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Introduction

This paper came about from a wish to get examples of, and thereby hopefully a
better understanding of, obstruction spaces for isolated singularities. The state
of the art best approximation to a true obstruction space is the so called T2 and
it is this module we will examine. We first give a general lemma relating T2 to
deformations of hypersurface sections. The bulk of the rest of the paper is

devoted to studying T2 for rational surface singularities. As a means to partially
compute T2 we prove some results on curves of minimal ô invariant that may be
of general interest.
By an isolated singularity we will mean the germ of an analytic space at a

point (always denoted 0) with a representative that is smooth away from 0. All
spaces will be local unless otherwise stated. We briefly recall some of the
definitions and results of deformation theory for isolated singularities.
A deformation of X is a flat map of local spaces, 1 - S with X as the fiber

over 0. It is versal if for any other deformation OY - T, there exists a morphism
T- S such that * is the pull back of Y. An isolated singularity X has a versal
deformation ([Schlessinger], [Grauert]). We will assume that the tangent space
TOS of S at the special point has minimal dimension. (Such a deformation is
usually called mini-versal or semi-universal). Then ToS is isomorphic as a vector
space to the so called TX, the space of isomorphism classes of first order
infinitesimal deformations of X. The T will be defined in §2.

If dimc T1X = T, then we may think of S lying in (C’, 0). Let Is be its ideal, m,
the maximal ideal at 0 in et and let * denote the C dual of a vector space. Then

there is an injective ’obstruction map’

The space on the left is the true obstruction space, and the map is not in general

(1)Supported by a ’Heisenberg-Stipendium’ Be 1078/1-1 of the DFG.
(2)Partially supported by the Norwegian Research Council for Science and the Humanities.
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bijective. Nevertheless, Ti contains the obstructions, and there is an obstruction
calculus involving Ti (see e.g. [Laudal]) that has proven to be important in
calculating versal deformations. In the case of cyclic quotient singularities for
example the obstruction map is also surjective. (See [Arndt], [Christophersen
2], and [Stevens 3].)
There is by now a good knowledge of infinitesimal deformations. For isolated

quotient singularities e.g. T’ = 0 in dimensions at least 3 [Schlessinger 2], and
for quotient surface singularities [Behnke-Kahn-Riemenschneider] can serve as
a reference. The overall picture of infinitesimal deformations of rational surface
singularities has been clarified a bit in [Behnke-Knôrrer]: if the fundamental
cycle Z on the resolution 9 of X is reduced and sufficiently negative then
dimc T1X = dimC H1(, 0398) + n - 3, n + 1 the embedding dimension. The
cohomology group on the right hand side can be computed in many cases. For
Tl of non-rational surface singularities see e.g. [Pinkham 1], [Behnke], [Wahl
4] and [Wahl 5].
The basis for our work is a lemma which, in its simplest form, states that for

an isolated singularity X and a hypersurface section Y with defining equation f,
which also is an isolated singularity;

where 03C4Y is the Tjurina number of Y and e f is the dimension of a smoothing
component in the versal base space of Y This lemma was first shown in

[Christophersen 1] where it was used to compute T2 for cyclic quotient
singularities. In Section 1.3 we give a generalized version and a complete proof
of it. The proof uses standard properties of the cotangent complex which we
recall in Section 1.1 and a result of Greuel and Looijenga relating dimensions of
smoothing components to a subspace of T’. This was first used to prove Wahl’s
conjecture on the dimension of smoothing components [Greuel-Looijenga].
The lemma has several applications, e.g. to the question of un-obstructedness,

and we give examples in section 1.4 and section 6. If one knows something about
Ti then one gets information about the deformations of hypersurface sections
and vice versa. Our main application though is to the study of T2 for rational
surface singularities.

In [Christophersen 1] the lemma was applied to special monomial curves
known to annihilate Ti for cyclic quotient singularities. Our (more powerful)
approach is to study a general hypersurface section of any rational singularity.
These curves turn out to have minimal 03B4 invariant with respect to their

embedding dimension. We classify such curve singularities in section 3. They are
wedges of certain monomial curves and we call them partition curves.

It turns out that all partition curves of embedding dimension n are special
hypersurface sections of the cone over the rational normal curve of degree n -
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call it Xn . On the other hand we prove in section 2 a useful proposition telling us
that for any Cohen-Macaulay singularity defined by the vanishing of the 2 x 2
minors of a 2 x n matrix, the entries annihilate T2. This proves that the maximal
ideal of Xn annihilates Tin and that T y - ey is constant for all partition curves
with the same embedding dimension. In particular one gets this number from
the special case of the ordinary n-tuple point in en which was computed in
[Greuel].
A little more work gives us the module structure for Ti for any rational

surface singularity. For surprisingly many the maximal ideal annihilates Ti and
our main result is:

THEOREM. Let X be a rational surface singularity of embedding dimension
n + 1  4 with exceptional divisor E = U Ei and fundamental cycle Z. Let f be the
defining equation of a generic hypersurface section of X. Then

(1) The minimal number of generators of Ti as OX module is (n - 1)(n - 3);
moreover there exists a minimal set of generators zl, ... , zn+1 of the maximal
ideal, starting with Z l = f, such that z2, ..., zn+1 annihilate Ti.

(2) If the fundamental cycle Z is reduced and if for any connected subgraph E’ c E
with z. E’ = 0 the self-intersection number E’. E’ = - 2 or - 3 then

dimc Ti = (n - 1)(n - 3).
(3) If X is a quotient singularity then dimC Ti = (n - 1)(n - 3).

The hypotheses of (2) of course mean that the projective tangent cone is
reduced, and on the first blow up there are at most triple points.

This result was achieved in the case of cyclic quotient singularities by J. Arndt
in [Arndt]. There are similar results for the T2 of minimally elliptic singularities
which we will present in a forthcoming paper.

If assertion (2) were true without the condition that Z be reduced then
statement (3) would be immediate. But we shall give an example of a rational
quintuple point with nonreduced Z where (2) does not hold. So we must check
the quotient singularities with non-reduced Z and n + 1  5. Five of the

exceptional quotient singularities were computed, with the help of Dave Bayer,
using the computer program Macaulay by Dave Bayer and Mike Stillman.
We would like to think of this as a ’stability’ result for the deformations of

rational surface singularities. The recent progress in [Kollàr-Shepherd-Barron],
[Arndt], [de Jong-van Straten], [Stevens 3] and [Christophersen 2] on versal
deformations of certain rational singularities seems to indicate stability in the
following sense: If one fixes certain invariants of the singularity such as the
embedding dimension and/or the dual graph, then the versal base spaces for the
general singularities in this class have a common singular factor and the rest is
just adding a smooth factor as Tl varies. Our result adds to this by saying that
T2 and therefore hopefully the obstructions depend on very few and coarse
invariants of the singularity.



236

We shall describe briefly what we do in subsequent sections. The first two are
of a rather general nature, and they set up the machinery. In section 1 we recall
some of the basic properties of the cotangent complex, and we deduce the Main
Lemma explained above. Section 2 is about the annihilation properties of T2 for
some determinantal singularities.

Sections 3-5 deal with rational surface singularities. In section 3 we classify
reduced curve singularities which have minimal delta invariant n - 1 with

respect to their embedding dimension n. In section 4 we prove that partition
curves are exactly the general hypersurface sections of rational surface singular-
ities, and section 5 is devoted to the proof of our main result.

Finally in section 6 we discuss obstruction spaces and/or smoothing compo-
nents of cones over rational normal scrolls, and ’fat’ points. For example we
show that smoothing components of the Artinian C-algebra of embedding
dimension r and minimal multiplicity r + 1 have dimension r2.

There is an appendix, written by Jan Stevens, on infinitesimal deformations of
wedges of curve singularities.
We have benefitted greatly from Jan Stevens ideas, suggestions and cal-

culations throughout this project. We would also like to thank Gert-Martin
Greuel, Theo de Jong, Ragni Piene, Duco van Straten and Prabhakar Rao for
their helpful ideas.
Our collaboration on this subject started when the first author was visiting

the University of Oslo in spring 1988. He would like to acknowledge their
invitation and hospitality.
Much of this work was completed while the second author was visiting the

Massachusetts Institute of Technology and we would like to thank them for use
of their facilities and the stimulating milieu.

1. Hypersurface sections and the cotangent complex

1.1. We shall briefly recall some of the properties of the cotangent complex that
we will need later. For definitions, proofs and details on deformations of
singularities and the cotangent complex see [Artin 2], [André], [Buchweitz],
[Grauert], [Illusie], [Laudal], [Lichtenbaum-Schlessinger], [Rim], [Schlessin-
ger 2] and [Tjurina].

