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1. Introduction

1.1. The classical notion of a cusp form f in the upper half-plane leads first to
the concept of a cusp form on the adele group of GL(2) over Q, and thence to the
idea of an automorphic cuspidal representation 03C0f of the adele group of GL(2).
We recall that the adele group of GL(2) is the restricted product of the local
groups GL(2, Qp) where p is a place of Q. If p is infinite then Qp is the real field R;
if p is finite then Qp is the p-adic field. The unitary representation nf may be
expressed as ~03C0p with one local representation 1tp for each local group

GL(2, Qp). It is in this way that the unitary representation theory of p-adic
groups such as GL(2, Qp) enters into the modern theory of automorphic forms
[6,18].
A classical problem in C*-algebra theory is to determine the structure of C*-

algebras constructed from groups. In this article we show how unitary
representation theory can be used to elucidate the structure of the reduced C*-
algebra C*(G) when G is a p-adic Chevalley group.
The algebra C*(G) is defined as follows. We choose a left-invariant Haar

measure on G, and form the Hilbert space L2(G). The left regular representation
03BB of L’(G) on L2(G) is given by

(Â(f»(h) = .Î * h

where f ~ L1(G), h~L2(G) and * denotes convolution. The C*-algebra generated
by the image of 03BB is the reduced C*-algebra C*(G).

1.2. Before describing our results, we turn back to the case of linear connected
reductive Lie groups. The examples to bear in mind are the identity component
of the general linear group GL(n, R) and the special linear group SL(n, R).
Wassermann [17] has determined the structure of C*(G), up to stable

isomorphism, as a direct sum of component C*-algebras. Each component is the
crossed product of an abelian C*-algebra by a finite group. The abelian C*-
algebra is Co(Â/W’(r») with Â the unitary dual of the split component A of a Levi
factor M. The finite group is the Knapp-Stein R-group R(i) of a representation i
in the discrete series of the °M subgroup of a Levi factor M. The groups W’(1)
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and R(T) are related by W(i) = W’(i). R(i) (semidirect product) where W(03C4) is the
isotropy subgroup of the appropriate Weyl group W(M) = NG(M)/M. The R-
group R(i) controls the reducibility of the induced representation iGM(i),
obtained by first extending i across a parabolic subgroup P with Levi factor M
and then unitarily inducing from P to G. In fact the commuting algebra of iGM(T)
is isomorphic to the group algebra of the finite group R(T). Each component C*-
algebra is of the form C0(Â/W’(03C4))  R(i) with r in the discrete series of 0 M.
Reducibility of the tempered representation iGM (i) will prevent the component
C*-algebra from being abelian. Irreducibility of iGM(T) will result in an abelian
C*-algebra Co(Â/W(T». The classic example of this phenomenon is provided by
G = SL(2, R). Here the °M subgroup with M minimal is the 2-element group Z/2.
The trivial representation of Z/2 gives rise to the C*-algebra Co(R) which
corresponds to the even principal series of SL(2, R); the non-trivial represen-
tation of Z/2 gives rise to the crossed product Co(R)  Z/2 which corresponds to
the odd principal series. The crossed product arises because the induced

representation iGM(03C4) has 2 irreducible components when T is the non-trivial
representation of Z/2. This is the unique reducible representation in the unitary
principal series of SL(2, R).

1.3. We now turn to the case of reductive p-adic groups. The theory of the R-
group and the normalization of standard intertwining operators has now
reached a rather advanced stage of development [19]. There is, in the

background, the optimism of the Lefschetz principle as formulated by Harish-
Chandra, which says that whatever is true for real reductive groups is also true
for p-adic groups. One might hope to obtain a structure theorem for the reduced
C*-algebra of reductive p-adic groups modelled on Wassermann’s result.

In order to focus on the difficulty, we shall consider p-adic Chevalley groups.
We recall that a p-adic Chevalley group is semisimple. We shall also restrict
ourselves to the case of minimal Levi sugroups M. In this case a minimal Levi

subgroup is a maximal torus T in G, and we have the basic decomposition

in the notation of Steinberg [16]. The group A is a finitely generated free abelian
group whose rank is the parabolic rank of G. Its unitary dual A is a compact
torus of dimension equal to this rank. The Weyl group of G, namely NG(T)/T,
acts on the compact torus Â. Here one can pinpoint the drastic difference from
the case of real Lie groups. In the case of real Lie groups, the Weyl group acts
linearly on the real vector space Â. In the p-adic case, A is a compact torus. The
Weyl group acts as automorphisms of Â, but it cannot of course act linearly. It is
true that each isotropy subgroup acts linearly on the tangent space at each point
of A, but this does not seem to help. The non-linearity of the action of the Weyl
group means that we cannot adapt the proof of Wassermann to the p-adic case.
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To compensate for non-linearity, we have to supply a sufficient condition on the
representation T. The representation T is in the discrete series of ° T; but since ° T
is compact, this means any unitary character of or.

