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0. Introduction and preliminaries

Let X be a curve in P3, i.e. a closed one-dimensional and equidimensional,
locally Cohen-Macaulay subscheme of P’. We say that X is non-obstructed if
the corresponding point of the Hilbert scheme is smooth, otherwise we say that
X is obstructed. A geometrical characterization of non-obstructedness is not
known even for smooth space curves, and several examples of obstructed
smooth space curves are known (also in generically non-reduced components of
the Hilbert scheme), see for instance [Ml], [S], [EF], [Kl], [K3], [K4], [E].
We want to point out that all these examples are curves which have not maximal
rank, with the exception of a non-reduced curve in [K4], 3.22.
On the other side, in 1975 Ellinsgrud proved that arithmetically Cohen-

Macaulay curves are non-obstructed [El]. Recall that a curve C in p3 is

arithmetically Cohen-Macaulay if and only if its deficiency module is zero

(hence it has maximal rank). Trying to generalize this result we will prove that a
general (in a sense that will be made more precise) maximal rank curve whose
deficiency module is concentrated in one degree is non-obstructed. This is the
best that one can hope, since we will give a criterion for constructing obstructed
curves in these liaison classes (from which one clearly sees why these curves are
’particular’). This criterion will give a smooth, obstructed maximal rank curve.
We will give a minimal set of generators for the homogeneous ideal of this curve
(by using Macaulay, [BS]) and then we will check smoothness.

This work was prepared during a stage (May 1989) of the first and the second
author in Barcelona, supported by the Departament d’Algebra i Geometria of
the University of Barcelona, which these authors thank for its hospitality. The
third author was partially supported by DGICYT No. PB88-0224.
During the Trieste Conference on Projective Varieties (Trieste, June 1989) we

met Charles Walter, who had constructed an example of smooth obstructed
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maximal rank curve, and in fact it turned out that his example has the same

cohomological properties of our example. His elegant technique for proving
smoothness is different ([W]).
We need some preliminaries. The field k is an algebraically closed field of

characteristic zero. We set R = k[x, y, z, t], m = (x, y, z, t) and P’ = Proj(R).
Given a curve X in P’, we denote by J x (resp. 1(X)) the ideal sheaf (resp. the
homogeneous ideal) of X. If X sits in some closed subscheme Y of p3, then FX/Y
denotes the ideal sheaf of X in Y We set

d = degree of X,

pa = arithmetic genus of X,

s = min(t |H0(P3, fx(t» * 01,
o- = min{t|H0(H, FX~H(t)) ~ 01 where H is a general plane,
e = max{t|1 Hl(P3, OX(t)) ~ 0},
c = max{t|1 Hl(p3, J x(t» ::j:. 01,
b = min{t|H1(P3, FX(t)) ~ 01, and

M(X) = ~t H1(P3, FX(t)), deficiency module of X. If M(X) = 0, then let c =
- oo and b = +00.

Recall that a curve X in P3 is said to be arithmetically Buchsbaum (or, more
briefly, Buchsbaum) if and only if m · M(X) = 0, and X is said to have maximal
rank if and only if the natural restriction maps

have maximal rank for every t e Z.
We consider liaison classes of curves in p3 whose deficiency module is

concentrated in at most one degree. If n is a non-negative integer, we denote by

concentrated in at most one degree

the liaison class of curves with at most one deficiency group different from zero
and of dimension n. These classes are studied in [BM].

If Y is a curve, we denote by FY its cohomology function, that is to say
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and if F: {0, 1, 2} x Z ~ N is any function, we will denote HF = {C curve in
P3|FC = F}.

If two curves X and Y have only one deficiency group different from zero and
FX = FY, then they are trivially in the same liaison class; moreover, if F = FX,
then from [B], 2.2, we have that HF is a locally closed irreducible subset of the
Hilbert scheme. In this sense we will be able to speak about a ’general’ element
HF . So we will use the sentence ’a generic Buchsbaum curve C of diameter l’
with the meaning ’a general element of Hpc’, for every C ~ Ln, Vn.
For results about obstructedness and deformation theory in the Hilbert

