Compositio Mathematica

MARC COPPENS
 Gerriet Martens

Secant spaces and Clifford's theorem

Compositio Mathematica, tome 78, no 2 (1991), p. 193-212
http://www.numdam.org/item?id=CM_1991__78_2_193_0
© Foundation Compositio Mathematica, 1991, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Secant spaces and Clifford's theorem

MARC COPPENS ${ }^{1}$ and GERRIET MARTENS ${ }^{2}$
${ }^{1}$ Katholieke Industriele Hogeschool der Kempen, Campus H.I. Kempen, Kleinhoefstraat 4, B-2440 Geel, Belgium; ${ }^{2}$ Mathematisches Institut der Universität Erlangen-Nürnberg, Bismarckstrasse 1 1/2, D-8520 Erlangen, F.R.G.

Received 18 January 1990; accepted 10 May 1990

Introduction

The following theorem is basic for the results of this paper.
THEOREM A. Any reduced irreducible non-degenerate and linearly normal curve C of degree $d \geqslant 4 r-7$ in $\mathbf{P}^{r}(r \geqslant 2)$ has a $(2 r-3)$-secant $(r-2)$-plane.

This theorem is a special case of a more general theorem which we prove in the first part of this paper. By examples, we will show that the bound on the degree of C seems to be the best possible bound only for $r \leqslant 4$.

In the second part we first use Theorem A to clarify the relation between two invariants of a smooth, irreducible projective curve C of genus $g \geqslant 4$: the gonality k of C and the Clifford index c of C. In fact, we usually have $c=k-2$ but there are counterexamples belonging to smooth curves in \mathbf{P}^{r} without any $(2 r-2)$-secant $(r-2)$-planes, cf. [9]. But according to Theorem A these curves C (for which $c \neq k-2$) always have infinitely many ($2 r-3$)-secant ($r-2$)-planes inducing (by projection) an infinite number of pencils g_{c+3}^{1} on C. In particular, then, $c=k-3$ for these "exceptional curves". As a consequence, we see that for a k-gonal curve C having only finitely many g_{k}^{1} the Clifford index is given by $c=k-2$. This applies to the general k-gonal curve of genus $g \geqslant 2(k-1)$. We thus recover Ballico's result [4] that every possible value for the Clifford index of a curve of given genus really occurs.

Another application of Theorem A is an improvement of Clifford's classical theorem. Recall that Clifford's theorem states that on a curve C of genus g any linear system g_{d}^{r} of degree $0 \leqslant d \leqslant 2 g-2$ fulfills $2 r \leqslant d$. More precisely we will prove

THEOREM B ("refined Clifford"): On a k-gonal curve $C(k \geqslant 3)$ of genus g any g_{d}^{r} of degree $k-3 \leqslant d \leqslant 2 g-2-(k-3)$ satisfies $2 r \leqslant d-(k-3)$.

We should note that (by Riemann-Roch) Theorem B applies to the set G, say,
of all g_{d}^{r} on C with $d \leqslant g-1$ and $r \geqslant 1$ and that in this case the equality $2 r=d-(k-3)$ implies that C is one of the "exceptional curves" mentioned above.

For g_{d}^{r} in G we also prove another Clifford-like result which implies $3 r \leqslant d$ if k is odd and which improves Theorem B for linear systems in G if k is small with respect to g.

In part 3 of this paper we use Theorem A to determine the maximal degree of all linear systems of degree $d \leqslant g-1$ on C which compute the Clifford index c of C. Our main result is

THEOREM C. Any $g_{d}^{r}(d \leqslant g-1)$ on C computing c has degree $d \leqslant 2(c+2)$ unless C is hyperelliptic or bi-elliptic.

For every $c \geqslant 1$, this bound on d is the best possible. Moreover, we will show that for $g>2 c+5$ we have the better bound $d \leqslant 3(c+2) / 2$. Finally, we apply Theorem C to give a new proof of the fact that on the general k-gonal curve of genus $g>2 k(k \geqslant 3)$ there is only one linear system of degree at most $g-1$ computing c, namely the unique g_{k}^{1}. This fact was proved before by Ballico [4] (even for $g>2 k-2$) using degeneration theory of linear systems. Again, our proof is more concrete.

Notations and conventions

A variety (curve, resp. surface) X always means here an integral projective scheme over \mathbf{C} (smooth of dimension 1, resp. 2). However we consider it in the more classical context looking only to the \mathbf{C}-closed points. If F is a coherent $\mathcal{O}_{X^{-}}$ module then $h^{i}(F)=\operatorname{dim}_{\mathrm{C}}\left(H^{i}(X, F)\right), F_{x}(x \in X)$ is the stalk of F at x and $F(x)=F_{x} / \mathscr{M}_{X, x} \cdot F_{x}$. If F^{\prime} is another coherent \mathcal{O}_{X}-module and $\varphi: F \rightarrow F^{\prime}$ a homomorphism then $\varphi(x): F(x) \rightarrow F^{\prime}(x)$ is the induced map. For a Cartier divisor D on $X, \mathcal{O}_{X}(D)$ is the associated invertible sheaf on X. Clearly, $h^{i}(D)=h^{i}\left(\mathcal{O}_{X}(D)\right)$.
C always denotes a smooth irreducible projective curve of genus $g \geqslant 1$. For C, we adopt most of our notations from [3]. Specifically, if $d>1, C^{(d)}$ is the set of effective divisors of C of degree d, g_{d}^{r} is a linear system of degree d and projective dimension r (a pencil if $r=1$), and $g_{d}^{r}(-D)=\left\{E-D: E \in g_{d}^{r}\right.$ such that $\left.E \geqslant D\right\}$ if D is an effective divisor of C. Note that for a complete g_{d}^{r} the linear system $g_{d}^{r}(-D)$ is complete, too. A g_{d}^{r} is classically called a simple system if the induced rational $\operatorname{map} C \rightarrow \mathbf{P}^{r}$ is birational onto its image.

We identify $J(C)$, the jacobian of C, with $\operatorname{Pic}^{\circ}(C)$. For an invertible sheaf L on C of degree 0 we denote by [L] the corresponding point on $J(C)$. Conversely, if $x \in J(C)$ then L_{x} is an invertible sheaf on C representing x.

Fixing some base point P_{0} on C we denote the important morphism

$$
C^{(d)} \rightarrow J(C): D \mapsto\left[\mathcal{O}_{C}\left(D-d P_{0}\right)\right]
$$

by $I(d)$. If $x \in J(C)$ then $g_{d}(x)$ is the complete linear system on C associated to $L_{x}\left(d P_{0}\right)$. Recall that we have the well-known Zariski-closed subsets of $J(C)$

$$
W_{d}^{r}=\left\{x \in J(C): \operatorname{dim}\left(g_{d}(x)\right) \geqslant r\right\}=\left\{x \in J(C): \operatorname{dim}\left((I(d))^{-1}(x)\right) \geqslant r\right\} .
$$

They also have a natural scheme structure. If A and B are subsets of $J(C)$ we use the notation

$$
A \oplus B=\{x+y: x \in A \quad \text { and } \quad y \in B\} .
$$

1. The Secant theorem

In this section we will prove Theorem A. At first, we mention the general problem.

Let C be a smooth curve of genus g, and let $g_{d}^{r}(r \geqslant 2)$ be a linear system on C.
1.1 DEFINITION. Let $n \in \mathbf{Z}$ with $n \leqslant r-1$ and let $e \in \mathbf{Z}$ with $e \geqslant n+1$. Then $D \in C^{(e)}$ is called an e-secant n-space divisor for g_{d}^{r} if and only if $\operatorname{dim}\left(g_{d}^{r}(-D)\right)$ $\geqslant r-n-1$ (i.e. if D imposes at most $n+1$ conditions on g_{d}^{r}).

Consider

$$
V_{e}^{n}\left(g_{d}^{r}\right)=\left\{D \in C^{(e)}: D \text { is an } e-\text { secant } n-\text { space divisor for } g_{d}^{r}\right\} .
$$

Let Z be an irreducible component of $V_{e}^{n}\left(g_{d}^{r}\right)$. Using a determinantal description for $V_{e}^{n}\left(g_{d}^{r}\right)$ one finds (see [3], p. 345)

$$
\operatorname{dim}(Z) \geqslant(n+1-e)(r-n)+e
$$

In particular, in general one expects that $V_{e}^{n}\left(g_{d}^{r}\right)$ is not empty if $(n+1-e)(r-n)+e \geqslant 0$. In this section we prove:
1.2 THEOREM. If g_{d}^{r} is complete; if $d \geqslant 2 e-1$ and if $(n+1-e)(r-n)+e \geqslant r-n-1$ then $V_{e}^{n}\left(g_{d}^{r}\right)$ is not empty.