1.4. We now describe this condition. We consider the root system underlying
the p-adic Chevalley group G. Let a be a root and a v be a co-root. Definer,,, by
the equation

Ta(U) = 03C4(03B1v (u))

for all p-adic units u. Our condition is that

(*) Ta =1= 1 for all a &#x3E; 0 and W(i) is abelian.

In this case we can recover a component C*-algebra of the form

exactly as in the real case. The condition (*) is the exact analogue of an essential
representation in the discrete series of °M, as in [17].
We illustrate this condition in the case of the special linear group SL(n). The

standard maximal torus of SL(n) comprises all elements of the form

diag(x1, x2,..., xn) with x1x2 ··· Xn = 1. The subgroup ° T comprises all elements
of the form diag(u1, U2, ... , un) with u1u2 ··· Un = 1 and the uj are all p-adic units.
A unitary character i of ° T is necessarily of the form

2: diag(ut, ..., un) t-+ ~1(u1) ··· ~n(un)

with each ~j a unitary character of the group of p-adic units. The unitary
character i has projective coordinates (~1 :···: Xn). The condition (*) is then that
all coordinates ~1,···, ~n are distinct.

The unitary dual of the group U of p-adic units may be identified with the
group of all pmth roots of 1 for m = 1, 2, 3, .... So each character Xj has prime
power order.

The situation is sufficiently well illustrated by the p-adic group SL(10). Let X
be a unitary character of F  of order 5. Such characters will exist if and only if

p = 5 or p - 1 mod 5. The arithmetic of the field enters at this point. Let the
unitary character T have co-ordinates

where y is another character independent of x. The Weyl group of SL(10) is the
symmetric group Slo and the isotropy subgroup W(i) is the cyclic group Z/5.
But condition (*) is satisfied and so the character r contributes a component C*-
algebra

where A is a 4-dimensional compact torus. This torus may be identified with
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T5/T with the group Z/5 acting by cyclic permutation. In this case the induced
representation iGM(03C4) is a unitary representation with 5 distinct irreducible
components. Once again, the reducibility prevents the component C*-algebra
from being abelian.
The condition (*) is conspicuously not met by the unramified unitary

principal series of the p-adic group SL(2). For here the character i has

coordinates (1 : 1).

1.5. One might hope for a rigid relationship between the arithmetic of the local
field F and the structure of the component C*-algebras of the reduced C*-
algebra. There is one central example in which this is definitely true. For
consider the p-adic Chevalley group SL(l) with 1 prime and 1 dividing p - 1. In
this case there are 1 - 1 component C*-algebras stably isomorphic to the
crossed product

where T is the unit circle and 7L/l acts by cyclic permutation. The 1 fixed points
have an arithmetic significance. Each fixed point Q is associated to a cyclic of
order 1 totally ramified extension field, and all such extension fields are

accounted for in this way. We recall that an extension field E of F is totally
ramified if the valuation on E satisfies

where val denotes valuation. Since iGM(03C3) has 1 distinct irreducible components,
there is at this point a rigid relationship between the arithmetic of the field, the
structure of the crossed product C(Tl/T) Z/l, and the reducibility of the
tempered representation iGM(U).

1.6. In Section 2 of this article, we unravel the proof in Wassermann [17, p. 560]
and then adapt it to the p-adic case. The main difference, as we have already
explained, is to replace the real vector space A by a compact torus S, to replace
the linear action of the appropriate Weyl group on A by a non-linear action on
S, and then to compensate for this non-linearity. We must emphasize that this
section is modelled closely on Wassermann’s proof.
To convert the standard intertwining operators into a unitary 1-cocycle

involves solving a difficult normalization problem. Shahidi has recently proved
a conjecture of Langlands on normalization of intertwining operators by means
of local Langlands root numbers and L-functions, at least when the group is
quasi-split and the inducing representation is generic [19, Theorem 7.9]. In the
special case of the minimal unitary principal series of a p-adic Chevalley group
G, the normalization was dealt with by Keys [7]. Fix a Borel subgroup B of G.
Keys’ method involves Fourier analysis on the unipotent radical of the Borel
subgroup opposed to B, and a suitable version of the gamma function. This
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converts the standard intertwining operators into a unitary 1-cocycle. This,
taken in conjunction with condition (*), allows us to apply the C*-algebra
results of Section 2. The resulting C*-algebras are crossed products of the form

C(S)  R(r).

