finite morphism of curves

c-C.

We denote by C, the section of the ruled surface P(2.) over C consisting of the
points of contact on P(2), and let

2c - 1*0p(1)

be the natural quotient corresponding to C,, as in [5, §3].
The property of C— C’ and 2, — 1*@Op(1) used often in [5, Proof of Theorem
5.2] is stated in general as follows:

LEMMA 1.1. If C— C’ factors through a curve C", and if 2. — 1*0Op(1) comes
from a quotient of 2¢. as a pull-back, then C — C" is an isomorphism.

Proof. Let f be the natural morphism P(2;)— P(2.) induced by the Gauss
map, and let C§ be a section of P(2..) over C" associated to the quotient of 2.
as above. Since f/, factors through Cg and is birational onto its image (see the
proof of either [4, Lemma 1.4] or [5, Theorem 3.1 (1)=(2)]), Co, — Cg must be an
isomorphism, which implies the result.

2. Ordinary elliptic curves

Assuming that C is an elliptic curve and 1 is unramified, we have the following
exact sequence

0 - 1*Op(1) - 2c - 1*0p(1) - 0 ()

(see, for example, [5, Lemma 3.2]).
LEMMA 2.1. Assume that C — C’ factors through a curve C". If

(1) 2¢» is indecomposable of even degree when (g) does not split, or
(2) 2¢ is isomorphic to #®?* for some line bundle ¥ on C" when (¢) splits,

then C — C" is an isomorphism.
Proof. This result follows from Lemma 1.1 (see, for example, [ 1, Part IT] or [3,
Chapter IV, §4]).

Now, if C’ were rational, then 2.. would be decomposed and hence isomorphic
to £ for some line bundle % on C'. It follows from Lemma 2.1 that C - C’ is
an isomorphism, and this is a contradiction. Therefore C' is an elliptic curve, and
we have proved the former assertion of Theorem 0.1.
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Next, assume moreover that C is ordinary, and let us prove the main part of
Theorem 0.1. We may here assume that C— C’ is not separable; otherwise,
C — C'is an isomorphism (see [5, Corollary 2.2]), and there is nothing to prove.

Case: (¢) does not split.

It follows from Lemma 2.1 that if C— C’ factors through a curve C” and if
C—C" is not an isomorphism, then 2.. is indecomposable of odd degree,
C — C’ thus has even degree, and C”— C’ has odd degree. This implies that
C—C’ has inseparable degree 2 and the separable degree is odd, which
completes the proof in this case (see, for example, [6, Chapter 12] or [12, §§13—

15]).
REMARK. It can be shown that C— C’ in this case is purely inseparable.

Case: (¢) splits.

If g denotes the inseparable degree of C — C’, then one can factorize C—»C’ as a
composition of a separable morphism C® — C’ with a Frobenius morphism
C - C9 of degree q.

Since 2. ~ 1*0p(1)®?, it follows from [13, Theorem 2.16] that 2cw is
decomposed. Clearly, 2« has even degree.

I claim that 2. is also decomposed. Suppose the contrary. It is sufficient to
show that 2. is isomorphic to 292 for some line bundle % on C9, because,
according to Lemma 2.1, this implies that C - C@ would be an isomorphism,
which contradicts to our assumption on C— C'. Now, if 2. has even degree,
then we have a non-trivial extension

O>M—> 20— M—0

with some line bundle .# on C'. Since 2.« is decomposed, we see that 2« must
be isomorphic to .# %. If 2. has odd degree, then C@ — C’ has even degree and
it follows from Proposition 2.2 below that 2cw is of the form .#®2 This proves
the claim.

