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Introduction

The following theorem is basic for the results of this paper.

THEOREM A. Any reduced irreducible non-degenerate and linearly normal
curve C of degree d -&#x3E;- 4r - 7 in Pr (r &#x3E;, 2) has a (2r - 3)-secant (r - 2)-plane.

This theorem is a special case of a more general theorem which we prove in
the first part of this paper. By examples, we will show that the bound on the
degree of C seems to be the best possible bound only for r  4.

In the second part we first use Theorem A to clarify the relation between two
invariants of a smooth, irreducible projective curve C of genus g a 4: the gonality
k of C and the Clifford index c of C. In fact, we usually have c = k - 2 but there are
counterexamples belonging to smooth curves in Pr without any (2r - 2)-secant
(r - 2)-planes, cf. [9]. But according to Theorem A these curves C (for which
c :iÉ k - 2) always have infinitely many (2r - 3)-secant (r - 2)-planes inducing (by
projection) an infinite number of pencils g. , , on C. In particular, then, c = k - 3
for these "exceptional curves". As a consequence, we see that for a k-gonal curve
C having only finitely many g’ the Clifford index is given by c = k - 2. This
applies to the general k-gonal curve of genus g &#x3E;, 2(k - 1). We thus recover
Ballico’s result [4] that every possible value for the Clifford index of a curve of
given genus really occurs.

Another application of Theorem A is an improvement of Clifford’s classical
theorem. Recall that Clifford’s theorem states that on a curve C of genus g any
linear system g* d of degree 0  d  2g - 2 fulfills 2r  d. More precisely we will
prove

THEOREM B ("refined Clifford"): On a k-gonal curve C (k a 3) of genus g any gd
of’ degree k - 3  d  2g - 2 - (k - 3) satisfies 2r  d - (k - 3).
We should note that (by Riemann-Roch) Theorem B applies to the set G, say,
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of all gd on C with d g - 1 and r &#x3E;, 1 and that in this case the equality
2r = d - (k - 3) implies that C is one of the "exceptional curves" mentioned
above.

For gd in G we also prove another Clifford-like result which implies 3r - d if k
is odd and which improves Theorem B for linear systems in G if k is small with

respect to g.
In part 3 of this paper we use Theorem A to determine the maximal degree of

all linear systems of degree d  g - 1 on C which compute the Clifford index c of
C. Our main result is

THEOREM C. Any g’d (d  g -1) on C computing c has degree d K 2(c + 2) unless
C is hyperelliptic or bi-elliptic.

For every c -&#x3E;- 1, this bound on d is the best possible. Moreover, we will show
that for g &#x3E; 2c + 5 we have the better bound d  3(c + 2)/2. Finally, we apply
Theorem C to give a new proof of the fact that on the general k-gonal curve of
genus g &#x3E; 2k (k -&#x3E;- 3) there is only one linear system of degree at most g - 1
computing c, namely the unique gl. This fact was proved before by Ballico [4]
(even for g &#x3E; 2k - 2) using degeneration theory of linear systems. Again, our
proof is more concrete.

Notations and conventions

A variety (curve, resp. surface) X always means here an integral projective
scheme over C (smooth of dimension 1, resp. 2). However we consider it in the
more classical context looking only to the C-closed points. If F is a coherent (9x-
module then hi(F) = dimc(Hi(X, F)), Fx (x EX) is the stalk of F at x and

F(x)=Fx/uNx,x’Fx. If F’ is another coherent (9x-module and 9:F-+F’ a

homomorphism then cp(x): F(x) -F ’(x) is the induced map. For a Cartier divisor
D on X, (9x(D) is the associated invertible sheaf on X. Clearly, hi(D)=hi(mx(D)).
C always denotes a smooth irreducible projective curve of genus g &#x3E;, 1. For C,

we adopt most of our notations from [3]. Specifically, if d &#x3E; 1, C(’) is the set of
effective divisors of C of degree d, gâ is a linear system of degree d and projective
dimension r (a pencil if r = 1), and gr(- D) == {E - D : E c- g" such that E &#x3E; DI if D is
an effective divisor of C. Note that for a complete gd the linear system gr(_ D) is
complete, too. A gd is classically called a simple system if the induced rational
map C --+ P* is birational onto its image.
We identify J(C), the jacobian of C, with Pic’(C). For an invertible sheaf L on

C of degree 0 we denote by [L] the corresponding point on J(C). Conversely, if
x E J(C) then Lx is an invertible sheaf on C representing x.



195

Fixing some base point Po on C we denote the important morphism

by 1(d). If x E J(C) then gd(x) is the complete linear system on C associated to
Lx(dPo). Recall that we have the well-known Zariski-closed subsets of J(C)

They also have a natural scheme structure. If A and B are subsets of J(C) we use
the notation

1. The Sécant theorem

In this section we will prove Theorem A. At first, we mention the general
problem.

Let C be a smooth curve of genus g, and let gd (r &#x3E; 2) be a linear system on C.