Taking $n=r-2, e=2 r-3$ we obtain Theorem A. If $n=r-2, e=2 r-2$ and if $V_{e}^{n}\left(g_{d}^{r}\right)$ is not empty then one deduces the existence of a linear system $g_{d-2 r+2}^{1}$ on C. This remark is essential in the study of curves of a given Clifford index ([9]; see part 2 for the definition). If g_{d}^{r} is the canonical linear system on C then the
study of $V_{e}^{n}\left(g_{d}^{r}\right)$ is very closely related to the study of special divisors on C. In fact, our investigation is similar to that of the Brill-Noether existence problem. This problem has originally been solved by means of an enumerative argument (see [15]; [16]; [17]). From ideas developed in [11] a much shorter solution has been found (see also [3], p. 311). We will use these methods to prove Theorem (1.2). The main ingredient of the proof is the following lemma, which is a slight generalization of [10] (cf. [7], Theorem 11).
1.2.1 LEMMA. If Z is a closed irreducible subset of W_{d}^{r} satisfying $\operatorname{dim}(Z) \geqslant r+1$ then Z intersects W_{d-1}^{r}.

Proof. Assume that $Z \cap W_{d-1}^{r}$ is empty (then also $Z \cap W_{d}^{r+1}$ is empty). Let P be the Poincare invertible sheaf on $J(C) \times C$ and let P_{Z} be its inverse image under the embedding $Z \times C \hookrightarrow J(C) \times C$. Hence we have the following diagram

Consider the exact sequence
$0 \rightarrow \underbrace{P_{Z} \otimes q^{*}\left(\mathcal{O}_{c}\left((d-1) P_{0}\right)\right)}_{E_{1}} \rightarrow \underbrace{P_{Z} \otimes q^{*}\left(\mathcal{O}_{C}\left(d P_{0}\right)\right)}_{E_{2}} \rightarrow \underbrace{P_{Z} \otimes q^{*}\left(\mathcal{O}_{C}\left(d P_{0}\right)\right) \otimes \mathcal{O}_{Z \times P_{0}}}_{F} \rightarrow 0$.
Because $R^{1} p_{*}(F)=0$ (see e.g. [12], p. 279), we have an exact sequence of $\mathcal{O}_{Z^{-}}$ modules

$$
\begin{equation*}
0 \rightarrow p_{*}\left(E_{1}\right) \rightarrow p_{*}\left(E_{2}\right) \xrightarrow{\phi} p_{*}(F) \rightarrow R^{1} p_{*}\left(E_{1}\right) \xrightarrow{g} R^{1} p_{*}\left(E_{2}\right) \rightarrow 0 . \tag{*}
\end{equation*}
$$

Let x be a point on Z. We write $P_{Z, x}$ to denote the inverse image of P_{Z} under the embedding of the fibre of p at x into $Z \times C$ (i.e. $P_{Z, x} \simeq \mathcal{O}_{C}\left(D-d P_{0}\right)$ if $x=I(d)(D)$). We have

$$
\begin{array}{ll}
h^{0}\left(P_{Z, x}\left(d P_{0}\right)\right)=r+1 & \text { because } x \in W_{d}^{r} \backslash W_{d}^{r+1} \\
h^{1}\left(P_{Z, x}\left(d P_{0}\right)\right)=r-d+g & \text { (Riemann-Roch) } \\
h^{0}\left(P_{Z, x}\left((d-1) P_{0}\right)\right)=r & \text { because } x \notin W_{d-1}^{r} \tag{1}\\
\left.h^{1}\left(P_{Z, x}(d-1) P_{0}\right)\right)=r-d+g & \text { (Riemann-Roch) } \\
h^{0}\left(P_{Z, x}\left(d P_{0}\right) \otimes \mathcal{O}_{P_{0}}\right)=1 &
\end{array}
$$

Hence, we can use Grauert's theorem (see e.g. [12], p. 288) to conclude that (*) is a sequence of vector bundles. Consider the induced exact sequence

$$
0 \rightarrow \operatorname{Ker}(g) \rightarrow R^{1} p *\left(E_{1}\right) \rightarrow R^{1} p_{*}\left(E_{2}\right) \rightarrow 0 .
$$

Because $R^{1} p_{*}\left(E_{2}\right)$ is locally free, tensoring with the residue field $\mathcal{O}_{Z}(x)=\mathcal{O}_{Z, x} / \mathscr{M}_{Z, x}$ and using Grauert's theorem again, we obtain the exact sequence

$$
0 \rightarrow(\operatorname{Ker} g)(x) \rightarrow H^{1}\left(C, P_{Z, x}\left((d-1) P_{0}\right)\right) \xrightarrow{g(x)} H^{1}\left(C, P_{Z, x}\left(d P_{0}\right)\right) \rightarrow 0 .
$$

But $g(x)$ is an isomorphism, hence $(\operatorname{Ker} g)(x)=0$. From Nakayama's lemma we obtain $(\operatorname{Ker} g)_{x}=0($ stalk!) hence $\operatorname{Ker} g=0$. So, we have an exact sequence

$$
0 \rightarrow p_{*}\left(E_{1}\right) \rightarrow p_{*}\left(E_{2}\right) \xrightarrow{\phi} p_{*}(F) \rightarrow 0
$$

Consider the cartesian diagram

and define

$$
C_{Z}^{(d)}\left(P_{0}\right)=\left\{E \in C_{Z}^{(d)}: E \geqslant P_{0}\right\} .
$$

From [3], p. 309, Proposition 2.1 (recall that $Z \cap W_{d}^{r+1}$ is empty) we conclude that $I_{Z}(d)$ can be identified with the natural morphism

$$
\mathbf{P}\left(p_{*}\left(E_{2}\right)\right) \rightarrow Z
$$

and $\mathcal{O}_{\mathbf{P}\left(p_{*}\left(E_{2}\right)\right)}(1) \simeq \mathcal{O}_{C_{Z}^{(d)}}\left(C_{Z}^{(d)}\left(P_{0}\right)\right)$. As is explained in [3], p. 310, Proposition 2.2, this implies that the dual vector bundle $p_{*}\left(E_{2}\right)^{D}$, and also $p_{*}\left(E_{2}\right)^{D} \otimes p_{*}(F)$, are ample vector bundles on Z. Since $\operatorname{rank}\left(p_{*}\left(E_{2}\right)\right)=r+1, \operatorname{rank}\left(p_{*}(F)\right)=1$ and $\operatorname{dim}(Z) \geqslant r+1$ we obtain from [3], p. 307, Proposition 1.3 that there exists a point z on Z such that $\operatorname{rank}(\phi(z))=0$. This is a contradiction to the surjectivity of ϕ.
1.2.2 Proof of Theorem 1.2. Let us write V_{f}^{n} instead of $V_{f}^{n}\left(g_{d}^{r}\right)$. We proceed by induction for f. It is clear that $V_{n+1}^{n}=C^{(n+1)} \neq \phi$.

Let $f \in \mathbf{Z}$ with $e>f \geqslant n+1$ and assume that V_{f}^{n} is not empty. Let Z be an irreducible component of V_{f}^{n} and consider the map

$$
i: Z \rightarrow J(C): E \mapsto l-I(f)(E)
$$

with $l \in J(C)$ defined by $g_{d}(l)=g_{d}^{r}$. (Note that g_{d}^{r} is complete, by assumption). Clearly $i(Z) \subset W_{d-f}^{r-n-1}$.

Suppose that the general non-empty fibre of i has dimension at most $r-n-2$. Since $f<e$ it follows from the hypothesis of the theorem that $\operatorname{dim}(Z) \geqslant$ $(n+1-f)(r-n)+f \geqslant 2 r-2 n-2$. Thus $i(Z)$ is then an irreducible closed subset of W_{d-f}^{r-n-1} of dimension at least $r-n$. From Lemma (1.2.1) it follows that $i(Z)$ intersects $W_{d-(f+1)}^{r-n-1}$. Let $x \in i(Z) \cap W_{d-(f+1)}^{r-n-1}$ and let $E \in Z$ such that $i(E)=x$.

Suppose that $x \notin W_{d-f}^{r-n}$. Then P_{0} is a fixed point of $g_{d}^{r}(-E)$. Thus we have $\operatorname{dim}\left(g_{d}^{r}\left(-E-P_{0}\right)\right) \geqslant r-n-1$, whence $E+P_{0} \in V_{f+1}^{n}$.