scheme we will refer mainly to [K4]; indeed, many proofs here are gen-
eralizations of results there contained, hence we recall some results about
obstructedness and deformations theory in the Hilbert scheme H(d, pa) of curves
of degree d and arithmetic genus pa used in the sequel. We denote by D(d, pa; fi,
f2), resp. D(d, pa;f), the Hilbert scheme of nests (or fiags) parametrizing curves X
from H(d, pa) and complete intersections Y of type or bidegree ( fl, f2), resp.
surfaces Y of degree f, such that Y ;2 X. Forgetting Y = V(f1,f2), we get a natural
projection

inducing a tangent map

between the tangent spaces of D = D(d, pa; f i, f2) and H(d, pa) at the closed
points (X c Y z P3) and (X ~ Pl) respectively.
By [K4], (1.11) there is an exact sequence

where 03B2 = 03B2X/Y is defined by sending a global section 0 of the normal sheaf

NX = HomOP3(FX, (9x) to (t~1(F1), t~2(F2)), where

is the natural map and



272

is induced by ~: FX ~ (9x. Then

(i2) the fibers of prl are smooth and irreducible. Moreover pr1 is smooth at

(X ~ V(F1, F2) g P3) provided H1(P3, FX(fi)) = 0 for i = 1, 2, cf. [K4], th. 1.16.
(i3) More generally, let S be a local artinian k-algebra with residue field k and

let Xs G P3 x S (with ideal sheaf FXS) be any deformation of (X g P3) to S. If the
natural map

is surjective for i = 1, 2, then pr, is smooth at any t E pri 1((X ~ P3)), cf. [K4],
lemma 1.17.

(i4) If 03B2X/Y is surjective and H(d, pa) is smooth at (X ~ p3), then D is smooth at
(X z Y z P3), cf. [K4], prop. 3.12.

(i5) Furthermore by [K4], th. 2.6 there exists an isomorphism

of schemes which on the underlying sets of closed points is defined by sending
(X g y,- P3) to (X’ ~ Y z P3) where X’ is linked to X by Y Of course i induces
an isomorphism between the corresponding tangent spaces and in fact we have
an isomorphism between the ’obstruction spaces’ A 2(X £ Y) and A 2(X’ £ Y) as
well, provided the linkage is geometric, cf. [K4], cor. 2.14.

(i6) Let X and X’ be linked via some complete intersection Y of type ( f, g).
Then one knows that Xxjy( f + g - 4) ~ 03C9X’ is the dualizing sheaf of X’ from
which one easily proves the duality

So if n = s(X/Y) is the least integer satisfying H0(Y, FX/Y(n)) ~ 0, we get

and two corresponding formulas interchanging X and X’.
Of course if D = D(d, Pa; f), then (il), (i2), (i3) and (i4) are still true, slightly

reformulated.
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1. General non-obstructedness

A maximal rank curve of diameter 1 (i.e. whose deficiency module has diameter

1) is known to be non-obstructed under some conditions on its numerical

character ([MR]). In this section we shall prove that, without this assumption
on the numerical character, any such curve admits a non-obstructed generiza-
tion with the same cohomology. By the irreducibility of HF, this is the equival-
ent to the following

PROPOSITION 1.1. A generic Buchsbaum curve X of maximal rank and of
diameter 1 is non-obstructed.

Proof. We link X via some complete intersection Y of type ( f, g) satisfying
Hl(p3, FX(v)) = 0 for v = f, g, f - 4, g - 4, and we get a curve C with e(C)  c(C)
and H1(P3, FC(v)) = 0 for v = f, g by (i6). Since (i2) implies that pr1 and pr’1: D(d’,
p’a;f1,f2) - H(d’, p’) are smooth at (X ~ Y z p3) and (C g y _ p3) respectively,
X is non-obstructed provided C is non-obstructed. So the proposition will
follow from

PROPOSITION 1.2. A generic Buchsbaum curve C of diameter 1 satisfying
e(C)  c(C) is non-obstructed.

In the proof of (1.2) and in several other places in this paper we need to
determine hl(X, NX) and related objects in terms of some of the invariants of a
minimal resolution

of I(X).
Note that pdRI(X)  2, since I(X) ~ ~v 0393(P3, 7(Y)(v)), i.e. depthm I(X)  2.
Moreover by non-obstructedness, lemma 1.3 also gives us the dimension of

the Hilbert schemes involved in proposition 1.1 and 1.2. We sketch a proof since
the version in [K4], section 4, is somewhat more restrictive.

