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0. Introduction

Mathematical objects with many automorphisms have a rich structure that
makes them particularly interesting. As a nice example, we mention the case of
smooth projective algebraic surfaces with an algebraic C*-action. Their

structure has been described in [OrWa] by means of a weighted graph that
reflects the fixed point set and the exceptional orbits of the action. In [FiKp], we
have given a description of normal (not necessarily smooth) affine algebraic C*-
surfaces using a weighted graph that represents some ’orbit space’, the fixed
point set, and the orbit data of the exceptional orbits.

In the present article, we study that class of surfaces from the viewpoint of
algebraic topology. Our interest is the impact of a C*-action on local and global
homological data: as an application of [FiKp] we calculate the homology and
cohomology groups, both with compact and with closed supports. In the
smooth case, most of the results have been obtained independently in [Ry]. A
completion of that algebraic picture can be found in [FiKp2], where the
intersection homology is computed.

Let W denote a (connected) normal affine algebraic surface over the complex
numbers and r: C* x W - W an effective algebraic action of C*. Then W
includes either precisely one elliptic fixed point of the action i (i.e., an isolated
fixed point adherent to every nearby orbit), or there is a curve of parabolic fixed
points, or there is at most a finite number of hyperbolic fixed points (i.e., isolated
fixed points that are not adherent to every nearby orbit). We call these the
elliptic, the parabolic, and the hyperbolic cases, respectively. Thus actions
without fixed points are included in the hyperbolic case. We set

and we denote the canonical projection from W*, resp. W in the nonelliptic case,
onto Y(I) by n.
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Not all of the (co-)homology groups really depend on the particular surface W
under consideration; since affine algebraic varieties are Stein spaces, we only
have to compute the homology groups for compact supports in dimensions 1

and 2 and for closed supports in dimensions 2 and 3 (see the beginning of section
1; for general coefficients we reduce the computation in 1.3, 2.6, and 2.18 in an
explicit manner to integral coefficients). The central results about the non

vanishing integral homology and cohomology as well as the Poincaré duality
homomorphisms PjÎ(fl Z): H’-j(W, Z) -+ Hlj’(W, Z) are described in the general
structure table below, using Betti numbers and two torsion groups. These data
then are made explicit in two additional tables.

(see 1.3 and 2.16). The Betti numbers bj of W (with bj:= bjc) and the torsion
groups

are determined by data of the action T. In order to describe them we have to

distinguish the different types of C*-surfaces. If we set y : b1(Y(’L)), then the
Betti numbers are (see 3.1, 3.2, 3.7, and 3.9):

The torsion groups reflect the structure of the exceptional orbits. Let {Y1, ...,
Y,l denote the set of critical values in y(r) of the quotient mapping n.

Furthermore, let mj be the multiplicity of the singular (or exceptional) fiber

,Dj:= n-’(yj). According to [FiKp], every isolated fixed point w in W has a
patching weight 1,, c- N &#x3E; 0; we denote by 1 the greatest common divisor of all
those patching weights lw. For every prime number p we describe the p-Sylow
subgroup S,(T) of a torsion group T separately. To that end we order the p-adic
valuations uj:= vp(mj) for the purposes of this introduction in such a way that
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pi ... , /4 (for fixed p), and we set Â:= v,(1). Then there is a decomposition

where the missing direct factor Rp together with the group SpT2 can be read off
from the following table:

In the first two sections of this article we recall some general facts about the
homology of affine surfaces and list basic results about their geometry if they
admit a nontrivial C*-action [cf. FiKp]. Section 3 is devoted to a systematic
treatment of the homological results, including the computations in the

parabolic case, which is the easiest one. Before we perform in sections 5 and 6 the
explicit calculations for hyperbolic and elliptic actions, we discuss in section 4
the way back from algebraic topology to geometry:
For the investigation of the fixed points it is sufficient to calculate Betti

numbers - in fact, the Euler characteristic e is sufficient in most cases; hence, one

might restrict the attention to rational coefficients, which makes the com-
putations definitely easier. But for the structure of the exceptional orbits it is
precisely the torsion which reflects the geometry. For that reason we attach
particular importance to integral coefficients. The case of general coefficients
then is obtained by universal coefficient formulas.
For an affine C*-surface (W, 7:) the type of the C*-action 7: is not determined by

the underlying affine algebraic surface W: the product surfaces C* x C endowed
with the diagonal actions 7:a.b (2.11) and the cyclic quotient surfaces of (C2, 7:a.b)
carry different types of actions. We shall see in 4.11 that these are the only
examples. In almost all other cases the type of r is even determined by the
homology H"(X, Z), ç = c, cld ; for the few exceptions see 4.17 and 4.18. If one
adds some information about the action 7: like the Euler characteristic of the

associated curve Y(T), then that result can even be sharpened, see 4.21. We
discuss questions of that kind in form of the flow chart given in 4.20.
From the homology tables of C*-surfaces one reads off some consequences. In

particular, the number fix(W, i) : _ Ino(Wc*)1 (also denoted by fix(i) or fix(W) if
there is no risk of confusion) is a homotopy invariant, unless W is isomorphic to
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C* x C, see 4.7. An analogous result does not hold for the number of exceptional
orbits, as there the torsion group T"’(W) is involved. Since a direct factor
z pq L-- 7Lp 6:&#x3E; 7Lq (for prime numbers p and q) might as well come from one
exceptional orbit of order pq as from two exceptional orbits of orders p resp. q,
one has to introduce the notion of a p-exceptional orbit. For C*-surfaces W with
fixed points, the number of closed p-exceptional orbits is determined by the
homotopy type of W
We wish to thank Gottfried Barthel for many valuable comments on the

subject.

1. Generalities on the homology of affine surfaces

In this section we reduce the computation of the homology of a normal affine
algebraic surface W to that of two global Betti numbers, a local Betti number,
and two torsion modules.

For a principal ideal domain R of characteristic q(R) &#x3E; 0 and an R-module M,
we consider the homology Hj"(W, M) and the cohomology H(W, M) for the
families ç = c of compact supports resp. ç = cld of closed supports. As usual,
we set Hj(W, M):= Hj(W, M) and Hj(W, M):= HJld(W, M). Moreover, we
denote by wX’jM the j-th singular local homology sheaf of W with coefficients
in M and by Hj(W, M ) its global section space. By [AnNa, Th. 1] and Universal
Coefficient Formulas, some of the (co-)homology modules are independent of
the particular surface W and others are free:

and H3(W, R) are free R-modules.

As usual, M * N denotes the module TorR(M, N). We consider the free part of the
homology modules and their torsion part separately, using the notation

As normal surfaces have at most isolated singularities, all global and local
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(co-)homology modules are related by the long exact Poincaré duality sequence
[Kp, Satz 1.1 ]

... -+Jtj+ 1 (W) -+ H:- j( R)  Hj( R) --+ Jtj(W) -+ H - j(W: R)-+....
(1.1)

Moreover, local Poincaré duality yields B(R) = rank H3 (W,R). We shall omit
the ring R if there is no ambiguity; again, we set bj:= bjc, 1J.i:= !J.t’d’ etc.
We intend to express all global homological data in terms of the usual

singular cohomology with closed supports. The most complicated case is that of
Tcld2(R), which, in a first step, can be replaced as follows: if E is a finite set in W
that includes the singular locus S( W), then relative Poincaré duality yields an
isomorphism

H2(W)£, M) -+ H2cld(W, I:; M) H2cld(W, M). (1.2)

As a consequence, T 2cld (R) equals the torsion submodule of H2(WB, R)
(independently of the set £).

j H:- j(W: M) Hj(W: M) q&#x3E;

1 Mbl+P EB T1d (8) M -* Mbl EB T2 (8) M c

2 Mb2+PEBT1d*M -+ Mb2EBT2*M c

2 Mb2 EB T2 (8) M - Mb2+p EB T1d (8) M cld

3 MblEBT2*M ’+ Mbl+PEBT1d*M cld

Proof. As an algebraic surface, W has finitely generated homology H,(W, R).
Thus there are covariant Universal Coefficient Formulas

Hence, it suffices to compute Hf (W, R) and H(W, R). For {qJ, ijJ} = {c, cld}, a
contravariant Universal Coefficient Formula yields Tlj* --- T 1. In combination
with 1.2, that covers the torsion part. For the Betti numbers, we use the exact
Poincaré duality sequence 1.1. As we consider only ranks, we may replace R by
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its field of quotients Q(R); hence, we may assume that R is even a field and that
the homomorphism P2(W, R) is injective. Then 1.1 breaks up into two short
exact sequences with coefficients in the field R, namely,

0 -. H1(W) -+ H3cld(W) - Yf3(W) - 0

and 0 -- H2(W) -+ Hcld2(W) -+ H2(W) -+ 0.

