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Introduction

It is well-known that finite and affine Weyl groups play a central role in the
structure and representation theory of complex semisimple Lie algebras, of
algebraic groups and of finite groups with a BN-pair (see [C]). In recent years,
important applications of more general Coxeter groups have been found to the
study of Kac-Moody Lie algebras [K] and in topology [D], and they have been
extensively studied in combinatorics [B].

In a number of these situations, the Bruhat order on the Coxeter group is of
fundamental importance. For example, it is known that Bruhat order describes
the closure patterns of Shubert cells for reductive algebraic groups over
algebraically closed fields [J], and also inclusions among Verma modules for a
complex semisimple Lie algebra [BGG].

This paper gives two applications of properties of reflection subgroups of
Coxeter systems [Dyl, Dy2] to the study of Bruhat order. In Section 2, we
answer a question of Bjorner [B, 4.7] by showing that only finitely many
isomorphism types of posets of fixed length n occur as Bruhat intervals in finite
Coxeter groups. In Section 3, we show that the pairs of elements x, y of a
Coxeter group such that x -1 y is a reflection are determined by Bruhat order as
an abstract order (3.3). This supports the conjecture that the Kazhdan-Lusztig
polynomial Px,y (see [KL]) depends only on the isomorphism type of the Bruhat
interval [x, y].
The key to both proofs is a certain directed graph (the "Bruhat graph,"

defined in (1.1)) associated to a Coxeter system. This graph determines the
Bruhat order, but exhibits a kind of functoriality with respect to inclusions of
reflection subgroups (1.4) not shown by Bruhat order.

1. The Bruhat graph of a Coxeter system

Let (W, R) be a finite Coxeter system and 1 : W -&#x3E; N denote the corresponding
length function. Let T = UWEWWRW-l denote the set of reflections of(Jt: R) and
for w E W write N(w) = (t E T 1 1(tw)  1(w)) .
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(1.1) DEFINITION. The Bruhat graph Q(W,R) of (W, R) is the directed graph
with vertex set W and edge set

For any subset A of fl define n(W,R)(A) to be the full subgraph of n(W,R) with
vertex set A (i.e. the edge set of Q(w,R)(A) is

(1.2) EXAMPLE. Let (W, R) be a dihedral Coxeter system and I be a closed
Bruhat interval of length n in (W, R). Let Z be a set equipped with a function
f : Z - {O, 1, ... , nl such that

Then fl(w,R)(I) is isomorphic to the directed graph with vertex set Z and edge set

(1.3) A subgroup W’ of W such that W’ = W’ n T) is called a reflection

subgroup of (W, R). It is shown in [Dy2] that if W’ is a reflection subgroup of
(W, R) then x(W’) = {tE TI N(t) n W’ = {t}} is a set of Coxeter generators for W’.
The following result is a reformulation of [Dy2, (3.3), (3.4)].

(1.4) THEOREM. Let W’ be a reflection subgroup of (W, R) and set R’ = X(W’).
Then

(i) o(w’ ,Rf) = O(w,Rl W’).
(ii) For any x E W, there exists a unique xo E W’x such that the map W’ -+- W’x

defined by w- wxo ( for w E W’) is an isomorphism of directed graphs
O(w,RlW’) -+- Q(W,R)(W’X).

2. Bruhat intervals in finite Coxeter systems

Maintain the notation from §1 and let K denote the Bruhat order on W. Recall
that if x, y e JS§ then x K y iff there is a path (x = Xo, xi, x,, = y) from x to y in

Q(W,R) (that is (Xi - l’ xi) E E(W, R) for i = 1, ... , n).

(2.1) PROPOSITION. Let I = [x, y] = (z e W ) x £ z K y) be a closed (non-
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empty) Bruhat interval in (W, R) with l(y) - l(x) = n. Then W’ = (uv-II u, v E 1) is a
reflection subgroup of (W; R) and =tt=(X(W’)) - n. Moreover, I is isomorphic (as a
poset) to a Bruhat interval in the Coxeter system (W’, X(W’)).

Proof. This is clear if n , 1 so assume n &#x3E; 2. Let (xo, ... , xn) be a path of
length n in n(W,R) with xo = x and x,, = y [B], and let W" denote the reflection
subgroupW"=xi-,xi ’(i= n». Set R"=X(W") and let l . ". W" --+ N be the

length function of (W", R"). Let z be the element of YV"x such that the map
w - yvz(w E W") gives an isomorphism of directed graphs

Then (xoz -1, ... , xz - ’) is a path in n(W",R") from xz -1 to yz -1; in particular,
l"(yz-1) - l"(xz-1) &#x3E; n. On the other hand, if (yo, ..., ym) is a path in ÇI(W",R-) from
xz - ’ to yz - ’ then (yoz, ... , Ymz) is a path from x to y in O(W,R)’ This implies that
1"(Yz - ’) - 1"(xz - ’)  n and that, if l’ denotes the Bruhat interval [xz - ’, yz - ’] in
the Bruhat order on (W", R"), the map f : w wz is an injective, order-

preserving map I’---&#x3E; I. Note n - 1"(yz 1"(xz If n = 2, then f is clearly an
isomorphism, so assume n &#x3E;, 3.