Suppose that $x \in W_{d-f}^{r-n}$. Then we have $\operatorname{dim}\left(g_{d}^{r}(-E)\right) \geqslant r-n$, i.e. $E \in V_{f}^{n-1}$. Hence $E+P \in V_{f+1}^{n}$ for each $P \in C$.

Altogether, we proved that V_{f+1}^{n} is not empty if the general non-empty fibre of i has dimension at most $r-n-2$. Now, suppose that the general non-empty fibre of i has dimension at least $r-n-1$. In that case $I(f)(Z) \subset W_{f}^{r-n-1}$. Let $E \in Z$ and let $F \in g_{d}^{r}(-E)$. Since g_{d}^{r} is complete we have that $F+|E| \subset g_{d}^{r}$. It follows that $F \in V_{d-f}^{n}$. Since $d-f \geqslant f+1$ (we assumed $2 e \leqslant d+1$) we see again that V_{f+1}^{n} is not empty, and Theorem (1.2) is thereby proved.

Applying Theorem (1.2) to a base point free and simple g_{d}^{r} on C we obtain Theorem A if $n=r-2$ and $e=2 r-3$. Finally, we are going to discuss the bound $d \geqslant 4 r-7$ of Theorem A a little bit more closely.
1.3 EXAMPLE. (a) For $r=3$ the bound is sharp: an elliptic curve of degree 4 in \mathbf{P}^{3} has no 3-secant line.
(b) For $r=4$ the bound is sharp: a general canonically embedded curve C of genus 5 in \mathbf{P}^{4} has degree 8 and no 5-secant 2-plane since a general curve of genus 5 has no g_{3}^{1}.
(c) For $r=5$ the bound is not sharp: Indeed, any linearly normal curve C of degree 12 in \mathbf{P}^{5} has a 7-secant 3-space. This follows from the fact that, if such a curve has a linear system g_{5}^{1}, then this has to be obtained from a pencil of hyperplanes in \mathbf{P}^{5} containing a 7 -secant 3 -space divisor of C. By Brill-Noether theory, C has a g_{5}^{1} if $g \leqslant 8$. So let $g \geqslant 9$. Castelnuovo's genus bound ([3], p. 116) gives us $g \leqslant 10$. If $g=9$ (resp. $g=10$), then C has a g_{4}^{1} (resp. a g_{6}^{2}) residual to the simple g_{12}^{5}, and we see that C likewise has a g_{5}^{1}. Thus, for $r=5$ we have the better bound $d \geqslant 12$ in Theorem A, and this bound is sharp. In fact, if C is a general curve of genus 7 and if P is a general point on C, then $\left|K_{C}-P\right|$ is a very ample linear system g_{11}^{5} on C. Since C has no linear systems g_{4}^{1}, the associated embedding of C in \mathbf{P}^{5} has no 7 -secant 3-plane.
(d) Using case by case analysis we checked that $3 r-3$ is the best bound for the degree d in Theorem A, for $4 \leqslant r \leqslant 7$.
1.4 PROBLEM. Is Theorem A valid also for curves in \mathbf{P}^{r} which are not linearly normal, or do we have to change the bound?

2. On Clifford's theorem

A famous theorem in the theory of special divisors on curves is Clifford's theorem (1878) which is an easy consequence of the Riemann-Roch theorem and reads as follows ([6], p. 329):

CLIFFORD'S THEOREM. Let C be a curve of genus g and let $D \in C^{(d)}$. If $\operatorname{dim}(|D|)>d-g$ then $2 \operatorname{dim}(|D|) \leqslant d$.

Motivated by this theorem, Martens [22] introduced in 1968 a new invariant of C which he called the Clifford index of C.
2.1 DEFINITION. Let $D \in C^{(d)}$. The Clifford index of D is defined by

$$
\operatorname{cliff}(D):=d-2 h^{0}(D)+2
$$

$D($ or $|D|)$ is said to contribute to the Clifford index if both $h^{0}(D) \geqslant 2$ and $h^{1}(D) \geqslant 2$. Finally, the Clifford index of C is defined by

$$
\operatorname{cliff}(C)=\min (\{\operatorname{cliff}(D): D \text { contributes to the Clifford index }\})
$$

if $g \geqslant 4$.
In terms of these definitions, the essence of Clifford's theorem may simply be stated as $\operatorname{cliff}(C) \geqslant 0$. Furthermore, it is classically known (due to M. Noether, Bertini, C. Segre and often included in the statement of Clifford's theorem) that $\operatorname{cliff}(C)=0$ if and only if C is hyperelliptic. As a consequence of (the closing lines in) [9] all curves of a given Clifford index $c \leqslant 33$ are classified. (The main conjecture in [9] states such a classification for every Clifford index.) This classification indicates a close connection between the Clifford index c and the gonality k of C, given by the inequalities $c+2 \leqslant k \leqslant c+3$. We will prove now that these inequalities are in fact true. Let us first recall the definition of the old invariant "gonality" of C.
2.2 DEFINITION. A smooth curve C is called k-gonal (and k its gonality) if C possesses a pencil g_{k}^{1} but no g_{k-1}^{1}.

Clearly, cliff $(C)=c$ implies $W_{c+1}^{1}=\varnothing$ whence C has gonality $k \geqslant c+2$. On the other hand, the following theorem tells us that we also have the non-trivial relation $k \leqslant c+3$.
2.3 THEOREM. If $\operatorname{cliff}(C)=c$ then $\operatorname{dim}\left(W_{c+3}^{1}\right) \geqslant 1$.

Proof. If C is $(c+2)$-gonal then $W_{c+2}^{1} \oplus W_{1}^{0} \subset W_{c+3}^{1}$, hence $\operatorname{dim}\left(W_{c+3}^{1}\right) \geqslant 1$. Suppose that C is not $(c+2)$-gonal. Then there must exist a divisor D on C satisfying $h^{0}(D)=r+1 \geqslant 3, \operatorname{deg}(D)=c+2 r, h^{1}(D) \geqslant 2$. Choose D such that r is minimal. Then $|D|$ is very ample ([9], Lemma 1.1). If $2 r=c+3$ we have
$\operatorname{dim}\left(W_{c+3}^{1}\right) \geqslant 1$ according to [9], §3. Let $2 r \neq c+3$. Then $4 r \leqslant c+6$ (see [9], Corollary 3.5), i.e. $d=\operatorname{deg}(D)=c+2 r \geqslant 6 r-6$. Thus Theorem A implies that $V_{2 r-3}^{r-2}=V_{2 r-3}^{r-2}(|D|)$ is not empty. Let Z be an irreducible component of $V_{2 r-3}^{r-2}$. We know that $\operatorname{dim}(Z) \geqslant 1$. More geometrically, if we embed C in P^{r} via $|D|$ we obtain infinitely many $(2 r-3)$-secant $(r-2)$-planes for C. Let S be such a plane. Then the projection of C onto \mathbf{P}^{1} with center S gives a g_{c+3}^{1} on C. If the $2 r-3$ points of C on S vary in a non-trivial linear system, then $2 r-5 \geqslant c=d-2 r$ (since this linear system contributes to the Clifford index), and we obtain the contradiction $d \leqslant 4 r-5$. Thus different $(2 r-3)$-secant $(r-2)$-planes induce (by projection) different g_{c+3}^{1} on C.

2.3.1 COROLLARY. If $\operatorname{dim}\left(W_{d}^{1}\right)=0$ then $\operatorname{cliff}(C)=d-2$.

Proof. Since $W_{d}{ }^{1}$ is not empty, one has $\operatorname{cliff}(C) \leqslant d-2$. If $\operatorname{cliff}(C)=d-2-\varepsilon$ for some $\varepsilon \geqslant 1$ then it follows from Theorem (2.3) that $\operatorname{dim}\left(W_{d+1-\varepsilon}^{1}\right) \geqslant 1$ and therefore $\operatorname{dim}\left(W_{d}^{1}\right) \geqslant 1+(\varepsilon-1) \geqslant 1$. This is a contradiction.
2.3.2 COROLLARY (Ballico's theorem [4]). If C is a general k-gonal curve, then $\operatorname{cliff}(C)=k-2$.

Proof. For $g=2 k-3$ this follows from Brill-Noether theory. Assume $k<(g+3) / 2$. According to an old theorem of B. Segre a general k-gonal curve then has only a finite number of linear systems g_{k}^{1} ([24], see also [2]), hence we can apply Corollary (2.3.1).