Hence, b2cld = b2 + P and b3cld = b 1 + p. For the cohomological part we use an
analogous argument, since, obviously, bj = bj. D

In the next section we shall sharpen 1.3 for C*-surfaces.

2. Generalities on C*-surfaces

For the convenience of the reader, we recall some basic definitions and facts
from [FiKp]. We let W denote an affine C*-surface, i.e., a (connected) normal
complex affine algebraic surface endowed with an effective algebraic C*-action
1": C* x W -+ W Moreover, we denote by F the fixed point set of the action i and
by W* its complement A fixed point x c:. F is called

has x as a 

(hy) hyperbolic if"x ts an isolated fixed point that is not elliptic;
(pa) parabolic if x is not an isolated fixed point.

2.1 DEFINITION. For a C*-surface W, we denote by el(W) resp. by hy(W) the
number of elliptic resp. of hyperbolic fixed points, and by pa(W) the number of

components of the set of parabolic fixed points of lrx,7

IS J’

2.2 EXAMPLE. For every natural number n &#x3E; 0 there is an affine surface W

realizing hy(W) = n: If p E C[z] is a polynomial with precisely n different zeros,
then theilgehraie vari etv w= Vl Q.3 n(7) - YV) wi th th e action t. (x- v- z) = (tx-

group 

Obviously, singular points are always fixed points. In contrast to the compact
case, the fixed points in an affine C*-surface are always of the same type, and
there are even actions without fixed points:

2.3 REMARK. Every C*-action i on an affine C*-surface W belongs to exactly
one of the following three classes:

(el) i has precisely one elliptic and no other fixed point.
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(pa) Every fixed point of z is parabolic; in particular, pa(W) = 1.

(hy) i is fixed point free or has finitely many hyperbolic fixed points.

We say that the action i, or the pair (W, i), or the affine C*-surface W is
elliptic, parabolic or hyperbolic. Note that a given surface W may admit actions
of different type:

2.4 EXAMPLE. Consider the affine quadric cone W = V(C3; xy - Z2) with the
C*-actions t. (x, y, z) : = (tax, tby, tcz) for a, b, c E Z with a + b = 2c. If ab &#x3E; 0, then
0 is an elliptic fixed point; if ab  0, then 0 is a hyperbolic fixed point; if ab = 0,
then the action is parabolic and F is isomorphic to a complex line.

An important tool for the investigation of affine C*-surfaces W is the

algebraic mapping 7r W- W//C*, where W//C* is the algebraic quotient [Kr,
11.3.1], a smooth connected affine algebraic variety of dimension at most one,
which parametrizes the closed orbits. The parabolic type is characterized by the
condition dim W//C * = 1 = dim F, the hyperbolic type by dim W//C * = 1 and
dim F = 0. In the elliptic case, we have dim W//C* = 0, so we replace the
algebraic quotient by a more interesting object: for W * instead of W the
quotient W*//C* exists as well, it is a compact curve, which coincides with the
‘geometric’ quotient W*/C*. For an action i on an affine C*-surface W, we set

and we let 7T W* -+ Y resp. Jt: W - Y denote the natural mapping. Then
realizes the C*-surface W* resp. W as a semistable C*-surface over Y, see 6.1.
For an elliptic action (or a hyperbolic action without fixed points) on W, the
mapping 7r may be interpreted as a Seifert C*-bundle in the sense of [Ho]. Note
that 7T is affine and that every open affine subset U of Y satisfies U xé n-l(U)//C*.
In order to investigate the properties of the fibers (Dy:= n -l(y), it thus suffices to
consider hyperbolic and parabolic affine C*-surfaces. After possibly composing
the given action with the automorphism t t-+ t-1 ofC*, we obtain the following
types of fibers:

where 0, 0+, and 0- are orbits of positive dimension, and {x} is the source of
the orbit 0+ (i.e., limt-+o tw = x for every we0+), and the sink of the orbit 0 -
(i.e., limt-+ 00 tw = x for every w c- O -). We always shall assume that every fixed
point of the action i is the source of a nontrivial orbit.
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2.6 REMARK. In the elliptic and the parabolic case, the morphism extends to
a morphism -T: C x W - W. The restriction of i to [0, 1] x W shows that F is a
deformation retract of W, and the induced mapping W -+ F, x 1---+ ;;(0, x), identifies
F with the algebraic quotient W//C*.

An orbit 0 = C*w of i of positive dimension is of the form C*ICm  C*,
where Cm:= {r E C; rm = 1} c C* is the isotropy group of the point w. If its
order m is one, then C*w is called a principal orbit, otherwise an exceptional orbit,
of (exceptional) order m &#x3E; 1. The exceptional orbits in an algebraic C*-surface
are always finite in number. We want to parametrize the singular fibers of the
mapping 7L The set

is the set of critical values of7r in the nonhyperbolic case. In the hyperbolic case,
the fibers containing fixed points wi are singular as well. Then set yj = n(wj) for
s + 1 j , s + h, so

is the set of critical values of 7c. For j = 1, ..., s + h we call (Di: = (Dyj an
exceptional fiber and yj an exceptional point; their order or multiplicity mj is the
greatest common divisor of the orders of the one or two non-trivial orbits
included in «)Yi. Note that mj = 1 may occur for i &#x3E; s + 1. For every point yj E B
we have

For the investigation of the torsion groups T in the homology, the p-Sylow
subgroups Sp(T) have to be calculated for every prime number p separately. To
that end we shall consider the p-adic valuation

We usually arrange the index set, depending on p, in such a way that

IÀ,  - - -  ,us . In the introduction we preferred the order ,u 1  ...  Jls+h, which
means that we had to mix up the elements of A and n(F).
We need some details about the local structure in the complex topology near a

nontrivial orbit 0 of order m &#x3E; 1 in an affine C*-surface W According to the
analytic version of Luna’s Slice Theorem ([Lu], cf. [BBSo, (0.2.1)] or [FiKp,
2.6]), the orbit 0 admits an open invariant neighborhood U isomorphic to a
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complex C*-manifold C* x Cm D (with the action induced from the first factor).
Here il E Cm acts on the open unit disc D in C as w - tl"w for some integer n
relatively prime to m. If we denote with 2m,n the standard C*-action

on C2 and on open invariant subspaces of C2, then we have

The orbit 0 corresponds to Oo, and the mapping 7r: U --+ U§C* writes as
(z, w) H z-nwm. Note that, in 2.12, we adopt the convention - to be kept up in the
sequel - to write the fiber as the first factor and the basis as the second. If we
disregard the C*-action, we can construct a homeomorphism

Hence, (Do is a retract by deformation of U. The inclusion into U of an ord-
inary orbit C=Cy={(z,w)eï7; z -"w- = yl with y # 0 yields a natural

homomorphism

since the "horizontal" projection (Dy -+ Do. (z, w) H (z, 0) is an m-fold covering.
Furthermore, we recall from [FiKp] the local structure of W near a

nonelliptic fixed point w:

2.15 REMARK. (pa) A parabolic fixed point w is singular iff it is adherent to an
exceptional orbit O. Then there is an open invariant neighborhood U of Ô
isomorphic to (C x D, 7: 1,0)/Cm, -., where (m, n) are the orbit data of 0, i.e., m is
the exceptional order and n describes the normal representation of the isotropy
group Cm of O. In particular, U is contractible, and w is a cyclic quotient
singularity with e2,w L--- 7Lm. For the details we refer to [FiKp, 3.2, 6.1, and 6.2].

(hy) In the hyperbolic case, w is the source of an orbit 0+ and the sink of an
orbit 0 -. If (m , / -, M+/-) are the respective ’orbit data’, then there is an open
invariant neighborhood U of the exceptional fiber (D,,(W) = 0 - u {wl u 0
isomorphic to

where the two open pieces Um,n of type 2.12 are glued together in a way that is
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controlled by the ’patching weight’ 1 c- N &#x3E; o of the fixed point w. The open set U is
contractible, and w is a cyclic quotient singularity with local homology
e2,w Zl., where m = gcd(m+, m_) is the order of the fiber a),,(w) For details,
we refer to [FiKp, 4.6, 6.2]. D

For an affine C*-surface we can characterize the assumption of 1.3 and even
describe precisely what happens in case of its failure. Again let q = q(R) denote
the characteristic:

2.16 REMARK. For an affine C*-surface W the Poincaré homomorphism
pcid(Jo/; R) is injective iff one of the following conditions holds:

(a) The characteristic q is zero;
(b) every hyperbolic fixed point Wj in W with :Yf2,wjlLq #- 0 satisfies jlj(q) #- 0;
(c) hy(W) = 1 and pj(q) = 0 for j = s + h. 