In the sequel, vHomR(M, -) denotes homomorphisms of graded R-modules of
degree v. If rm (M) is the group of sections of M with support in V(m) G Spec(R),
i.e.

we denote by v Extim(M, -), resp. Him(-), the right derived functor of

0393m(HomR(M, -))v, resp. of 0393m(-).
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LEMMA 1.3. Let X be a Buchsbaum curve in p3 and let H(X) = ~vH1(X,
(9x(v». Then there is an exact sequence

where fi is correspondingly defined as in (il) and where E is determined by the exact
sequence

In particular, if diam X  2 and e(X)  b(X), then fi is surjective. If in addition
e(X)  s(X) and c(X)  n2j for any i, then H1(2, % x) = 0.

COROLLARY 1.4. If X is a Buchsbaum curve with 1  diam X  2 and

e(X)  c(X)  s(X), or if X is an arithmetically Cohen-Macaulay curve with
e(X)  s(X), then H1(X, % x) = 0.

Proof of 1.3.
Let M be a graded R-module and put 7 = I(X). By [SGA2], exp. VI, there is

an exact sequence

and a spectral sequence Ep,q2 = oExtP(I, H" (M» converging to oExtf:.+q (I, M).
First let M = I and observe that ExtiOP3(, ) ~ Hi-1(X, NX) for i = 1, 2, by

[K1], remark 2.2.6.
Since depthmI  2, i.e. Him(I) = 0 for i  1, the spectral sequence for p + q = 2
and the triviality of the R-module structure of M(X) = H2m(/) imply

The same arguments imply the second exact sequence of (1.3) provided we let
E = 0Ext3m(I, 1». In fact the spectral sequence for p + q = 3 gives us the exact



275

sequence

and H3 m(I) = H(X). Moreover, the surjectivity of d2, -l follows from the

spectral sequence for p + q = 4 because 0Ext4m(I, I) = 0 by continuing the long
exact sequence(*).
The proof of the existence of the two exact sequences is now complete if we

show that

To prove it, we observe that 0Ext2R(I, -) is right-exact, and this implies the
exactness of

Since the module structure of M(X) is trivial, it is enough to prove that

However by Serre duality and depthmR( - v) = 4,

Indeed the isomorphism on the right side follows directly from the exact
sequence (*) with M = R( - v), since the spectral sequence implies
0Extim(I, R(-v)) = 0 for i  3 because depthm R( - v) = 4.

Finally suppose e(X)  b(X). Since it is well known that n1i  max{c(X) + 2,
e(X) + 3} and since the diameter of M(X) is at most 2, we get nli -4  b(X). So
fi is surjective and H1(X, NX) ~ E. However e(X)  s(X) implies immediately
oHom(I, H(X)) = 0 and so c(X)  n2i implies E = 0 by the second exact
sequence of (1.3) and the proof of (1.3) is complete.

REMARK 1.5. In general one may prove that the dimension of the k-vector
space oHomR(I(X), H(X)) of lemma 1.3 is
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In fact, using the spectral sequence Ep,q2 (with M = I ) in the proof above and
0Extim(I, 1) = 0 for i = 4, 5 we get EP 3 = 0 for p = 1, 2 and we conclude easily
by applying oHomR( -, H3 m(I» to the minimal resolution of I.

COROLLARY 1.6. Let X be a maximal rank Buchsbaum curve, with

e(X)  s(X). Then H1(X, NX) ~ EB i H1(P3, FX(ni - 4»V, where the ni’s are the
degrees of a minimal set of generators of the homogeneous ideal I(X).

Proof. Since X is of maximal rank, H1(P3, FX(Xji) = 0 for j = 1, 2, 3 and any i.
Moreover e(X)  s(X) implies oHom(I(X), H(X)) = 0, and the conclusion

follows immediately from the two exact sequences of lemma 1.3.

LEMMA 1.7. Let C be a curve of diameter 1 with s = s(C), e = e(C), c = c(C),
and suppose e  c. Then there exists a complete intersection Y 1? C of type
(s, c + 2) linking C to C’ such that

1 t follows that either

(i) c(C’)  c - 1, so there exists a complete intersection Y’ ;2 C’ of type (s, c + 1)
linking C’ to C" such that e(C") = e - 1, c(C") = c - 1, s(C")  s - 1

or

(ii) c  s - 2 (in fact we have equality).