Now, one can write

20=%,0%,

with some line bundles .#, &, on C'. Obviously, £, and £, have same degree.
Since 2; ~ 1*0p(1)®?%, £, ® #5 is contained in the kernel of the dual C « C'.
Let K be a discrete subgroup scheme of C’ generated by & 1 ® Z),and let C”
be the dual of a quotient of €’ by K. Then, C — C’ factors through C” since
C « C' factors through ¢ '/K,and we have & , ~ %, . By virtue of Lemma 2.1,
we find that C—C” is an isomorphism. The kernel of C « C’ is hence
isomorphic to K as a finite group scheme. This completes the proof.
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REMARK. Both cases in the proof actually occur. For the former, see [5,
Theorem 5.2 and Remark at the end of §5]; and for the latter, see [5, Theorem
5.1].

Using the same technique as in [13], we prove

PROPOSITION 2.2. Let C—C’ be a separable finite morphism of arbitrary
elliptic curves, and let & be an indecomposable vector bundle of rank 2 on C'. If
C — C’ has even degree, and if & has odd degree, then & is isomorphic to ¥®? for
some line bundle & on C.

Proof. Itis sufficient to consider the case when C — C' is separable of degree 2.
In fact, by our assumption, one can factorize C — C’ through a curve C" such
that C" — C’ is of degree 2 since the kernel of C — C’ has a subgroup such that
the quotient is isomorphic to Z/27.

Let us consider the following fibre product

cx.Chc
! In
c,

2

Q
=

where f is the given morphism, = is its copy, and f and #% are the induced
morphisms. Since & has odd degree, it follows from [13, Proposition 2.1] that,
for a line bundle .Z of odd degree on C, we have

E=n,LQRQM
with some line bundle .# on C'. It follows that

f*E~f*n, L@ f*M ~ 7, [*F @ f*M,
since f is a flat morphism. We see that C x.. C is isomorphic to a disjoint union

of two C’s because C—C’ is étale of degree 2. Hence, it follows that
f f*L ~ 292 and we get the result.

3. Curves of higher genus with a small number of cusps
We first prove Theorem 0.2. Put
(€, £):=2deg ¥ —deg &

for a vector bundle & of rank 2 on a curve C and a quotient line bundle .Z of &.
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Then our assumption is equivalent to the condition,
8(2¢, 1*0p(1)) < 0.

Now, let g be the inseparable degree of C — C'. We have a commutative
diagram

C -»C9
l l
Cc'ta C,

where the horizontal arrows are Frobenius morphisms of degree g and the
vertical arrows are both separable.

Since s(2¢, 1*0p(1)) < 0 and C — C’*/? s separable, by virtue of the theory of
Galois descent, we find that the quotient 2, — 1*Op(1) comes from a quotient of
9cuw (see, for example, [11, Proof of Proposition 3.2]). It follows from Lemma
1.1 that C —» C'"/? is an isomorphism, and hence C — C’ has separable degree 1.
This completes the proof.

Next, to show that Theorem 0.2 has a strictly wider range of application than [5,
Corollary 4.4], we give this

EXAMPLE 3.1. We here show, for a certain curve C, there exists a morphism :
from C to some P, birational onto its image, such that

(a) Y < 29 - 2’
(b) 1 is not unramified, and
(c) the Gauss map is not separable,

in particular, 1(C) is not smooth. According to Theorem 0.2, the condition (a)
implies that the Gauss map in this case has separable degree 1.

Let C be a curve with a Frobenius morphism C — C® of degree p such that
there is a line bundle % on C" satisfying

(0) 0 < deg .2,
(1) deg & < (29 — 2)/p, and
(2) HY(C, #¢)« HCP, #") induced by C - C™® is not injective.

We note that such a curve C does exist. In fact, if Tango’s invariant n(C) of a
curve C (see [16]) satisfies

0 < n(C) < (29 - 2)/p,

then C is the required curve, and examples in this case can be found in [16, §5].
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Now, let
0->0cw—>8->ZL -0 é)

be an extension of % by Ocw corresponding to a non-zero element ¢ of
HYC®W, #V) killed by the Frobenius morphism. Since (£) is a non-trivial
extension and the pull-back of (¢) to C splits, we get a new quotient line bundle
Oc of & Let

h: C - P(&)

be a morphism over C? associated to this ¢ — Oc. We see that £c— O does
not come from any quotient of & because we have deg & > 0. Therefore h is a
birational onto its image, and h(C) is purely inseparable of degree p over C? via
the projection of P(&) over C?® (see [5, Lemma 6.3, (2) = (1)]).