In Section 4, we compute all R-groups which can arise in this context. This
section depends on Key’s classification of R-groups [7].

In Section 5, we illustrate the arithmetic aspect in the case of the special linear
group SL(4. This section hinges on the Artin reciprocity law in local class field
theory.

2. On certain fixed-point algebras

2.1. Let A be a C*-algebra, let r be a finite group, and let (A, r, a) be a C*-
dynamical system. Let C(r, A) be the linear space of all maps from r to A. We
shall denote the crossed product of A by r as A 03B1 r.

Define p by p(t) = I for all t in r. Then p is a projection in the multiplier
algebra M(A 03B1 r). Let Aa be the fixed-point algebra of A. We embed A03B1 in

A 03B1 r by sending x to the constant function whose value is x. The image of this
embedding is precisely p(A 03B1 r)p so we have

2.2. Suppose that t ~ ut is a map from r into the unitary group of M(A) such
that

and let 03B2t=(Ad ut)03B1t. The map t H ut is a unitary 1-cocycle and the C*-
dynamical systems (A, r, a) and (A, r, 03B2) are exterior equivalent [10, p. 357]. The
map 03A6 defined by 03A6(y)(t) = y(t)u*t secures an isomorphism of crossed products

Let q be the map from r into M(A) defined by q(t) = u,. Then

4)(q)(t) = q(t)u* = u,u* = I. We therefore have

The fixed-point algebra with respect to Pis isomorphic to a corner of the crossed
product with respect to a.

2.3. An element b in a C*-algebra A is strictly positive if 9(b) &#x3E; 0 for every state

9 of A. Let e be a projection in the multiplier algebra of A and let Â be the
unitary dual of A. The support supp(e) is defined as the set of all n in Â such that
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03C0(e) ~ 0. A corner of A is a hereditary subalgebra of A of the form eAe where e is
a projection in M(A). A corner is full if it is not contained in any proper closed 2-
sided ideal of A. Two C*-algebras A and B are stably isomorphic if

A (D k B Q k where k is the standard C*-algebra of compact operators. These
ideas are intimately related and we shall need the following result.

2.4. LEMMA. Let A be a C*-algebra with a strictly positive element. Let e and f
be projections in M(A) with the same support. Then eAe and f Af are stably
isomorphic.

Proof. Let I be the closed 2-sided ideal of A generated by eAe and f Af. One
first checks by methods of Dixmier [5, Section 3.2] that eAe is a full corner of 7.
Now I is a C*-algebra with a strictly positive element and each of eAe and f Af
is a full corner of 7. Therefore eAe and f Af are stably isomorphic, by results in
[1, Corollary 2.9) and [2].

2.5. From now on, S will denote a compact torus. We shall regard S as a
compact abelian Lie group. We shall exploit the fact that Pontryagin duality
works just as well for S as it does for a real finite-dimensional vector space, as in
[17, p. 560].

2.6. We shall suppose that the finite group r acts as automorphisms of S. The
unitary dual S is a finitely generated free abelian group. The unitary dual of S is
canonically isomorphic to S by Pontryagin duality. The action of r on S
determines an action of r on S, and an action a of 0393 on C(S). We have the basic
Fourier transform

where 0393 denotes semidirect product.
Since each r-orbit in S is finite, and S is a complete separable metric space, we

can use the Mackey machine. This gives us a prescription for the unitary dual of
the countable discrete group  r. Let y E S and let ry be the stabilizer of y.
Form the semidirect product 0393y. Let 6 be an irreducible representation of
ry. Then y 0 (7 is an irreducible representation of  T’y. Induce from  ry to
 r to obtain the irreducible representation 03C0y,03C3. We shall regard TCy,a as an
irreducible representation of the crossed product C(S)03B1 r.

Fix 9 in C(S) and to in r. Define F in C(S)03B1 r by setting F(to) = qJ and

F(t) = 0 if t ~ to. The character of 6 will be denoted la.

2.7. LEMMA. The trace of TCy,a(F) is given by

The summation is over all r in R and all r-1 sr in r y where R is a set of coset

representatives of r /r y.
Proof. The proof is a tedious computation using the Fourier transform
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identification C(S) 03B1 0393 ~ C*( r) and the standard formula for the induced
character as in Serre [14].