Proof. If W is not hyperbolic, then F  W//C* is a retract by deformation of
W, by 2.6, so H2(W, R) = 0. Hence, we may assume that W is hyperbolic. Then W
has only cyclic quotient singularities [FiKp, 6.1] and hence is a rational

homology manifold [KiBaKp, S.E.1], so we have H3(W, Z) = 0 and in part-
icular H3 (W, R)  e2 (W, Z) * R. Hence, if H2 (W, Z) has no q-torsion, then
H3 ( W, R) vanishes, so p2cld(W, R) is injective, by 1.1. For q #- 0 we may assume
that R = Zq.
Then the exact sequence

reads as

since H3(W, Z) = H’d( Z) = /i(fl Z) = 0. Counting dimensions and using
the results of 3.9, we obtain that Ker P2 d ( W, 7q) is a vector space of dimension

2.17 COROLLARY. If the action on W is hyperbolic and q(R) :0 0, then

We finally reduce the computation to the case R = Z:

2.18 REMARKS. (a) If q(R) = 0, then



89

(b) If q(R) 0 and M is an R-module with corank cork(M), then

(c) The module T 2(R) is in a natural way a submodule of T 2 d (R).

Proof. The inclusion T 2 c T 2 d in c) is obvious in the situation of b), and it
follows from the injectivity of P2 d (W, R) otherwise. For the last line in b), we
consider M as a vector space over the prime field Zq c R. Since there is no
torsion in vector spaces, the covariant Universal Coefficient Formula yields that
HJ, (W, M) -= H§(JS§ 7Lq) ©z M, which, by a change of rings, is isomorphic to
HJ, (W, R) OR M. As a consequence of 1.5, we have T 2(R) = 0 for q # 0. The
other statements follow in a similar manner. D

Hence, we are left with the following

PROBLEM. For integral coefficients, compute b1, b2, p, T2, and Td.

3. Statement of the global results

In this section we describe the missing invariants for the integral (co-)homology
of an affine C*-surface W. In the elliptic and the parabolic case, that can be done
in terms of the homology of the algebraic curve Y introduced in 2.5, and of the
local homology, which is known in many cases (e.g., [Ha], [KiBaKp], [OrWa],
[Ra], ... ). For hyperbolic C*-surfaces, that is not sufficient; one has to know the
structure of the exceptional orbits, too. Hence, we discuss in general the relation
between that structure and the local homology.

3.1 PROPOSITION. If the action i is elliptic, then

Proof. By 2.6, we know that W is contractible. Hence, the reduced coho-
mology jjj(W) vanishes. Moreover, 1.1 yields T"’(W) --- Tors X2(W). D

In the nonelliptic case, the affine algebraic curve Y = Y(i) has a (unique)
smooth compactification Y; it is obtained from Y by adding a finite num-
ber, l( Y), of points. Let g(Y):= g(f) denote the ’genus’. Then the integral
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(co-)homology of Y is free of rank

In the parabolic case, the curve Y may be identified with the fixed point set F (cf.
2.6).

3.2 PROPOSITION. If the action T is parabolic, then

Proof. As singular parabolic (or hyperbolic) fixed points are always cyclic
quotient singularities ([KiBaKp, 5.E.1] or [FiKp, 6.1]), the surface W is a
rational homology manifold. In particular, the global section space H2(W, Z) of
the second local homology is a torsion group, and H3(W, Z) vanishes.

Moreover, by 2.6, the curve Y éé F may be considered as a retract by
deformation of the variety W. Thus we have

For the computation of T2 we apply the exact Poincaré duality sequence 1.1

We now intend to express fi and T2cld essentially in terms of the curve Y and
the exceptional orders mi. First let us assume that i is elliptic. The surface
W*IC. (that is the quotient with respect to the induced action of Cm for
m := lcm(ml, ... , m.,» is a principal C*-bundle over the compact curve Y(i). As
in [FiKp, 5.1], we introduce a ’patching weight’ (the name has been chosen in
analogy to the hyperbolic case) 10 by

For a fixed prime number p we set À := Àp) : = vp(lo).

3.3 THEOREM. If the action ’t is elliptic, then we have

the p-torsion
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subgroup S,(T" 2 Id) = SpJt2(W) is

Proof. The variety WIC. is obtained from the line bundle associated to
W* ICm by blowing down the zero-section. According to the theorem of Grauert-
Mumford [Lau, 4.9], the Chern class of the bundle and thus the Chern number
cl(W*ICm)[y] is negative. Hence, according to 1.2, we may apply 6.2 with
S = W * and ( = 1 (see also 6.5). D

Let us digress to an immediate application: Let W be a compactification (in
the class of normal algebraic C*-surfaces) of an elliptic C*-surface (Jt; -r). After
finitely many quadratic transformations and normalizations, we may assume
that WB W includes a parabolic fixed curve. Among those ’parabolic’ com-
pactifications, there exists a unique minimal element. It satisfies WBW Y(,C).
An arbitrary parabolic compactification then is obtained by successively
blowing up fixed points (outside of W) of the minimal one.

3.4 COROLLARY. Let (W, i) be an elliptic C*-surface.

(a) If /3 = 0, then the minimal parabolic compactification is obtained from W by
adding a projective line P1.

(b) If e2(W) is torsion-free, then lo(W) = 1 and the exceptional orders mj are
pairwise coprime.

Proof. In case (a), we have H1(y) = 0 by 3.3, so Y xé P1, In case (b), the
number À(p) vanishes for every prime number p, so cl(W*ICm) = -1 since c 1 is
negative. D

For hypersurfaces in C3 with an elliptic C*-action the results of [KiBaKp, p.
285/6] provide explicit numerical conditions for the vanishing of /3 and
Tors e2 (W). Every such hypersurface is defined by a weighted homogeneous
polynomial with positive weights. In order to give a flavor of that theory, we
interpret it in one particular case:

3.5 EXAMPLE. Let W denote a normal weighted homogeneous surface in C3
that, up to multiplication of the monomials with nonzero complex numbers, is
defined by a polynomial of the form

zil + Z’2’ + Z23 + monomials of different multi-degree,
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for natural numbers aj with a2 &#x3E; 2. Set u := gcd(a2 - 1, a3) and d := a3/u. Then

Now we come to the parabolic case, where the computation of T2cld follows
from 2.15:

3.6 THEOREM. If the action i is parabolic with exceptional orbits of orders ml,
..., ms, then

Eventually we study the hyperbolic case. For a systematic treatment it is

convenient to use the following notation:

Let us begin with an action without fixed points (i.e., ô = 1):

3.7 THEOREM. If the action i has no fixed point, then

with the p-Sylow group S @ Tcld @ §i f 7Lppl for fixed p and the order ju 1  ...  Ils

(cf. 2.10).
Proof. Since W has no fixed points at all, it is necessarily a manifold. In

particular, T1d is isomorphic to T 2, which will be calculated together with the
Betti numbers in 5.4 and 5.15 as the particular situation h = 0 and ô = 1 of the
general hyperbolic case. D

In the absence of fixed points, the homology of W does not reveal the
complete structure of exceptional orbits:

3.8 COROLLARY. Let W be without fixed points. Then SpT2 has a direct factor
7Lpv iff the following condition holds: there exist two different orbits of the action i
such that the isotropy group of one orbit has 7Lpv as its p-Sylow group and the
isotropy group of the other orbit includes 7Lpv. El

The situation is different in the presence of fixed points: For wi E F, the order ai
of .1f2,wi is of the form ai = limi, see 2.15(hy). For a fixed prime number p, we
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introduce the notation

with a suitably chosen index k = k(p). Then we obtain

3.9 THEOREM. If the action r has at least one hyperbolic fixed point, then

Proof. Since hyperbolic fixed points are regular points or cyclic quotient
singularities [KiBaKp, 5.E.1], the number f3 vanishes. For the rest of the proof
we refer to 5.4, 5.15, and 5.21. n

In [Ry] some of the homology groups above have been calculated independ-
ently by a different method: a detailed analysis of smooth affine C*-surfaces as
invariant Zariski open parts of nonsingular projective C*-surfaces leads to the
description of Hc ( W, R) in the smooth case; if the surfaces are without fixed point,
then there is the additional hypothesis that R = Q.