Note that Corollary (2.3.2) implies that each integer $c, 0 \leqslant c \leqslant(g-1) / 2$, occurs as the Clifford index of a smooth curve of genus g. The three other proofs of Ballico's theorem known to us ([4], [13], [23]) are not concrete: they do not indicate which k-gonal curves have Clifford index $k-2$. Just to give a concrete example, recall that a non-degenerate curve C in \mathbf{P}^{r} is called extremal if the genus of C is maximal with respect to the degree of C (cf. [3], p. 117 or [8]).
2.3.3 EXAMPLE. Let C be an extremal curve of degree $d>2 r$ in $\mathbf{P}^{r}(r \geqslant 3)$. There are two cases [1]:
(i) C lies on a rational normal scroll X in \mathbf{P}^{r}. Write $d=m(r-1)+1+\varepsilon$ where $\varepsilon=1,2, \ldots, r-1$. C has only finitely many pencils of degree $m+1$ (in fact, only one for $r>3$, one or two if $r=3$); these pencils are swept out by the rulings of X. Thus cliff $(C)=m-1$ by Corollary (2.3.1).
(ii) C is the image of a smooth plane curve C^{\prime} of degree $d / 2$ under the Veronese map $\mathbf{P}^{2} \rightarrow \mathbf{P}^{5}$. Then $r=5$ and $\operatorname{cliff}(C)=\operatorname{cliff}\left(C^{\prime}\right)=(d / 2)-4$ (e.g. [19]). Note that in this case $W_{c+2}^{1}=\varnothing, \operatorname{dim} W_{c+3}^{1}=1$ if $c=\operatorname{cliff}(C)$, so Corollary (2.3.1) cannot be applied.

The main conjecture in [9] states that every k-gonal curve C has Clifford index $c=k-2$ unless C is a smooth plane curve of degree $d \geqslant 5$ or one of those "exceptional" curves constructed and studied in [9].

Next we want to prove Theorem B of the Introduction.
2.4 Proof of Theorem B. Assume that C is a k-gonal curve $(k \geqslant 3)$ and assume that $g_{d}^{r}=|D|$ is a complete linear system on C satisfying $k-3 \leqslant d \leqslant 2 g-2-(k-3)$ and $2 r>d-(k-3)$. Clearly, $h^{0}(D)=r+1 \geqslant 2$, and using the Riemann-Roch theorem, we obtain from our numerical conditions for d and r that

$$
h^{1}(D)=h^{0}(D)+g-d-1 \geqslant 2 .
$$

Hence $|D|$ contributes to the Clifford index. Therefore

$$
\operatorname{cliff}(C) \leqslant \operatorname{cliff}(D)=d-2 r<k-3
$$

From Theorem (2.3) we obtain that $\operatorname{dim}\left(W_{k-1}^{1}\right) \geqslant 1$, a contradiction to the fact that C is k-gonal.

For curves of large genus with respect to the gonality we have the following improvement of Theorem B (closely related to [3], p. 138, Exercise B-7). For short, let us call C here a double curve if there exists a curve C^{\prime} and a ramified covering $\pi: C \rightarrow C^{\prime}$ of degree 2 .
2.4.1 PROPOSITION. Let g_{d}^{r} be a linear system on C satisfying $0 \leqslant d \leqslant g-1$. If $3 r>d$ then we have one of the following two possibilities:
(i) $d=3 r-1$ and g_{d}^{r} embeds C in \mathbf{P}^{r} as an extremal curve; or
(ii) C is a double curve of even gonality k, and one has $2 r \leqslant d-2(k-3)$.

Proof. Let g_{d}^{r} be a complete linear system on C satisfying $0 \leqslant d \leqslant g-1$ and $3 r>d$. There are two cases:
(i) g_{d}^{r} is simple. From Castelnuovo's bound we obtain

$$
g \leqslant \pi(d, r)=m(d-1-(m+1)(r-1) / 2) \quad \text { where } \quad m=\left[\frac{d-1}{r-1}\right]
$$

(cf. [3], p. 116 or [8]). Using the facts $d \leqslant g-1$ (hypothesis) and $2 r \leqslant d<3 r$ (by assumption and by Clifford's theorem) a straightforward calculation shows that $d=3 r-1$ and $g=\pi(d, r)=3 r$ is the only possibility.
(ii) Suppose g_{d}^{r} is not simple. We are going to prove that the second claim of our proposition holds. We can assume that g_{d}^{r} is complete and has no fixed points. Consider the map $C \rightarrow \mathbf{P}^{r}$ associated to g_{d}^{r}; let C^{\prime} be the normalization of the image curve in \mathbf{P}^{r} and assume that $\operatorname{deg}\left(\varphi: C \rightarrow C^{\prime}\right)=n \geqslant 2$. Then C^{\prime} possesses a complete linear system $g_{d / n}^{\prime r}$ such that $\varphi^{*}\left(g_{d / n}^{\prime r}\right)=g_{d .}^{r}$ If $g_{d / n}^{\prime r}$ would be a special linear system on C^{\prime}, then-because of Clifford's theorem- $2 r \leqslant d / n<3 r / n$, which gives us a contradiction. Let g^{\prime} be the genus of C^{\prime}. By Riemann-Roch, then, $g^{\prime}=(d / n)-r<(3 r / n)-r=(3-n) \cdot(r / n)$. Since $g^{\prime} \geqslant 0$ one obtains $n=2$. Thus
C is a double curve, and $g^{\prime}<r / 2$. From $g^{\prime}=(d / 2)-r=(d-2 r) / 2$ we see that $g>d=2 g^{\prime}+2 r>6 g^{\prime}$. Assume that C is k-gonal and consider a map $\psi: C \rightarrow \mathbf{P}^{1}$ of degree k. If ψ does not factor through C^{\prime}, then-according to a genus bound of Castelnuovo for curves with morphisms (see [19], §1 or [25])-one has $g \leqslant k-1+2 g^{\prime}$. Since $k \leqslant(g+3) / 2$ (by Brill-Noether theory) we obtain $g \leqslant 4 g^{\prime}+1$, contradicting $g>6 g^{\prime}$. Thus ψ factors, and k is twice the gonality of C^{\prime}. But then (by Brill-Noether applied to C^{\prime}) $k \leqslant g^{\prime}+3=[(d-2 r) / 2]+3$. This gives us the bound stated in the proposition.
2.4.2 REMARK. The bound in Proposition (2.4.1)(ii) is sharp if and only if C is a double covering of a curve C^{\prime} of odd genus g^{\prime} which is $\left(g^{\prime}+3\right) / 2$-gonal (and if the genus g of C is large enough). Indeed, assume that we have equality in Proposition (2.4.1)(ii). Then the curve C^{\prime} in the above proof has genus $g^{\prime}=(d-2 r) / 2=k-3$ and gonality $k / 2=\left(g^{\prime}+3\right) / 2$. Conversely, assume that $\varphi: C \rightarrow C^{\prime}$ is a double covering with C^{\prime} a curve of genus g^{\prime} and gonality $\left(g^{\prime}+3\right) / 2$. Let r be such that $g \geqslant 3 r>2 g^{\prime}+2 r$. Then $\varphi^{*}\left(g_{g^{\prime}+r}^{\prime r}\right)$ is a linear system of degree $d=2 g^{\prime}+2 r$ and dimension r on C for which equality holds in (ii) since the proof of (ii) shows that the gonality k of C is twice the gonality $\left(g^{\prime}+3\right) / 2$ of C^{\prime}.
2.4.3 COROLLARY. Let C be a curve of odd gonality and let g_{d}^{r} be a linear system on C with $0 \leqslant d \leqslant g-1$. Then $3 r \leqslant d$.

Proof. Indeed, according to Example (2.3.3), a curve satisfying (i) of Proposition (2.4.1) is 4-gonal or 6-gonal.
2.4.4 EXAMPLE. For trigonal curves C the bound in Corollary (2.4.3) is sharp. Of course, multiples of the linear system g_{3}^{1} attain the bound. The only other possibility is the case in which $g=3 r+1$ and $g_{3 r}^{r}$ is residual to $r g_{3}^{1}$ (see [20], §1).

Assume there is a $g_{3 r}^{r}, 6 \leqslant 3 r<g$, on a curve C of genus g which is neither trigonal nor a double curve of even gonality. Along the lines of the proof of Proposition (2.4.1) it can be shown that the $g_{3 r}^{r}$ on C is a complete base point free and simple linear system. According to [8], (3.15), if we view C via $g_{3 r}^{r}$ as a curve of degree $3 r$ in \mathbf{P}^{r} it must lie on a surface of degree r or less, i.e. on a scrollar resp. on a del Pezzo surface. Consequently, it is not hard to check then that C has gonality $k \leqslant 6$ or $k=8$. (In the latter case $r=9$, and C is the image of a smooth plane nonic under the Veronese embedding $\mathbf{P}^{2} \rightarrow \mathbf{P}^{9}$.) In particular, we see that the bound in Corollary (2.4.3) is not sharp for curves of odd gonality $k \geqslant 7$.