For simplicity we assume all rings are commutative and noetherian. For a
ring A and an A algebra B, there exists a complex of B modules; the cotangent
complex CRIA. For any B module M the complex gives the cotangent homology
modules
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and the cotangent cohomology modules

As mentioned in the introduction the two modules TiX := Ti(OX/C; (9x) for
i = 1, 2, are of spécial importance for the deformation theory of isolated
singularities X. This cohomology theory has among others, the following
properties.

1.1.1. There exists a natural spectral sequence with E2 term

1.1.2. Base change. Given a cocartesian diagram

with 0 flat, and B’ module M’, there is a natural isomorphism

1.1.3. In the situation of 1.1.2, assume also that A’ is a flat A module. Then there
is a natural isomorphism

for any B module M.

l.1.4. If A ~ B ~ C are ring homomorphisms and M is a C module, then there is
a Zariski-Jacobi long exact sequence

1.1.5. A short exact sequence
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of B modules induces a long exact sequence in cohomology

1.1.6. If B is a smooth A algebra then T’*(BIA; M) = 0 for i  1 and all B

modules M.

1.1.7. Semicontinuity. Let k be a field, A a k algebra and B a flat A algebra.
Assume that A is a discrete valuation ring with residue field k and quotient field
K. Thus B QA k is the ring of the special fiber and B QA K the ring of the generic
fiber in the one parameter deformation Spec(B) ~ Spec(A). Then

We give a proof for lack of reference.

Proof. We have

by 1.1.3, so its dimension over K equals rk, T’(BIA; B). This number is obviously
no larger than dimk T’(BIA; B) QA k. If t is a parameter for A, then by 1.1.5 and
1.1.2 the exact sequence

induces injections

This gives the result. D

Notice that this means we have semicontinuity for all T’in any deformation
where there is a smooth curve from the special point of the base space to any
other point.

1.1.8. Let Y = X x (Cn, 0) so that Wy (9x (D c C{x1, ..., xn}. Set TiX(x1, ...,
x,, Tx ~C C{x1, ... , x,, 1. Then TiY ~ TiX {x1, ... , xn} when i  1. Again we
include a proof.

Proof. By induction it is enough to prove the statement for n = 1. Since (9y is
a flat (9x module, 1.1.3 says that TiX{x} ~ Ti(OX/C; OY) and this is again
isomorphic to Ti(OY/C{x}; (9y) by 1.1.2. The long exact sequence 1.1.4 induced



239

from C ~ C(x) - (9, and the fact that C{x} is regular give immediately that
Ti(OY/C{x}; OY) ~ TiY for i  2 and an exact sequence

From the explicit description of the cotangent modules given below it is easy to
see that the leftmost map is the zero map by our construction of Y. D

1.1.9. There is a global counterpart to this theory. We will only need the fact that
for a scheme X there are sheaves FiX with stalks 9-’X Ti(OX,x/C; (9x,.).
1.2. The first three cohomology modules have an explicit description in terms of
more familiar modules.

1.2.1. T °(B/A; M) = DerA(B, M), the module of A derivations into M.

1.2.2. Let P, be a free A algebra such that B = PA/I for an ideal 7. There is a
standard exact sequence

Applying HomB( -, M) we get a map

and T1(B/A; M) is the cokernel.

1.2.3. Consider now an exact sequence

of PA modules with F xé PÂ free. Let Ro be the sub-module of R generated by the
trivial relations; i.e. those of the formj(x)y - j(y)x. Then R/Ro is a B module and
we have an induced map

and T 2(B/A; M) is the cokernel.
The module on the left is just the sum of m copies of M and the map is

where r E F represents r e R/Ro.
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1.3. Let X be the germ of an analytic space of positive dimension and

a germ of an analytic function, i.e. f ~ (9x the local ring of X at 0. We will say that
Y = f-1(0) is a hypersurface section of X iffEmx (the maximal ideal of germs
vanishing at 0) and f is a non-zero divisor in (9x. We will from now on assume
that Y is an isolated singularity.

1.3.1. Since f: X ~ (C, 0) is a flat deformation of Y, there is a cartesian diagram

where n is the versal deformation of Y Let O1 = C{t} be the local ring of (C, 0) at
0. Then (9x is a O1 module via f *, that is the map t ~ f.
The short exact sequence

induces as in 1.1.4 a long exact sequence of which the most interesting part reads

By 1.1.2 Ti(UX/O1; OY) ~ TiY. In the proof of Wahl’s conjecture on the
dimension of smoothing components, Greuel and Looijenga ([Greuel-
Looijenga, Corollary 2.2]) show that dimc Im(a) is the dimension of the Zariski
tangent space of S at the generic point of the curve j(C). Denote this dimension

by e f .
Consider now the Zariski-Jacobi sequence

associated as in 1.1.4 with the homomorphisms
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Since O1 is regular Ti(O1/C; OX) = 0 for i  1 by 1.1.6 and Ti(OX/O1; OX) ~ TiX
for i  2.

If X was an isolated singularity and 0 was an isolated critical point for f, then
f : X ~ (C, 0) is a smoothing ; i.e. the generic fiber is smooth. In this case a general
point j(t) is smooth and e f is the dimension of the irreducible smoothing
component containing j(C 0). Also Ti has finite length.

1.3.2. Putting this together we get the

MAIN LEMMA. If Y = f-1(0) is a hypersurface section of X and an isolated
singularity then

(1) there is a long exact sequence

(2) dimC(T2X/fT2X) - rka Ti = dimc T1Y - e f
(3) if f is a smoothing of Y then e f is the dimension of the smoothing component of

f and

dimC(T2X/f T2X) = dimc Ti - e f ~

1.4. A singularity is unobstructed if the versal base space is smooth. We state
now an immediate corollary of the Main Lemma. The discussion here should be
compared to [Buchweitz, §5].

1.4.1. It is well known that in general the obstruction space is only a subspace of
T 2. The following statement indicates what T2 actually measures.

COROLLARY. (1) (Buchweitz) For an isolated singularity X of positive dimen-
sion, Ti = 0 if and only if X is unobstructed and every hypersurface section is
unobstructed.

(2) A smoothable singularity is unobstructed if and only if it is a hypersurface
section of an isolated singularity X with Ti = 0.

Proof. (1) follows from the Main Lemma and Nakayama’s lemma. In (2) take
X to be the total space over a curve in the base space with smooth generic fiber.

D

REMARK. If an unobstructed singularity is not smoothable the above method
shows that it is a hypersurface section f of a germ X with Ti free O1 module.

1.4.2. We call a singularity X k-unobstructed if Ti+1X = 0 for 1  i  k. It is 0-

unobstructed if it is unobstructed. A singularity Y is a complete intersection in X
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if the ideal of Y in X is generated by a regular sequence of length dim X - dim Y
It follows from the Main Lemma (1) that a hypersurface section of a k-
unobstructed singularity is (k - l)-unobstructed. Therefore, a complete inter-
section Y of codimension 1 in a k-unobstructed singularity X is (k - l )-
unobstructed if k  1.

1.4.3. EXAMPLE. To illustrate these notions we look at cones over scrolls. By
a rational normal scroll (see e.g. [Eisenbud-Harris]) of type S(ao, ..., ad), we will,
for simplicity, just mean the d + 1 dimensional projective manifold in p(1:a¡)+d
defined by the vanishing of the 2 x 2 minors in the matrix

Let X(ao, ..., ad) be the singularity of the affine cone over S(ao, ..., ad) at the
vertex. The special case XN = X(l, ..., 1), d = N - 1, is the generic determi-
nantal singularity given by a 2 x N matrix and is rigid for N  3. None of the
others are rigid as can be seen by perturbing the matrix to make it generic.
Not only is XN rigid, it is (N - 2)-unobstructed, as follows from [Svanes]. On

the other hand every X(ao, ..., ad) is a complete intersection in X N for
N = 0 ai, of codimension If=o(ai - 1) = N - (d + 1). This shows the

PROPOSITION. If X = X(ao,..., ad) is the singularity at the vertex of the cone
over the rational normal scroll of type S(ao, ..., ad) with ai, d  1, then X is
(d - 1 )-unobstructed. n

REMARK. The interesting case is when d = 1, i.e. X is a three-fold. Then in

fact, as we shall see, Ti is non-trivial and comes from obstructed hypersurface
sections.

2. Annihilation of T2 for some determinantal singularities

2.1. We shall show that for Cohen-Macaulay singularities (of any dimension)
defined by the minors of a 2 x n matrix, the entries of the matrix annihilate T2.
Examples of such singularities are the cones over rational normal scrolls

discussed in example 1.4.3.