Recall that the order complex of a finite poset X is the (abstract) simplicial
complex with the totally ordered subsets of X as simplexes. Let E and L’ denote
the order complexes of7B{x, yl and 7B{xz’ B yz -’l. By [BW, 5.4], E and E’ are
both combinatorial (n - 2)-spheres. Now if we have

f (6) _ ( f (zo), ... , f(z,» E 1; it follows that f induces an isomorphism of L’ with
a subcomplex f (1’) of E. Since E is a connected combinatorial (n - 2)-manifold
and f (Y-’) is a (non-empty) (n - 2)-homogeneous boundaryless subcomplex of L,
it follows that f(£’) = L. This implies that f : I’---* I is an isomorphism.
By [Dy2, (3.11)(i)], we have (X(W"»  n. Now W" z W’, and W’ £; W" since

for u, v E I’ we have f(u)f (v) - = uv -’. Hence W’ = W", completing the proof.

(2.2) COROLLARY. For each n c- N, there are only finitely many isomorphism
types of Bruhat intervals of , fixed length n occurring in finite Coxeter groups.

Proof. By Proposition (2.1), a Bruhat interval of length n in a finite Coxeter
group is isomorphic to a Bruhat interval of length n in a finite Coxeter system
(W’, R) of rank # (R’) K n. By the classification of finite Coxeter systems, there
are only finitely many isomorphism types of such Coxeter systems (W’, R’), and
each contains only finitely many isomorphism types of Bruhat intervals of
length n.

3. Bruhat order and the Bruhat graph

Maintain the notation from §1, but assume in addition that ( W, R) is realized
geometrically as a group of isometries of a real vector space V as in [De].
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More specifically, assume that V is a real vector space with a symmetric
bilinear form (’1’) and that Il is a basis of V consisting of vectors a with
(x ) a) =1. Suppose that R = {r(ll aETI}, where for non-isotropic y e E r.: V ---+ V is
the reflection in y defined by x F--&#x3E; x - 2(x 1 y)/(y 1 y)y(x E V), and that W = R).
Assume that I&#x3E;=I&#x3E;+u( -1&#x3E;+) where D= wn and b+ = {L(lEnc(laEDlall c,,, &#x3E;, 01
are the sets of roots and of positive roots respectively. Then (W, R) is a Coxeter
system, and any Coxeter system is isomorphic to such a Coxeter system
[De, §2].
Note that the map rx..-+ r (l is a bijection (D ’ -&#x3E; T and that for w c- W, one has

A reflection subgroup W’ of (w R) is called dihedral if * (X(W’» = 2, or

equivalently, if W’= (t, t’) for some t, t’ E T(t # t’)[Dy2, (3.9)].

(3.1) LEMMA. Suppose

Then W’= tl, t2, t3, t4 is a dihedral reflection subgroup of (YV, R).
Proof. Conjugating by a suitable element of W, we may assume without loss

of generality that t 1 E R. Write ti = rai(rxi e W + , i = 1, ... , 4). By taking a geometric
realization for a new Coxeter system containing W as a standard parabolic
subgroup, one may assume that there exist simple roots f3, y E il such that the
matrix

is non-singular. Now for x c- V, one has

Hence (l-ralra2)V=(X1 +(X2’ But (1-ra3ra4)V[R(X3+[R(X4 from which

Roe i + Ra2 = Ra3 + !R(X4o Let r s I&#x3E; + be defined by X(W’) =: {rai 1 oc c- FI. By [Dy2,
(3.11)(ü)] we have F w’ {(Xl’ (X2, 0:3, a4j g IRaI + Roc,. By [Dy2, (4.4)] we have
(y 1 y’)  0 for any distinct y, y’ Er; moreover, there is no non-trivial linear
relation 1,,,]r Cyy = 0 with all c, &#x3E;, 0 since F g (D ’. It follows that -# (I-’)  2, hence
W’ is dihedral as claimed.

(3.2) REMARK. Let a, p c- (D’ with a e P and set
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An argument similar to the last part of the preceeding proof shows that W’ is
dihedral and that any dihedral reflection subgroup of ( W, R) which contains

(ra, rp) is contained in W’. Thus, every dihedral reflection subgroup of W is
contained in a unique maximal dihedral reflection subgroup.