Proof. The existence of Y follows from the general fact that J c(v) is globally
generated for v  max{e(C) + 3, c(C) + 2}, and now the inequalities for s(C’),
c(C’) and e(C’) follows from (i6). By the same arguments and by
e(C’) + 3  c + 1, (i) is true provided c(C’) + 2  c + 1. So if (i) is not true, then
c(C’)  c, and we conclude by c(C’) = s - 2.
The key lemma in the proof of proposition 1.2 is the following:

LEMMA 1.8. Let C be a generic Buchsbaum curve in p3 of diameter 1 and

suppose e  c and s + 1  c. Then link C to a curve C’ using a sufficiently general
complete intersection Y= V(F, G) of type (s, c + 2) containing C, and link C’ to a
curve X using a general Y’ = Y(F’, G’) of type (s, c + 1) containing C’. Then X is a
generic Buchsbaum curve, and Y’ is a general complete intersection containing X.
Moreover if X is non-obstructed, then C is non-obstructed.

Proof. C’ must be a generic Buchsbaum curve and Y is general with respect to
C’ because for any generization C’ of C’ with the same cohomology, there exists
a complete intersection Y ;2 C’ of type (s, c + 2) such that the curve linked to C’
by Y is a generization of C, cf. [K4], prop. 3.7. The same argument for

genericness works for X and Y’ as well.
Now observe that C is non-obstructed if and only if C’ is non-obstructed
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thanks to (i2) and the isomorphism i of (i5) of the introduction and

In the same way

is seen to be smooth at (C’ z Y’ ~ P3). However the projection

is not necessarily smooth at t = (X c Y’ ~ p3), since h1(P3, Jx(s» = h1(P3,
FC’(c - 3)) = h1(P3, FC(s + 1)) is not zero in the case c = s + 1. If c &#x3E; s + 1,
then pri 1 is smooth at t, and so C’ and C are non-obstructed since X is non-

obstructed.

Now suppose c = s + 1 and X is non-obstructed. To complete the proof it is
enough to prove that D(d, pa; s, c + 1) is smooth at t. First suppose that F’ is a
minimal generator of I(X). In this case the map fi of (1.3) is surjective, and so is
the map

of (i4), and hence we conclude by (i4).
Finally suppose that F’ is not a minimal generator of I(X). Since we can

assume that Y’ = V(F’, G’) is a general complete intersection of type (s, c + 1)
containing X by the first part of the proof, I(X) contains no minimal generators
of degree s = c(X).

(In fact if F’ is not minimal and I(X) contains a minimal generator of degree s,
then one may also use the following proposition 2.1 to see that C’ - and so C
is not a generic Buchsbaum curve).

It follows that H1(P3, fx(ni» = 0 for any i, where the ni’s are the degrees of a
minimal set of generators of I(X). By [K2], remark 3.7 or by [PiS], the graded
deformations of R - A = RII(X) (in the category of local artinian k-algebras S
with residue field k) and the deformations of X z p3 correspond uniquely. We
will use this correspondence and the criterion (i3) to prove that pr1 is smooth at
t. So let Xs ç; P3S, p3 = p3 x Spec(S), be a deformation of X z p3 to a local
artinian k-algebra S. Then there exists a graded deformation Rs - As of
R - A = R/I(X) to S such that, applying the Proj-functor, we get back Xs g p3
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Put Is = ker(RS - AS) and I(XS) = ~v H0(P3S, J’xs(v» and observe that there
exists a morphism Is ~ I(Xs) since I(XS) is the largest homogeneous ideal in Rs
which defines XS ~ P3S. Since AS is S-flat and AS ~S k ~ A, it follows that

IS ~S k ~ 7(X), i.e. the composition

is an isomorphism. In particular the map I(XS) Os k - I(X) is surjective, and so

is surjective for every v, and we conclude by (i3).