However, for $r \leqslant 5$ there are some 5 -gonal curves admitting a $g_{3 r}^{r}$: Clearly, a smooth plane sextic $(g=10)$ has a g_{6}^{2}. Adopting the notation of [12], $\mathrm{V}, 2$ any smooth member of the linear system $\left|5 C_{0}+7 f\right|(g=14)$ on the rational normal scroll $X_{1} \subset \mathbf{P}^{4}$ has a g_{12}^{4}. Similarly, a smooth member of $\left|5 C_{0}+5 f\right|$ on $X_{0} \subset \mathbf{P}^{5}$ (resp. $\left|5 C_{0}+10 f\right|$ on $X_{2} \subset \mathbf{P}^{5}$) is a smooth curve of degree 15 in \mathbf{P}^{5} of genus 16 . This curve can also be identified as an extremal space curve of degree 10 thus lying on a smooth quadric surface (resp. on a quadric cone) in \mathbf{P}^{3}.

3. On linear systems computing the Clifford index

3.1 DEFINITION. Let C be a smooth curve of genus g with $\operatorname{cliff}(C)=c$. Let g_{d}^{r} be a linear system on C contributing to the Clifford index. We say that g_{d}^{r} computes the Clifford index if $d \leqslant g-1$ and $d-2 r=c$; note that such a linear system is complete and base point free. Moreover ([14]), for $r \geqslant 3$ it is simple unless C is hyperelliptic or bi-elliptic (i.e. a double covering of an elliptic curve).

Before proving Theorem \mathbf{C} of the Introduction, we have to prove some preliminary results. We start by recalling part of a lemma in [9] (cf. [9], Lemma 3.1) whose proof is an application of the base-point free pencil trick.
3.1.1 LEMMA. Let D be a divisor of C computing the Clifford index of C. Let M be a divisor of C of degree m such that $|M|$ is base point free. If $\operatorname{deg}(D)=g-1$ we assume that $m \neq 2 h^{0}(D)-1$. Then we have $h^{0}(D-M) \geqslant h^{0}(D)-(m / 2)$.
3.1.2 COROLLARY. Assume $g_{d}^{r}(d \leqslant g-1)$ is a linear system on C computing the Clifford index c of C. Then any complete base point free linear system on C of degree $0<m<2 r$ computes the Clifford index and has even degree.

Proof. Let $D \in g_{d}^{r}$ and let E be an effective divisor on C of degree $m<2 r$ such that $|E|$ is base point free.

Claim. $|D-E|$ computes the Clifford index of C.
Indeed, from Lemma (3.1.1) we obtain that

$$
2 h^{0}(D-E) \geqslant 2 h^{0}(D)-m=2 r+2-m>2
$$

hence $h^{0}(D-E) \geqslant 2$. Since $h^{1}(D) \geqslant 2$ we certainly have $h^{1}(D-E) \geqslant 2$, hence $|D-E|$ contributes to the Clifford index. By definition of the Clifford index, we have

$$
d-m-2 h^{0}(D-E)+2 \geqslant c=d-2 r
$$

Comparing it with the above lower bound on $2 h^{\circ}(D-E)$ we obtain

$$
2 h^{0}(D-E)=2 r+2-m
$$

i.e. $|D-E|$ computes the Clifford index and m is even.

Now, we are ready to prove that $|E|$ computes the Clifford index. From the fact that $|E|$ is base point free (hence $h^{0}(E) \geqslant 2$) and $m<2 r \leqslant d \leqslant g-1$, we obtain that $|E|$ contributes to the Clifford index. It follows that $m-2 \geqslant c=d-2 r$, and therefore $d-m<2 r$. Thus in our claim above we may replace E by $F \in|D-E|$, which implies that $|D-F|=|E|$ computes the Clifford index.
3.2 Proof of Theorem C. Let C be a curve of genus g which is not hyperelliptic or bi-elliptic and let $g_{d}^{r}(d \leqslant g-1)$ be a linear system on C computing the Clifford index c of C.
3.2.1 Claim. If C has a base point free linear system g_{c+3}^{1}, then $d \leqslant 2 c+3$. Indeed, from Corollary (3.1.2) we obtain that $c+3 \geqslant 2 r$, hence

$$
2 c+3 \geqslant c+2 r=d
$$

Because of Theorem (2.3) this completes the proof of Theorem C if C is not ($c+2$)-gonal.
3.2.2 Claim. If C has a base-point free linear system g_{c+2}^{1} and if c is odd, then $d \leqslant 2 c+1$.

Indeed, in this case $c+2$ is also odd, hence from Corollary (3.1.2) it follows that $c+2 \geqslant 2 r$, whence

$$
2 c+2 \geqslant c+2 r=d
$$

Since c is odd, so is d, and we obtain our claim. This completes the proof of Theorem C for odd Clifford index c.

Suppose c is even and C has a linear system g_{c+2}^{1} (of course, being base point free). Again, if $c+2 \geqslant 2 r$, then we obtain $2 c+2 \geqslant d$, so we can assume that $c+2<2 r$. From the claim in the proof of Corollary (3.1.2) we see
3.2.3 Claim. If $d \geqslant 2 c+4$ and if $D \in g_{d}^{r}, E \in g_{c+2}^{1}$ then $|D-E|$ computes the Clifford index.

It follows that $|D-E|$ is a linear system g_{d-c-2}^{s} satisfying $(d-c-2)-2 s=c$, hence $d=2 c+2+2 s$. It is enough to prove the following

3.2.4 Claim. $\operatorname{dim}(|D-E|)=1$ (i.e $s=1$).

First, assume $s \geqslant 3$. Since we assumed C not to be hyperelliptic or bi-elliptic, we know that $|D-E|$ is simple (see [14]). Let F be a general element of $C^{(s-1)}$. Because of the General Position theorem ([3], p. 109), $|D-E-F|$ is a linear system $g_{d-(c+1+s)}^{1}$ on C without fixed points. But $d-(c+1+s)=d / 2$. From the assumption $c+2<2 r$ it follows that $d=c+2 r<4 r-2$, hence $d / 2<2 r$. From Corollary (3.1.2) we obtain that $|D-E-F|$ computes the Clifford index, i.e. $(d / 2)-2=c$. But then we have the contradiction $2 c+4=d=2 c+2+2 s \geqslant 2 c+8$.

Assume $s=2$. If $|D-E|$ is simple then we obtain a contradiction as before. Hence $|D-E|$ is not simple. Consider the associated morphism $\varphi^{\prime}: C \rightarrow \mathbf{P}^{2}$ and let C^{\prime} be the normalization of $\varphi^{\prime}(C)$. Let $\varphi: C \rightarrow C^{\prime}$ be the associated ramified covering. Then $n=\operatorname{deg}(\varphi) \geqslant 2$, and C^{\prime} has a complete linear system $g_{d^{\prime}}^{2}$ with $d^{\prime}=(d-c-2) / n=(c+4) / n$ and $|D-E|=\varphi^{*}\left(g_{d^{\prime}}^{2}\right)$. If $g_{d^{\prime}}^{2}$ is not very ample on C^{\prime}, then C^{\prime} has a linear system $g_{d^{\prime}-2}^{1}$ and $\varphi^{*}\left(g_{d^{\prime}-2}^{1}\right)$ is a linear system $g_{c+4-2 n}^{1}$ on C
contributing to the Clifford index. Hence $c+2-2 n \geqslant c$, which is a contradiction. Thus C^{\prime} is a smooth plane curve of degree d^{\prime}. Consider a linear system $g_{d^{\prime}-1}^{1}$ on C^{\prime}. Then $\varphi^{*}\left(g_{d^{\prime}-1}^{1}\right)$ is a linear system g_{c+4-n}^{1} on C contributing to the Clifford index. Hence $c+2-n \geqslant c$ which implies $n=2$. In this case $\varphi^{*}\left(g_{d^{\prime}-1}^{1}\right)$ computes the Clifford index. Since C^{\prime} has infinitely many linear systems $g_{d^{\prime}-1}^{1}, C$ has infinitely many linear systems g_{c+2}^{1}. On all these linear systems one can apply Claim (3.2.3), all giving rise to the same value for s-assumed to be 2 here. So, we find an infinite number of linear systems g_{c+4}^{2} on C giving rise to double coverings of C over smooth plane curves C^{\prime} of degree $(c / 2)+2$. Our assumptions imply that C^{\prime} is not rational and not elliptic. But then, the induced linear system $g_{(c / 2)+2}^{\prime 2}$ on every C^{\prime} is unique. All together, this shows that there exists an infinite number of double coverings $C \rightarrow C^{\prime}$ with $g\left(C^{\prime}\right)>1$. This is impossible (e.g. cf. [18], Lemma 4), and we have proved Claim (3.2.4) and Theorem C.