4. From the cohomology to the type and the exceptional orbits

So far we have described the cohomology of an affine C*-surface (k5 1) in terms
of the action r. Our next step is to use the cohomology in the study of the
following problem: Which types of actions does an affine surface W admit at all,
and how far does the cohomology of W determine the number and the structure
of the fixed points and of the exceptional orbits? To begin with, we collect the
information on the type that can be read off immediately from the (global and
local) Betti numbers and from the torsion group T2 (cf. 3.2, 3.3, 3.7, and 3.9):

4.1 REMARK. Let (W,,r) be an affine C*-surface.

(el) If B &#x3E; 0, then the action i is elliptic.
(pa) If b 1 &#x3E; b2 + 1 (or equivalently, e(W)  0), then the action i is parabolic.
(hy) If b2 &#x3E; 0 or T2 -# 0, then the action i is hyperbolic. D

We shall obtain more information about the remaining cases later. We now
discuss some results on the number fix(W) of fixed point components. In that
discussion, the topological Euler characteristic
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is particularly useful, as Hanspeter Kraft pointed out to us. We use the following
formula:

4.2 PROPOSITION. The values of the Euler characteristic of a (not necessarily
affine) algebraic C*-surface X and of its fixed point set F = Xc* coincide:

e(X) = e(F).

Proo If. For a normal affine C*-surface, that follows immediately from the
results stated in the introduction. In the general case, we may use Mayer-
Vietoris arguments, but it is more enlightening and natural to apply the
’additivity’ and ’multiplicativity’ properties of the Euler characteristic: The
additivity yields e(X) = e(X* u F) = e(X*) + e(F) (with X* := XBF). For any
C*-surface W without fixed points, there is a decomposition W = Vu U oj into
a trivial C*-bundle V = C* x U and finitely many nontrivial orbits Oj. That
yields

as e(C* x U) = e(C*)’ e(U) = 0, thus proving our claim. u

We explicitly note an immediate consequence of 2.6:

4.3 COROLLARY. For a parabolic affine C*-surface (W, i), we have

In the next statements we carefully distinguish between properties of the
action i and those of the underlying variety W Our first result on fix(1") is an
immediate consequence of the identity in 4.2 and of our previous results stated in
section 3:

4.4 PROPOSITION. For an affine C*-surface (W, i), the following holds:

(a) If e(W)  0, then i is parabolic, so we have fix(i) = pa(W) = 1.

(b) If e(W) = 0, then either the action is fixed point free, or it is parabolic with

Y(I) -- C*.
(c) If e(W) = 1, then either i is elliptic, or hyperbolic with one fixed point, or

parabolic with Y( 1") -- C.

(d) If e(W) &#x3E; 1, then i is hyperbolic, so we have fix(1") = hy(W) = e(W).
In particular, the number fix(i) is determined by the homotopy type of the

surface W in the following cases:

(e) If fix( 1") =1- 0, in particular if e( W) =1- 0, then fix( 1") = max{ 1, e(W)).
(f) If the action is not parabolic, then fix(i) = e(W). D
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4.5 REMARK. The quadratic cone (2.4) is an example of an affine surface with
e = 1 on which all three types of actions can occur. Of course, that holds more

generally for any cyclic quotient surface W = (C2, ’La,b)/Ck,r’ On the affine surface
C* x C, with e = 0, both cases of (b) may occur: the action ’Ll,O on C* x C has no
fixed point, while the action io,1 is parabolic with F = C* x 0.

Nevertheless, there is the following result:

4.6 PROPOSITION. The number fix(i) is determined by HP(W, Z), qJ = c and
cld in the class of all affine C*-surfaces (W, i) which are not isomorphic to (C* x C,
io,l). Moreover, in the class of affine C*-surfaces with fixed points, the number
fix(i) is determined by the homotopy type of W

Proof. Again by 4.4(e), we may restrict ourselves to the case of vanishing Euler
characteristic. Let us assume that (K u) and (W, i) are two C*-surfaces with
isomorphic homology, but with fix(u) i= fix(i). By 4.4(b), we may assume that (7 is
parabolic and that i has no fixed point. The flow chart 4.20 implies that
b =0= T 2 = T2cld and b 1 = 1. Then 4.16 yields that (K a) L--- (C* x C, ’LO,I)’ i.e.
fix(a) = 1. Since the last case has been excluded by assumption, the number of
fixed points is uniquely determined by the homology of the surface. D

4.7 PROPOSITION. The number fix(,r) is a homotopy invariant in the class of all
affine C*-surfaces (W,,r) where the underlying variety W is not isomorphic to
C* x C.

Proof. We may follow the argument of 4.6 with the exception of the claim that
T2d(W) vanishes. Nevertheless, y(u) = 1, by 3.2, so F(u) Y(J) xé C*, and
ni(W) -- nl(V) 7r,(Y(u» is a free cyclic group. By 4.12, the surface W is
isomorphic to C* x C, which is excluded by hypothesis. D

We now discuss how to detect exceptional orbits (or fibers) from the

homological data. If it were only for the investigation of fixed points, then we
could have restricted the coefficients to the easier case of rational numbers. For

the exceptional orbits, however, the torsion, and thus integer coefficients, are
indispensable. Since, for coprime numbers p and q, a factor Z pq -- Zp EB Zq might
correspond to one as well as to two exceptional orbits, we introduce the
following notion:

4.8 DEFINITION. Let p be a prime number. An exceptional orbit Oi or an
exceptional fiber l&#x3E;j in a C*-surface is called p-exceptional if Mi:= Up(mj) &#x3E; 0.

For fixed p, we denote with s(p) the number of those exceptional irreducible
fibers Di,..., Cs that are p-exceptional. Moreover, we let h(p) denote the number
of reducible fibers l&#x3E;ys+ l’ ... , l&#x3E;YS+h that are p-exceptional. For the p-corank of the
torsion group Tc 2 (i.e., the minimal number of generators of S 2 we use the
abbreviation
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The enumeration of the (p-)exceptional orbits and fibers and the determination
of their (p-) order is a simple but somewhat technical consequence of the results
stated in section 3:

4.9 PROPOSITION. The number and the ( p-)orders of p-exceptional fibers in a
C*-surface W can be estimated as follows:

(el) s(p)  cr( p) + 1; equality holds unless cr(p) = 0, or cr(p) = 1 and À(p) # 0.
For j x s(p) - 2 the numbers Jlj(P) are determined by SpTd; ifmoreover À(p)
is known, then also Jls - 1 (p) is determined.

(pa) s(p) = cr(p), and the numbers Jlj(p) are determined by Sp T2a.
(hy) s(p) = cr(p) - h(P) + à, unless cr(p) 1, whence s(p) + h(p)  1.

The numbers Jll(P), ..., ,us-a(p) are determined by SpT2, while Jls+ 1(P), ...,
,us+h(p) are determined by SpT2d possibly with the exception of a largest
among them. D

There is even a precise condition in terms of s(p) for the failure of the above
equalities: for an elliptic action that happens precisely in one of the following
cases:

s(p) = 0 and À(p) = 0, (then cr(p) = 0);

s(p) = 0 and À(p) &#x3E; 0, (then cr(p) = 1);

s(p) = 1 and À(p) &#x3E; 0, (then cr(p) = 1);

for a hyperbolic action that happens iff s(p) = 0, b = 1 (then cr(p) = 0), or if
s(P) = h(p) = à = 0  À(p) (then cr( p) = 1).

Using [FiKp, 1.16] it is not difficult to provide examples for the différent cases
of the above proposition. The number s(p) is certainly not a homotopy invariant
for an elliptic action, since, then the underlymg surface is homotopically trivial,
independent of the number of p-exceptional orbits. In the class of C*-surfaces
with hyperbolic fixed points, the number s(p) is a homotopy invariant, by 3.9. In
general, for a given type of the action, the number s(p) is determined by e(W) and
H2cld(W, Z), with the exceptions indicated in 4.9. More details can be derived with
the aid of 4.20.