2.8. Let Mn(C) be the algebra of n x n complex matrices. The action a of r on
C(S) is extended to an action a on C(S) ~ Mn(C) as follows:

(Xt(CP p T) = (,x,«p» Q T. We then have

The representation TCy,u extends uniquely to an irreducible representation of
(C(S)03B10393) ~ Mn(e) which we continue to denote by 7ry’«. If now

9 E C(S, M,,(C», to E r and F is defined as F(to) = 9, F(t) = 0(t ~ to) then we have
similarly

Let u, E C(S, U(n)) be a unitary 1-cocycle, with t E r. Let q(u) be the map from r
into C(S) p Mn(C) defined by q(u)(t) = u, for all t in r. Then q(u) is a projection in
(C(S) 0 Mn(C))03B1 0393. A routine computation based on 2.7 will now yield the
trace-multiplicity formula

Trace(03C0y,03C3)q(u) = 03C8y, u)
where 03C8y(t) = u,(y) for all t in the isotropy subgroup ry and a is the conjugate of
the representation J. That is to say, the rank of the projection 03C0y,03C3(q(u)) is equal
to the multiplicity with which à occurs in t/1 Y"
2.9. From now on, we shall take our C*-algebra A to be C(S) Q k(H). Our
unitary 1-cocycle t ~ ut will be a map from r into the unitary group C(S, U(H)).
Define

Then t ~ vt is a unitary 1-cocycle. In fact, t ~ vt is a unitary representation of 0393.
Define, as in (2.2)

We shall suppose that there exists an increasing sequence (en) of finite-rank
projections in L(H) which converges strongly to I and commutes with each u,.
Let 03C8ny(t) be the compression of ut(y):

for each natural number n, each y in S, each t in the isotropy subgroup ry.
Suppose further that for each y in S there exists N such that 03C8ny and 03C8n0|ry are
quasi-equivalent whenever n &#x3E; N. This means that 03C8ny and 03C8n0 ry, as unitary
representations of the isotropy subgroup ry, have the same irreducible compo-
nents (though not necessarily with the same multiplicity). So our condition is

(*) 03C8n0|0393y is quasi-equivalent to 03C8ny(n &#x3E; N).



300

2.10. LEMMA. If (*) holds then the projections q(u) and q(v) have the same
support.

Proof. Let qn(u) and qn(v) be the projections in M((C(V) Q k)03B1 r) defined by

for all t in r. Note that qn(u)) is an increasing sequence of projections. Since
en - I strongly, it follows that n(q,,(u» ~ n(q(u)) strongly for any representation
of (C( ) 0 k) r. Therefore

Therefore supp(q(u)) = supp(q(v)).

2.11. LEMMA. Let A = C(S) Q k and let a be the action of r given by
a, «p 0 T) = (Xt(qJ) 0 T. Let t ~ u, be a unitary 1-cocycle with u, in C(S, U(H)) and
let

If (*) holds then AO is stably equivalent to A Y.
Proof. Note first that (A, r, 03B1), (A, r, 03B2) and (A, r, y) are exterior equivalent

C*-dynamical systems. By (2.2) we have

and

Since C(S) is a unital C*-algebra, A and A 03B1 r each contains a strictly positive
element. Therefore, by (2.4) and (2.10), Ali and At’ are stably isomorphic.

2.12. Now t ~ vt is a unitary representation 0393 ~ U(H). Let r’ comprise all t in r
such that v, is scalar, so that r’ is a normal subgroup of 0393. We shall suppose that

(**) r admits a complementary subgroup r 1 such that r is a semidirect
product 0393’  03931.
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(***) The unitary representation of ri given by t ~ vt is quasi-equivalent to the
left regular representation À of 03931 on e(r 1).

2.13. THEOREM. Let (A, r, 03B2) be the C*-dynamical system under discussion. If
conditions (*), (**) and (***) hold then the fixed point algebra AO is stably
isomorphic to the crossed product C(S/r’)  r 1.

Proof. We have

whenever t lies in the normal subgroup r’. Now

where subscripts 03931 (resp. r’) signify restrictions of y to 03931 (resp. r’). We have

where ôi, is the action induced on the quotient space S/r’ and r ~ 03931. By Takai
duality we have

where, for all r in 03931,

By (* * *) it is now clear that Ay is stably isomorphic to C(S/r’)  r 1.
The theorem now follows from Lemma (2.11).

3. Minimal unitary principal series for p-adic Chevalley groups

3.1. Throughout this section, Q p denotes a p-adic field. Let

Now

where (91 = {1 + x: Ixl,  1} and 03B5&#x3E; ~ Z/(p - 1) as in [13].
Let L be a complex semi-simple Lie algebra and A be its root system.