1.1 DEFINITION. Let n E Z with n  r - 1 and let e E Z with e &#x3E; n + 1. Then
D C C(e) is called an e-secant n-space divisor for gd if and only if dim(g,(- D))
r - n - 1 (i.e. if D imposes at most n + 1 conditions on gr d)- D

Consider

Let Z be an irreducible component of Vn(gâ). Using a determinantal description
for ©(gl) onc finds (see [3], p. 345)

In particular, in general one expects that V&#x3E;(g§) is not empty if

(n + 1- e)(r - n) + e &#x3E; 0. In this section we prove:

1.2 THEOREM. If gd is complete; if d a 2e - 1 and if
(n + 1 - e)(r - n) + e &#x3E; r - n - 1 then [(g§) is not empty.

Taking n = r - 2, e = 2r - 3 we obtain Theorem A. If n = r - 2, e = 2r - 2 and if
1 én(gâ) is not empty then one deduces the existence of a linear system gâ - 2r + 2 on
C. This remark is essential in the study of curves of a given Clifford index ([9];
see part 2 for the definition). If gâ is the canonical linear system on C then the
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study of V,,"(g) is very closely related to the study of special divisors on C. In fact,
our investigation is similar to that of the Brill-Noether existence problem. This
problem has originally been solved by means of an enumerative argument (see
[ 15]; [ 16]; [ 17]). From ideas developed in [ 11 ] a much shorter solution has been
found (see also [3], p. 311). We will use these methods to prove Theorem (1.2).
The main ingredient of the proof is the following lemma, which is a slight
generalization of [10] (cf. [7], Theorem 11).

1.2.1 LEMMA. I_ f Z is a closed irreducible subset of Wd satisfying dim(Z) &#x3E;, r + 1
then Z intersects Wâ _ 1.
Proof Assume that Z n Wd _ 1 is empty (then also Z n Wd" is empty). Let P

be the Poincaré invertible sheaf on J(C) x C and let Pz be its inverse image under
the embedding Z x C c. J(C) x C. Hence we have the following diagram

Consider the exact sequence

Because

modules

Let x be a point on Z. We write Pz,x to denote the inverse image of Pz under the
embedding of the fibre of p at x into Z x C (i.e. P Z,x  (!) c(D - dP 0) if x = I(d)(D)).
We have

Hence, we can use Grauert’s theorem (see e.g. [121, p. 288) to conclude that (*) is
a sequence of vector bundles. Consider the induced exact sequence
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Because RI p*(E2) is locally free, tensoring with the residue field

(!}z(x) = {!}z,x/A Z,x and using Grauert’s theorem again, we obtain the exact
sequence

But g(x) is an isomorphism, hence (Ker g)(x) = 0. From Nakayama’s lemma we
obtain (Ker g)x = 0 (stalk!) hence Ker g = 0. So, we have an exact sequence

Consider the cartesian diagram

and define

From [3], p. 309, Proposition 2.1 (recall that Z n Wâ + 1 is empty) we conclude
that I,(d) can be identified with the natural morphism

and (9P(P*(E2»( 1) --z (gC(d)(C(d)(p 7 0». As is explained in [3], p. 310, Proposition 2.2,
this implies that the dual vector bundle p*(E2)D, and also p*(E2 )D p*(F), are
ample vector bundles on Z. Since rank (p*(E,» = r + 1, rank(p*(F» = 1 and
dim(Z) &#x3E;, r + 1 we obtain from [3], p. 307, Proposition 1.3 that there exists a
point z on Z such that rank (O(z» = 0. This is a contradiction to the surjectivity
of 0. ri

1.2.2 Proof of Theorem 1.2. Let us write Vi instead of Yf (gd). We proceed by
induction for f. It is clear that n+ l = c(n + 1) =f::. 1&#x3E;.

Let fEZ with e &#x3E; f &#x3E;, n + 1 and assume that Vi is not empty. Let Z be an
irreducible component of Vf and consider the map
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with 1 E J(C) defined by gd(4 = gr. (Note that gâ is complete, by assumption).
Clearly i(Z) c Wr-n- d -f 1 

Suppose that the general non-empty fibre of i has dimension at most r - n - 2.
Since f  e it follows from the hypothesis of the theorem that dim(Z) &#x3E;
(n + 1 - f)(r - n) + f &#x3E;, 2r - 2n - 2. Thus i(Z) is then an irreducible closed subset
of Wr-n-1 d-f of dimension at least r - n. From Lemma (1.2. 1) it follows that i(Z)
intersects Wâ’- f + i . Let x E i(Z) n Wâ = f + i and let E E Z such that i (E) = x.

Suppose that xewdr _ n. Then Po is a fixed point of gr(- E). Thus we have
dim(gd( - E - Po)) &#x3E; r - n -1, whence E + Po E V;+ 1.

Suppose that x c- Wd - f. Then we have dim(g§( - E» &#x3E;- r - n, i.e. E E V; Hence
E+Pepy+i for each P E C.

Altogether, we proved that VÎ+, is not empty if the general non-empty fibre of
i has dimension at most r - n - 2. Now, suppose that the general non-empty fibre
of i has dimension at least r - n - 1. In that case 1( f)(Z) c WÍ - n - 1. Let E E Z and
let F d - E). Since d is complete we have that F + lEI c gd. It follows that
F E vd f. Since d - f a f + 1 (we assumed 2e  d + 1) we see again that Vi+ l is
not empty, and Theorem (1.2) is thereby proved. D

Applying Theorem (1.2) to a base point free and simple gd on C we obtain
Theorem A if n = r - 2 and e = 2r - 3. Finally, we are going to discuss the bound
d &#x3E; 4r - 7 of Theorem A a little bit more closely.