Our next result (which is in fact equivalent to Theorem C) improves a result in [14].
3.2.5 COROLLARY. Let C be a curve of genus $g>2 c+4$ resp. $g>2 c+5$ if c is odd resp. even. Then, for a linear system $g_{d}^{r}(d \leqslant g-1)$ computing c, we have $d \leqslant 3(c+2) / 2$ unless C is hyperelliptic or bi-elliptic.

Proof. Let $g_{d}^{r}=|D|$. Leaving aside the discussion for $c \leqslant 2$ (see [14]) we assume $c \geqslant 3$. Then $d \leqslant 2 c+4$ by Theorem C. But $3(c+2) / 2<d<2(c+2)$ implies $g \leqslant 2 c+4$ ([14], Cor. 1) contradicting our hypothesis on g. Thus $d \leqslant 3(c+2) / 2$ or $d=2 c+4$. Assume that $d=2 c+4$. Then c is even (since $d \equiv c \bmod 2$) and $g<3(c+1)$ (see [14], Cor. 2). From Claim (3.2.1) we conclude that C has a g_{c+2}^{1}, $|M|$ say, and from Claim (3.2.3) we know that $|D-M|$ is again a g_{c+2}^{1}. Thus

$$
h^{0}(D+M) \geqslant 2 h^{0}(D)-h^{0}(D-M)=(2 r+2)-2=2 r=d-c=c+4,
$$

hence

$$
\operatorname{cliff}(D+M)=3 c+6-2 h^{0}(D+M)+2 \leqslant c
$$

If $h^{1}(D+M) \leqslant 1$, then by Riemann-Roch we have $c+4 \leqslant h^{0}(D+M) \leqslant 3 c+8-g$, whence the contradiction $g \leqslant 2 c+4$. Therefore, $|N|=\left|K_{C}-(D+M)\right|$ computes c and $h^{0}(D+M)=c+4$. By Riemann-Roch, then,

$$
g=\operatorname{deg}(D+M)+1-h^{0}(D+M)+h^{1}(D+M)=2 c+3+h^{0}(N)
$$

Since $g>2 c+5$, we see that $h^{0}(N) \geqslant 3$.
Assume that $|N|$ is simple. By the Uniform Position principle we then have

$$
h^{0}(D+N)+h^{0}(D-N) \geqslant 2 h^{0}(D)+h^{0}(N)-2
$$

provided that $n:=\operatorname{deg}(N) \geqslant h^{0}(D)+h^{0}(N)-h^{0}(D-N)-1$ ([3], III, Ex. B-6, note the misprint there). But the inequality for n is clearly satisfied since

$$
\begin{aligned}
& 2 h^{0}(D-N) \geqslant 0 \geqslant 2-c=(c+6)-6-2 c+2 \geqslant 2 h^{0}(D)-2 h^{0}(N)-2 c+2 \\
& \quad=2 h^{0}(D)-2 h^{0}(N)-2\left(n-2 h^{0}(N)+2\right)+2 \\
& \quad=2 h^{0}(D)+2 h^{0}(N)-2 n-2 .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
& d+n-2 h^{0}(D+N)+2=\operatorname{cliff}(D+N)=\operatorname{cliff}\left(K_{C}-M\right)=\operatorname{cliff}(M)=c \\
& \quad=\operatorname{cliff}(D)=d-2 h^{0}(D)+2, \text { i.e. } 2 h^{0}(D+N)=2 h^{0}(D)+n .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& 2 h^{0}(D-N) \geqslant 4 h^{0}(D)+2 h^{0}(N)-4-2 h^{0}(D+N) \\
& \quad=2 h^{0}(D)-n-4+2 h^{0}(N)=2\left(h^{0}(D)-1\right)-\left(n-2 h^{0}(N)+2\right) \\
& \quad=c+4-c=4, \text { i.e. } h^{0}(D-N) \geqslant 2 .
\end{aligned}
$$

But

$$
|D-N|=\left|2 D+M-K_{C}\right|=\left|M-\left(K_{C}-2 D\right)\right|
$$

and $\operatorname{deg}\left(K_{C}-2 D\right)>0$ because $g>2 c+5=d+1$. Since C has no g_{c+1}^{1}, this is a contradiction.

This contradiction shows that $|N|$ is not simple. This implies that $|N|=g_{c+4}^{2}$ and that C is a double covering of a smooth plane curve C^{\prime} of degree $d^{\prime}=(c / 2)+2$. (Cf. the proof of Theorem C.) Clearly C^{\prime} has infinitely many linear systems $g_{d^{\prime}-1}^{\prime 1}$ which induce on C an infinite number of $|M|=g_{c+2}^{1}$ and thus infinitely many linear systems $|N|=\left|\left(K_{C}-D\right)-M\right|$. To get a contradiction we now may proceed as in the last part of the proof of Theorem C (replacing D by its dual $K_{C}-D$ there).

The results given in Theorem C and its Corollary are best possible. This is shown by the following examples.
3.2.6 EXAMPLE (c even). Let X be a general $K 3$ surface in $\mathbf{P}^{r}(r \geqslant 3)$. Then $\operatorname{Pic} X$ is generated by (the class of) a hyperplane section H, and $\operatorname{deg} X=\left(H^{2}\right)=2 r-2$. Let C be a smooth irreducible curve on X contained in the linear system $|n H|$ of X, for $2 \leqslant n \in \mathbf{N}$. Then C is a $(1 / n)$-canonical curve (i.e. $\mathcal{O}_{C}(n)$ is the canonical bundle of C) of genus $g=(n H)^{2} / 2+1=n^{2}(r-1)+1$ and degree $d=(n H \cdot H)=2 n(r-1)$.

According to Green's and Lazarsfeld's method of computing the Clifford
index of smooth curves on a $K 3$ surface (cf. [21]) there has to be a smooth curve B on X such that $(B \cdot C) \leqslant g-1$ and $\mathcal{O}_{X}(B) \otimes \mathcal{O}_{C}$ computes the Clifford index of C. But since Pic $X \cong \mathbf{Z} \cdot H$ we clearly have $B \in|H|$. Thus $\mathcal{O}_{C}(1)$ computes c, and we have $c=d-2 r=2(n-1)(r-1)-2$. In particular,

$$
g=\frac{n^{2}}{2(n-1)}(c+2)+1 \quad \text { and } \quad d=\frac{n}{n-1}(c+2) .
$$

Now we specialize to the cases $n=2$ and $n=3$. Then we obtain

$$
d=2 c+4=g-1 \quad \text { for } n=2 ; d=3(c+2) / 2, g=(9(c+2) / 4)+1 \quad \text { for } n=3,
$$

whence Theorem C and its Corollary are best possible for even c. The simplest examples ($r=3$) are smooth complete intersections of X with a quadric resp. a cubic surface Y in \mathbf{P}^{3}. If Y is quadric C clearly has two resp. only one g_{4}^{1} (computing c) according to Y is smooth resp. a cone. Let C be a smooth complete intersection of X with a cubic Y in $\mathbf{P}^{3}(c=6 ; d=12 ; g=19)$. Then C has a quadrisecant line (Cayley's formula-see e.g. [3], p. 351-is nonzero in this case), and the projection $C \rightarrow \mathbf{P}^{1}$ with center a quadrisecant line gives a g_{8}^{1} (computing c) on C. Moreover, the g_{8}^{1} on C are in 1-1-correspondence with the quadrisecant lines of C : We have

$$
\operatorname{dim}\left(g_{12}^{3}+g_{8}^{1}\right) \geqslant 2 \operatorname{dim}\left(g_{12}^{3}\right)-\operatorname{dim}\left(g_{12}^{3}-g_{8}^{1}\right)=6-\operatorname{dim}\left(g_{12}^{3}-g_{8}^{1}\right)
$$

and

$$
-1 \leqslant \operatorname{dim}\left(g_{12}^{3}-g_{8}^{1}\right) \leqslant 0
$$