2.1.1. PROPOSITION. Let fi, ..., fn, g1, ..., gn be elements of the maximal
ideal of the local ring Oe of ce at 0. Let X be the space defined by
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Assume that fi, gi are such that X is Cohen-Macaulay of codimension n - 1 in ce.

Then the OX module Ti is annihilated by the ideal

Proof. Let Fi,j = figj - fjgi for 1  i  j  n be the defining equations. From
our assumptions the Eagon-Northcott complex ([Eagon-Northcott]) gives a
resolution of (9,. In particular the module of relations R among the Fi,j is
generated by the 2(3) relations

for 1  1  j  k  n.
Since interchanging rows and columns will not change the space it is enough

to show that f1 T2X = 0. Let 4J E Hommx(R/Ro, OX) and set ~(Ri,j,k) = ~1i,j,k,
~(Si,j,k) = 4Jf.j,k’ We want to show that

More precisely we need to show the existence of (n2) elements hi,j of OX,
(1  i  j  n), such that

forall 1  i  j  n.
Again from the Eagon-Northcott complex we get relations among relations

for all 1  i  j  k  n. Also, for any a = 1, ... , n

From (3) and (4) we obtain
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Now set

and use (2), (4) and (5) to show that the equations (1) are satisfied. D

2.1.2. REMARK. There should be a generalization to spaces defined by
maximal minors of an arbitrarily large matrix. The relations among relations
coming from dividing out the trivial relations will have coefficients that are
minors of order one less than maximal. Possibly it is these minors that kill T2 in
general.

2.1.3. COROLLARY. If X is as in the proposition, the entries of the matrix
generate mx and T2X ~ 0 then Ann Ti = mx.

3. Curves with minimal delta invariant

3.1. In this section we define a set of very simple curve singularities, which we
call partition curves, and we show that they are exactly the reduced curve
singularities which have minimal possible value n - 1 of their delta invariant
with respect to their embedding dimension n. We begin by recalling a number of
basic invariants which are needed throughout this section. An excellent

reference for curve singularities is [Buchweitz-Greuel].

3.1.1. For a Cohen-Macaulay singularity Y c (C", 0) the Cohen-Macaulay type
t is the minimal number of generators of the dualizing module 03C9Y. By local
duality t is also the last non-vanishing Betti number of a minimal free resolution
of the local ring OY over a regular local ring (!Jn,O’ of which it is a quotient. In
particular t is invariant under hypersurface sections.

3.1.2. From now on we will assume that Y is a reduced curve singularity. In
particular (9y is Cohen-Macaulay. Let v:  ~ Y be the normalization map. The
length of the Artinian module (v*O)0/OY is the delta invariant à of Y The Milnor
number y is the length of the quotient (coyld(9y), where d: OY ~ 03A91Y ~ Wy is the
composite of exterior differentiation and the natural map 03A9Y ~ 03C9Y [Buchweitz-
Greuel]. Milnor’s formula [Buchweitz-Greuel, Proposition 1.2.1] says that if Y
has r branches y = 2b - r + 1.

3.1.3. If Y is the union of YI and Y2 with no component in common, and Il is the
ideal of YI and 12 is the ideal of Y2 in an ambient C" the intersection number is
i(Yl, Y2) = dimc (Den,o/(I1 + 12). The reader should note that this intersection
number is not the one used in intersection theory. The curve Y is called
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decomposable (or Y is the wedge of Y1 and Y2, denoted by Y= Y1 v Y2) if the
Zariski tangent spaces of YI and Y2 have only the point 0 in common.

LEMMA. [Hironaka] For Y, YI, Y2 as above Y= YI V Y2 if and only if i(Yl,
Y2) = 1. D

With the help of intersection numbers the delta invariant of a curve

singularity can easily be computed from the delta invariants of its components.

LEMMA. [Buchweitz-Greuel, Lemma 1.2.2]
(1) Let ô, ô,, ô, be the delta invariants of Y, Y1, and Y2. Then

Ô = bl + Ô2 + i(Y1, Y2).
(2) Let Y= Y1 ~ ··· ~ Yr be a union of r curves with b-invariants ô,, ..., br. Then

03B4  03B41 + ··· + 03B4r + r - 1 with equality if and only if Y = YI v - - - v Yr. D

Similarly the Cohen-Macaulay type of a wedge of curves can be calculated.

LEMMA. Let Y = Y1 v Y2, and assume that for i = 1, 2 Yi has Cohen-Macaulay
type ti. (If Yi is a smooth branch of Y we set ti = 0 formally.) Then the Cohen-
Macaulay type t of Y is t = tl + t2 + 1. D

In an appendix to our paper Jan Stevens proves a formula for the dimension
of Ti of decomposable curves.

3.1.4. LEMMA. [Greuel, Theorem 2.5.(3)] If a curve singularity Y is quasi-
homogeneous and smoothable then the dimension of the smoothing components in
the base space of the semi-universal deformation is

e = 03BC + t - 1. D

3.2. For m ~ N let Y(m) c C’ be the monomial curve [Pinkham 1, §12] with
semigroup generated by m, m + 1,..., 2m - 1 (the ordinary semigroup of genus
m - 1). In parametric form Y(m) is given by the map v: C ~ cm sending t to
v(t) = (tm, ... , t2m-I). The ideal of Y(m) in C[z1, ..., zm] is minimally generated
by the 2 x 2-minors of the 2 x m-matrix

Let m = ml + ... + mr be a partition of m. The partition curve associated with
ml, ..., mr is the wedge of monomial curves

where
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We illustrate this definition by a list of all partition curves with m  3

a line

a node

a cusp

three coordinate axes in C3

a cusp in (z1, z2)-plane and z3-axis
the monomial curve Y(3)

REMARK. In his thesis [van Straten] D. van Straten has defined a class of
nonisolated weakly normal surface singularities, which he calls partition
singularities. Looking at either his construction which proceeds by gluing copies
of C2 or at the equations he gives it is easy to see that partition curves are
hypersurface sections of partition singularities.

3.2.1. Equations of partition curves are easy to get. Let

be coordinates of Cn, m = ml + ..- + mr, and consider the matrices

whose 2 x 2-minors are equations for Y(mi). Then Y(m1, ..., mr ) is defined by

3.2.2. These equations are quasihomogeneous, and they are the natural set of
equations to work with. But they are hiding the following important fact:

PROPOSITION. Partition curves are determinantal, i.e. there is a 2 x m-matrix
M with entries in the maximal ideal of OCm,0 whose 2 x 2 minors generate the ideal
of Y(ml, ..., mr).

Proof. We copy van Straten’s argument in [van Straten, 1.3.10]. For i = 1,
..., r let
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Let

be complex 2 x 2-matrices. Consider the matrix

It is now easy to show that if the Ai are nonsingular and sufficiently general then
the 2 x 2-minors of M generate the ideal of Y(m,, ..., mr) locally around the
origin in cm. 0

REMARK. To our knowledge the partition curves appear in the literature for
the first time in [Aleksandrov]. Theorem 1 of that article asserts that all reduced
curve singularities which have c = ô + 1, c the colength of the conductor,
actually are the partition curves, but no proof is given. The author also writes
down equations, and claims the assertion of our Proposition 3.2.2, but his

equations are not correct. In particular the determinantal representation in his
Lemma 2 is wrong.

3.2.3. From the definitions and lemmas in 3.1 we arrive at the following list of
invariants for partition curves

PROPOSITION. Let m = ml + ... + mr be a partition of m. Then the partition
curve Y(m1, ..., mr) has the following invariants:

(1) The delta invariant is b = m - 1.
(2) The Cohen-Macaulay type is t = m - 1.

(3) The Milnor number is 03BC = 2m - r - 1.

(4) The smoothing components have dimension 3(m - 1) - r. (We shall see below
that all partition curves are smoothable.) ~

3.3. Our main result in this section is

PROPOSITION. Let X be a reduced curve singularity of embedding dimension
n.

(1) The delta invariant of X is at least n - 1.
(2) b = n - 1 if and only if X is a partition curve.

REMARK. See also [Buchweitz-Greuel, 1.2.4]. The authors prove there that if
p = m - 1 then X is the union of the coordinate axes in Cm. This is of course a

special case of our result, since 03BC  03B4, and the only partition curve with r = m is
Y(l, ..., 1).

3.3.1. Proof. (1) The first part is very easy. Let us consider the irreducible case
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first. The normalization map v:  ~ X exhibits (9x as a subring of O ~ C{t}.
The value semigroup r x c rBJ of X is the set of orders pi of the power series in

C{t} belonging to (9x. In a more conceptual way it is the image v(OX) of the
valuation v of the field of fractions K(OX) ~ K(O) associated with the discrete
valuation ring (9f.