(3.3) PROPOSITION. If 1 = [x, y] is a closed Bruhat interval in (W, R), then the
isomorphism type of the directed graph Q(w,R)(I) is determined by the isomorphism
type of the poset 1.

Proof. Let

We will show that E(w,RlI) is the smallest subset A ;2 E of I x I such that if
Vi E I(i E X) and (vi, V) E A whenever i, j E X, 0  j - i  7 and j - i is odd, then
(VO,V7)EA.

By Example (1.2) and Theorem (1.4), this follows from the following claims
(i), (ü):

(i) if t E T, x c- W and 1(tx)  1(x) -1 then there exists a path (xo, xl, x,, x,) in

E(W,R) from tx to x such that X,Xo ’, X2Xl 1, X3X21) is dihedral,
(ii) if vi E W(i E X) and (Vb vj) E E(W,R) whenever i, jE X, 0  j - i  7 and j - i

is odd, then ViVj-l(i,j EX) is dihedral.
The first claim may be proved by induction on 1(x) as follows. Note first that if

(u, v) E E(W,R) and r E R, then (ru, rv) E E(W,R) unless v = ru. Suppose that t E T,
x c- W and 1(tx)  1(x) 2013 1. Choose r E R so that rx  x. If rtx &#x3E; tx, then

(tx, rtx, rx, x) is a suitable path from tx to x. Otherwise, rtx  tx and by
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induction there exists a path (xo, XI, X2, X3) in E(w,R) from rtx to rx with
XIXO " XIX1 ’, X3X2 ’&#x3E; dihedral. A suitable path from tx to x is then given by

To prove claim (ii), observe first that if WI, W2 are dihedral reflection subgroups
of (u-: R) and WI n W2 contains a dihedral reflection subgroup W3 of (u-: R) then
W1, W2&#x3E; is dihedral (for it is a reflection subgroup of the maximal dihedral
reflection subgroup containing W3).
Note that Wi =VIVÛl, VOV31, vlvil, V4V31&#x3E; is dihedral by Lemma 3.1 since

1 =1= (VI Vû l )(VOV31) = (VI vil )(V4V31). Similarly,

and

are dihedral. Since W, n W2 v, vo ’, VOV31) we have  W,, W2 &#x3E; dihedral. Since
 Wl, W2 &#x3E; n W3 P  V4V 1 1, V 1 V6 1 &#x3E; we have  Wi, W2, W3 &#x3E; dihedral.

(3.4) Let [x, y] be a Bruhat interval in (W, R) and suppose that (XI, Xi, X2) is a
path in ÇI(W,R)(IX, y]). Let W’ be the maximal dihedral reflection subgroup
containing )co)c î 1 and xi x2 1, and set R’ = X(W’). It follows from Lemma 3.1 that
W’xo n [x, y] is the smallest subset A of [x, y] such that (i) {xo, xl, X2} £ A, (ii) if
WI, W2, W3 EA and WE [x, y] are such that (wi , W21, {W2, W3}, {Wl, wl and
{W3, w} are edges of the undirected graph underlying Q(W,R)([X, y]) and w, * w2
then w E A.

Now by Theorem 1.4, the full subgraph of O(W,R)([x, y]) on the vertex set A is
isomorphic to fl(W’,R’)(B) for some (open, closed or half-open) interval B in the
Bruhat order of ( W’, R’). In this way, one obtains conditions on the class of
posets arising as Bruhat intervals in Coxeter groups. For example, a Bruhat
interval with exactly two atoms (or coatoms) is isomorphic to a Bruhat interval
in a dihedral group.

(3.5) For x, y c- W define R(x, y) = q - 1/2(l(y) -l(x» Rx,y where Rx,y is defined in

[KL]. Then R(x, y) may be regarded as a polynomial in a=ql/2_q-I/2. For
m E N, the coefficient of am in R(x, y) is non-zero iff there is a path (xo, ... , xm) of
length m in Q(W,R) from x to y. Thus, Proposition 3.3 gives some support to the
conjecture that R(x, y) (and hence the Kazhdan-Lusztig polynomial Px,y)
depends only on the isomorphism type of the Bruhat interval [x, y].

In [Dyl], we define an ordering  of the set T so that the coefficient of am in
R(x, y) is the number of paths (xo,..., x,,,) in fl(W,R) from x to y with x 1 x -
XIX2 - ’" - xm 1 IXm. Further connections between the Bruhat graph and the
structure constants of the Hecke algebra are described in [Dy3, Dy4].
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