1.3 EXAMPLE. (a) For r = 3 the bound is sharp: an elliptic curve of degree 4 in
P3 has no 3-secant line.

(b) For r = 4 the bound is sharp: a general canonically embedded curve C of
genus 5 in p4 has degree 8 and no 5-secant 2-plane since a general curve of genus
5 has no gl 3-

(c) For r = 5 the bound is not sharp: Indeed, any linearly normal curve C of
degree 12 in PS has a 7-secant 3-space. This follows from the fact that, if such a
curve has a linear system gs, then this has to be obtained from a pencil of
hyperplanes in PS containing a 7-secant 3-space divisor of C. By Brill-Noether
theory, C has a g’ if g  8. So let g &#x3E;, 9. Castelnuovo’s genus bound ([3], p. 116)
gives us g  10. If g = 9 (resp. g = 10), then C has a gl (resp. a g6) residual to the
simple g’,, and we see that C likewise has a g’. Thus, for r = 5 we have the better
bound d &#x3E; 12 in Theorem A, and this bound is sharp. In fact, if C is a general
curve of genus 7 and if P is a general point on C, then IKc - PI is a very ample
linear system gi l on C. Since C has no linear systems gl, the associated
embedding of C in PS has no 7-secant 3-plane.

(d) Using case by case analysis we checked that 3r - 3 is the best bound for
the degree d in Theorem A, for 4  r  7. Q

1.4 PROBLEM. Is Theorem A valid also for curves in P" which are not linearly
normal, or do we have to change the bound?
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2. On Clifford’s theorem

A famous theorem in the theory of special divisors on curves is Clifford’s theorem
(1878) which is an easy consequence of the Riemann-Roch theorem and reads as
follows ([6], p. 329):

CLIFFORD’S THEOREM. Let C be a curve of genus g and let D E C(d). If
dim(IDI) &#x3E; d - g then 2 dim( )D) ) 6 d. 0

Motivated by this theorem, Martens [22] introduced in 1968 a new invariant
of C which he called the Clifford index of C.

2.1 DEFINITION. Let DE C(d). The Clifford index of D is defined by

D (or IDI) is said to contribute to the Clifford index if both h°(D) &#x3E; 2 and hl(D) &#x3E; 2.
Finally, the Clifford index of C is defined by

if g &#x3E;, 4. D

In terms of these definitions, the essence of Clifford’s theorem may simply be
stated as difl(C» 0. Furthermore, it is classically known (due to M. Noether,
Bertini, C. Segre and often included in the statement of Clifford’s theorem) that
cliff(C) = 0 if and only if C is hyperelliptic. As a consequence of (the closing lines
in) [9] all curves of a given Clifford index c  33 are classified. (The main
conjecture in [9] states such a classification for every Clifford index.) This
classification indicates a close connection between the Clifford index c and the

gonality k of C, given by the inequalities c + 2  k  c + 3. We will prove now that
these inequalities are in fact true. Let us first recall the definition of the old
invariant "gonality" of C.

2.2 DEFINITION. A smooth curve C is called k-gonal (and k its gonality) if C
possesses a pencil gk but no g’ 0

Clearly, cliff (C) = c implies Wl 0 whence C has gonality k &#x3E; c + 2. On the
other hand, the following theorem tells us that we also have the non-trivial
relation k - c + 3.

2.3 THEOREM. If cliff(C) = c then dim(Wc’+ 3) 1&#x3E; 1.
Proof. If C is (c + 2)-gonal then Wcl+ 1 ffi Wlo c W + 3, hence dim(Wcl+ 3) -&#x3E;- 1.

Suppose that C is not (c + 2)-gonal. Then there must exist a divisor D on C
satisfying h’(D) =: r + 1 &#x3E; 3, deg(D) = c + 2r, h’(D) &#x3E;, 2. Choose D such that r is
minimal. Then [D[ is very ample ([9], Lemma 1.1). If 2r==c+3 we have
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dim(W,’+ 3) &#x3E;1 1 according to [9], §3. Let 2r:O c + 3. Then 4r  c + 6 (see [9],
Corollary 3.5), i.e. d = deg(D) = c + 2r -&#x3E;- 6r - 6. Thus Theorem A implies that
V2",-23 = V2r-_23(IDI} is not empty. Let Z be an irreducible component of V2r-_23’ We
know that dim(Z) &#x3E;, 1. More geometrically, if we embed C in P’’ via ID we obtain
infinitely many (2r - 3)-secant (r - 2)-planes for C. Let S be such a plane. Then
the projection of C onto P 1 with center S gives a gcll 3 on C. If the 2r - 3 points of
C on S vary in a non-trivial linear system, then 2r - 5 &#x3E;, c == d - 2r (since this
linear system contributes to the Clifford index), and we obtain the contradiction
d  4r - 5. Thus different (2r - 3)-secant (r - 2)-planes induce (by projection)
différent gcl+ 3 on C. D

2.3.1 COROLLARY. If dim( Wdl) = 0 then cliff(C) = d - 2.
Proof. Since Wâ is not empty, one has cliff(C)  d - 2. If cliff(C) = d - 2 - F. for

some r, &#x3E;, 1 then it follows from Theorem (2.3) that dim(Wdl+ 1 and therefore
dim(W,’) &#x3E; 1 + (e - 1) &#x3E;, 1. This is a contradiction. 0

2.3.2 COROLLARY (Ballico’s theorem [4]). IfC is a general k-gonal curve, then
cliff( C) = k - 2.

Proof. For g = 2k - 3 this follows from Brill-Noether theory. Assume

k  (g + 3)/2. According to an old theorem of B. Segre a general k-gonal curve
then has only a finite number of linear systems gt ([24], see also [2]), hence we
can apply Corollary (2.3.1). 0

Note that Corollary (2.3.2) implies that each integer c, 0  c  (g -1)/2, occurs
as the Clifford index of a smooth curve of genus g. The three other proofs of
Ballico’s theorem known to us ([4], [13], [23]) are not concrete: they do not
indicate which k-gonal curves have Clifford index k - 2. Just to give a concrete
example, recall that a non-degenerate curve C in P’ is called extremal if the genus
of C is maximal with respect to the degree of C (cf. [3], p. 117 or [8]).