Clearly the multiplicity mx of (9x equals the smallest nonzero element of rx,
and 03B4X is the number of gaps, i.e. the number of elements in NB0393X. Hence
03B4X  mX - 1, and by a standard result in multiplicity theory for a curve mX  n,
whence the claim.

If now X = X1 ~ ··· u Xr is the decomposition of X into irreducible compo-
nents X i, and X has embedding dimension ni, then

by 3.1 and the estimate in the irreducible case.
(2) Let us assume now that 03B4X = n - 1 is minimal. Then all the estimates in (*)

are actual equalities. In particular X = X1 v ··· v X r is a wedge by 3.1.3, and all
the X have minimal delta invariant. Hence we can assume X to be irreducible.
The semigroup of X is {0, n, n + 1, n + 2,...} with no gaps following n : Since

X has multiplicity n the smallest nonzero element in r x is n, and there are

already n - 1 gaps between 0 and n.
By a result of Teissier [Zariski, Appendice, Théorème 1.3.] there is a one

parameter deformation X ~ (D, 0) with a section 03C3: D ~ X such that for t E DB{0}
the fibre (!!Il’ 03C3(t)) ~ X, and !!£ 0 is the monomial curve singularity with the same
semigroup. From the proof [loc. cit., 1.10] it can be seen that 0 is in the space of
deformations of positive weight of the monomial curve. According to [Pinkham
1, Lemma 12.5 and Lemma 12.6] for singularities with at most one gap following
the smallest nonzero element of their value semigroup no such deformations
exist. D

4. Hypersurface sections of rational surface singularities

4.1. We shall prove in this section that the general hypersurface section of a
rational surface singularity is a partition curve, and moreover that every
partition curve actually occurs as a general hypersurface section of some
rational surface singularity.

4.1.1. Let f E m c (9x be an element of the local ring of X which vanishes at 0
and projects onto a sufficiently general element of m/m2. Then Y = f -1(0) is a
general hypersurface section of X [Reid, Definition 2.5]. In particular the
embedding dimension of Y is one less than the embedding dimension of X and
the multiplicity stays the same.
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REMARK. We stick to the notion hypersurface section rather than hyperplane
section since we work locally and we do not speak of a particular embedding.
Though it is an easy application of the Bertini theorem the following

observation is of fundamental importance. Let  ~ X be a resolution of the
surface singularity X. Assume that n factors through the blowing up of the
maximal ideal m of X at 0, i.e. 03C0-1m · O = (!Ji ( - Z) is locally free, and that
the (reduced) exceptional divisor is a union of smooth projective curves. Then
for Y a général hypersurface section the preimage 03C0-1(Y) = Z + , and
y= 03C0-1(YB{0}) is a disjoint union of smooth curves which meet the exceptional
divisor transversely in smooth points.
What we need below is that the vertical part of the divisor ( f ) is exactly Z, and

that the horizontal part is smooth.

4.1.2. Our main result here is

THEOREM. A general hypersurface section Y of a rational surface singularity of
embedding dimension n + 1  3 is a partition curve for some partition
n = n 1 + ... + nr.

REMARK. We shall see below that we can read off the partition from the
resolution data.

4.2. For the proof we need to show that Y has delta invariant n - 1. A result of
Morales [Morales, Corollary 2.1.4], stated below, asserts exactly this. We

include a rather elementary topological argument.

4.2.1. Throughout this subsection let X be more generally a normal surface
singularity, with a resolution n:  ~ X such that n factors through the blow up
of the maximal ideal, and that moreover the exceptional divisor E has

nonsingular components Ei with normal crossings. Denote the genus of Ei by gi
and the self-intersection number by - bi. Let Y be a hypersurface section of X

given by f = 0, general enough so that the strict preimage Y of Y on f consists
of smooth curves intersecting the exceptional divisor transversely in smooth
points.

PROPOSITION. [Morales, Corollary 2.1.4] If f is as above, and if the divisor of
fo n is A +  with A = 03A3ki = 1 aiEi and  with no compact component then the delta

invariant of Y is

K the canonical divisor of X, and also
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Proof. By [Buchweitz-Greuel, Corollary 4.2.3.(1)] the Milnor number of Y is
the first Betti number of a smooth nearby fibre. Since n is biholomorphic outside
the exceptional set the level set fa n(x) = t on X for a nice representative X is a
good candidate. The Euler characteristic of this level set is computed in
[Brieskorn-Knôrrer, §8.5, Lemma 3] as

where ri is the total number of components of (f o n), compact and non-compact
ones, different from Ei, which meet Ei. (In fact the authors work out the case
gi = 0 but their arguments apply word by word to the general case.)

Using X = 1 - Il and Milnor’s formula 3.1.2 we get

r the number of branches of Y. Let now ri = si + ti for i = 1,..., k, where si is the
number of noncompact components meeting Ei . Then A · Ei + si = 0 and
A · E = - 03A3ki = 1 si = - r. Hence

by adjunction

The second expression is computed using the formula

for the arithmetic genus pa of an exceptional cycle. D

4.2.2. COROLLARY. (1) If X is rational, and f is general then ô =

-Z2-1=n-1.

(2) if X is minimally elliptic [Laufer] with - Z2  2 and again f is generic then
ô = _Z2 = n.

Proof. In both cases A is the fundamental cycle Z. In the rational case
pa(Z) = 0, and for X minimally elliptic pa(Z) = 1. (Note also that for most
minimally elliptic singularities K = - Z. D
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REMARK. A complete classification of Gorenstein curve singularities with
b = n as in 4.2.2(2) will be provided in a forthcoming paper.

4.3. As we announced above it is not difficult to find the partition.

4.3.1. PROPOSITION. Let X, X, and Y be as before. Let E = U7=1 Ei be the
decomposition of the exceptional set into irreducible components, and let

Z = 03A3ki = 1 ni Ei be the fundamental cycle. If Z - Ei = - ri  0 the partition for the
general hypersurface section Y is

(Of course it is understood that n’i’s with ri = 0 are omitted.)
Proof. If Z · Ei = -ri then there are ri components of Y passing through Ei . A

global holomorphic function on X which vanishes on E vanishes at least to
order ni along Ei. This shows that the delta invariant of these components is at
least ni - 1. Hence it is equal to ni - 1. (Note that 03A3ki =1 rini = -Z2 = n.) D

The case of reduced fundamental cycle seems to have been well known before
(cf. [Stevens 1], [Kollar, Section 3.4]).

COROLLARY. If X is a rational surface singularity of embedding dimension
n + 1, such that the fundamental cycle on the minimal resolution is reduced, the
general hypersurface section Y is isomorphic to the singularity of the n coordinate
axes in en. n

REMARK. In [van Straten] one finds that even more generally for a weakly
rational weakly normal Cohen-Macaulay surface singularity the delta invariant
of a general hypersurface section is one less than the multiplicity. The proof is
omitted there, so we have included it here for our case.

EXAMPLES. (a) Y(l, 1) is the general hypersurface section of the An
singularities.

(b) For Dn, E6, E7, Es the general hypersurface section is the ordinary cusp
Y(2).

(c) If n = 3 we have Y(1, 1, 1), Y(2, 1), and Y(3). For example Y(1, 1, 1) is the
general hypersurface section of the cone over the rational normal curve of degree
three. We get Y(2, 1) in case of the tetrahedral quotient singularity T5, and Y(3)
is the general hypersurface section of the rational surface singularity with dual
resolution graph as shown in Figure 1. D

4.3.2. This motivates the following result which we include for the sake of
completeness.

PROPOSITION. Each partition curve actually occurs as a general hypersurface
section of a suitable rational surface singularity.
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Fig. 1. 2022 -b represents an exceptional P’ of self-intersection number -b. ( - 2)’s are omitted.

Proof. Let n = ni + ... nr be a partition of n. We display in Figure 2 the dual
resolution graph of a rational surface singularity which has Y(n1,..., nr) as a
general hypersurface section, and leave the verification to the reader.

These graphs have been suggested to us by [van Straten, Theorem 1.3.12].
D

REMARK. In particular we have shown that partition curves are smoothable.

4.4. To apply the results of 2.3 to rational surface singularities we show that
partition curves are also special hypersurface sections of the cones over rational
normal curves of corresponding degree.

PROPOSITION. Let n = nl + ··· + nr be a partition of n, and let Xn be the
singularity at the vertex of the cone over the rational normal curve of degree n.

Figure 2.
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Then there exists a hypersurface section {f = 01 of Xn which is isomorphic to the
partition curve Y(n1, ..., nr).