Proof of proposition 1.2. By lemma 1.7 there exists a finite sequence of double
linkages

where each double linkage Ci - Ci+1 is performed using complete intersections
of type (s, c + 2) and (s, c + 1), where s = s(Ci) and c = c(Ci), and at the

end we have c(Ck)  s(Ck) - 2. Moreover by 1.7 we have e(Ci)  c(Ci) and

c(Ci) - s(Ci)  c(Ci-1) - s(Ci-1).
In particular there exists an integer n such that c(Ci)  s(Ci) + 1 for i  n and

c(Ci)  s(Ci) for n  i  k. By corollary 1.4, H’(C,,, % cn) = 0 and by lemma 1.8
Ci, for i  n, is non-obstructed provided Ci+1 is non-obstructed. This completes
the proof.

2. Techniques for constructing obstructed curves

In this section we consider différent techniques for constructing obstructed
curves (of maximal rank). Inspired by Sernesi’s example [S], Ellia and Fiorentini
(cf [EF]) succeeded in giving a criterion for obstructedness using the Liaison-
invariance of A2(X ~ Y). Their result was generalized in [K4], leading to a
simple criterion, cf. [K4] th. 3.18, for the obstructedness of a bilinked curve. We
were not able to find obstructed curves of maximal rank using these previous
results. The following proposition provides, however, a tool for constructing
smooth obstructed maximal rank curves, and can be used to complete the proof
of proposition 1.2.

PROPOSITION 2.1. Let X be a Buchsbaum curve with 1  diam X  2 and

e(X)  b(X), let f be an integer satisfying HI(P3, fx (f» ~ 0 and suppose s(X)  f
and that I(X) contains a minimal generator F of degree f. Let F 0 be a non-minimal
generator (i.e. F 0 = 03A3ri = 1 HiFi, Fi E I(X) and deg Fi  deg F 0, 1  i  r) of degree
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f, and link X to a curve C, resp. to a curve Co, using a complete intersection of the
form Y = V(F, G), resp. Yo = V(F 0’ G), where G E I(X) is of degree g  c(X) + 1. If
HI(p3, FX(g - 4)) = 0, then

(i) Co is an obstructed curve, and if F is sufficiently general, then C is a

generization of Co in the Hilbert scheme;
(ii) C is non-obstructed provided X is non-obstructed.

Furthermore if g  b(X) + 3 and e(X)  b(X), then C and Co are of maximal rank.
Proof. To prove that Co is obstructed, we first claim that

dim A1(X ~ Yo) &#x3E; dim A1(X ~ Y).

For this we consider the exact sequence of (il) of the introduction and the
corresponding sequence involving Ai(X ~ Yo). We observe that 03B2X/Y is sur-

jective by lemma 1.3 since F is a minimal generator of I(X) and HI(p3, fx(g»
= 0. The corresponding map 03B2X/Yo of X ~ Yo is however zero since, by
definition of 03B2X/Yo, we have

where

is the map induced by ’multiplication’ with Hi E R. So 03B2X/Yo since t/lHi = 0 for
Buchsbaum curves.

Now recall the exact sequence

and the similar one for FX/Yo. Since Y and Yo are complete intersection of the
same type,

for every v. The exact sequence of (i1) therefore implies

and the claim follows from the assumption H’(P’, FX(f)) ~ 0.
Next we claim that to = (X ~ Y0 ~ P3) is obstructed, i.e. that the Hilbert-flag
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scheme D = D(d, pa; f, g) is singular at the closed point to. Suppose D is non-
singular at to, and let W z D be the unique irreducible component containing to.
Since t = (X g Y z P3) and to are in the same fiber of pr,: D ~ H(d, pa) and
since the fibers of pr are irreducible by (i2), then t ~ W. Hence

dim A1(X ~ Yo) = dim (!J D,to = dim W  dim (9D,  dim A1(X  Y)

and we have a contradiction.

We now conclude quickly. Indeed by the liaison isomorphism

of (i5), D’ is singular at t’ = (C0 ~ Yo z P3). Moreover pr’1: D’ ~ H(d’, p’a) is

smooth at t’ 0 since

It follows that H(d’, p’a) is singular at (Co ç P3), i.e. Co is obstructed. Finally the
irreducibility of the fibers of pr1 implies that t is a generization of to provided Y
is general enough, and so C is a generization of Co in H(d’, p’a).
Now (ii) follows from (i4) since we have already proved that 03B2X/Y is surjective.