2.3.3 EXAMPLE. Let C be an extremal curve of degree d &#x3E; 2r in Pr (r &#x3E; 3).
There are two cases [1]:

(i) C lies on a rational normal scroll X in Pr. Write d = m(r -1) + 1 + E where
E =1, 2, ... , r -1. C has only finitely many pencils of degree m + 1 (in fact,
only one for r &#x3E; 3, one or two if r = 3); these pencils are swept out by the
rulings of X. Thus cliff(C) = m -1 by Corollary (2.3.1).

(ii) C is the image of a smooth plane curve C’ of degree dl2 under the Veronese
map p2 &#x3E; P’. Then r = 5 and cliff(C) = cliff(C’) _ (d/2) - 4 (e.g. [ 19]). Note
that in this case W,’+ 2 0, dim W + 3 =1 if c = cliff(C), so Corollary (2.3.1)
cannot be applied. n

The main conjecture in [9] states that every k-gonal curve C has Clifford
index c = k - 2 unless C is a smooth plane curve of degree d a 5 or one of those
"exceptional" curves constructed and studied in [9].
Next we want to prove Theorem B of the Introduction.



201

2.4 Proof of Theorem B. Assume that C is a k-gonal curve (k &#x3E; 3) and assume
that gâ = I DI is a complete linear system on C satisfying k - 3  d  2g - 2 - (k - 3)
and 2r &#x3E; d - (k - 3). Clearly, h°(D) = r + 1 &#x3E; 2, and using the Riemann-Roch
theorem, we obtain from our numerical conditions for d and r that

Hence contributes to the Clifford index. Therefore

From Theorem (2.3) we obtain that dim( Wkl 1) &#x3E; 1, a contradiction to the fact
that C is k-gonal. D

For curves of large genus with respect to the gonality we have the following
improvement of Theorem B (closely related to [3], p. 138, Exercise B-7). For
short, let us call C here a double curve if there exists a curve C’ and a ramified

covering n: C - C’ of degree 2.

2.4.1 PROPOSITION. Let g§ be a linear system on C satisfying 0 K d 6 g - 1 , lf
3r &#x3E; d then we have one of the following two possibilities:

(i) d = 3r -1 and gd embeds C in Pr as an extremal curve; or
(ii) C is a double curve of even gonality k, and one has 2r K d - 2(k - 3).

Proof. Let gd be a complete linear system on C satisfying 0 K d K g - 1 and
3r &#x3E; d. There are two cases:

(i) gd is simple. From Castelnuovo’s bound we obtain

(cf. [3], p. 116 or [8]). Using the facts d  g -1 (hypothesis) and 2r  d  3r (by
assumption and by Clinbrd’s theorem) a straightforward calculation shows that
d = 3r - 1 and g = n(d, r) == 3r is the only possibility.
(ii) Suppose gd is not simple. We are going to prove that the second claim of our
proposition holds. We can assume that g" d is complete and has no fixed points.
Consider the map C --+P" associated to gd; let C’ be the normalization of the

image curve in P’’ and assume that deg(g: C - C’) = n &#x3E; 2. Then C’ possesses a
complete linear system g,rl^ such that gr. If g,rl,, would be a special
linear system on C‘, then-because of Clifford’s theorem-2r  d/n  3r/n,
which gives us a contradiction. Let g’ be the genus of C’. By Riemann-Roch,
then, g’=(d/n)-r«3r/n)-r=(3-n)’(r/n). Since g’-&#x3E; 0 one obtains n = 2. Thus
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C is a double curve, and g’  r/2. From g’ = (d/2) - r = (d - 2r)/2 we see that
g &#x3E; d = 2g’ + 2r &#x3E; 6g’. Assume that C is k-gonal and consider a map qi: C --+ Pi of
degree k. If ql does not factor through C’, then-according to a genus bound of
Castelnuovo for curves with morphisms (see [19], §l or [25])-one has
g  k -1 + 2g’. Since k -- (g + 3)/2 (by Brill-Noether theory) we obtain g K 4g+ 1,
contradicting g &#x3E; 6g’. Thus gi factors, and k is twice the gonality of C’. But then
(by Brill-Noether applied to C’) k -- g+ 3 = [(d - 2r)/2] + 3. This gives us the
bound stated in the proposition. 0

2.4.2 REMARK. The bound in Proposition (2.4.1)(ü) is sharp if and only if C is
a double covering of a curve C’ of odd genus g’ which is (g’ + 3)/2-gonal (and if
the genus g of C is large enough). Indeed, assume that we have equality in
Proposition (2.4.1)(ii). Then the curve C’ in the above proof has genus
g’=(d-2r)12=k-3 and gonality k/2 = (g’ + 3)/2. Conversely, assume that

cp: C - C’ is a double covering with C’ a curve of genus g’ and gonality (g’ + 3)/2.
Let r be such that g &#x3E; 3r &#x3E; 2g’+ 2r. Then ç*(g’§, +r) is a linear system of degree
d = 2g’ + 2r and dimension r on C for which equality holds in (ii) since the proof
of (ii) shows that the gonality k of C is twice the gonality (g’ + 3)/2 of C’. U

