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Abstract. The properties of *-representations of the Hopf *-algebra Pol(Uq(n)) are investigated. We
consider this Hopf *-algebra as a deformation of the algebra of polynomials on the group U(n). The
algebraic structure of Pol(Uq(n)) is studied in some more detail in order to build *-representations of
Pol(U in)) by means of a Verma module construction. The irreducible *-representations are
classified. By use of these *-representations we can complete the Hopf *-algebra Pol(Uq(n)) into a
type 1 C*-algebra, which is a quantum group in the sense of Woronowicz.

1. Introduction

Quantum groups were recently introduced by Drinfeld [4], Jimbo [7] and
Woronowicz [21]. In Jimbo’s approach, applicable to all root systems, quantum
groups are deformations of the universal enveloping algebra of a semisimple Lie
group and Drinfeld defines a quantum group as the spectrum of a Hopf algebra.

In this paper we will use the Woronowicz approach to quantum groups. A
quantum group is to be considered as a deformation of the C*-algebra of
continuous functions on a compact group, see [20] and [22] for the quantum
group SUq(n). For these quantum groups Woronowicz has obtained quantum
analogues for the Haar measure, the Peter-Weyl theory and the Schur

orthogonality relations, cf [21]. These tools permit us to do harmonic analysis
on such quantum groups. There are, for instance, many quantum group
theoretic interpretations of orthogonal polynomials of q-hypergeometric type
on the quantum group SUq(2). Consult the survey article by Koornwinder [9]
for further references on this subject.
We will start with a deformation of the algebra of polynomials on U(n). This

algebra, Pol(Uq(n)), is a Hopf *-algebra and it will be introduced in section 2,
together with a bialgebra Aq(n), which will be useful in some proofs. Our goal is
to complete this algebra Pol(Uq(n)) into a unital C*-algebra in which Pol(Uq(n))
is dense. This will be done in section 5 and the natural way to do this is to
consider *-representations of Pol(Uq(n)).

In section 3 we investigate the algebraic structure of Pol(Uq(n» in more detail.

*Mathematical Institute, University. of Leiden, P.O. Box 9512, 2300 RA Leiden, the Netherlands.
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We will prove a Poincaré-Birkhoff-Witt theorem for Aq(n) and we will construct
an explicit basis for Pol(Uq(n)). See Yamane [23] and Rosso [14] for similar
statements for the Jimbo quantum group. With these results at our disposal we
can construct irreducible representations by means of a Verma module

construction.

Irreducible and primary *-representations of Pol(Uq(n)) will be considered in
section 4. We derive some properties of these representations by induction with
respect to n, which can be done by our main theorem 4.7. In Section 4 we also
answer the question which of the irreducible representations constructed in
section 3 are irreducible *-representations of Pol(Uq(n)). Then it is proved that
we obtain all irreducible *-representations in this way.

Finally, Pol(Uq(n)) is completed into a unital C*-algebra C(Uq(n)) in section 5.
We prove that this C*-algebra yields a quantum group in the sense of

Woronowicz, so we have reached our goal. Our last theorem states that the C*-
algebra C(Uq(n)) is a type 1 C*-algebra.
To end this section we state the definition of a bialgebra, a Hopf algebra (see

Sweedler [17]) and a Hopf *-algebra. Let A be an algebra over C with unit I and
denote the multiplication by m: A Q A - A; a (8) b-ab and the unit by
8:C-A; z-zI. A is a bialgebra if unital algebra homomorphisms
03A6: A - A (8) A, e : A ~ C exist, so that

03A6 is the comultiplication and e is the counit. Property (1.1) is known as the
coassociativity. The bialgebra A is a Hopf algebra if a linear map K: A ~ A, the
antipode, exists, so that

Finally, A is a Hopf*-algebra if an involutive antilinear mapping *: A ~ A,
a 1--+ a*, exists, so that the comultiplication and the counit are *-

homomorphisms and K - * is involutive,

2. The bialgebra Aq and the Hopf *-algebra Pot(Uq(n))

In this section we consider the bialgebra Aq and the Hopf *-algebra Pol(Uq(n)).
These algebras will play a fundamental role in this paper and therefore we will
discuss their properties briefly in this section. We will also define the quantum
determinant D. References for this section are Faddeev e.a. [5], Reshetikhin e.a.

[13], Manin [11] and in particular Parshall and Wang [12].
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Fix 0  q  1. Aq or Aq(n) is the unital algebra generated by the matrix
elements of T = (tij)i,j=1,...,n subject to the relations

These relations can be equivalently written as

where R is a n2 x n2 matrix defined by

Thén R is a Yang-Baxter operator, i.e. R satisfies R(12)R(23)R(12) =
R(23)R(12)R(23), where

are defined by R(12) = R (D id and R(23) = id (D R. This can be verified by direct
computation.