Furthermore by (i6) Co and C are of maximal rank and we are done.

REMARK 2.2. The proof of proposition 2.1 admits the following generaliza-
tion : Let X be a curve in P3 and suppose that there are two complete
intersections Y and Yo of the same type (1, g) such that

dim coker 03B2X/Y  dim coker f3 XIY o.

If H1(P3, FX(f - 4)) = H1(P3, FX(g - 4)) = 0, then the curve Co linked to X by
Yo is obstructed.

At least under some more extra assumption on the curve X of (2.1) we can
prove that the obstructed curve Co is in the intersection of two irreducible

components of the Hilbert scheme.

PROPOSITION 2.3. Let X be a generic Buchsbaum curve in Ln with

e(X)  c(X), s(X)  c(X), and suppose that the number m of minimal generators of
I(X) of degree f = c(X) satisfies 1  m  n. If Fo, F, G, C and Co are as in
proposition 2.1, then Co sits in the intersection of two irreducible components Vi
and Y2 of the Hilbert scheme. Moreover (C ~ P3) e VI - V2, and the generic curve
of V2 belongs to the liaison class Ln-m.
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Proof. By prop. 1.2, X is non-obstructed, and so it belongs to a unique
irreducible component V of H(d, pa), say with generic point (Î 9 p3). We claim
that the number m() of minimal generators of I() of degree f is zero. Indeed
suppose m(f) &#x3E; 0, i.e. that I(f) has a minimal generator F of degree f. Since by
semicontinuity e() = e(X) and c() = c(X) (or c() = - ~) it follows from
lemma 1.3 that

is surjective.
In general, however, 03B2/V() = 0 for non-obstructed generic curves. In fact,

since the fibers of pr 1: D(d, pa; f) ~ H(d, pa) are smooth, we have by generic
flatness ([M2], page 57) the existence of an open subscheme U of H(d, p,,,),
( ~ P3)~U, such that the restriction of pr 1 to pr-11(U), pr-11(U) ~ U, is

smooth. Hence its tangent map at (Î 9 v(F) ç p3),

is surjective, and so 03B2/V() = 0 by (il) of the introduction.
Now combining this with the surjectivity of 03B2/V(), we get H1(P3,f(f)) = 0.

Hence by Riemann-Roch we have

Since h°(P3, J(v)) = h°(P3, FX(v)) for v  f by semicontinuity, we deduce
m(X) = m - n, and now m(X) = 0 by the assumption m  n. So we have a
contradiction and the claim is proved.
Now observe that the arguments above also lead to n - m = hl(P3, J(f)),

i.e. that X belongs to Ln-m. Moreover by the proven claim above it is clear that
there is no complete intersection V(F1, G1) containing X such that

( ~ V(F1, G1) ~ P3) is a generization of t = (X ~ V(F, G) z P3) in D(d, Pa; 1, g)
because if such a complete intersection exists, then FI must be a non-minimal
element by the proven claim, i.e. F1 E mI(), and so the specialization F must sit
in mI(X), i.e. we have a contradiction.
Next we claim that there is a complete intersection V(Fo, G) of type ( f g)

containing the generic curve X above such that  = ( ~ V(Fo, ) ~ P3) is a
generization of to = (X ~ V(F°, G) g P3) in D = D(d, p,,; f, g).

Indeed F 0 = 03A3ri=1 HiFi where deg Fi =fi  f, 1  i  r, and prl: D(d, pa;

fi) ~ H(d, pj is smooth at (X c V(Fi) ~ P3) because H1(P3,JX(fi)) = 0. So for
any i we have a generization ( ~ V(Fi) g P3) of (X ~ V(Fi) g P3) in D(d, pa; fi),
and one may take Fo to be 03A3ri=1 Hii. In the same way, H1(P3, JX(g)) = 0
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implies the existence of a generization (X c V() ~ P3) of(X c V(G) z P3), and
the claim follows easily from this. Observe that choosing Fo and G general
enough, one may suppose that Fis a generic point of D since X is a generic curve
of H(d, p.).