2.4.3 COROLLARY. Let C be a curve of odd gonality and let gd be a linear
system on C with 0 K d K g - 1 . Then 3r K d.

Proof. Indeed, according to Example (2.3.3), a curve satisfying (i) of Proposi-
tion (2.4.1) is 4-gonal or 6-gonal. Il

2.4.4 EXAMPLE. For trigonal curves C the bound in Corollary (2.4.3) is sharp.
Of course, multiples of the linear system gl 3 attain the bound. The only other
possibility is the case in which g = 3r + 1 and g’3r is residual to rg’ 3 (see [20], §1).
Assume there is a g’3r, 6 K 3r  g, on a curve C of genus g which is neither

trigonal nor a double curve of even gonality. Along the lines of the proof of
Proposition (2.4.1) it can be shown that the g", on C is a complete base point free
and simple linear system. According to [8], (3.15), if we view C via g", as a curve
of degree 3r in Pr it must lie on a surface of degree r or less, i.e. on a scrollar resp.
on a del Pezzo surface. Consequently, it is not hard to check then that C has
gonality k  6 or k = 8. (In the latter case r = 9, and C is the image of a smooth
plane nonic under the Veronese embedding P’--+P’.) In particular, we see that
the bound in Corollary (2.4.3) is not sharp for curves of odd gonality k a ?.
However, for r  5 there are some 5-gonal curves admitting a g’3r: Clearly, a

smooth plane sextic (g = 10) has a g6. Adopting the notation of [12], V, 2 any
smooth member of the linear system 15Co + 7f (g = 14) on the rational normal
scroll Xi (-- p4 has a 9’12. Similarly, a smooth member of 15CO + S f on X o c p5
(resp. 15Co + 10f on X2 c P5) is a smooth curve of degree 15 in p5 of genus 16.
This curve can also be identified as an extremal space curve of degree 10 thus
lying on a smooth quadric surface (resp. on a quadric cone) in P3. Il
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3. On linear systems computing the Clifford index

3.1 DEFINITION. Let C be a smooth curve of genus g with difl(C) = c. Let gd
be a linear system on C contributing to the Clifford index. We say that gâ
computes the Clifford index Ç d K g - 1 and d - 2r = c; note that such a linear
system is complete and base point free. Moreover ([14]), for r a 3 it is simple
unless C is hyperelliptic or bi-elliptic (i.e. a double covering of an elliptic
curve). Cj

Before proving Theorem C of the Introduction, we have to prove some
preliminary results. We start by recalling part of a lemma in [9] (cf. [9], Lemma
3.1) whose proof is an application of the base-point free pencil trick.

3.1.1 LEMMA. Let D be a divisor of c computing the Cl@fiord index of c. Let M
be a divisor of C of degree m such that IMI is base paint free. If deg(D) = g -1 we
assume that m i= 2h°(D) -1. Then we have h°(D - M) # h°(D) - (m/2). D

3.1.2 COROLLARY. Assume g§ (d  g - 1) is a linear system on C computing the
Clifford index c of C. Then any complete base point free linear system on C of
degree 0  m  2r computes the Clifford index and has even degree.

Proof Let D e g§ and let E be an effective divisor on C of degree m  2r such
that lEI is base point free.

Claim. ID - E) computes the Clifford index of C.
Indeed, from Lemma (3.1.1) we obtain that

hence h°(D - E) &#x3E;, 2. Since h 1 (D) &#x3E; 2 we certainly have h 1 (D - E) &#x3E; 2, hence
!D 2013 El contributes to the Clifford index. By definition of the Clifford index, we
have

Comparing it with the above lower bound on 2h°(D - E) we obtain

i.e. ID - El computes the Clifford index and m is even.
Now, we are ready to prove that lEI computes the Clifford index. From the

fact that JE is base point free (hence h°{E) &#x3E; 2) and m  2r x d K g - 1, we obtain
that IEI contributes to the Clifford index. It follows that m - 2 &#x3E; c = d - 2r, and
therefore d - m  2r. Thus in our claim above we may replace E by FE ID - El,
which implies that ID - FI = IEI computes the Clifford index. 0
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3.2 Proof of Theorem C. Let C be a curve of genus g which is not hyperelliptic
or bi-elliptic and let gâ (d K g - 1) be a linear system on C computing the
Clifford index c of C.

3.2.1 Claim. If C has a base point free linear system g; + 3, then d  2c + 3.
Indeed, from Corollary (3.1.2) we obtain that c + 3 &#x3E; 2r, hence

Because of Theorem (2.3) this completes the proof of Theorem C if C is not
(c + 2)-gonal.

3.2.2 Claim. If C has a base-point free linear system gc’+ 2 and if c is odd, then
d  2c + 1.

Indeed, in this case c + 2 is also odd, hence from Corollary (3.1.2) it follows
that c + 2 &#x3E; 2r, whence

Since c is odd, so is d, and we obtain our claim. This completes the proof of
Theorem C for odd Clifford index c.

Suppose c is even and C has a linear system gc’l 2 (of course, being base point
free). Again, if c + 2 &#x3E;, 2r, then we obtain 2c + 2 &#x3E; d, so we can assume that
c + 2  2r. From the claim in the proof of Corollary (3.1.2) we see

3.2.3 Claim. If d,&#x3E;2c+4 and if Dc-g", E E g; + 2 then ID-El computes the
Clifford index.

It follows that ID - El is a linear system gd-c-2 satisfying (d - c - 2) - 2s = c,
hence d = 2c + 2 + 2s. It is enough to prove the following

3.2.4 Claim. dim( ID - El) = 1 (i.e s = 1).
First, assume s a 3. Since we assumed C not to be hyperelliptic or bi-elliptic,

we know that D - El is simple (see [14]). Let F be a general element of C(’- 1).
Because of the General Position theorem ([3], p. 109), ID-E-FI is a linear
system gl on C without fixed points. But d - (c + 1 + s) = d/2. From the
assumption e + 2  2r it follows that d = c + 2r  4r - 2, hence d/2  2r. From
Corollary (3.1.2) we obtain that ID - E - FI computes the Clifford index, i.e.