Proof. The resolution n: n ~ Xn is the contraction of a smooth rational
curve E of self-intersection number E2 = - n. After possibly restricting to a
smaller neighborhood of E we can construct r disjoint smooth curves 1,..., r
which intersect E in r points Pb ... , Pr with intersection numbers n 1, ... , nr . The
intersection number E. (E + YI + ... 0 hence by [Artin 1, proof of
Theorem 4] there exists a global holomorphic function f on X n with divisor
() = E + YI + ··· + Y;. The function f descends to a holomorphic function on
Xn and cuts out an isolated curve singularity Y with r irreducible components.
Clearly the delta invariant of the component Y corresponding to Y is at least
ni - 1, and the delta invariant of Y can be computed as in 4.1 to be n - 1. D

4.5. The following result is the outcome of this section with respect to

computation of T2.

PROPOSITION. Let Y= Y(nl, ... , nr) be a partition curve with n = n, +... nr.
Let r = dim Ti and e be the dimension of the smoothing components. Then

i - e = max(0, (n - 1)(n - 3))

and depends only on the embedding dimension n and not on the particular partition
curve.

Proof. By the preceding Proposition Y(n1,..., nr) is a hypersurface section of
the cone X n over the rational normal curve of degree n. The singularity Xn is
determinantal, and the maximal ideal annihilates T2Xn by 2.1.3. Hence by part 3
of our Main Lemma we have 

dim T2Xn = T - e.

So the right hand side doesn’t depend on the particular partition. That it is equal
to (n - 1)(n - 3) follows from the results about the deformation theory of the
generic hypersurface section of Xn, i.e. the singularity of the n lines in en, which
we recall below. r-i

Just to ease the formulation of the following results let an ordinary n-tuple
point be the singularity of Y(1,..., 1) of embedding dimension n.

4.5.1. PROPOSITION. [Buchweitz-Greuel, Proposition 7.2.6] Let Y be an
ordinary n-tuple point.

(1) Let f: y - D be any small representative of a deformation of Y For t ~ DB{0}
the fibre yt has at most ordinary m-tuple points for m  n as singularities.

(2) Let ni, ... , np be any integers such that ni  2 and 03A3pi = 1 (ni - 1)  n. Then
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there exists a deformation f : y ~ (D, 0) of Y such that for a small represen-
tative the fibre OY, for t ~ 0 has exactly p singular points Yl,..., yp, and (OJJo Yi)
is an ordinary ni-tuple point.

(3) The parameter space S of the semi-universal deformation of Y is of pure
dimension 2n - 3. ~

In addition there is

PROPOSITION. [Greuel, Proposition 3.5.(2)] The n-tuple point Y= Y(1,..., 1)
has

REMARK. We could as well have referred to [Arndt] or [Christophersen 2]
for the computation of Tin. But we thought it would be nicer to have a proof
which doesn’t use many computations, and relies only on work about curves.
Also these Propositions will be of help in subsequent sections.

4.5.2. To close this section we write down what we get for the dimension of the
Tl of a partition curve.

PROPOSITION. For a partition curve Y= Y(ni, ..., nr) of embedding dimen-
sion n = n1 + ··· + nr

dim T1Y = n(n - 1) - r.

Proof. We have 03C4 - e = (n - 1)(n - 3) by 4.5, and e = 3(n - 1) - r by
3.2.3(4), whence the claim. D

5. T 2 for rational surface singularities

5.1. In this section we state and prove the main application of our main lemma.
If M is a module over a local ring, denote cg M = dim M/mM, i.e. the minimal
number of generators of M. For a singularity X, let n + 1 = dim m/m2, i.e. the
embedding dimension of the singularity.

5.1.1. For a rational singularity let E = U Ei be the exceptional divisor in the
minimal resolution and Z the fundamental cycle.

THEOREM. For a rational surface singularity X of embedding dimension
n + 1  4 and f the defining equation of a generic hypersurface section

(1) cg Ti = (n - 1)(n - 3); moreover there exists a minimal set of generators z 1,
..., Zn+1 of the maximal ideal, starting with Z l = f, such that z2, ..., zn+1
annihilate Ti.
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(2) If the fundamental cycle Z is reduced and if for any connected subgraph
E’ c E with Z · E’ = 0 the self-intersection number E’ · E’ = - 2 or - 3 then
dimc Ti = (n - 1)(n - 3)

(3) if X is a quotient singularity then dimc Ti = (n - 1)(n - 3).
5.1.2. There are examples of quotient surface singularities where Z is not

reduced, so that (3) is not automatically implied by (2). It is of course natural to
ask if the condition in (2) that Z be reduced is necessary, but in 5.4 below we shall
give an example of a rational quintuple point with non-reduced Z where (2) does
not hold.

5.1.3. Subsections 5.1 up to 5.3 are devoted to the proof of this theorem. Part (1)
follows easily from Section 3 and the Main Lemma. To prove (2) we actually
compute T2 of the (non-isolated) singularity at the vertex of the tangent cone of
X. There is a subclass of the dihedral quotient singularities and seven

exceptional quotient singularities with n + 1  5 and nonreduced fundamental

cycle. We check these case by case to prove (3).

Proof of Theorem 5.1.1 (1). From the Main Lemma and Proposition 4.4, we
know that

On the other hand one checks easily that cg Ti l fTi = cg Ti. Since mx T2C = 0
by 2.1.3 and 3.2.2 for C = f-1(0) and T2X/f T2X  Tfi we finally get

and the second statement. D

5.2. Let X now satisfy the conditions of Theorem 5.1.1 (2) and denote the

singularity of the tangent cone of X at the vertex by X. Let C = Proj (9i be the
projectivized tangent cone.

5.2.1. Now C is also the exceptional divisor of the first blow up of X. Our
assumptions imply that C is a (in general singular) reduced, arithmetically
Cohen-Macaulay, rational curve of degree n in P", ([Wahl 2, Proof of 2.1 and
proof of 3.6]). By [Xambo] the singularities of C are ordinary k-fold points.
The singularities on the blow up X of X are contractions of subgraphs E’ c E

on the minimal resolution with Z · E’ = 0. By our assumption they are rational
double or triple points, and in particular they are hypersurfaces or Cohen-
Macaulay of embedding codimension two.
The singularities of C are hypersurface sections of singularities of X cut out by

a local equation of the exceptional curve. In particular they are hypersurfaces or
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Cohen-Macaulay of codimension two as well. Hence the sheaf F2C vanishes
(1.1.9) and T2X is supported at the vertex.

5.2.2. For any graded ring A, T2A inherits a grading from Hom(R/Ro, A). To
compute T:’- we shall need a slightly modified version of a result of

Schlessinger.

THEOREM. Let Y c pn be an arithmetically Cohen-Macaulay projective
scheme of positive dimension. Assume 9-’ y = 0. Let NY be the normal sheaf of Y
in pn. If X is the germ of the cone over Y at the vertex, then there is an injective
map

for all k.
Proof. The proof of [Schlessinger 2, Theorem 1] applies, since Ti is

supported at the vertex. D

5.2.3. The computation of Ti yields:

THEOREM. If X is a rational surface singularity satisfying the conditions in
Theorem (2), them dimc Ti = (n - 1)(n - 3).

Proof. The proof is in three steps.

STEP 1. H1(C, AI’ c(k» = 0 for k  -1.
Consider the exact sequence

Since C is reduced, F1C has support at points. Therefore H1(C, F1C(k)) = 0 for all
k, and H1(C, NC(k)) = 0 if H1(C, epn ~ OC(k)) = 0. To compute the latter

cohomology group, twist and apply cohomology to the standard restricted
Euler sequence

By the rationality of C, H1(C, OC(k)) = 0 for k  0 and the result follows.

STEP 2. T2X,k = 0 for k  -3.
We know by [Wahl 2] that the resolution of OC has the form

Obviously T2X,k = 0 for k  - 3, since T2X has the induced grading from
Hom(R/Ro, OX). In [Wahl 2, Corollary 2.10] it is shown that for smooth C, also
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T2X,-3 = 0. The proof can be suitably modified to show this in general though,
because if ~ ~ Hom(R/R0, OX)-3 and rl, ..., rb2 generate R, then ~(ri) ~ C. We
leave this to the reader.