We now want to discuss the structure of those affine C*-surfaces that are not

covered in 4.1 or 4.6. In particular, we shall study the surfaces which admit
différent types ofC*-actions. First let us recall the following results from sections
3 and 4 in [FiKp], where we denote with Cr,s for r &#x3E; 1 the cyclic group of
matrices
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4.10 REMARK. The structure of parabolic or hyperbolic C*-surfaces with

algebraic quotient Y(i) = C is uniquely determined by their exceptional fibers:

(pa) For at most one exceptional orbit, there is only the standard parabolic
C*-surface Vm,n  (C2, Ll,o)/Cm,-n of [FiKp, 3.1], its orbit data are (m, n), and the
local homology in the corresponding singularity 0 is e2@o = 7Lm. The general
case of s exceptional orbits VA = VS(m1, n 1; ... ; ms, ns), where A c= C para-
metrizes the exceptional orbits Oi with data (mi, iii), is obtained by a gluing

procedure as described in [FiKp, 3.5].

(hy) The surfaces with a fixed point free action are obtained as follows: For

s &#x3E;, 0, a subset A = {YI’ ... , Ys} c Y, natural numbers m1, m., c- N &#x3E; 1, units

ni E 7L:i, m : = Icm(ml, ... , ms) for s j 1 and m : = 1 otherwise, let Z ---&#x3E; C be a

connected m-sheeted cyclic Galois covering with ramification points of order mj
over yj. Then Cm c-- C* acts as group of deck transformations on Z, and

C* x Cm Z (with the C*-action induced from the first factor) is a C*-surface

without fixed points and with s closed exceptional orbits Oi of order mi, For a

suitable choice of Z even the prescribed orbit data (mi, ni) can be realized (cf.

[FiKp, 2.9]). The hyperbolic surface with one fixed point W 
= W(m +, n +, m _,

n _; 1) of [FiKp, 4.2] has two distinguished orbits O ± with orbit data

(m +, n +) and (m -, -n -), the local homology in the only possible singularity 0 is

,É’2,ô = 7Lr (with r : = 1. gcd(m+, m_)), and (W, T) is a cyclic quotient

(C2, 1:a,b)/Cc,d (cf. [FiKp, 6.1]). The general case, where A c C parametrizes the
closed exceptional orbits and BBA the fixed points, is again obtained by a gluing

procedure, as described in [FiKp, 4.8].

4.11 PROPOSITION. The only affine surfaces C*-surfaces (W,,r) where the type

of i is not determined by the affine surface W are the following:

Proof. Let us first assume that the affine surface W admits an elliptic action i
and an additional nonelliptic action Q. Then we have b1 = 0 = b2, and W has at
most one singular point; moreover, Y(6) is a complex line. Hence, 4.10 applies: If
a is parabolic, then there is at most one exceptional a-orbit, so ( W, u) is

isomorphic to some (C2, ’ro,l)/Cm, -n° If a is hyperbolic, then there exists exactly
one hyperbolic fixed point (by 4.4, as e(W) = 1) and no closed exceptional
u-orbit, as T 2 =0. Hence, (Wu) is of the form W(m+, n+, m-, n-; 1)
(C2, ’ra,b)/Ck,r for suitable invariants a, b, k, and r.

If W is smooth, then (W, i) is of the form (C2, Ta,b) for some ab &#x3E; 0, by
[FiKp,6.1] ; otherwise F(i) = F(6) = Sing(W). In each case n1(W*) = Ck,r is

cyclic, and we may apply 4.12 to (W, i).
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Now let us assume that W admits both a parabolic action i and a hyperbolic
action u. Then b2 vanishes by 3.2, and that implies y(6) = 0 (i.e., Y(u) L-- C) by 3.7
and 3.9, and h( a) = e(W)  1. If the hyperbolic action 6 has a fixed point (i.e.,
h(6) = 1), then W has at most one singular point, no closed exceptional 6-orbit,
and b1(W) = 0. Hence, for the parabolic action i, we get Y(i) xé C, and as there is
at most one exceptional i-fiber, we again obtain (W, i) ^-_r Vm,p xé (C2, !o,l)/Cm, -n°
As above, we conclude from 4.10 that ( W, 6) is a cyclic quotient surface. If cr is
fixed point free (h = 0), then the surface W is smooth with b 1 = 1. Hence, for the
parabolic action i, we have Y(i) xé C*. As there are no exceptional fibers, we see
that (W, i) is analytically and even algebraically a globally trivial line bundle
over the open rational curve C* (cf. [FiKp, 3.2 and 1.13]). Hence, we obtain
(W, i) xé (C* x C,,r,,,). Since nl(W) = 7 and u has no fixed point, Lemma 4.12
yields that (W, a)  (C* x C, !a,b)’ D

4.12 LEMMA. Let (W, i) denote an affine C*-surface such that 1tl(W*) is a cyclic
group. Then

(el) If i is elliptic, then (W, r) is of the form (C2, !a,b)/Ck,r;
(hy) If r has no fixed point, then (W, i) is of the form (C * x C, !a,b)’

Proof. (hy) According to [FiKp, 2.9] we fix a representation W 
C* xcm Z with a branched Galois covering Z -+ Y with Galois group Cm. By the
very definition of the Cm-action, the covering C* x Z -+ C* x cm Z is unbranched.
As a consequence, the group 1tl(C* x Z), as a subgroup of 1tl(W), is cyclic, which
implies that 1tl(Z) = 0. Thus Z is the complex plane. Finite subgroups of the
automorphism group of C are rotation groups; hence, Y is the complex plane as
well and the covering mapping Z - Y has exactly one branching point, i.e.,
s = 1. According to 4.10, (W, i) then is isomorphic to some (C* x C,,r.,,,) - Vm,n’

(el) For an application of [FiKp, 6.1] it suffices to show that the number s of
exceptional orbits is at most 2 and that Y= Y(i) is rational. For an indirect
proof let us assume that s &#x3E; 3 or that Y is not rational. By 4.13 there exists a

principal C*-bundle S -+ Y and a finite subgroup F c Aut(S) of C*-equivariant
automorphisms that acts freely on S such that the C*-surfaces W * and S/r are
analytically isomorphic. Since subgroups and quotients of the cyclic group
1tl(W*) are cyclic, 1tl(S) 7r,(W*), F 1tl(W*)/1tl(S) and also 1tl(Y) are cyclic.
In particular, the curve Y is rational and the branched covering Î - Y has at
most two ramification points. Thus Y itself is rational and s  2, which is a
contradiction. D

4.13 PROPOSITION. Let x: S - Y be a semistable C*-surface with a C*-action
without fixed points over a connected smooth compact curve Y Assume that one of
the following conditions is true

(a) Y is not rational;
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(b) the number s of exceptional orbits is at least 3;
(c) s = 2 and mi = m2’

Then there exists a principal C*-bundle n: 9 Y and a finite group r of C*-
equivariant automorphisms of S such that

(1) r acts freely on S;
(2) r induces an effective action on Y;
(3) there is an analytic isomorphism of C*-surfaces S -- sir.

Proof. We may assume that s &#x3E; 1. Let A = {y 1"", y,l be the set of points in
Y such that the fibers n-1(Yi) are singular. Under the conditions (a)-(c) there
exists a branched Galois covering p: Y -+ Y that is unramified over Yo : = YBA
and such that every point in a fiber p-l(Yi) has ramification order mi, the
exceptional order of y;. The existence of p is obvious for Y  P 1, s = 2 and
ml = m2; in the remaining cases it follows from Fenchel’s conjecture (see [BuNi]
and [Fo]). Since the fibration p is analytically trivial above Yo ([FiKp, 2.8]), we
look for a description of S of the following type

with appropriate neighborhoods Y of n - ’(yj). In an analogous manner we shall
construct

for Yo:= p -l(yO)’ The construction of the V]’s is local in nature. Hence, we may
omit the index j in the notations. For y E A choose a sufficiently small disk D in Y
centered at y. Then we fix a point y e p - l(y). Let r denote the group of deck
transformations of p: Î - Y and G the isotropy group ry. According to Luna’s
slice theorem, for the connected component D of p - ’(D) containing y there is a
natural free action of G on C* x D extending the given action of Ger on D c y
such that

Since the fibration n is trivial over D* := DB{y}, there is a section

such that, in formula 4.14, for z E D*
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For the construction of S we have to extend the G-variety C* x D to

with the natural action of r on the first component. The morphism a 0 p can be
lifted so that this diagram commutes:

wherc cr is G-equivariant and has as second component the identity. Now every
point (À, W)EC* xp-l(D*) is of the form (À, y(z)) for y e r and z E D*. Then

prescribes how to glue P = V into C x Yo in formula 4.15. It is not hard to
check that S and r satisfy the required conditions. D

In [Pi] the case of an elliptic action on an affine surface W has been treated:
for S = W * the corresponding principal C*-bundle S Y and the group r have
been constructed in such a way that W* is isomorphic to SIF as a complex
surface. The reason not to discuss the involved C*-actions may have been that,
for Y rational, s = 2 with ml ¥= m2 or s = 1 the induced action on sir is

definitely not that of W*. In that situation we may apply the fact that W then is a

cyclic quotient of some (C2, 1’a,b), see [FiKp, 6.1].
For the flow chart in 4.20, we still have to discuss surfaces W which share

certain homological properties:

4.16 LEMMA. Up to an algebraic isomorphism, every affine C*-surface (W, i)
with b 1 = 1, b2 = 0, and T 2 d = 0 is of one of the following types:

(pa) C* x C with the parabolic action io,1 (and Y(,r) ’V C*), or
(hy) C* x cm Z with the fixed point free C*-action induced from the first factor and

with pairwise coprime exceptional orders ml, ..., ms (and Y(,r) C).