Throughout this section, G denotes a p-adic Chevalley group determined by L.
The notations x03B1(t), h03B1(t), w03B1(t) are defined as in [16]. Let X03B1 = {x03B1(t): t ~ Qp}.
Then G is generated by all X a, a E A. Let T be the subgroup of G generated by all
ha(t). Then T is a maximal torus of G. Denote the Weyl group N G(T)/T by W. Let
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U be the subgroup of G generated by all X03B1, where oc is a positive root. Then we
have the following Levi decomposition [16]:

Let B be the group generated by T and U, then B = T. U (semi-direct product)
and U is normal in B. Moreover B is a Borel subgroup of G. Let K be the group
generated by {x03B1(t): 03B1 ~ 03B4, t ~ O}. Then K is a good maximal compact subgroup
of G. We have the Iwasawa decomposition G = KB = K T U (non-uniquely). Let
° T be the group generated by {h03B1(t): 03B1 ~ 0394, t ~ O } and let A be the group
generated by {h03B1(pn): 03B1 ~ 0394, n ~ Z}. Then we have the direct product
decomposition

In fact, the decomposition T = ° T. A is not canonical (in contrast to real groups)
and depends on the choice of uniformizer that is here taken to be p. For an
arbitrary p-adic field, there is no such canonical uniformizer. In fact, we only
have

with no canonical splitting.
Let Bf(T) = (ç E Hom(T, U(1)): qJ(OT) = 1}. Note that 03A8(T) ~ Â. Let

X(T) = Hom(T, Q p). Then X(T) is a free abelian group of finite rank.

3.2. LEMMA. The map which sends (03BE, Â) in X(T) x R to the character

of T induces a homomorphism of X(T) ~ R onto 03A8(T), whose kernel is X(7) 0 Z.
Proof Steinberg [16] and Rodier [12]. From the above lemma, we see that

03A8(T) is a compact torus. 
Now we define an action of the Weyl group W on T If XE 1; w ~ W, w.~ is

defined by

where xw is any representative of w in NG(T).

3.3. The groups B, U are defined as in (3.1). Let (03C3, V) be an irreducible unitary
representation of B. Let H(03C3) be the space of all smooth functions f : G ~ C such
that

where ô. is the modular function of B. The factor 03B4-1/2B is used so that unitary
representations induce to unitary representations. Define the induced represen-
tation IndB6 to be left translation in H(6). Note that IndGB03C3 is an admissible
unitary representation of G. Let T be a unitary character of ° T and a unitary
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character of A. Define

Then To, 03BB0 are unitary characters of B. By abuse of notation, we also denote io
and 03BB0 by T and respectively. Note that Ind%i and IndGB(03BB03C4) can be realized on
the same Hilbert space for any À E 03A8(T), see Silberger’s book [15].

3.4. In this section, the results were proved by Keys [7]. Suppose 6 is a unitary
character of T. Define the standard intertwining operators

where the integration is over U n wllw-1, weNG(1) is a coset representative for
w E W and f E H(6). We normalize A(w,u) by the gamma function 0393w(03C3). To
define 0393w(03C3), proceed as follows. Fix a non-trivial additive character x of F. A
gamma function 0393(03BB) is associated to each non-trivial quasi-character 03BB of F .

Define 0393(03BB) as P.V. f ~(x)03BB(x)|x|-1 dx. In case 03BB is unramified, this formula must
be understood in terms of analytic continuation, for details see Taibleson
[20, p.48]. Suppose now that a is a simple root, and let w be the basic reflection
wa. Then 0393w(03C3) is defined as where aa is the unitary character of F " given
by Ua = uoha. If w is a product of basic reflections, then 0393w(03C3) is defined by an
iterative formula which follows the 1-cocycle relation, as in Keys [7, p. 360]. Let

By analytic continuation, a(w, a) is defined for all unitary characters a. With
suitable choice of coset representative w, the cocycle relation

holds for all w 1, w2 in W.

3.5. Let T and À be defined as in (3.3). By the Peter-Weyl theorem we have the
orthogonal direct sum over all p in K

Let % be the isotypic component of class p of (Ind%i) K. Then

Since (Indlr, H(,c» is an admissible representation, then [3] we have dim V.  o0

for all p in K. Let W = {w ~ W : w.i = 03C4}. By [15, 5.2.1] we have
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Therefore a(w, Ài) belongs to the commuting algebra of IndGB03C4|K, for all w in W03C4
and À in 03A8(T). Then we have

3.6. Let W03BB,03C4 = {w ~ W : w03C4 = 03C4 and w03BB = 03BB}. Define uw(03BB) = a(w-1,03BB03C4)-1, w ~ W03C4,
03BB E 03A8(T). Then uw E C(03A8(T), U(H(03C4))) is a 1-cocycle and u(.)(03BB) is a representation
of W.,, where U(H(03C4)) is the set of all unitary operators on H(i). Let 0 E 03A8(T) be

the trivial character of T.