STEP 3. Application of the Main Lemma.
By 5.2.2 and Step 1 and 2 we know that T2X is concentrated in degree - 2. In

particular mX Ti = 0. The generic hypersurface section Y of X is n lines in
general position in C". If f is its defining equation, then the singuarities of the
nearby fibers in the deformation f: X ~ C are just the singularities of C
(’sweeping out the cone’). By assumption these are unobstructed singularities,
and they are smoothable, and so by openness of versality the generic point of the
corresponding curve in the versal base space of Y is a smooth point of a
smoothing component. From Proposition 4.5 we know that the difference
T - e = (n - 1)(n - 3) for a generic hypersurface section Y The Main Lemma
1.3.2 (3) together with mT2X = 0 gives

5.2.4. Proof of Theorem 5.1.1 (2). There is a normally flat deformation

n: fI ~ (D, 0) with a section 03C3: (D, 0) ~ X and a good representative n: X ~ D
such that for t ~ DB{0} the singularity (Xt, 03C3(t)) ~ X and X0 ~ X. (See [Gersten-
haber] and [Fulton, Chapter 5] for additional references).
Hence semicontinuity 1.1.7 establishes the inequality dim T2X  (n - 1)(n - 3).

D

5.3. We wish to show that all quotient surface singularities have

dim T2 = (n - 1)(n - 3). Quotient surface singularities are listed in [Brieskorn],
[Riemenschneider] and [Kahn] according to their group, dual graph, invariant
polynomials and equations. All quotient surface singularities satisfy the second
condition of Theorem 5.1.1 (2), so we only have to check those with non-reduced
fundamental cycle.

5.3.1. Before going through the list we include here a short discussion on how to
compute the cotangent modules for quotient singularities. There are several
different ways described in the literature for computing T’, see for example
[Pinkham 4], [Behnke-Kahn-Riemenschneider] and [Arndt]. We will add to
this list a new method that also handles T2. It turns out that the idea behind this
is already in [Buchweitz].

Let first in general X = Cn/G with n  2 and G a finite subgroup of GL(n, C)
acting freely outside the origin. The essential fact is that, since the group is finite
and the characteristic is 0, the functor ’take invariants’ is exact. Thus, by
definition of the cotangent complex, TiX ~ TiX(OCn)G. Using the properties of the
cotangent complex described in 1.1 one shows
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for i  n - 1 and TiX = 0 for 1  i  n - 2. (See also [Buchweitz, 5.3.5].)
By local duality on C",

where * stands for C dual, since the cotangent homology module is torsion. To
make this duality G-equivariant one has to keep track of the natural G-action on
the dualizing module 03A9nCn on C". See Christophersen 2, CQS for an

illustration.

When n = 2 we get

Here TC2/X1 is the kernel of the natural map Qx Q wc2 - Qe2.
The benefit of this method is that the free G equivariant (!Je2 resolution of

Qe2jX and TC2/X1 are relatively easier (compared to working on X) to set up once
one knows the invariant polynomials and the equations. For example one does
not need to use the relations to compute T2.

5.3.2. The cyclic quotients have reduced fundamental cycle, so the result in this
case follows from Theorem 5.1.1 (2). It is also quite easy to check that m T2 = 0
using the method above.

In the dihedral case, the fundamental divisor is reduced if the self-intersection

number of the central curve is not - 2. In either case, using the above method
one calculates that m T2 = 0. The actual calculations are too long and
complicated to be written here though. See [Christophersen 2].
We are now left with 7 quotient singularities with non-reduced fundamental

cycle and n + 1  5. They are in the notation of [Riemenschneider]

From their equations (as e.g. described in [Kahn]) one sees that 0, and I19 are
determinantal and the entries generate the maximal ideal.
The other 5 were treated fast and easily by the computer program Macaulay

(version of February 1989) written by Dave Bayer and Mike Stillman. See

[Bayer-Christophersen] on how to use Macaulay to compute T1 and T2 for any
quasi-homogeneous singularity.

5.4. In this subsection we shall give an example of a rational surface singularity
with nonreduced fundamental cycle where the maximal ideal does not annihilate
T2. It was suggested to us by Theo de Jong who has computed the admissible
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deformations (cf. [de Jong-van Straten]) of the projection into e3 of a closely
related singularity, finding that he needed 9 equations to describe the base space
of the semiuniversal deformation. This example was known for a long time as
the first counter-example to the general conjecture about the dimension of T’
for rational surface singularities (see [Behnke-Kahn-Riemenschneider]).

Let X be the quasihomogeneous rational surface singularity of multiplicity
n = 5 with dual graph of the minimal resolution as shown in Figure 3.

Its canonical Gorenstein cover Y is the simply elliptic singularity E6 given by

The projection 7r: Y ~ X is induced by the Z3-action

03B6 a primitive third root of unity (cf. [Wahl 2]). For the generating invariants,
the equations, and a computation of T’ we refer to [Behnke-Kahn-Riemen-
schneider].

Using the method of Section 5.3.1 we find that Ti has corank 8 but dimension
9 with graded parts of dimensions

otherwise

5.5. There is an interesting series of rational surface singularities of embedding
dimension 5 which recently has been studied by Th. de Jong and D. van Straten.
Their objective was to find the base spaces of semi-universal deformations of
rational quadruple points. We add this as an example, because on the basis of
their work our methods give complete information about the structure of T2
although T2 is not annihilated by the maximal ideal.
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Figure 4. All arms are of length p - 1.

EXAMPLE. Let X be the rational quadruple point with dual graph of the
minimal resolution as shown in Figure 4.

Equations for such a singularity are (in case that the points of intersection of
the branches with the central curve are {1, -1, i, -i})

In [de Jong-van Straten, 6.1] the following results about the semi-universal
deformation of these singularities are stated as a conjecture. (The authors tell us
that meanwhile proofs are available):

(1) The base space is of the form B(p) x S with a smooth factor S, and embedding
dimension 5p - 1 for B(p).

(2) B(p) has p + 1 irreducible components Yk, k = 0, ..., p of dimensions

dim Yk = 2p - 1 + 2k.
(3) The multiplicity of Yk at the origin is (k), in particular Yo and Yp are smooth.
(4) Yk has smooth normalization for all k.

In any case they display a minimal set of 3p equations for the base space of the
miniversal deformation. This shows that T2X is at least 3p-dimensional. Recall
that the module T2X is minimally generated by 3 elements, because X has
embedding dimension 5. By Proposition 2.1.1 T2X is annihilated by the elements
xl, ... , x4, XP. 5 So if we denote a suitable set of generators by el, e2, e2 then a
vector space basis of T2X is given by

and we have the obvious multiplication table.
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In particular dim Ti = 3p and Ti is the true obstruction space, i.e. the
obstruction homomorphism is an isomorphism.

6. Examples and applications

We discuss two examples that illuminate différent ways T2 reflects the

obstructions of singularities. The examples are rational normal scrolls and ’fat’
points.

6.1. We take up again our example of Section 1. We have shown there that the
singularity at the affine cone over the two dimensional rational normal scroll
S(ao, al) is unobstructed. Here we are going to compute the cotangent coho-
mology TiX, i = 1, 2.

6.1.1. PROPOSITION. Let X = X(ao, al) be the singularity at the vertex of the
affine cone over the two dimensional rational normal scroll S(ao, al) with ao,
a1  1. Then Ti has dimension ao + al - 3, and is annihilated by the maximal
ideal of the local ring.

Proof. The last assertion is clear from the determinantal equations given in
1.4.3 and by 2.1.3. Let us consider the hyperplane section Y of X given by
x1,0 = xo,QO. Clearly Vis the affine cone over the rational normal curve of degree
n = ao + al. From [Mumford] we know that Ti has dimension 2n - 4 (n  3),
and by [Pinkham 2, appendix] for n ~ 4 there is exactly one smoothing
component, of dimension (n - 1).

For n = 4 there are two components, one of dimension three and one of
dimension one. In [Wahl 3, Example 3.21] we find that the second Betti number
of the nonsingular fibres over the three dimensional component is one, and over
the one dimensional component it is zero. On the other hand a smooth fibre of
our one parameter family is isomorphic to S(ao, al)BH, H a hyperplane, and has
pl as a deformation retract. Hence the second Betti number is one, and the

smoothing is on the three dimensional component (cf. [Kollàr-Shepherd-
Barron, Example 2.8]).
Thus in both cases the Main Lemma gives us dim Ti =

2n - 4 - (n - 3) = a0 + a1 - 3. D

6.1.2. For the convenience of the reader we shall say a bit more about the

deformation theory of the cone X(a0, a1).

PROPOSITION. The homogeneous parts of Tl of X = X(ao, al), a0  al have
dimensions
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Proof. By [Wahl 1, Theorem 3.7. and Corollary 3.8.] the graded pieces of TX
can be computed as the kernels of natural maps

where M is a locally free sheaf of rank 3 defined by the extension

with extension class the class of in H’(S(ao, a1), 03A91S(a0,a1)).
Cohomology groups for scrolls can easily be computed using the structure of

S(ao, a 1 ) as a P1-bundle over P1.