Proof. By 4.4(b), the action is either parabolic, or it is fixed point free (in which
case W is non-singular). In the parabolic case, there are at most cyclic quotient
singularities which can be detected by their local homology and thus, according
to 3.6, by T2cld. As that torsion group vanishes, W is a manifold in the parabolic
case, too. Hence, 3.6 yields that i has no exceptional orbits, so we are in the same
situation as in the proof of 4.11. In the hyperbolic case, b2 = 0 already implies
Y(,r) L---- C, so we can apply the results recalled above (4.10, case (hy)). D
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Next we discuss the différent cases where b1(W) = b2(W) = 0.

4.17 LEMMA. Up to an algebraic isomorphism, every affine C*-surface (kg i)
with b1 = b2 = 0 = b2cld, T2 = 0, and T2cld not cyclic (nonzero in particular), is of
one of the following types :

(el) The action i is elliptic with Y(i) xé Pi, and there exist at least three

exceptional orbits such that gcd(mi, mj’ mk) i= 1.

(pa) W is a parabolic C*-surface VA (with Y(i) zé C) with at least two exceptional
orbits such that gcd(mi’ mj) i= 1.

Proof. We divide the proof into two parts (a) and (b), where (a) will be useful
also for the next lemmata:

(a) If b1 = b2 = b2cld = 0 and T2 = 0, then 4.10 and the results of section 3
yield:

(el) fl = 0, hence, Hl(Y(-r)) = 0, i.e., Y(i) xé Pi;
(pa) y = 0, i.e., Y(i) xé C, and thus (W, i) is isomorphic to some VA;
(hy) y = 0, i.e., Y(i) xé C, moreover h = 1, and there are no closed exceptional

orbits, so (kg i) is isomorphic to some surface W(m+, n+, m_, n_; 1). In
particular, T2cld( W ) is then a cyclic group (by 3.9).

(b) The fact that T2 cld is not a cyclic group is equivalent to the existence of at
least one prime number p such that cr( p) &#x3E; 2. Certainly, by (hy) above, (W, i) is
not hyperbolic. The case (pa) of 4.9 implies that s(p) = cr(p) &#x3E; 2; in particular,
A) &#x3E; 2, and p divides at least two exceptional orders. Finally let i be elliptic.
Again by 4.9, s(p) = cr(p) + 1 &#x3E; 3; hence, there exist three exceptional orders
that are multiples of the number p. D
The two following results can essentially be proved along the same lines:

4.18 LEMMA. Up to an algebraic isomorphism, every affine C*-surface (kg i)
with b1 = b2 = 0 = b2cld, T2 - 0, and T2cld i= 0 cyclic, is of one of the following
types :

(el) an elliptic C*-surface with Y(i) xé P1 where every three exceptional orbits
satisfy gcd(mi’ mj’ mk) = 1; moreover, lo(W) &#x3E; 1, or there are at least two
exceptional orbits satisfying gcd(mi, mj) &#x3E; 1.

(pa) a parabolic C*-surface VA (hence Y(i) xé C) with pairwise coprime exceptional
orders, where at least one order tn; # 1.

(hy) a hyperbolic C*-surface W(m+, n+, m_, n_; 1) (hence Y(i) £i C) which
satisfies the condition 1. gcd(m+, m_) #- 1.

The following remark extends [Ry, 2.10]. In terms of intersection homology it
admits a more natural interpretation [FiKp2].

4.19 PROPOSITION. Up to an algebraic isomorphism, every affine C*-surface
(W, i) with b1 = b2 = 0 = b2d and T2cld - 0 is of the following type:
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(1) the action T is elliptic with at least three exceptional orbits, pairwise coprime
exceptional orders m1, ..., ms, patching weight lo(W) = 1, and Y(i) xé P1; the
surface W then is a homology manifold with 1tl(W*) nonabelian, or

(2) (W, r) is isomorphic to (C2, Ta,b) for suitable a and b (and thus elliptic for
ab &#x3E; 0, parabolic for ab = 0, and hyperbolic for ab  0).

For the proof we add the following: If the action is elliptic and there are at
least three exceptional orbits, then the fundamental group 7r,(W*) is not cyclic,
according to 4.12. Thus it is not abelian, since H1(W*) vanishes. For (2) one may
apply [FiKp 6.1]. D
We now bring together all the results obtained about the type of a C*-action T

on an affine surface W; the verification of the flow chart below is easy with the

homology descriptions given in section 3:

4.20 THEOREM. Let e denote the Euler number of an affine C*-surface (W,,r).
Then, for e = 0, 1, the flow chart below applies;

e  0, the action i is parabolic.

e &#x3E; 1, the action T is hyperbolic with precisely e fixed points.
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The surfaces C2 jCk,r carry C*-actions of every type. Hence, those actions
cannot be distinguished by homological data. But that is not the general
situation:

4.21 COROLLARY. In the class of affine C*-surfaces (W, i) that are not

isomorphic to a cyclic quotient of (C2, ’ra,b) with ab  0, the type of the action r is
uniquely determined by H.(W, Z), H2cld( W, Z) and e( Y(i)).

Proof. By 4.4 and the flow chart, the homology of W distinguishes the
different types of the action i, except for the situations described in 4.16-4.19. In
those cases the number e( Y) lies between 0 and 2, so the curve Y(i) is isomorphic
to C, C*, or P1. For e(Y) = 2 the action certainly is elliptic. For e(Y) = 0 and W
in one of the classes 4.16-4.19, the action is parabolic. Only in the situation of
4.18 there appear two C*-surfaces with the same orbit space C but with actions
of different type. But one of them is isomorphic to some W(m +, n+, m_, n_; 1),
which is a cyclic quotient of a surface (C2, ’ra,b) for ab  0, see 4.10. D

We end this section with a more subtle question, which cannot be answered
using singular (co)homology, so we come back to it in [FiKP2]:

PROBLEM. Let (W, r) be a hyperbolic C*-surface with h &#x3E;, 1 fixed points. For

every fixed point and every prime number p, determine the p-adic valuation of
the corresponding order a of the local homology, the associated patching weight
l, and the order m = gcd(m +, m - ) of the reducible fiber from global homological
data of W

5. The computation in the hyperbolic case

In the elliptic and the hyperbolic case, we still have to compute some Betti
numbers and torsion groups. We begin with the hyperbolic case, since the
techniques and results will be applied to the elliptic case, too. For the calculation
of b1(W), we use the Leray spectral sequence associated to the algebraic quotient
mapping Jt: W--+ Y, since it is homologically proper (see [KrPeRa, 2.2]). As we
want to localize the influence of the exceptional orbits and the fixed points on
the homology, we also have to consider the restriction of n (again denoted by n)
to an open subset U:= n-’(X), where X c Y is open and connected. We set
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(where ’Tr jlL denotes the j -th direct image sheaf on X of the constant sheaf Z on
U, so ’Troll xé Z). The Leray spectral sequence induces an exact sequence

consequently, we have

As a particular case, we obtain the formula for the first Betti number of a
hyperbolic C*-surface that appears in 3.7 and 3.9:

5.4 REMARK. For an affine hyperbolic C*-surface W with algebraic quotient
Y, we have

For the missing data b2, T2, and T2d, we have to determine H2(W) and
H2(W*)  H2d(W), see 1.2. For nonempty F the induced mapping from
W * = W BF to Y is no longer homologically proper. So we have to apply a
différent technique for the computation. We calculate the groups under

consideration together with the natural restriction homomorphism

The idea is to use the relative homology with respect to a generic fiber (that
approach is also basic for the computation of the intersection homology in
[FiKp2]). The homological properties of a generic fiber Cy (i.e., y E YBB), are
independent of y, so we just write (D. Let V denote U or U* (which in particular
includes W and W*). The exact sequence

yields H2(V)  H’(V, (D)/ÔH’«D). Hence, we first describe H’(V, C). In the

notations of 2.8 and 2.13, we let the Di c X denote pairwise disjoint open disks,
centered at the points yi E B n X. Moreover, we set

If X = Y, then we also write W instead of Uj etc. For the remaining part of this
section we fix an analytic trivialization Wo -- C* x Do, which exists, since

H’«9,, D*) = 0 for the (analytic) structure sheaf (9 of Y.
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5.8 LEMMA. There exists a natural commutative diagram

where the composed horizontal mappings are induced by inclusions.
Proof. Step 1. Let be the canonical generator of H’«D). Then, for x E Do,

there is an injective homomorphism

of free abelian groups. Thus we may consider H1(X)  H 1 (X, x) as a subgroup of
H2(Uo, gD), and for X = Y we obtain existence and injectivity of the horizontal
arrows on the right side, since Uo = U*

Step 2. For a unified treatment, we let Y denote Uj or Uj*, and we let
r  s + h be the number of exceptional points of Y that lie in X. The statement
of Lemma 5.8 then follows essentially from the special case X = Y, V= W
respectively W* of the following

CLAIM. There exists a natural isomorphism

satisfying (0 C -= i idH2(Vj,fI»») 0 qJ = (io, ... , ir), where ï,: H2(V ; O) - H2(Jj, O)
denotes the homomorphism induced by the inclusion Jj c Jt:

Proof by induction on r: For r = 0, we have V = Uo £é X X C*, so 0 is

bijective, and ç : = 0-1 has the required properties. For the step ’r - 1 =&#x3E; r’ with

r &#x3E; 1, we set

There is a commutative diagram of Mayer-Vietoris sequences (for x E Dr and
1&#x3E; = 1&#x3E; x)
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which implies that u is surjective. We now consider the following diagram, in

which the top row is exact and continues the upper one of the above diagram,
and the short exact middle row is induced from the lower one of 5.11 with

f3 = a E9 id. We want to show that a mapping 9 with the properties of the claim
exists:

There we denote the inclusion mappings by

and we use the same symbols for the induced homomorphisms on the

cohomology level. We want to show that (p: = (qJ’ OE) id) - (i’, Zr) is injective and
that lm (p = Ker(x - 0). If we can prove that the homomorphism i’, is the zero-
mapping, then the lower right corner of the diagram, and consequently the
whole diagram (except possibly for the upper left corner) commutes. By
induction hypothesis, the homomorphism (p(3) id is an isomorphism, and (i’, ir)
is injective since 6 in diagram 5.11 is surjective, so (p is injective. Moreover, the
homomorphism ç x .. -: H1(D;, x) -+ H2(V’r, (D) is an isomorphism. From the
commutativity of the diagram and the exactness of the upper and the middle
row it then follows that (p maps bijectively onto Ker(x - 0) = lm p, so

qJ:= p-l 0 (p is well defined and has the properties of the claim. Thus the next
step completes the proof of the claim and of 5.8:

Step 3. For r &#x3E; 1 the homomorphism l’ : H2(v,., (D) --+ H2(V’r, (D) is the

zero-mapping. For the proof let us note that the target group

H 2(V’ r @ (D) -- H2(Sl x sI, Si x 1) is a free abelian group. We now start with the
case that V = Ur ; the case Vr = U* then will be an easy consequence. Let us first
assume that Ur contains no fixed point, i.e. that r  s. Then Ur = U* r Dr x C*,
by 2.13, so H 2(Ur) vanishes. Moreover, the homomorphism Q in the exact
sequence

is multiplication by the order m of the isotropy group of the exceptional orbit, by
2.14; hence,
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and thus yr has to be the zero-mapping. Now let us assume that Ur includes a
fixed point w. The exact cohomology sequence of the triple ( Ur, Ur, C) provides:

The determination of those cohomology groups is immediate from the fact that
Ur is contractible and thus H*(Ur) = 0, and that (U;, 1» ’::::: (O x S1, O). As a
consequence, the homomorphism irr is the zero-mapping.

Finally we consider the case that Vr = U*; we have to show that the

homomorphism H’(U*, (D) -+ H2(U;, (D) is the zero-mapping. In the commu-
tative diagram

the vertical mapping has cokernel H3(Un L/*) e2,,,, which is a cyclic torsion
group ([FiKp, 6.2]). Its image in the free abelian group H 2(U, r @(D) necessarily
vanishes. 0 D

Using the results just established we proceed to investigate the restriction
homomorphism p: H2(W) -+ H2(W *). To that end we combine the exact coho-
mology ‘ladder’ for (W*, C) c (W, O) and the isomorphism ç of 5.10 (for W and
W*) in the commutative diagram

Thus it suffices to study the relative groups and the homomorphisms
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5.14 LEMMA. The groups H2(, 1» and the coboundary homomorphisms Oi are
as follows:

i = 0: H2(WO’ 1» Hl(Do)  Zy+s+h, and ôo = 0;

1  i  s: H2(»’;, O) = Z. i; éé Zmi’ and à;(j) = r,;

s + 1  i: H2(»,;, O) = Z. T, Z, and Oi(Ç) = ’Ci’

Proof For i = 0 the homomorphism Hl(WO)  H1(C* x Do) -+ Hl(I» is sur-
jective ; hence, ôo is the zero mapping. For 1  i  s the fiber O; is a closed
exceptional orbit of order mi’ By 2.13 and 2.14, we know that W ^--r C* x Di and
the inclusion O; c W yields an exact sequence

H1(Wi) "mi) Hl(I» ai) H2(W , Wi) H2(Wi) = 0.

Accordingly, ai maps onto a generator i; of H2(Wi, O) ̂--r Zmi’ For i &#x3E; s + 1 the

exceptional point yi lies in 7r(F). From 2.15 (hy) we know that Wi then is

contractible. Hence,

HB _ 1 W* ", Hj (Wi, W*i ,., 
0, j  2HJ- -. 1 (W:rc) ’::::: HJ(W . W) ’::::: {O, J. 2i 

Zai’ j .Ï = 3

where ai = Ii’ mi’ by 2.15 (hy). Thus the last commutative diagram applied to
W= Wi, etc., simplifies to

o -+ Z . ç H2(»,;, 1» -+ 0
Il l Pi

o -+ Z . ç -+ H2(Wt, 1» -+ Zai -+ 0,

so ai is an isomorphism for i &#x3E; s + 1. D

The information thus obtained is sufficient to determine H2(W):
5.15 REMARK. The second Betti number of an affine surface W with a

hyperbolic C*-action is

b2 = y + hy(W) - 1 + £5(W).

Moreover, for a fixed prime number p and ul  ... K p according to 2.10, we
have

S-a

Sp T2 = EB Zplll’
i= 1
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Proof. From 5.8, 5.12, and 5.13 we obtain

Eventually we now come to the computation of H2(W*) - which in particular
determines T 2 d ^-_ Tors H2( W *) - and of the restriction homomorphism p. As a
preparation we first describe H2(Wi*, O) for i &#x3E; s + 1:

5.17 LEMMA. If Yi = n(wi) for some w; E F and mi is the order of n-l(Yi), then
H2(U, 1» Z ae Zmi’

Proof. For the sake of simplicity we abstain from writing the index i in the

following proof. By 2.15(hy), the order m is a divisor of the order a of Yf2,w’ Let
0- and 0+ be the non-trivial orbits in Cy with orders m- resp. m +; then
m = gcd(m_, m+). Set U +/- := U*BO -/+ and Uo:= U + n U - = UBI&#x3E;y. First of
all we consider the exact Mayer-Vietoris sequence

Since ( Uo, C) is homeomorphic to (C* X D*, C* x point), it satisfies

Hj(Uo, 0) Z for j = 1 and 2; so, with 5.12, we obtain a short exact sequence:

Hence, H2(U*, C) is of the form Z Q T, where T is a torsion group. Next we use
the exact sequence

associated to the triple (U*, U+, C). By excision, there is an isomorphism H2(U*,
U+) xé H2(U _, U 0)’ Since the pair (U -, U 0) is homeomorphic to (C* x D,
C* x D*) (S1 x D, S 1 x S 1 ), the group H2(U*, U + ) is free cyclic, and so is its
image in H2(U*, O). Consequently, u maps T injectively into 7Lm+, so T is a cyclic
group. In the same way T is a subgroup of 7Lm- and thus of 7Lm, since
m = gcd(m +, m _ ). It follows from the exact sequence 5.18 that the cokernel of
the mapping Z ~ H1(Uo, O) 1 H2(U*, O) àé 7L Et) T is the direct sum T~ T’ of
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two finite cyclic groups and is isomorphic to Zm+ ae As T is a subgroup of
Zgcd(m +,m _ ), the only possibility is T~ Zgcd(m+,m_) and T’ zé Zlcm(m+,m_)’ D

Before we can put together the local information about the surface W*, we
need an appropriate algebraic representation for the homomorphism
Z 0153 Zm ~ H2(U*, O) - H 2(U*) Za :
5.19 LEMMA. Let M be an abelian group of rank 1 such that Tors M is cyclic of
order m. If 03C8: M --» Za is injective when restricted to Tors M, then, for d := alm,
there exists a commutative diagram

with (p(ot, fi) = a - dfi mod a, and isomorphisms 0 and x; in particular,
Ker(03C80) = Z . (d, 1). D

So far, 5.8, 5.14, and 5.17 yield:

If we use the transformations of 5.19, we obtain the desired description for the
factor group H2(W*) ^-_r H2(W*, C)/H1(0): we set

Finally we can calculate the p-Sylow groups Sp T2d - T2d Q Z(p), where Z (p)
denotes the localization (ZB(p))-1 . Z. Then

By choosing an appropriate basis for the free module Zh(p), we may assume that
the generator oç of 0 is of the form (1, ..., 1, 0, ..., 0, pÂ.) with
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Â = mins + 1 j s + h v p (l; ); on the other hand, since Z(l,..., 1) is a direct factor of
0 i ± i Zpui, we may change the direct sum decomposition in such a way that
(mixing up the elements of A and n(F)) Jls+h = max 1  i  S + h Jli and ô E = (0, ... , 0,
1, 0, ... , 0, p’). Thus

The kernel of the surjective homomorphism Z(p) 1 (ZppS+h 0 Z(l»/(ll PÂ),
1 F--&#x3E; (1, 1) is isomorphic to pÂ +.U., ,% Z(p), so finally we obtain the description of the
torsion group T 2 d, the last piece of data missing in 3.7 and 3.9:

6. The computation in the elliptic case

For an elliptic C*-surface (W, i) it remains to compute H2d(W), see 1.3 and 3.1.
The C*-invariant mapping n: W* - Y(i) may be considered as a particular case
of the following notion (see [FiKp, 1.4]):

6.1 DEFINITION. A semistable C*-surface over a smooth curve X is a

(connected) normal algebraic C*-surface S together with an affine C*-invariant
mapping n: S - X such that for every affine open subset U c X the inverse
image n -1 ( U) is a C*-surface with U xé n - l(U)//C*.

Let us assume that S is without fixed points (then S --&#x3E; X is a Seifert C*-bundle
in the sense of [Ho]) and that X is compact. If m 1, . ... , ms are the orders of the
exceptional orbits and m : = lcm(m 1, ... , ms), then the quotient SIC. has the
structure of a principal C*-bundle over X. For the Chern number

cl:= Ci(S/Cm)([X]) and a prime number p we set

If W is an elliptic C*-surface, then the patching weight of its fixed point w is
Io = - cOW *lCm) [X], so À = vl(10).
6.2 THEOREM. The integral cohomology of a semistable C*-surface S without
fixed points over a smooth compact curve Y is given by
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s-2

where, for fixed p and u1  ...  us, we have SpT 2(S)  E lLp;’+IlS-l Et) EB Zpu, .
i= 1

Proof. The homology groups can be calculated by means of the techniques
used in the previous sections (see [Fi, VI.6.2]). But it is shorter to write down a
proof using classical results of Seifert about the fundamental group of Seifert
fibrations ([Se], see also [Or]).

First of all S is homotopy equivalent to the Seifert S1-bundle 5’/[R&#x3E;o over X,
which is an orientable compact real three-manifold. Hence, H’(S) is a free cyclic
group. By Poincaré duality, we obtain

and thus b1 (S) = b 2(S). Moreover, for bl:= b1 (S) and Ti(S) := Tors Hi(S), the
Universal Coefficient Formulas show that

For every exceptional orbit (Di = rc-1(yi) with orbit data (m,, -ni), there is a unique
natural number si such that

(see also [FiKp, 5.3]). Denote by E the line bundle over Y obtained from the
principal C*-bundle S/Cm by adding a zero section. Choose small closed

pairwise disjoint disks Di centered at Yi; moreover, let 6i E r(DiB {Yi}, S) be
holomorphic sections which induce meromorphic sections Qi/Cm E F(Di, M(E))
with a pole in yi of order sivi where vi : = mimi.

For Yo := YBUDI we define aEr(8Yo’S) by J[ôD, = ailaDi’ There is an

obstruction number in H2(Yo, ôYo; Z) xé Z against the extension of a to a section
in r( Yo, S); let b denote the negative of that integer. The orientation conventions
of [Or] differ from ours, which originate from complex geometry; that explains
the negative sign in our situation. The number b can be computed in the
following way:

6.3 REMARK. Let E - Y be a line bundle over Y and E’ --+ Y be the associated

C*-bundle, which is obtained from E by removing the zero section N. Let
qJ E rcoo(Yo, E ) be a smooth section with isolated zeros y. of order ej (defined as
the intersection number of qJ(Yo) and N at yj) and without zeros on 8Yo. Then the
obstruction to extending glay c- W’(b Yo, E’) to a section in C"(%, E’) is the

integer Ej ej e Z H’(YO, ô YO).
We use that remark in order to compare Seifert’s invariant b with the Chern

class ci(SIC.). The obstruction to extending the section ulC. c- 16’(ô Yo, SI Cm)
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induced by a to a section in W’(YO, S/Cm) is the integer -mb. We replace

by a section (0,, ... , Os) E W"(ug= i Di, E) with zeros of order - sivi in the points
Yi and nonzero elsewhere such that OilôDi = (UilC.)IôDi. · Admitting an addi-
tional zero yo in the interior of Yo with an appropriate order vo, there exists a
smooth extension onto Y with zeros only in {yo, ... , Ys}’ Then the Chern
number c 1 (E) is vo + Li=l ( - sivi). Moreover, since - mb is the obstruction

against the extension of ulCm, we obtain by the above remark - mb =
Va = c, (E) + ),= s;v; and thus

The homology group Hi(S) éé H,(SIR&#x3E;O) is the fundamental group 1l1(S)
abelianized. Hence, by [Or, 5.3], H1(S) is of the form H,(Y) Q) L where the
subgroup L is generated by the curves qi:= ai(8Di) for i = 1, ..., s and
h: t H e21tit xo for some xo E SBU:= 1 (D,. The relations between the generators of L
are

With Li:= 1 E 7Lmi we consider the image G of the homomorphism

It is easy to see that G may be identified with the residue class group of

EB = 1 7L . q; ae 7L . h with respect to the first s relations of 6.4. Thus

Now we determine the p-subgroups of L, resp., L Q Z(p) for a fixed prime number
p. As usual we order the iij’s so that y,  - - -  Ils. Since we work over the
localization Z(p), we may assume thaty, &#x3E; 0, so every si is a unit in Z(p). We set
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For i = 1, ... , s - 1 the element 6 is of order pei, and

Since SsVs is a unit in Z(p) , the element

is of order pJls-l, and

As in the hyperbolic case, that description yields the claim of the theorem. D
For further reference we add the following

6.5 REMARK. The C*-surface S without fixed points can be extended to a
parabolic C*-surface 9 = S u F(S) by adding a fixed point Wx to every fiber (D,,,
which satisfies Wx = limt-+o tw for an arbitrary point w E O (see [FiKp, 3.4]).
Then SICm  S/Cm is the line bundle associated to the principal bundle SIC.
over X.

Now let W be an elliptic C*-surface and wo its fixed point. If we set S : = W*,
then the inclusion S c W extends to a proper morphism S -+ W that maps the
fixed point set F(S) = SBS to the point wo. There exists a commutative diagram

Hence, WIC. is obtained from the line bundle S/Cm by collapsing the zero-
section FIC., and similarly, W is obtained from the ’Seifert line bundle’ S by
contracting F.
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