Let p be an embedding of P(£) into a projective space [P as a scroll, and let 1 be
a composition of p with h. We see, by construction, that 1: C— P is birational
onto its image, the natural quotient 2. — 1*Op(1) is isomorphic to our &c— O¢
up to tensoring a line bundle on C, and the Gauss map is purely inseparable of
degree p (see [5, Lemma 3.3]), where we have used only (2) and deg £ > 0.

In particular, 1 has the required property (c). Moreover, 1 enjoys the other
properties, too. In fact, (a) and (b) are equivalent to (0) and (1), respectively,
because we have

deg £ = (29 — 2 —v)/p.

REMARK. If there exists a line bundle £ on C?® satisfying (2) above and the
condition

deg £ = (29 — 2)/p

instead of (0) and (1), then C is called a Tango-Raynaud curve (see, for example,
[5, §6] or [15]). In this case, the h constructed as above is a closed immersion, so
is 1 (see [5, Corollary 6.5]).

4. Curves of higher genus with infinitely many multiple tangents
Let us show that it is impossible to weaken the hypothesis on y in our Theorem
0.2.

EXAMPLE 4.1. For any curve C’ with the p-rank being not zero and for any
positive integers s indivisible by p and I, taking a suitable curve C of genus g over
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C’, we here construct a morphism : from C to a projective space [P, birational
onto its image, such that

(a) C — C' coincides with the natural morphism defined by the Gauss map as in
§1,

(b) y =29 — 2, and

(c) the Gauss map has separable degree s and inseparable degree p.

Let C’ be a curve of genus g’ > 1. Let s be a positive integer indivisible by p,
and let & be a line bundle on C’ such that & is a torsion element of order s in
Pic C'. For a given positive integer I, consider the following diagram

C - C®
l
C,

where C?? - C’ is an étale Galois cover with group Z/sZ corresponding to %
(see, for example, [10, Chapter III, §4]), and C — C®" is a Frobenius morphism
of degree p'.

Assume that the p-rank of the Jacobian of C’ is not zero, and let A" be a line
bundle on C’ such that .4 is a torsion element of order p' in Pic C'. Then we put

E=0.DLQN

Taking the pull-back to C, we have &; ~ 0. Let &:— O be a quotient equal
to the pull-back of neither & — O nor & - £ ® A4". Then we see that if C —» C’
factors through a curve C”, and if & — O, comes from a quotient line bundle of
&cv, then C— C” is an isomorphism. In fact, by virtue of the choice of & — O,
we have &c ~ 0&? in this case, and the result follows from Lemma 4.2 below.

Now, let h: C - P(&£) be a morphism over C’ associated to this &c— Oc. We
find that h is birational onto its image (see the part of [5, Proof of Theorem 5.1]
showing the birationality of f|c, and [5, Lemma 6.3, (2) = (1)]).

As in Example 3.1, we obtain from h a morphism : from C to some P,
birational onto its image, such that our &¢— 0 is isomorphic to the natural
quotient 2.— 1*0p(1) up to tensoring a line bundle on C, and our C—>C’
coincides with the natural morphism induced by the Gauss map. Hence, this 1
has the required properties (a) and (c). Furthermore, 1 enjoys (b) since we have
Ec~ 0%

Since the following fact used above is well-known and easily verified, we omit

the proof.

LEMMA 4.2. Let C— C’ be a finite morphism of arbitrary curves, and let £ be a
line bundle on C' such that & is torsion in Pic C'. If L ¢ is trivial, then the degree of
C - C' is divisible by the order of & in Pic C'.
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