(d/2) - 2 = c. But then we have the contradiction 2c + 4 = d = 2c + 2 + 2s &#x3E; 2c + 8.
Assume s = 2. If ID - El is simple then we obtain a contradiction as before.

Hence ID - El is not simple. Consider the associated morphism (P’: C -+P’ and let
C’ be the normalization of cp’(C). Let 9: C-+C’ be the associated ramified
covering. Then n= deg(ç» 2, and C’ has a complete linear system gd. with
d’== (d - c - 2)/n == (c + 4)/n and ID - El = ç*(g§,). If gd. is not very ample on C’,
then C’ has a linear system g d and cp*(g}’-2) is a linear system g;+4-2n on C
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contributing to the Clifford index. Hence c + 2 - 2n &#x3E; c, which is a contradiction.
Thus C’ is a smooth plane curve of degree d’. Consider a linear system g’, on
C’. Then cp*(gJ’-I) is a linear system g:+4-n on C contributing to the Clifford
index. Hence c + 2 - n &#x3E; c which implies n = 2. In this case cp*(gJ, - l) computes
the Clifford index. Since C’ has infinitely many linear systems gd, _ 1, C has
infinitely many linear systems g: + 2’ On all these linear systems one can apply
Claim (3.2.3), all giving rise to the same value for s-assumed to be 2 here. So,
we find an infinite number of linear systems g;+4 on C giving rise to double
coverings of C over smooth plane curves C’ of degree (c/2) + 2. Our assumptions
imply that C’ is not rational and not elliptic. But then, the induced linear system
9’ (C/2) + 2 on every C’ is unique. All together, this shows that there exists an
infinite number of double coverings C - C’ with g(C’) &#x3E; 1. This is impossible
(e.g. cf. [18], Lemma 4), and we have proved Claim (3.2.4) and Theorem C. D

Our next result (which is in fact equivalent to Theorem C) improves a result in
[14].

3.2.5 COROLLARY. Let C be a curve of genus g &#x3E; 2c + 4 resp. g &#x3E; 2c + 5 f c is
odd resp. even. Then, for a linear system gd (d  g -1) computing c, we have

d -- 3(c + 2)/2 unless C is hyperelliptic or bi-elliptic.
Proof Let gd = IDI. Leaving aside the discussion for c x 2 (see [14]) we assume

c 3. Then d  2c + 4 by Theorem C. But 3(c + 2)/2  d  2(c + 2) implies
g 6 2c + 4 ([14], Cor. 1) contradicting our hypothesis on g. Thus d  3(c + 2)/2 or
d = 2c + 4. Assume that d = 2c + 4. Then c is even (since d --- c mod 2) and
 3(c + 1) (see [14], Cor. 2). From Claim (3.2.1) we conclude that C has a g:+ 2,
IMI say, and from Claim (3.2.3) we know that ID -MI is again a gcl+2. Thus

hence

If hl(D + M)  1, then by Riemann-Roch we have e + 4  h’(D + M) -- 3c + 8 - g,
whence the contradiction g  2c + 4. Therefore, INI = lKc - (D + M)l computes c
and h°(D + M) = c + 4. By Riemann-Roch, then,

Since g &#x3E; 2c + 5, we see that ho(N) &#x3E; 3.
Assume that INI is simple. By the Uniform Position principle we then have
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provided that n : = deg(N) &#x3E; ho(D) + hO(N) - hO(D - N) -1 ([3], III, Ex. B-6, note
the misprint there). But the inequality for n is clearly satisfied since

Furthermore, we have

Thus

But

and deg(Kc-2D)&#x3E;0 because g &#x3E; 2c + 5 == d + 1. Since C has no g:+l, this is a
contradiction.

This contradiction shows that [N[ is not simple. This implies that INI == g; + 4
and that C is a double covering of a smooth plane curve C’ of degree
d’= (c/2) + 2. (Cf. the proof of Theorem C.) Clearly C’ has infinitely many linear
systems g’J’-1 1 which induce on C an infinite number of IMI=gcl+2 and thus
infinitely many linear systems INI=I(Kc-D)-MI. To get a contradiction we
now may proceed as in the last part of the proof of Theorem C (replacing D by
its dual Kc - D there). 0

The results given in Theorem C and its Corollary are best possible. This is
shown by the following examples.

3.2.6 EXAMPLE (c even). Let X be a general K3 surface in Pr (r &#x3E; 3). Then
Pic X is generated by (the class of) a hyperplane section H, and

deg X = (H2) = 2r - 2. Let C be a smooth irreducible curve on X contained in the
linear system InHI of X, for 2 - n E N. Then C is a (1/n)-canonical curve (i.e. Wc(n)
is the canonical bundle of C) of genus g =- (nH)2 /2+1 =n 2(r - 1) + 1 and degree
d=(nH’ H)=2n(r-l).