3.7. LEMMA. Suppose u(.)(O) 1 WÂ,, is quasi-equivalent to u(.)(03BB) for all 03BB E 03A8(T).
Then there exists a family of increasing finite rank projections {en} in H(T) such
that the following conditions hold:

(c) For any 03BB E T(1), there exists N such that u".)(0) 1 W03BB,03C4 is quasi-equivalent to

un(.)(03BB) for all n  N, where uw = en. uw.

Proof. Since H(03C4) is a separable Hilbert space, there are only countably many
p entering into the decomposition (3.5.1), say pl, P 2.... Let en be the orthogonal
projection from H(i) onto V03C11 ffi ... O vp"· Then e03BD s 1 and {en} is an

increasing sequence of projections of finite rank. By (3.5), we have

Then we have

Note that u(.)(03BB) is a representation of W03BB,03C4. We see that every irreducible
subspace of u(.)(03BB) is contained in some Vpi. Since W03BB,03C4 is a finite group, there are
only finitely many distinct irreducible components of u(.)(03BB). Therefore, for each
03BB ~ 03A8(T), there exists N such that, up to isomorphism, en(H(r» contains all

irreducible subspaces of u(.)(03BB) for all n  N, that is u(.)(03BB) ~ un(.)(03BB) for all n  N.
The notation ~ denotes quasi-equivalence. Using the same arguments, we also
have

Since u(.)(0)|W03BB,03C4 ~ u(.)(03BB), for all À E 03A8(T), therefore, for each À, we can choose N
large enough such that

3.8. Let (7 be a unitary character of T and C(03C3) be the commuting algebra of
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IndGB03C3. Throughout this paper, we use the following notations:

Then Wa = W’03C3  R(u) (semi-direct product) and W’03C3 = {w E W03C3: a(w, a) E CI} as
in [7]. The following lemma is a particular case of Keys’ result [7].

3.8.1. LEMMA. Suppose R(u) is abelian. Then

(a) The number of inequivalent irreducible components of Indga is equal to the
order of R(u).

(b) The multiplicity of each irreducible component oflndga is equal to 1.
(c) {a(w, 03C3): w E R(u)l forms a basis for C(u).
(d) C(03C3) ~ e[R(a)] the group algebra of R(a).

3.8.2. COROLLARY. Suppose R(u) is abelian. Let r be the regular represen-
tation of R(u). Let 7ro(w) = a(w, u), w E Wa. Then

Proof. By 3.8.1(a) and (b), we have the decomposition Ind GU - 03C01 ~ ··· ~ 03C0k,
where 03C0i are irreducible components of IndGB03C3 which are mutually inequivalent
and k = |R(03C3)|. Let Hi be the representation space of ni. Then Hi is an invariant
subspace of 03C00|R(03C3). Then 03C00|R(03C3) = ~1.IH ~ ··· ~ ~kIH where the xi are

irreducible representations of R(a). By (c) and (d), we see that Xi :0 Xj for all i :0 j.
Therefore the corollary follows.

3.9. The unitary characters T and are defined as before.

3.9.1. LEMMA. Suppose R(03BB03C4) ~ R(i) and both are abelian. Then

Proof. (a) Since T = ° T. A (direct product), we have

Therefore we have W’03BB03C4 ~ W’.
(b) By Corollary 3.8.2 and the Frobenius reciprocity theorem, the lemma

follows.

3.9.2. LEM MA. Suppose Ta =F 1 for all oc &#x3E; 0 and R(A7:) is abelian for all Â E 03A8(T).
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Then

Proof. Since 03C403B1 ~ 1 for all a &#x3E; 0, we have A" = 0. Therefore we have

W’03C4 = {1}. So R(03C4) = W03C4. Since T = ° T. A, we see that (03BB03C4)03B1 ~ 1 for all a &#x3E; 0 and

03BB ~ 03A8(T). For the same reason, we have R(03BB03C4) = KiT’ for all 03BB ~ 03A8(T). Then we
have

By Lemma 3.9.1, the proposition follows.

REMARK. In Lemma 3.9.2, the condition 03C403B1 ~ 1 (for all a &#x3E; 0) cannot be
omitted. Consider G = SL(4, Qp). Then T is the diagonal subgroup. Let 03C8 ~  be
the Legendre symbol. Let i = [03C8, 1, 4f, 1 ] ~ (0T)^ and = [i, -1, -i, 1] e’P(T).
Then a(., Ài) is not quasi-equivalent to a(., 1) |W03BB,03C4.