The Leray spectral sequence for the projection map n: S(ao, al) - P1 gives us

(use that 03C0*OS(a0,a1) (l) = Sl(E), and Ri03C0*OS(a0,a1)(l) = 0, i &#x3E; 0, l  0). Hence for
k  -1 we see that T1(k) ~ H’(S(ao, a1), 0398S(a0,a1) (k)). One can use the exact
sequences (S = S(ao, ai))

together with the Leray spectral sequence and the projection formula to arrive
at the isomorphism

which gives the result, since X is defined by quadratic equations with linear
syzygies, and cannot have any deformation of degree - 2 or lower. D

6.2. Finally we consider smoothing components of a special class of Artinian
local algebras. These will help us compute T2 for partition curves. Also they
supply us with yet another example where the obstruction map is not surjective,
but for a different reason than in the case of scrolls.

Fix a number r  3, and let B, = C{x1, ..., xr}/m2 be the Artinian local C
algebra of embedding dimension r and minimal multiplicity r + 1. Denote by Z,
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the corresponding zero dimensional analytic space. Then Z, is a general
hypersurface section of a partition curve of embedding dimension r + 1.

6.2.1. Pick any one parameter smoothing f: Y- (C, 0) of a smoothable point
scheme Z. We have an exact sequence

By Wahl’s conjecture [Greuel-Looijenga], [Laudal-Pfister, Corollary 3.10] the
dimension of the corresponding smoothing component is the length of the
cokernel of /3. (This can be seen e.g. from the exact sequence in our Main Lemma
(1) by tracking back kernels and cokernels to the T° level.) As remarked by
David Mond and Duco van Straten, this dimension is just the length of
DerC(OZ, OZ) since DerO1(OY, OY) = 0 as it is a rank zero torsion free module
over (!J 1.
The derivations of the Artinian algebra Br are just the endomorphisms of the

maximal ideal m as a vectorspace, which form a C-vectorspace of r2 dimensions.
Another easy computation using m2 = 0 yields the dimensions of Tir and T2Zr.

PROPOSITION. (1) The dimension of the smoothing components of Zr is r2.
(2) dimC T1Zr = 1 2 (r - 1)r(r + 2).
(3) dimc T2Zr = 6r(r + 1)(2r2 - 2r - 3).
From the Main Lemma we get

COROLLARY. A partition curve Y of embedding dimension n has

dimc T2Y = 1 2n(n - 1)(n - 3). D

6.2.2. In [Galligo, §5] the author computed the semi-universal deformation of
Zr for r = 3. His result is not correct since he ends up with an irreducible versal
base space of dimension 10. We would like to thank J. Stevens for repeating this
computation and for letting us reproduce his result.

PROPOSITION. Let for i = 1, 2, 3 si, ti, ui, vi, Wi be local parameters for the
versai base space of Z 3’ Let D be the 3 x 3-matrix

and let r = (rl, r2, r3) and s = (Sl, S2, S3). Denote by n2D the classical adjoint of the
matrix D.
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Then the base of the semi-universal base space of Z3 is given by the 15 equations

In particular the base space is irreducible of dimension 9. El

Notice that the base space is given by 15 equations while T2 has dimension 18
by Proposition 6.3.1, so the obstruction map is not surjective. Since T’ is

concentrated in degree - 1 and T2 in degree - 2, we know a priori that the
equations are quadratic so the dual of the obstruction map can easily be
computed. To check the result of Jan Stevens we did it using Macaulay. This
computation has a surprising conclusion; every basis element in T2 corresponds
to an obstruction, i.e. an equation that must vanish on the base space, but the
equations obtained this way are not a minimal generating set. This of course is a
completely different situation than for the scrolls, where no element of T2 gave
an obstruction.

Appendix

JAN STEVENS

Mathematisches Seminar der Universitât Hamburg

In this appendix we give a formula for the dimension of T 1 for decomposable
curves. In order to formulate it we define a subspace of T 1. Let (X, 0) E (ce, 0) be
minimally embedded. In the description of Tl as Coker 0398Ce,0 ~ Hom(I/I2, (9xo),
where 7 denotes the ideal of (X, 0), the image of Oc.,O is contained in

Hom(I/I2, mx,o). So we can make the following definition:

PROPOSITION. Let (X, 0) and (Y, 0) be curve singularities. Then:

For a curve singularity X and a smooth branch L one has:
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Proof. Let edim(X) = m and let the ideal I of X in C{x1,..., x.1 be minimally
generated by fi, ..., fs, with relations rk: 03A3 rkifi = 0. For Y we have

J ~ C{y1,..., 1 Y’l generated by g1,..., gt with relations sk.
The ideal f of X v Y in C{x, y} is generated by theh, gj and xiyj, i = 1, ... ,

m, j = 1,..., n. To write the relations we note that f = 03A3fijxj and gi = 03A3 gijyj
for some fii and gij. Then the relations are:

We deform the equations of X v Y:

This yields an infinitesimal deformation of X v Y if and only if insertion of the
equations (**) in the relations (*) gives elements of F. Because fij ~ mm and
gij E mn, and the relations have also coefficients in m, the condition boils
down to:

From equation (5) it follows, by putting x = 0, that f(1)i ~ mm. Furthermore,
ykf(2)i E J for all k, so f(2)i E J; we do not change the deformation if we take
f(2)i = 0. Likewise g(2)j = 0 and g(1)j E mn. From (3) or (4) we find hij = 0.

The equations (3) give for fixed k that

This condition holds also in the total ring of fractions. We conclude the existence
of h(x)k ~ O such that h(’)x, = h(x)ik in (9x. Likewise there exist h(y) E (9 f with
h(y)k yi = h(y)ki in OY. The conditions (5) and (6) are now also satisfied.
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For the case of X v L we find infinitesimal deformations

Here thefp) define a deformation of X, and h(x)i = xih(x). To find T 1 we have to
divide out the trivial deformations. We first consider the terms h(x); the ones
obtainable by putting y + 03B5~(x) in the equations are trivial. Therefore the

dimension of the subspace of T1, spanned by the deformations of the form h,
xiy + 03B5h(x)i, is equal to the dimension of

and this dimension is t(X), the Cohen-Macaulay type of X. We now use the
trivial deformations xi + 8çl;(x); we find a subspace of dimension ro(X) of
deformations of the form f + ef xi y (here we use the freedom we still have in
the choice of h(y)i). The trivial deformation xi + 03B5~i(y) acts on x;y to give
xiy + 8ql;(y)y. The deformationsh, xky + ey, xjy for j ~ k, are linearly independ-
ent of the ones considered previously: if f (x + 03B5c) ~ I for all i, then we have a
derivation D of Wx and an x e mx with Dx = 1, so by a lemma of Zariski [1] the
singularity X is the germ of a product X1 x C for some X1, contradicting the fact
that X is an isolated singularity. So we find that ro(X v L) = ro(X) + t(X) + m.
Almost the same considerations give the formula for i(X v Y); we remark

that the trivial deformation xi + eoi changes modulo Y only the fk if q5, E mm,
only the xiyj if cPi E mn, but a constant 0, changes both the fk and the xiy,. So
To(X V Y) = 03C40(X) + To(V) + m(t(Y) + 1) + n(t(X) + 1). D

Reference

1. Oscar Zariski, Studies in equisingularity I. Equivalent singularities of plane algebroid curves,
Amer. J. Math. 87 (1965), 507-536.

References

[Aleksandrov] Aleksandrov, A. G., On deformations of one-dimensional singularities with

c = 03B4 + 1, Russian Math. Surveys 33:3 (1978), 139-140.
[André] André, M., Homologie des algèbres commutatives, Grundlehren der mathematischen

Wissenschaften, Bd. 206, Springer, Berlin-Heidelberg-New York.
[Arndt] Arndt, J., Verselle Deformationen zyklischer Quotientensingularitäten, Dissertation, Univer-

sität Hamburg, 1988.
[Artin 1] Artin, M., On isolated rational singularities of surfaces, American Journal of Math. 88

(1966), 129-136.



267

[Artin 2] Artin, M., Deformations of singularities, Tata Lecture Notes.
[Artin-Verdier] Artin, M., Verdier, J. L., Reflexive modules over rational double points, Math. Ann.

270 (1985), 79-82.
[Bayer-Christophersen] Bayer, D., Christophersen, J. A., In preparation.
[Behnke] Behnke, K., Infinitesimal deformations of cusp singularities, Math. Annalen 265 (1983),

407-422.