since C has no g_{4}^{1}. If $\operatorname{dim}\left(g_{12}^{3}-g_{8}^{1}\right)=-1$ we have $\operatorname{dim}\left(g_{12}^{3}+g_{8}^{1}\right) \geqslant 7$ whence there is a g_{20}^{7} on C inducing a g_{16}^{5}, by duality. But the g_{16}^{5} computes the Clifford index $c=6$ of C, and $16=2 c+4$. Thus, by Corollary (3.2.5), we obtain a contradiction. Therefore, $\operatorname{dim}\left(g_{12}^{3}-g_{8}^{1}\right)=0$, and we see that every g_{8}^{1} on C comes from a projection with center a quadrisecant line of C. Clearly, the quadrisecant lines of C all lie on the unique cubic surface Y containing C. If Y is smooth (for example Clebsch' diagonal surface) there are exactly 27 lines on Y all of which are easily seen to be quadrisecant lines of C. This is in accordance with Cayley's formula computing-with multiplicities-the number m of quadrisecant lines of a smooth space curve of given genus and degree, provided that m is finite. Note that C is the strict transform of a plane curve of degree 12 with six singular points P_{1}, \ldots, P_{6} of multiplicity 4 , under the natural map $Y \rightarrow \mathbf{P}^{2}$ defined by blowing up P_{1}, \ldots, P_{6} ([12], p. 402). To see the other types of smooth complete intersections of X with a cubic surface Y in \mathbf{P}^{3} we move these six points in
special positions in \mathbf{P}^{2} (including the consideration of infinitely near points). The number of g_{8}^{1} on C depends then on the speciality of this situation. This will be described in terms of the resulting singularities of Y. So assume that Y is not smooth. Then Y can only have isolated singularities. In fact, a cubic surface in \mathbf{P}^{3} with a double curve either is reducible or rationally ruled with a double line. The first case clearly is impossible, and in the second case the ruling would define a g_{4}^{1} on C. Now, if Y has no triple point it is a classical fact that Y has at most four rational double points, and the number of lines on Y is then determined by the type and the number of the rational double points. We have the 20 possibilities presented in the following table ([5]) where the type of the singularities is expressed in terms of Coxeter-diagrams (A-D-E-singularities).

However, if Y has a triple point (type \widetilde{E}_{6}) Y is an elliptic cone whence C is a (4:1)—covering of an elliptic curve and carries infinitely many g_{8}^{1}.

Type and number of rational double points of the cubic Y	Number of g_{8}^{1} on C
A_{1} (ordinary double point)	21
$2 A_{1}$	16
$3 A_{1}$	12
$4 A_{1}$	9
A_{2}	15
A_{2}, A_{1}	11
$A_{2}, 2 A_{1}$	8
$2 A_{2}$	7
$2 A_{2}, A_{1}$	5
$3 A_{2}$	3
A_{3}	10
A_{3}, A_{1}	7
$A_{3}, 2 A_{1}$	5
A_{4}	6
A_{4}, A_{1}	4
A_{5}	3
A_{5}, A_{1}	2
D_{4}	6
D_{5}	3
E_{6}	1

3.2.7 EXAMPLE (c odd). Let X be a $K 3$ surface in $\mathbf{P}^{r}(r \geqslant 3)$ containing a single line E such that $\operatorname{Pic} X \simeq \mathbf{Z} \cdot H \oplus \mathbf{Z} \cdot E, \quad \operatorname{deg} X=\left(H^{2}\right)=2 r-2, \quad\left(E^{2}\right)=-2$, $(H \cdot E)=1$. (This is possible, see [9], Lemma 4.2.) Let C be a smooth element of $|2 H+E|$. Then C is a half-canonical curve of genus $g=1+\left((2 H+E)^{2} / 2\right)=4 r-2$ and degree $d=((2 H+E) \cdot H)=4 r-3$. In [9], Theorem 4.3 it is proved that $\mathcal{O}_{C}(1)$ computes the Clifford index c of C. Hence $c=d-2 r=2 r-3$ and we obtain
$d=2 c+3$, the maximal number for odd c. From Claim (3.2.2) we know that C has no linear system g_{c+2}^{1}. (Even stronger, in [9], Theorem 3.7, it is proved that $\mathcal{O}_{C}(1)$ is the only bundle on C computing the Clifford index.)

The simplest example is a smooth complete intersection of two cubics in $\mathbf{P}^{3}(r=3 ; d=9 ; g=10 ; c=3)$. For details cf. [9], §4.
3.2.8 EXAMPLE (small genus). Let X be a smooth cubic surface in \mathbf{P}^{3}. Adopting the notation of [12], V, 4, Pic X is generated by l and (the classes of) six lines e_{1}, \ldots, e_{6} such that $\left(l^{2}\right)=1,\left(e_{i}^{2}\right)=-1,\left(l \cdot e_{i}\right)=0,\left(e_{i} \cdot e_{j}\right)=0(i \neq j)$. Consider a smooth irreducible member C of $\left|11 l-4 \Sigma_{i=1}^{5} e_{i}-3 e_{6}\right|$. Then C has degree $d=10$ in \mathbf{P}^{3} and genus $g=12$. In accordance with Cayley's formula ([3], p. 351) C has exactly 10 quadrisecant lines (given by $e_{i}, l-e_{i}-e_{6}$ for $i=1, \ldots, 5$) but no lines cutting C in at least 5 points. Therefore, it is easy to see that C is 6gonal (with exactly $10 g_{6}^{1}$) and of Clifford index $c=4$. Thus the embedding g_{10}^{3} computes c, and $g=2(c+2)>d=10>3(c+2) / 2$. This is in accordance with Corollary (3.2.5).
3.2.9 REMARK. Assume C has a $g_{d}^{r}, r \geqslant 4, d \leqslant 3(c+2) / 2$, computing the Clifford index c of C. Since $c=d-2 r$ we have $d \geqslant 6 r-6$ and according to [14] C may be viewed as a linearly normal curve of degree d in \mathbf{P}^{r} not lying on a quadric of rank $\leqslant 4$. By the proof of [9], Proposition 5.1, then, C cannot be contained in a surface of degree $2 r-3$ or less.
3.3 CONSEQUENCES. Note that a curve C of Clifford index c which is not hyperelliptic and not bi-elliptic and which admits a linear system computing c of maximal degree $d=2 c+3$ (c odd) resp. $d=2 c+4$ (c even) must have genus $g=d+1$, by Corollary (3.2.5). The existence of such curves is settled by our previous examples, for every $c \geqslant 2$. If $c=1$ take a smooth plane quintic. For odd c these curves are studied in [9]. Here we want to make some closing remarks on these curves for even c. We will prove a "recognition theorem" for them (cf. Proposition (3.3.2)) which will then be used to deduce some criteria for curves whose Clifford index can only be computed by pencils.
3.3.1 EXAMPLE. Assume that C is not hyper- or bi-elliptic. If $|D|$ is a linear system on C of degree $2 c+4$ computing c it follows from the Claims (3.2.1) and (3.2.4) that C possesses a pencil g_{c+2}^{1}, say $|M|$, such that $|D-M|$ is a g_{c+2}^{1}, too. Assume that $|D-M|=|M|$. Then $\operatorname{dim}(|2 M|)$ is as large as possible since $|2 M|$ computes the Clifford index. Consider W_{c+2}^{1} and let $m=I(c+2)(M) \in W_{c+2}^{1}$. It is well-known (see e.g. [3]) that the embedding dimension $d(m):=\operatorname{dim} T_{m}\left(W_{c+2}^{1}\right)$ of W_{c+2}^{1} at the point m is given by $h^{0}(2 M)-3$. But $h^{0}(2 M)=(c / 2)+3$, hence $d(m)$ attains its maximal value $c / 2$.

Conversely, let C be a smooth curve of Clifford index $c \geqslant 2$ and gonality $k \leqslant(g-1) / 2$. Let $|M|=g_{k}^{1}, m=I(k)(M) \in W_{k}^{1}$, and assume that $d(m)$ is maximal. Since $2 k \leqslant g-1$ we have $h^{0}(2 M) \leqslant k+1-c / 2$, and since $d(m)$ is maximal if and
only if $h^{0}(2 M)$ is, we have $d(m)=k-2-c / 2$. In this case $2 M$ computes c whence $2 k \leqslant 2 c+4$, by Theorem C. Clearly, $k \geqslant c+2$. Therefore, $2 k=2 c+4$ and $d(m)=c / 2$.