3.10. We now explain exactly how Sections 2 and 3 are related to each other. In
order to apply Section 2 to Section 3, we make the following identifications:

y in S corresponds to À in 03A8(T)

Under these identifications, the fixed-point algebra Ail becomes

and where k(H(i)) is the C*-algebra of compact operators on H(i). From [11],
the C*-algebra C*(G, i) is a C*-component of the reduced C*-algebra C*(G).

3.11. THEOREM. Let G be a p-adic Chevalley group with maximal torus T. Let
i be a unitary character of 0 T. Suppose T,,, :0 1 for all positive roots a. Moreover
assume W03C4 is abelian. Then the C*-component C*(G,7:) is stably isomorphic to
C(’P(T»  W03C4.

Proof. Recall that W is the isotropy subgroup f w E W : wi = 03C4}. Since 03C403B1 ~ 1
for all positive roots oc, we have 0394’03C4 = 0, R(i) = W and r’ = {1} in the statement
of Theorem 2.13. Let Q be any character of T such that 03C3 |0T = i. Now Q can be
chosen so that W03C3 = W03C4. Such a Q will be denoted 03C30. Then
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for every Q with J |0T = i. So R(03C3) is certainly abelian. The theorem now follows
immediately from Lemma 3.9.2, Lemma 3.7, Corollary 3.8.2, and Theorem 2.13.

3.12. The condition 03C403B1 ~ 1 for all positive roots a is the exact analogue for p-adic
Chevalley groups of an essential representation in the discrete series of 0T, as in
[17]. When 03C403B1 ~ 1 for all positive roots 03B1 we have

R-group R(i) = isotropy subgroup W03C4.

We shall then refer to W as an essential isotropy subgroup. In the next section
we compute all essential isotropy subgroups.

4. Essential isotropy

4.1. Throughout this section, assume p ~ 2 and let 03C0 ~ (0T)^ and 03BB ~ 03A8(T). Now i
is extended to T as in 3.3, and (!J, (!J 1 are defined as in 3.1. Recall that

O  ~ (8) x O1, O1 ~ 7Lp as in (3.1). In this section, we are going to classify the
groups R(03C4) when G is a simple p-adic Chevalley group. In [7] Keys classifies all
R-groups R(J) with Q in Î We are confining our attention to those J which are
trivial on A. We will see that the results are similar to those of the unramified

case, Keys [8].

4.2. Type An.
Let be the co-root system of A. Recall that 0394 = {ei - ej: 1  i ~ j  n + 1}

and A = A’. The Weyl group W acts as permutations of ei.

4.2.1. LEMMA. R(i) is cyclic.
Proof. According to Keys [7, p. 366], R(03C4) embeds as a finite subgroup of

(0 p X)-. By our choice of T, R(i) embeds as a finite subgroup of «9 X)-. But

where Z/p~ is the direct limit of the cyclic groups Zlp’, k = 1, 2, 3, .... Hence R(i)
is isomorphic to a subgroup of lL/p -1 x Z/pk for some k. But Z/p - 1 x Zlp’ is
cyclic. Therefore R(i) is cyclic.
Now suppose d 1 n + 1 and (9 x admits a character of order d. Let i« 1 be a

character of (9 ’ of order d and x a character of order pm (m » n). Let 03C403B1i = 03C403B11 for
1  i  n, i ~ kd and 03C403B103BAd = x. Then

and 03C403B1 ~ 1 for all positive roots a. Now we have the following proposition.

4.2.2. PROPOSITION. R(03C4) ~ {1} or 7L/d with dl n + 1. The group 7L/d can
occur if and only if (!J x admits a character of order d.
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4.3. Using similar arguments, we can classify R(i) for the other types

Z/4 can occur if and only if (9 ’ admits a character of order 4 iff 4 divides p - 1.

Z/3 can occur if and only if (9 ’ admits a character of order 3 iff p = 3.

The R(i) of types E8, F4 and G2 are all trivial.

5. Arithmetic aspect in the case of SL(o

5.1. We shall work with the p-adic Chevalley group SL(l, Qp). We shall suppose
that 1 is prime and that 1 divides p - 1.
By (4.2.2), the R-group R(i) must be trivial or 7L/l. If R(i) = Z/7 then the

conditions of Theorem (3.11) are satisfied and so we have the stable

isomorphism

The compact torus IF(T) admits 1 fixed points under this Z/1-action. For each
fixed point Q, the R-group R(03C3) is ZII. We are interested in the arithmetic
significance of these fixed points.