According to Green’s and Lazarsfeld’s method of computing the Clifford
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index of smooth curves on a K3 surface (cf. [21]) there has to be a smooth curve
B on X such that (B - C)  g - 1 and (9x(B) Qx (9, computes the Clifford index of C.
But since Pic X - Z. H we clearly have J5e [H). Thus Wc(1) computes c, and we
have c == d - 2r == 2(n - 1)(r - 1) - 2. In particular,

Now we specialize to the cases n = 2 and n = 3. Then we obtain

whence Theorem C and its Corollary are best possible for even c. The simplest
examples (r = 3) are smooth complete intersections of X with a quadric resp. a
cubic surface Y in P3. If Y is quadric C clearly has two resp. only one g’ 4
(computing c) according to Y is smooth resp. a cone. Let C be a smooth
complete intersection of X with a cubic Y in P3 (c = 6; d =12; g = 19). Then C has
a quadrisecant line (Cayley’s formula-see e.g. [3], p. 351-is nonzero in this
case), and the projection C---&#x3E;P’ with center a quadrisecant line gives a gg
(computing c) on C. Moreover, the g8 on C are in 1-1-correspondence with the
quadrisecant lines of C: We have

and

since C has no g’. 4 If diM(g3 1 2 - 9’8) 1 we have dim(gf2 + gg) &#x3E; 7 whence there
is a gio on C inducing a gI6, by duality. But the gI6 computes the Clifford index
c = 6 of C, and 16 = 2c + 4. Thus, by Corollary (3.2.5), we obtain a contradiction.
Therefore, dim(g’ - gl) = 0, and we see that every gl on C comes from a
projection with center a quadrisecant line of C. Clearly, the quadrisecant lines of
C all lie on the unique cubic surface Y containing C. If Y is smooth (for example
Clebsch’ diagonal surface) there are exactly 27 lines on Y all of which are easily
seen to be quadrisecant lines of C. This is in accordance with Cayley’s formula
computing-with multiplicities-the number m of quadrisecant lines of a

smooth space curve of given genus and degree, provided that m is finite. Note
that C is the strict transform of a plane curve of degree 12 with six singular
points Pi, ... , P6 of multiplicity 4, under the natural map Y -+ P2 defined by
blowing up P1, ... , P6 ([12], p. 402). To see the other types of smooth complete
intersections of X with a cubic surface Y in P3 we move these six points in
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special positions in p2 (including the consideration of infinitely near points). The
number of g’ on C depends then on the speciality of this situation. This will be
described in terms of the resulting singularities of Y. So assume that Y is not
smooth. Then Y can only have isolated singularities. In fact, a cubic surface in
P3 with a double curve either is reducible or rationally ruled with a double line.
The first case clearly is impossible, and in the second case the ruling would
define a g’ on C. Now, if Y has no triple point it is a classical fact that Y has at
most four rational double points, and the number of lines on Y is then

determined by the type and the number of the rational double points. We have
the 20 possibilities presented in the following table ([5]) where the type of the
singularities is expressed in terms of Coxeter-diagrams (A-D-E-singularities).
However, if Y has a triple point (type Ê,) Y is an elliptic cone whence C is a

(4: l)-covering of an elliptic curve and carries infinitely many g’.

3.2.7 EXAMPLE (c odd). Let X be a K3 surface in pr (r &#x3E; 3) containing a single
line E such that Pic X ^- Z - H Q Z - E, deg X = (H2) = 2r - 2, (E2) _ - 2,
(H - E) = 1. (This is possible, see [9], Lemma 4.2.) Let C be a smooth element of
!2N+E!. Then C is a half-canonical curve of genus g = 1 + ((2H + E)2 /2)=4r-2
and degree d = «2H + E) - H) = 4r - 3. In [9], Theorem 4.3 it is proved that Wc(1)
computes the Clifford index c of C. Hence c = d - 2r = 2r - 3 and we obtain
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d = 2c + 3, the maximal number for odd c. From Claim (3.2.2) we know that C
has no linear system gl,,. (Even stronger, in [9], Theorem 3.7, it is proved that
Wc(1) is the only bundle on C computing the Clifford index.)
The simplest example is a smooth complete intersection of two cubics in

P3(r = 3; d = 9; g = 10; c = 3). For details cf. [9], §4. 0

3.2.8 EXAMPLE (small genus). Let X be a smooth cubic surface in P3.

Adopting the notation of [12], V, 4, Pic X is generated by 1 and (the classes of)
six lines e,...,e6 such that (1’)=l, (ef) = -1, (1 . ei) = 0, (ei’ej)=O (i#j).
Consider a smooth irreducible member C of Il 11 - 4 Y- 1 ei - 3e 61. Then C has
degree d = 10 in P3 and genus g = 12. In accordance with Cayley’s formula ([3],
p. 351) C has exactly 10 quadrisecant lines (given by ei, 1 - ei - e6 for i =1, ... , 5)
but no lines cutting C in at least 5 points. Therefore, it is easy to see that C is 6-
gonal (with exactly 10 g6) and of Clifford index c = 4. Thus the embedding g’ 10
computes c, and g == 2(c + 2) &#x3E; d = 10 &#x3E; 3(c + 2)/2. This is in accordance with

Corollary (3.2.5). 0

3.2.9 REMARK. Assume C has a gd, r &#x3E;, 4, d  3(c + 2)/2, computing the Clifford
index c of C. Since c = d - 2r we have d &#x3E; 6r - 6 and according to [ 14] C may be
viewed as a linearly normal curve of degree d in P" not lying on a quadric of
rank  4. By the proof of [9], Proposition 5.1, then, C cannot be contained in a
surface of degree 2r - 3 or less. 0

3.3 CONSEQUENCES. Note that a curve C of Clifford index c which is not
hyperelliptic and not bi-elliptic and which admits a linear system computing c of
maximal degree d:= 2c + 3 (c odd) resp. d =: 2c + 4 (c even) must have genus
g = d + 1, by Corollary (3.2.5). The existence of such curves is settled by our
previous examples, for every c &#x3E;, 2. If c = 1 take a smooth plane quintic. For odd
c these curves are studied in [9]. Here we want to make some closing remarks on
these curves for even c. We will prove a "recognition theorem" for them (cf.
Proposition (3.3.2)) which will then be used to deduce some criteria for curves
whose Clifford index can only be computed by pencils.