The simplest example is a complete intersection of a quartic surface and a quadric cone in \mathbf{P}^{3}.
3.3.2 PROPOSITION. Suppose C is a k-gonal curve ($k \geqslant 3$) admitting only finitely many base-point free g_{k}^{1} and g_{k+1}^{1}. Let $r \geqslant 2$ and assume that C has a g_{d}^{r} $(d \leqslant g-1)$ computing the Clifford index c of C. Then $c=k-2$ is even, $d=2 c+4$, and the g_{d}^{r} is the only linear system on C computing c which is not a pencil.

Proof. By Corollary (2.3.1), $c=\operatorname{cliff}(C)=k-2$. Suppose that $d<2 c+3$. Then $k-2+2 r=d \leqslant 2(k-2)+2$, i.e. $2 r \leqslant k$.

Since the g_{d}^{r} is complete and $d=k-2+2 r \geqslant 4 r-2$ we can use Theorem A. We adopt the terminology of the proof of Theorem (1.2). Let Z be an irreducible component of $V_{2 r-3}^{r-2}\left(g_{d}^{r}\right)$ and consider $i: Z \rightarrow J(C)$. Clearly $i(Z) \subset W_{d-2 r+3}^{1}=W_{k+1}^{1}$. One has $\operatorname{dim}(Z) \geqslant 1$, hence if $\operatorname{dim}(i(Z))=0$ then C has a linear system $g_{2 r-3}^{1}$. But $2 r-3 \leqslant k-3$, so this is impossible. Therefore, the assumptions on C give us the existence of $x \in W_{k}^{1}$ such that $i(Z) \supset x \oplus W_{1}^{0}$. Hence, for each $P \in C$ there exists $D_{P} \in Z$ such that

$$
g_{k}(x)+P+D_{P} \subset g_{d}^{r}
$$

Thus $P+D_{P} \in\left|g_{d}^{r}-g_{k}(x)\right|$ and we obtain $\operatorname{dim}\left(\left|P+D_{P}\right|\right) \geqslant 1$. But $\operatorname{deg}\left(P+D_{P}\right)=$ $d-k \leqslant k-2$. Again we obtain a contradiction. Thus $d \geqslant 2 c+3$. From Claim (3.2.2) we see that c is even, whence $d=2 c+4$. (Note that C cannot be hyper- or bi-elliptic.) Suppose $D \in g_{d}^{r}$ and D^{\prime} is an effective divisor of degree d^{\prime} with $k<d^{\prime} \leqslant d$ computing c. We have already proved that $d^{\prime}=d$. Take $E \in g_{k}^{1}$ on C. Because of Claim (3.2.3) we can assume inf $\left(D, D^{\prime}\right)=F \geqslant E$ but $F \neq E$. Copying the proof of Theorem 3.7(ii) in [9] we obtain that F computes c. But $k<\operatorname{deg}(F)<d$, hence we obtain a contradiction. This proves that g_{d}^{r} is the unique linear system on C computing c which is not a pencil.
3.3.3 COROLLARY. Let C be a k-gonal curve $(k \geqslant 3)$ such that W_{k}^{1} and $W_{k+1}^{1} \backslash\left(W_{k}^{1} \oplus W_{1}^{0}\right)$ are finite. Assume that one of the following conditions holds:
(i) k is odd; or
(ii) k is even, and in case of genus $g=2 k+1$ we have $W_{k+1}^{1} \neq W_{k}^{1} \oplus W_{1}^{0}$; or
(iii) $W_{k}^{1}=\{x\}$, and $2 x \notin W_{2 k}^{3}$.

Then the Clifford index c of C is only computed by pencils (corresponding to the elements of W_{k}^{1}).

Proof. (i) is an immediate consequence of Proposition (3.3.2).
(ii) holds because of Proposition (3.3.2), Claim (3.2.1) and Corollary (3.2.5).
(iii) Assume C has a linear system $g_{d}^{r}, r \geqslant 2$, computing c. By Proposition
(3.3.2) and Example (3.3.1) we conclude that $\left|2 g_{k}(x)\right|=g_{d}^{r}$. Hence $k-2=c=$ $d-2 r=2 k-2 r$, so $2 r=k+2 \geqslant 5$ contradicting $2 x \notin W_{2 k}^{3}$.
3.3.4 EXAMPLE. From Corollary (3.3.3), (iii) we deduce that on a general k gonal curve C of genus $g>2 k \geqslant 6$ there is only one linear system computing the Clifford index: the unique pencil g_{k}^{1}. In fact, by [2] we have $W_{k}^{1}=\{x\}$, $W_{k+1}^{1}=\{x\} \oplus W_{1}^{0}$, and by [24] we have $2 x \notin W_{2 k}^{3}$.

Note that this proof makes the meaning of "general" much more transparent than Ballico's original proof of this fact ([4]).

Acknowledgements

The first author likes to thank the University of Erlangen-Nürnberg for the kindest hospitality during his visit. The second author wants to thank D. Eisenbud and H. Lange for discussions on the material of this paper.

References

[1] Accola, R.D.M.: On Castelnuovo's inequality for algebraic curves I, Trans. Amer. Math. Soc. 251 (1979), 357-373.
[2] Arbarello, E., Cornalba, M.: Footnotes to a paper of Beniamino Segre, Math. Ann. 256 (1981), 341-362.
[3] Arbarello, E., Cornalba, M., Griffiths, P. A., Harris, J.: Geometry of algebraic curves Vol. I, Grundlehren 267 (1985), Springer-Verlag.
[4] Ballico, E.: On the Clifford index of algebraic curves, Proc. Amer. Math. Soc. 97 (1986), 217218.
[5] Bruce, J.W., Wall, C.T.C.: On the classification of cubic surfaces, J. Lond. Math. Soc. 19 (1979), 245-256.
[6] Clifford, W.K.: On the classification of loci, in: Mathematical Papers, Macmillan, London (1882).
[7] Coppens, M.: Some sufficient conditions for the gonality of a smooth curve, J. Pure Appl. Algebra 30 (1983), 5-21.
[8] Eisenbud, D., Harris, J.: Curves in projective space. Les presses de'l Université de Montréal, Montréal 1982.
[9] Eisenbud, D., Lange, H., Martens, G., Schreyer, F.-O.: The Clifford dimension of a projective curve. Compositio Math. 72 (1989), 173-204.
[10] Fulton, W., Harris, J., Lazarsfeld, R.: Excess linear series on an algebraic curve, Proc. Amer. Math. Soc. 92 (1984), 320-322.
[11] Fulton, W., Lazarsfeld, R.: On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), 271-283.
[12] Hartshorne, R.: Algebraic Geometry, Graduate Texts in Math. 52 (1977), Springer-Verlag.
[13] Keem, C., Kim, S.: On the Clifford index of a general (e+2)-gonal curve, Manuscripta Math. 63 (1989), 1-16.
[14] Keem, C., Kim, S., Martens, G.: On a theorem of Farkas, J. reine angew. Math. 405 (1990), 112116.
[15] Kempf, G.: Schubert methods with an application to algebraic curves, Publ. of Math. Centrum, Amsterdam (1972).

212 Marc Coppens and Gerriet Martens

[16] Kleiman, S., Laksov, D.: On the existence of special divisors, Amer. J. Math. 94 (1972), 431436.
[17] Kleiman, S., Laksov, D.: Another proof of the existence of special divisors, Acta Math. 132 (1974), 163-176.
[18] Lange, H.: Moduli spaces of algebraic curves with rational maps, Math. Proc. Camb. Phil. Soc. 78 (1975), 283-292.
[19] Martens, G.: Funktionen von vorgegebener Ordnung auf komplexen Kurven, J. reine angew. Math. 320 (1980), 83-90.
[20] Martens, G., Schreyer, F.O.: Line bundles and syzygies of trigonal curves, Abh. Math. Sem. Univ. Hamburg 56 (1986), 169-189.
[21] Martens, G.: On curves on K3 surfaces. In: Ballico, E., Ciliberto, C. (eds.): Algebraic curves and projective geometry, Proceedings, 1988, Lecture Notes in Math. 1389 (1989), Springer-Verlag.
[22] Martens, H.H.: On the varieties of special divisors on a curve, II, J. reine angew. Math. 233 (1968), 89-100.
[23] Paranjape, K.: Existence of curves with given Clifford index, Preprint.
[24] Segre, B.: Sui moduli delle curve poligonali e sopra un complemento al teorema di existenza di Riemann, Math. Ann. 100 (1928), 537-551.
[25] Stichtenoth, H.: Die Ungleichung von Castelnuovo, J. reine angew. Math. 348 (1984), 197-202.