Let J be such a fixed point. Let x = diag(xl, ... , xn) be an element in the
standard maximal torus T in SL(4. Then

where 03C8 is a unitary character of the multiplicative group F " of the p-adic field
F. Let (Xl be the root 03B51 - 03B52 of SL(4 and let 03B11 be the co-root. Then

so that 03C8 is determined by 6. In fact we could have used any simple root instead
of 03B11.

5.2. The kernel of 03C8 is a subgroup of the multiplicative group of F of index 1. By
the local reciprocity law of local class field theory, a subgroup N of index 1
corresponds uniquely to an extension field E of degree 1. The correspondence is
given by
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where NE|F(E ) is the norm group of EX. Moreover we have a canonical

isomorphism

where G(E|F) is the Galois group of E with respect to F. Our reference for class
field theory is Neukirch [9].
The fixed point 6 determines uniquely an extension field E. The corre-

spondence is given by

where a is a simple root of SL(4.
We are going to prove that all such extension fields are totally ramified, and

that every totally ramified extension field of degree 1 is accounted for in this way.
The ramification index e of E is defined by the equation

where val denotes valuation. The field E is totally ramified when e = 1.
We now determine all subgroups of F of index 1. Now Z has a unique

subgroup of index l, namely lZ. The group Z/(p - 1) has a unique subgroup of
index l, namely the image of lZ in the map Z - Z/(p - 1). The subgroups of finite
index of Zp are pnZp with p = 1, 2, 3, .... These subgroups have index equal to a
power of p, and therefore Zp does not admit a subgroup of index 1. Since the

multiplicative group of the p-adic field F has the form

it follows that we can concentrate on subgroups of index 1 in Z x Z/(p - 1).
We now make use of a standard basis Lemma [4, p. 333] for finitely generated

free abelian groups such as Z x Z, and adapt this lemma to Z x ZI(p - 1). There
are 1 + 1 subgroups of index 1 of Z x ZI(p - 1) and we list their generators:

Now

and so No, NI"." N,-1 correspond, via the local reciprocity map, to the 1

totally ramified extensions of F of degree 1. The subgroup M corresponds, by
local reciprocity, to the unique unramified extension of F of degree 1.

Now F " contains a subgroup of order p - 1 which is cyclic and unique; let 8
be a generator of this subgroup. If x ~ F  then x can be written uniquely
x = pn03B5av where n ~ Z, a = 0, 1, 2,..., p - 2, and v is a 1-unit; n = val(x), a is
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determined by p - "x = Ba mod p. Let cv = e21till. There are l2 characters 03C8 of F " of

order l, each one specified by two natural numbers r, s with 0  r, s  1. We have

t/J( x) = (Orn wsa. Then ker(03C8) comprises all pairs (n, a) such that

rn + sa ~ 0 mod l.

This kernel equals N, iff

r + sc ~ 0 mod l.

If s ~ 0 then c is determined uniquely by r since Fl is a field. Therefore, as r runs
through 0,1, 2, ... , l - 1 the kernels of x H 03C9rn03C9sa are distinct and correspond to
1 distinct totally ramified field extensions. All totally ramified field extensions of
degree 1 arise in this way.

5.3. The group of unramified quasi-characters of T can be identified with the
complex torus LTO in the L-group LG°, see, for example, Gelbart and Shahidi
[6]. In that case LT° is the complexification of S. The pairs (G, T) and (LG0, LTO)
have a common Weyl group W This Weyl group W acts on S. The action of R(03C4)
on 03A8(T) is then the restriction from W to R(i).

Let G be the p-adic Chevalley group SL(l). Then

W = symmetric group S,

where T = {z ~ C : Izi = 1}. The unramified character sends diag(xl, ... , xl) in T
to

with zl, z2,..., zl ~ T. Each unramified unitary character has projective
coordinates (zl : z2 : ··· zl) with each Zj E T. The cyclic group Z/1 acts by cyclic
permutation of zl, z2, ... , zr.
Each conjugacy class of Levi subgroups contributes to the reduced C*-

algebra of SL(l), as in [11]. Now the standard maximal torus T of SL(l) is a
minimal Levi subgroup. So the conjugacy class of T makes its contribution to
the reduced C*-algebra. Part of this contribution is described in the following
theorem, which results from Theorem 3.11 and Sections 5.1-5.3.

5.4. THEOREM. The reduced C*-algebra of the p-adic group SL(l) admits 1 - 1
direct summands stably isomorphic to

Each Z/l-fixed point J in T’/T is associated with a unique totally ramified
cyclic extension field E of degree 1, and all such extension fields are accounted for
in this way. Each J determines an induced representation with 1 irreducible
components.
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