There exist unique unital algebra homomorphisms 03A6: Aq ~ d q ~ Aq and
e: Aq ~ C so that e(tij) = 03B4ij and 03A6(tij) = ¿k= 1 tik O tk;. Then Aq becomes a
bialgebra with comultiplication 03A6 and counit e. The matrix T is multiplicative,
see Manin [ 11, 2.6], which means that T is a corepresentation of Aq.
Next we consider a special element of the algebra Aq, the quantum determi-

nant D, defined by

where Sn denotes the permutation group of {1, ... , nl and 1(J) is the length of the
permutation u. One also has the following expressions for D, which one can
prove by use of symmetries for .9Iq.

Define the quantum minor Dij to be the (n - 1) x (n - 1) quantum determinant
of the matrix obtained from T by deleting the i th row and j th column. So



202

Now we can develop the quantum determinant along a row or along a column;
this yields the following four equations.

From these developments of D we see that De centre(Aq). The actions of the
comultiplication and counit on D are given by 03A6(D) = D (8) D and e(D) = 1.
The algebra Pol(Uq(n)) is defined as the extension of d q with the central

element D -1 subject to the relation DD -1 = I = D-1D. The comultiplication
and counit extend uniquely to Pol(Uq(n)) if we put 03A6(D-1) = D -1 Q D -1 and
e(D-1) = 1. Now if we define 03BA(tij) = (-q)i-jDjiD-1 and 03BA(D-1) = D, then we
can extend 03BA: Pol(Uq(n)) ~ Pol(Uq(n)) as a unital linear antimultiplicative
mapping, so that Pol(Uq(n)) becomes a Hopf algebra with comultiplication 03A6,
counit e and antipode, or coinverse K. Finally, we introduce a *-operation on

Pol(Uq(n)) by putting

and (D-1)* = D. This gives Pol(U9(n)) a Hopf *-algebra structure. Note that
DD* = 7 = D*D, so D is a unitary element.
To end this section we will state some commutation relations in Pol(Uq(n))

concerning tij and ti. The first relation is simply a restatement of (2.10) and

(2.11 ).

The next relation can be proved by multiplying (2.3) from the left by t*ip and from
the right by t*sn and then sum over i, n using (2.12). This yields
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3. The Poincaré-Birkhoff-Witt theorem and the Verma module construction

In this section we construct a basis for d q and Pol(Uq(n)) by proving a Poincaré-
Birkhoff-Witt theorem for Aq. This result will then be applied to construct
representations of Aq and Pol(Uq(n)) by means of the Verma module

construction.

THEOREM 3.1. For any total ordering  on the elements tij there is a basis for
Aq consisting of

The proof of theorem 3.1 falls into two pieces. First we prove the theorem for a
special case using the diamond lemma (Bergman [1, theorem 1.2]) in lemma 3.2.
Next the general case is a direct consequence of lemma 3.2 and lemma 3.3.

Let us first introduce some notation. If a pair (tab, tcd) of matrix elements
satisfies the second commutation relation of (2.2), then we call the pair bad. For
a product of matrix elements x = ti1,j1 ··· tip,jp we define the badness b(x) of x by

We also introduce a special ordering on the matrix elements by tij o tkl if
i  k or if i = k and j &#x3E; l.

LEMMA 3.2. For the ordering 0 theorem 3.1 holds true.
Proof. We will use freely the notions of Bergman [1, section 1]. Put

X = {tij|1  i, j  nl, then we want to introduce a reduction system S for the
free associative algebra C(X). We extend the ordering o to monomials of
C(X) by first ordering by the degree and for monomials with the same degree
by the lexicographical ordering. In order to write this reduction system in a
simple manner we introduce the operator L defined by

The reduction system S is now given by {tijtkl, L(tijtkl)} for tkl 0 tii. The

ordering o is compatible with the reduction system S and there are only
overlap ambiguities. Now every element of CX&#x3E; is reduction finite, since the
number of monomials smaller than a given monomial is finite. Lemma 3.2 is
implied by the diamond lemma if we prove that all ambiguities are resolvable.
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Consider x = trstkltij with tij 0 tkl 0 trs, then we have to show that com-
positions of reductions, r and r’, exist, so that rL(12)(x) = r’L(23)(x), where
L(12)(x) = L(trstkl)tij and L(23)(x) = trsL(tkltij)· To prove this we have to consider
some special cases. Let b(x) be the badness of x, then b(x) c- {0, 1, 2, 31.