3.3.1 EXAMPLE. Assume that C is not hyper- or bi-elliptic. If IDI is a linear
system on C of degree 2c + 4 computing c it follows from the Claims (3.2.1) and
(3.2.4) that C possesses a pencil gc’+ 2, say [M[, such that ID - Mi is a g;+2, too.
Assume that ID - MI = IMI. Then dim([2M[ ) is as large as possible since 12MI
computes the Clifford index. Consider W,’, and let m = I (c + 2)(M) E Wc’,. It is
well-known (see e.g. [3]) that the embedding dimension d(m):= dim Tm(YV+2) of
W C 1 + 2 at the point m is given by h’(2M) - 3. But h’(2M) = (c/2) + 3, hence d(m)
attains its maximal value c/2.

Conversely, let C be a smooth curve of Clifford index c &#x3E;- 2 and gonality
k  (g -1)/2. Let I MI g k 1 m = I(k)(M) E Wkl, and assume that d(m) is maximal.
Since 2k  g -1 we have h’(2M)  k + 1- c/2, and since d(m) is maximal if and
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only if h°(2M) is, we have d(m)=k-2-c/2. In this case 2M computes c whence
2k  2c + 4, by Theorem C. Clearly, k &#x3E; c + 2. Therefore, 2k = 2c + 4 and

d(m) = c/2.
The simplest example is a complete intersection of a quartic surface and a

quadric cone in p3. D

3.3.2 PROPOSITION. Suppose C is a k-gonal curve (k &#x3E; 3) admitting only
finitely many base-point free gk and g§+ i. Let r à 2 and assume that C has a gd
(d  g -1) computing the Clifford index c of C. Then c == k - 2 is even, d = 2c + 4,
and the gâ is the only linear system on C computing c which is not a pencil.

Proof By Corollary (2.3.1), c = cliff (C) = k - 2. Suppose that d  2c + 3. Then
k - 2 + 2r = d K 2(k - 2) + 2, Ï.e. 2r 6 k.

Since the gd is complete and d = k - 2 + 2r à 4r - 2 we can use Theorem A. We
adopt the terminology of the proof of Theorem (1.2). Let Z be an irreducible
component of V2r-_23(g’d) and consider i:Z -.J(C). Clearly i(Z) c »l-2r+ 3 = Uj/+ l’
One has dim(Z) &#x3E; 1, hence if dim(i(Z)) = 0 then Chas a linear system g2r - 3. But
2r - 3 K k - 3, so this is impossible. Therefore, the assumptions on C give us the
existence of x e Wkl such that i(Z) ::J x +O W1o. Hence, for each P e C there exists
DpeZ such that

Thus P+DpElgd-gk(x)1 and we obtain dim( ) P + Dp) ) &#x3E; 1 . But deg(P+Dp)=
d - k  k - 2. Again we obtain a contradiction. Thus d &#x3E; 2c + 3. From Claim

(3.2.2) we see that c is even, whence d = 2c + 4. (Note that C cannot be hyper- or
bi-elliptic.) Suppose DE gd and D’ is an effective divisor of degree d with
k  d’  d computing c. We have already proved that d’ = d. Take EEgi on C.
Because of Claim (3.2.3) we can assume inf(D, D’) = F &#x3E; E but F i= E. Copying the
proof of Theorem 3.7(ii) in [9] we obtain that F computes c. But k  deg(F)  d,
hence we obtain a contradiction. This proves that gd is the unique linear system
on C computing c which is not a pencil. 0

3.3.3 COROLLARY. Let C be a k-gonal curve (k&#x3E;3) such that Wxl and

Wk + 1 (Wkl O+ Wfl) are finite. Assume that one of the following conditions holds :

(i) k is odd; or
(ii) k is even, and in case of genus g = 2k + 1 we have Wk+ 1 Wkl 0 WIO; or
(iii) Wkl = {x}, and 2x Wlk.
Then the Clifford index c of C is only computed by pencils (corresponding to the
elements of Wkl).

Proof. (i) is an immediate consequence of Proposition (3.3.2).
(ii) holds because of Proposition (3.3.2), Claim (3.2.1) and Corollary (3.2.5).
(iii) Assume C has a linear system gd, r &#x3E; 2, computing c. By Proposition
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(3.3.2) and Example (3.3.1) we conclude that 12g,(x)l = g». Hence k - 2 = c
d - 2r = 2k - 2r, so 2r = k + 2 &#x3E; 5 contradicting 2x e W2k. D

3.3.4 EXAMPLE. From Corollary (3.3.3), (iii) we deduce that on a general k-
gonal curve C of genus g &#x3E; 2k &#x3E; 6 there is only one linear system computing the
Clifford index: the unique pencil g’. In fact, by [2] we have YYkI = {x},
Wk’+ = {x} ? Wfl, and by [24] we have 2x e W2k.
Note that this proof makes the meaning of "general" much more transparent

than Ballico’s original proof of this fact ([4]). D
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