[Behnke-Kahn-Riemenschneider] Behnke, K., Kahn, C., Riemenschneider, O., Infinitesimal de-
formations of quotient surface singularities, in ’Singularities,’ Banach Center Publications, Polish
Scientific Publishers, Warzaw, 1989, pp. 31-66.

[Behnke-Knörrer] Behnke, K., Knörrer, H., On the infinitesimal deformations of rational surface
singularities, Compositio Math. 61 (1987), 103-127.

[Brieskorn] Brieskorn, E., Rationale Singularitäten komplexer Flächen, Inventiones Math. 4 (1968),
336-358.

[Brieskorn-Knörrer] Brieskorn, E., Knörrer, H., Ebene Algebraische Kurven, Birkhäuser, Basel.
[Buchweitz] Buchweitz, R. O., Deformations de diagrammes, deploiments et singularités très rigides,

liaison algébrique, Thèses présentées à l’Université Paris VII, 1981.
[Buchweitz-Greuel] Buchweitz, R. O., Greuel, G. M., The Milnor number and deformations of

complex curve singularities, Inventiones Math. 58 (1980), 241-281.
[Christophersen 1] Christophersen, J., Monomial curves and obstructions on cyclic quotient

singularities, in ’Singularities, representations of algebras and vector bundles, Lambrecht 1985,’
Lecture Notes in Mathematics 1273, Springer Verlag, Berlin-Heidelberg-New York.

[Christophersen 2] Christopherson, J., ’Obstruction spaces for rational singularities and de-
formations of cyclic quotients,’ Thesis, University of Oslo.

[Drewes] Drewes, R., ’Infinitesimale Deformationen von Kegeln über transkanonisch eingebetteten
hyperelliptischen Kurven,’ Diplomarbeit, Universität Hamburg, 1989.

[Eagon-Northcott] Eagon, J. A., Northcott, D. C., Ideals defined by matrices and a certain complex
associated with them, Proc. Royal Society London, Ser. A 269 (1962), 188-204.

[Eisenbud] Eisenbud, D., Transcanonical embeddings of hyperelliptic curves, Jour. Pure Appl. Alg.
19 (1980), 77-83.

[Eisenbud-Harris] Eisenbud, D., Harris, J., On varieties of minimal degree, Proc. of Symposia in Pure
Math. 46(1) (1987), 3-13.

[Fulton] Fulton, W., ’Intersection theory,’ Ergebnisse der Mathematik und ihrer Grenzgebiete (3),
Bd. 2, Springer Verlag, Berlin-Heidelberg-New York.

[Galligo] Galligo, A., Théorème de division et stabilité en géométrie analytique locale, Annales
Institut Fourier 29 (1979), 107-184.

[Gerstenhaber] Gerstenhaber, M., On the deformations of rings and algebras I, Annals of Math. 79
(1964), 59-103.

[Greuel] Greuel, G. M., On deformations of curves and a formula of Deligne, in Algebraic Geometry,
Proceedings, La Rabida 1981, pp. 141-168.

[Greuel-Looijenga] Greuel, G. M., Looijenga, E., The dimension of smoothing components, Duke
Math. Journal 52 (1985), 263-272.

[Grauert] Grauert, H., Über die Deformationen isolierter Singularitäten analytischer Mengen,
Inventiones Math. 11 (1970), 263-292.

[Hironaka] Hironaka, On the arithmetic genera and the effective genera of algebraic curves, Mem.
Coll. Sci. Univ. of Kyoto, Ser. A 30 (1957), 177-195.

[Illusie] Illusie, L., ’Complexe cotangent et deformations I’, Lecture Notes in Mathematics 239; 2014II,
Lecture Notes in Mathematics 289, Springer, Berlin-Heidelberg-New York.

[de Jong-van Straten] de Jong, Th., van Straten, D., Deformations of nonisolated singularities, in
’Nonisolated Hypersurface Singularities,’ Thesis Th. de Jong, University of Nijmegen, 1988, pp.
71-158.

[Kahn] Kahn, C., Die infinitesimalen Deformationen der zweidimensionalen Quotientensingularitäten
(nach Polyedergruppen), Diplomarbeit, Universität Hamburg, 1984.

[Kollár-Shepherd-Barron] Kollár, J., Shepherd-Barron, N. I., Threefolds and deformations of
surface singularities, Inventiones Math. 91 (1988), 299-338.



268

[Laudal] Laudal, O. A., Formal moduli of algebraic structures, Lecture Notes in Mathematics 754,
Springer-Verlag, Berlin-Heidelberg-New York.

[Laudal-Pfister] Laudal, O. A., Pfister, G., Local Moduli and Singularities, Lecture Notes in
Mathematics 1310, Springer-Verlag, Berlin-Heidelberg-New York.

[Laufer] Laufer, H., On minimally elliptic singularities, American Journal of Mathematics 99 (1977),
1257-1295.

[Lichtenbaum-Schlessinger] Lichtenbaum, S., Schlessinger, M., The cotangent complex of a
morphism, Transactions AMS 128 (1967), 41-70.

[Morales] Morales, M., Calcul de quelques invariants des singularités de surfaces normales,
Monographies Enseignements Math. 31 (1983), 191-203, in ’Noeuds, Tresses et Singularités,’
Proceedings Plans-Sur-Bex 1982, ed. C. Weber.

[Mumford] Mumford, D., A remark on the paper of M. Schlessinger, Rice Univ. Studies 59 (1973),
113-118.

[Pesselhoy-Riemenschneider] Pesselhoy, J., Riemenschneider, O., Projective resolutions of Hodge
algebras. Some examples., Proceedings of Symposia in Pure Mathematics 40 (1983), 305-317.

[Pinkham 1] Pinkham, H. C., Deformations of algebraic varieties with Gm action, Astérisque 20
(1974).

[Pinkham 2] Pinkham, H. C., Deformations of cones with negative grading, Journal of Algebra 30
(1974), 92-102.

[Pinkham 3] Pinkham, H. C., Normal surface singularities with C*-action, Math. Annalen 227
(1977), 183-193.

[Pinkham 4] Pinkham, H. C., Deformations of quotient surface singularities, Proceedings of
Symposia in Pure Mathematics 30 (1977), 65-67.

[Reid] Reid, M., Canonical 3-folds, in Algebraic geometry, Proceedings, Angers 1979, Sijthoff and
Noordhoff, Alphen a.d. Rijn, pp. 273-310.

[Riemenschneider] Riemenschneider, O., Zweidimensionale Quotientensingularitäten: Gleichungen
und Syzygien, Archiv der Math. 37 (1981), 406-417.

[Rim] Rim, D. S., Formal deformation theory, in SGA 7, I, Lecture Notes in Mathematics 288,
Springer-Verlag, Berlin-Heidelberg-New York, 1972, pp. 32-132

[Schlessinger 1] Schlessinger, M., Functors of Artin rings, Transactions AMS 128 (1967), 41-70.
[Schlessinger 2] Schlessinger, M., On rigid singularities, Rice University Studies 59 (1973), 147-162.
[Stevens 1] Stevens, J., Kulikov singularities, Thesis, University of Leiden, 1985.
[Stevens 2] Stevens, J., On the number of points determining a canonical curve, Indagationes Math.

(to appear).
[Stevens 3] Stevens, J., On the versal deformation of cyclic quotient singularities, Preprint,

Mathematisches Seminar der Universität Hamburg (1989).
[van Straten] van Straten, D., Weakly normal surface singularities and their improvements, Thesis,

Leiden 1987.

[Svanes] Svanes, T., Coherent Cohomology on flag manifolds and rigidity, Thesis, MIT, Cambridge
Mass., 1972.

[Tjurina] Tjurina, G. N., Locally semiuniversal flat deformations of isolated singularities of complex
spaces, Math. USSR Izvestija 3 (5) (1969), 967-999.

[Wahl 1] Wahl, J., Equisingular deformations of normal surface singularities I, Annals of Math. 104
(1976), 325-356.

[Wahl 2] Wahl, J., Equations defining rational surface singularities, Ann. Sci. Ecole Normal

Supérieure (1977), 231-264.
[Wahl 3] Wahl, J., Smoothings of normal surface singularities, Topology 20 (1981), 219-246.
[Wahl 4] Wahl, J., The Jacobian algebra of a quasihomogeneous Gorenstein surface singularity,

Duke Math. Journal 55 (1987), 843-871.
[Wahl 5] Wahl, J., Deformations of quasihomogeneous surface singularities, Math. Ann. 280 (1988),

105-128.

[Xambo] Xambo, S., On projective varieties of minimal degree, Collecteana Math. 32 (1981), 149-
164.

[Zariski] Zariski, O., Sur les modules des branches planes, Hermann, Paris.