In case b(x) = 0 we have L(12)L(23)L(12)x = L(23)L(12)L(23)x· This also happens
if b(x) = 1 or if b(x) = 3, which can be checked easily by using (3.1). So in these
cases the ambiguities are resolvable. Finally we assume b(x) = 2, then there are
four possibilities, which we list by a typical example.

In the last two possibilities we have again L(12)L(23)L(12)x = I’(23)L(12)I’(23)x and
for the first two possibilities it is easily shown that

and

This proves that all ambiguities are resolvable, which proves the lemma. D

REMARK. There is a relation between the operator L defined in (3.1) and the
Yang-Baxter operator R describing the commutation relations defined in (2.4),
(2.5). Denote by R -1 the inverse of R and put

Then L(tirtjs) is defined as R(tirtjs) in case tir &#x3E;0 tjs and as the identity operator if

tir 0 tjs.

Next we introduce Akq, the span of all elements of products of precisely k
matrix elements. Since Aq is defined by quadratic relations, this is well defined.
By the previous lemma the set

yields a basis for W’. Now theorem 3.1 follows immediately from the following
lemma.
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LEMMA 3.3. For an arbitrary total ordering  on the set of matrix elements we
have

Proof. For k = 0, 1 this is obvious. Now pick an arbitrary product of k  2
matrix elements. So put x = t,l,sl ... trk,sk. We will prove by induction on the
badness of x, that x can be written as a linear combination of elements in (3.2). If
b(x) = 0 this is obvious, because we can interchange all matrix elements of x at
the cost of some constant.

Now we suppose that b(x)  1 and we define the index of x by
ind(x) = #{(l, m)| 1  1  m  k, trl,sl &#x3E; trm,sm}. If ind(x) = 0, then x would

already have the required form. So suppose that ind(x)  1 and pick
a ~{1,..., k - 1} so that tra,sa &#x3E; tra+l1,sa+l. Put

then ind(x’)  ind(x).
There are two cases to be considered. If (tra,sa, tra+1,sa+1) is not bad, then we

have x = cx’ for some constant c ~ {1, q, q-1} and the induction on ind(x) does
the job. The difficult case arises when (tra,sa, tra+1,sa+1) is bad. In this case we put
[tra,sa, tra+1,sa+1] = ±(q - q - 1)t,,twp and

Then we have x = x’ ± (q - q-1), with ind(x’)  ind(x). So the first term can be
dealt with by induction on ind(x). By a simple counting argument it follows that
b(x)  b(x), hence the induction on the badness provides for the other term.D

Note that theorem 3.1 yields a basis for every ordering on the tij’s. We now
specify the ordering more. Let X ’, respectively X -, be the subalgebra
generated by the elements tij, j  n + 1 - i, respectively j &#x3E; n + 1 - i. H is the

abelian subalgebra generated by the elements ti,n+1-i, i = 1, ... , n. So Je is

generated by the elements on the antidiagonal of T, whereas N+ (respectively
X -) is generated by the elements above (respectively below) the antidiagonal of
T. Then we have

THEOREM 3.4. The elements n-hn+(D-1)l, l~Z+ constitute a basis for
Pol( Uq(n)), whenever n -, n+ run through a set of basis vectors of N-, N+ and
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subject to the condition min(p1, ..., Pn, 1) = 0.

Proof. Let Aextq be the algebra d q extended with the central element D-1 and
let 2 be the two sided ideal generated by DD -1 - I, then Pol(Uq(n)) = d:xt/2.
Obviously, n-hn+(D-1)l, l~Z+ is a basis for d:xt, whenever n -, n+, h run
through a basis of N-, X ’ and e. Let K denote the linear span of the
elements described in the theorem. We will prove that

which will prove the theorem.

For an element h = tp1n1 ··· tpn1n c-.i2/"’, we define p(h) = min pi . If p(h)  1, then
we put h’ = tp1-1n1 ··· tpn-11n. Now we rewrite (2.8) into

where 03C10~Sn is defined by 03C10: i ~ n + 1 - i, so l(po) = 2n(n - 1). Note that we
can reorder the factors in the summand of (3.3) so that all factors from N-
precede all factors from AI’+. Then (3.3) implies the following identity in d:xt,
with h as above,

with Ci E C and p(hi)  p(h) - 1, for all i, because the number of matrix elements
in an element h e Je is not increased if we pull tk,O:(k) e N- from the right through
h.