In conclusion, we have proved that in D = D(d, Pa;f, g), to admits two

generizations t and 1 that t is a generic point of D and that t is not a generization
of t. This shows that to sits in the intersection of two different irreducible

components of D, and using the liaison isomorphism

and the smoothness of

in some open subset U’ c D’ containing to, t and 7 (for instance, define U’ to con-
sist of points (X’g V(F’, G’)ç;P3) for which HI(p3, fx,(f»=Hl(P3, fx,(g»
=0), we have exactly a similar situation in H(d’, p’a). This completes the proof
since the smoothness of pri in U’ also shows that the curve linked to X by
V(Fo, G) is a generic curve of H(d’, p’) and so it belongs to Ln-m since X does.

REMARK 2.4. (a) By the arguments in the first part of the proof we can see that
a curve X in Ln with e(X)  c(X), s(X)  c(X) must have a generization f in the
Hilbert scheme which belongs to the liaison class Lr where r = max(o, n - m).

(b) If in addition to the assumption of (2.3) we suppose m = 1, then one may
prove that C is a generic curve of the component V1 of the Hilbert scheme.

Now we use corollaries 1.4 and 1.6 for giving another technique of con-
struction of obstructed curves: they provide an easy way for computing
H1(C, % c), if e(C)  s(C), when C is arithmetically Cohen-Macaulay (and in
that case H1(C, NC) = 0), or when C E Ln, n &#x3E; 0. Then the idea is to construct a

flat family {Yt} of curves, satisfying e  s, such that Y is arithmetically Cohen-
Macaulay if t ~ 0, and Yo E Ln, and then to force Yo to have minimal generators
of degree c(Y0) + 4. In this situation one has

and therefore Yo must be obstructed.
In order to produce examples of applications of those statements and of the

above argument we need a technique for deforming arithmetically Cohen-
Macaulay curves to Buchsbaum curves (or, more generally, to curves which are
not arithmetically Cohen-Macaulay).
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This is essentially done in [BB]; but now we want to construct curves with
maximal rank, and since there is described the case of families of curves with
fixed speciality (and postulation jumping), we now sketch the proof for the case
of a family of curves with fixed postulation.

PROPOSITION 2.5. Let Y be an even liaison class. Then there exists an

irreducibleflatfamily of curves {Yt}t~T such that

(i) Yo E y
(ii) Yt is arithmetically Cohen-Macaulay if t ~ 0.

Moreover, this family is with fixed postulation, i.e.

t ~ hO(P3, f Yt(n) is constant on T for every n.
Proof. Let F be a locally free sheaf satisfying HI(P3, F(t)) = 0 for every t,

corresponding to the liaison class Y. This means that

~ H2(P3, F(1)) ~ M up to shift,

where M is the Hartshorne-Rao module of a curve of Y. Let now G be a direct

sum (of enough large rank) of line bundles (of enough large degrees) such that
there exists an injective morphism of vector bundles

Now consider the morphisms

Thanks to [BB], 2.2, there exist a direct sum of line bundles P, with

rank P = p = rank G - rank F - 1, and morphisms

such that
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drop rank in codimension two (in fact, one lifts p = rank G - rank F - 1

general sections of [(F ~ G)/03A6i(F)](t), where t is an integer such that

[(F ~ G)/03A6i(F)](t) is globally generated; P is then pOP3(-t)).
Then there exists an open non void subset T of k for which the morphism

drops rank in codimension two, hence along a curve Y, t E T.
Hence we have a flat family of curves {Yt}t~T and exact sequences

(and r does not depend on t).
Since HI(p3, F(n)) = 0 for every n, we get from the associated long exact

sequences that

is constant on T for every n.

Moreover, the exact sequences

show that

since H2(039Bt(n)) is an isomorphism if t * 0, and that

since H2(Ao(n)) is zero.
Hence Y is arithmetically Cohen-Macaulay if t ~ 0, and Yo E fil.

Example 2.6.

Let us apply this proposition, performing explicitly its steps, in order to produce
examples of Buchsbaum curves which are specializations of arithmetically
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Cohen-Macaulay curves. We concentrate on the liaison class Ln. In this case,
needed vector bundle is the tangent bundle to P’, let us denote it by T.