For an arbitrary basis element

we define k(a) = min( p(h), 1). First we prove by induction on p(h) + 1 that

d:xt = K + Y. From (3.4) it follows that

This gives the induction step.
To prove directness of the sum we construct an endomorphism L:

Aextq ~ Aextq with the properties L|K = id and L|L = 0. First, we define an
endomorphism Lo of d:xt by defining it on basis elements. If k(a)  1 then we
put
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and Lo(a) = a if k(a) = 0. Now Lo does not increase the degree of the monomial
and it decreases the k. So we can define L = (Lo) °°, which is a finite product of

Lo’s on every monomial. Then L|K = id and to see that L|L = 0, we note that if
x e 2, then x is of the form (I - L0)y for some y E d:xt. Hence, for sufficient large
r we have

Now we will construct representations of Aq and Pol(Uq(n)) using a Verma
module construction. We start with an arbitrary permutation p c- S. and we put

Let us choose such an ordering on the matrix elements tij so that all elements of

N. are smaller than the elements of Hp, which are smaller than the elements of
N+03C1. By N-03C1 (respectively :Yfp, X,’) we denote the linear subspace of Aq(n)
generated by the basis elements (cf theorem 3.1) which are products of elements
of N- (respectively HP, N+03C1). Then

in the sense that n p h03C1n+03C1 yields a basis for Aq(n), whenever n-03C1, h03C1 and n p run
through a basis of N-03C1, Jep and N+03C1. Note that %;, Jep and AI’; are not
subalgebras of Aq(n), unless p = 03C10: i~n + 1 - i.

Let IR p be the left ideal generated by the matrix elements of N+03C1, then IR p is the
linear span of n-h n with n’ :0 1. Indeed, the span of these elements is

obviously included in IR p and to prove that every element of IR p is a linear
combination of these elements one uses induction on the badness and on the
index as in lemma 3.3. This has been worked out more properly in the proof of
lemma 4.11.

The elements t03C1(i),i commute modulo IR p. To see this we suppose i  j, then we
have t03C1(i),it03C1(j),j = t03C1(j),jt03C1(i),i in case p(i) &#x3E; 03C1(j) and in case p(i)  03C1(j) we have

Since tpU),i E Np it follows that [tp(i),i’ t03C1(j),j] = 0 mod !£ p.
For an arbitrary r = (03B31, ...,03B3n) e C" we define a left ideal fp (F) generated by
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the matrix elements of N+03C1 and by the elements t03C1(i),i - YiI. Then If p ~ F03C1(0393)
and it follows by use of the basis (3.5) that I ~ F03C1(0393). So we can define

and this is left dq-module by left multiplication. It follows from (3.5) that
V03C1(0393) ~ N-03C1 · v+ as vector spaces.
Now we introduce the highest weight modules for an arbitrary element p E Sn.

A left Aq-module M is a p-highest weight module if the module is generated by a
p-highest weight vector m E M. Here a p-highest weight vector me M of weight
r = (03B31, ... , Yn) satisfies t03C1(i),i·m = 03B3im and tkl·m = 0 for tkl~N+03C1.

Obviously, VP(r) is a p-highest weight module for Aq with p-highest weight
vector v+ of weight r.

PROPOSITION 3.5. (i) If M is any p-highest weight module with p-highest
weight vector m of weight r, then there exists a unique surjective d q-equivariant
linear map qJ: VP(r) - M, so that ~(v+) = m.

(ii) For i = n, ..., 03C1(1) + 1 we have til-v = 0 for all v E VP(r).
(iii) If 0393 ~ (C*)n, then VP(r) has a unique proper maximal submodule.
(iv) For every p C- Sn and r e (C*)n a unique irreducible p-highest weight module

LP(r) exists.
Proof. The first statement is similar to proposition 4.35 of Knapp [8]. So

define the linear map 9 by

~(n-03C1·v+) = n-03C1 · m,
then ç is well defined. Obviously ~ is equivariant and since M éé N-03C1·m as
vector spaces, the map ç is surjective. Uniqueness now easily follows.