There exists an injective morphism

(in fact, there is a surjection 6OP3 ( - 2) ~ Qp3);
let a be an integer &#x3E; 0, and let us consider the injective morphism

(this will force the existence of minimal generators in the needed degree).
Now consider, as in proposition 2.5, the morphisms

Thus we have two exact sequences

Note that HI(P3, T(t)) = 0 Vt, that T(t) is globally generated if t  -1 (thanks to
the Castelnuovo-Mumford lemma) and that [6OP3(2) 0 aOP3](t) (and his quot-
ient too) is globally generated if t  0.

Hence we can choose P = (5 + a)OP3(-1), and find two morphisms which

drop rank along a curve

As in proposition 2.5, we have a family of curves {Yt}t~T defined by exact
sequences of the form

where Y0~L1 and Y is arithmetically Cohen-Macaulay if t ~ 0.
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One can compute the cohomology functions of these curves and find

This forces Yo to have generators in degree b = c(Yo) + 4, and therefore H’(YO,
Xy.) * 0. Since e(Yt)  s(Yt) b’t, we have H1(Yt, NYt) = 0 if t ~ 0. Hence Yo
cannot correspond to a smooth point of the Hilbert scheme.

REMARK 2.7. Starting with T (B H, where H is a direct sum of line bundles, or
changing the twists of the line bundles in this construction, one gets different
examples, always in L1.

REMARK 2.8. Note that Yo has maximal rank. Note moreover that in this way
we are not able to check that there is a smooth obstructed maximal rank curve in

LI, even if there are smooth curves in LI with the same cohomology function of
Yo.

3. An example of obstructed smooth space curve of maximal rank

In this section, using Prop. 2.5, we will produce concrete examples of obstructed
smooth connected maximal rank curves.

Let Y be a smooth connected maximal rank curve of degree d( Y) = 24 and
arithmetic genus pa(Y) = 66 with an Q-resolution of the following kind (see [C],
th. 2.3 for the existence of such curves):

Note that Y is an arithmetically Buchsbaum curve with the following
invariants: 03C3(Y) = e( Y) = 5, s(Y) = 6, c(Y) = 4 and M(Y) ~ k (i.e., Y~L1). Its
numerical character ([BM]) is (8, 7, 7, 6, 6), and hence the existence of such a
smooth curve follows also from [BM], th. 5.3.
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We link Y to an arithmetically Buchsbaum curve X by means of two general
surfaces S6 and Sq of degrees 6 and 9 respectively containing Y (this is possible
since Yy(8) is globally generated). Thanks to [PS], prop. 2.5, the ideal sheaf JX
of X has a locally free resolution of the following kind:

In particular, e(X) = 5  s(X) = 6  c(X) = 7, and the homogeneous ideal
I(X) of X has two minimal generators in degree 6 and at least one minimal
generator in degree 7, let us call them F6, G6 and F 7.

Let now Co be a curve linked to X by means of H · F6 + H’ · G6 and F9, where
F9 is a general surface of degree 9 containing Co and H, H’ are general planes.
Invoking [PS], prop. 2.5 again we get a locally free resolution of J Co

Furthermore, deg(Co) = 33, Pa(CO) = 117, s(Co) = 7, c(Co) = 5, 03C3(C0) =
e(Co) = 6. So, Co has maximal rank and, by prop. 2.3, it is obstructed

(more, precisely, it is in the intersection of two irreducible components of the
Hilbert scheme).

It remains to prove that between the Co’s constructed in such a way there is a
smooth connected curve; that is to say, choosing suitably Y and the surfaces we
can construct a smooth curve with the required properties.
To this end, we use Macaulay ([BS]). We construct explicitly Y, K and Co,

performing a sequence of direct linkages starting from the homogeneous ideal of
two skew lines (xz, xt, yz, yt). Macaulay gives us a minimal system of generators
of I(Y), I(X) and then of I(Co), and then we check that Y, X and Co are smooth
connected space curves.

The computations are rather lengthy, so we omit them. We only write here the
minimal system of generators of I(Co); note that it is generated by 7 elements (5
of degree 7, 1 of degree 8 and 1 of degree 9); unfortunately these polynomials are
huge. We list the 7 polynomials from the computer printing, where the curve is
called bkm.

REMARK 3.2. Note that the obstructed smooth maximal rank curve Co
constructed previously has not natural cohomology.
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Appendix. Equations of the curve Co of §3
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