Since V03C1(0393) ~ N-03C1. v + as vector spaces we can consider the subspace of V03C1(0393)
generated by elements of the form

For 1 &#x3E; k  j, p(i)  p( j ) and i  j we have the following commutation relations,

Now it follows that for p(i) &#x3E; p( j ), i &#x3E; j we have



209

Indeed, if p(i) is maximal with respect to 03C1(i) &#x3E; 03C1(j), i &#x3E; j, then the last

commutation relation of (3.6) does not occur and in this case (3.7) follows from

t03C1(i),j·v+ = 0. To prove (3.7) for general p(i) we assume that it holds for all tp(k),j
with p(k) &#x3E; p( j ), k &#x3E; j, so that p(k) &#x3E; p(i) and we use induction on 03A3pkl. Now
(3.6) furnishes the induction step. Only the last case may give any trouble, but
this can be dealt with by induction on the p(i), since p(k) &#x3E; p(i) &#x3E; p( j ) and k  j.
Taking j = 1 in (3.7) proves (ii).
Combining (3.6) and (3.7) yields

So let us introduce subspaces of V03C1(0393) by

for k~Z+ and i = 1,..., n - 1. If we put A00 = VP(r), then we have

and

Let K be any submodule of VP(r), then we have

for all i. To see this we check the c -inclusion. Pick u E K and write

u = u 1 + ··· + us, with uj~Aikj for different kj’s. Now all the qkjy/S are different,
so we can construct polynomials p, in one variable, so that pr(qkj03B3i) = c5r,j. Then
pr(t03C1(i),i). u = u,, and hence, since K is a submodule, u, E K. 
By (3.8) and (3.9) we see that every submodule K splits as
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So every proper submodule is contained in 03A3n-1i=1 03A3k1 Ai, since otherwise
v+~K and K = YP(r). Hence the sum of all proper submodules is also

contained in this subspace, which gives the unique maximal proper submodule.
Finally, to prove (iv) we note that existence follows from (iii) and the

uniqueness is proved as theorem 20.3.A of Humphreys [6]. D

Since D is a central element D acts as a scalar on LP(r). It is easy to compute
the action of D on the highest weight vector v+ if we use (2.8). We have

All terms cancel except for a = p, so we have proved the following theorem.

THEOREM 3.6. If r E (C*)", then LP(r) is an irreducible Pol(Uq(n))-module if we
put

COROLLARY 3.7. Suppose H is a p-highest weight module of weight 0393~(C*)n
for Pol(Uq(n)), so that the corresponding representation is a *-representation, then
H is irreducible.

Proof. Any submodule K of H splits as in (3.10). If K is proper, then

K ~ A0-10 = {0}. The highest weight vector is an element of the invariant

subspace K~, which must be equal to H. D

4. Représentation theory of Pol(Uq(n))

In this section we consider primary and irreducible *-representations of

Pol(Uq(n)). We formulate some necessary conditions for a representation to be a
primary or irreducible *-representation of Pol(Uq(n)). By using induction on n
we are able to classify all ireducible *-representations of Pol(Uq(n)). We will also
show that every primary representation contains an irreducible *-

subrepresentation.
Let us first introduce some notions from Mackey [10, Chapter 1]. For two *-

representations n, and n2 of Pol(Uq(n)) we denote by R(7r,, 03C02) the space of all
intertwining operators from the representation space of 03C01 to the representation
space of 03C02. Furthermore, R(03C0) = R(n, n). A *-representation of Pol(Uq(n)) is
primary if the centre of R(n) consists of 03BBId, 03BB E C. This is equivalent to the
following condition: if 03C0 = nI ~ n2 is a non-trivial decomposition, then a non-
zero element in R(03C01, n2) exists. Note that an irreducible *-representation is
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primary. A primary representation is of type 1 if it contains an irreducible *-
subrepresentation. Note that we assume primary representations to be *-

representations.

PROPOSITION 4.1. If n is a primary representation of Pol(Uq(n)), then there
exists r, 0  r  n, so that

Proof. Let 03C0 be a primary representation of Pol(Uq(n)), then it follows directly
from the commutation relations that ker(n(t,,,» is an invariant subspace and
thus

H = ker(03C0(tn1)) ~ (ker(03C0(tn1)))~

as a decomposition of the representation space H of 03C0 in invariant subspaces.
Consequently, 03C0 = 03C01 0 n2 and, if the decomposition is non-trivial, there exists
a non-zero TeR(nl’ n2), so that T03C01(x) = n2(x)T for all xePol(Uq(n)).
Take x = tn1 to obtain range(T) c ker(n2(tnl)). Since ker(n2(tnl)) = {0} we

obtain T = 0, a contradiction. Hence 03C0 = ni or 03C0 = 03C02. In the second case we

can take r = 0 and we are finished. In the first case the commutation relations
and 03C0(tn1) = 0 imply that ker(03C0(tn-1,1)) is invariant and we can play the game
once again. Continuing in this way we prove the proposition.

Finally we remark that r  n, since otherwise 03C0(D) = 0, contradicting the
unitarity of n(D). n

PROPOSITION 4.2. Let n be a primary representation of Pol(Uq(n)) with r
defined as in proposition 4.1, then 03C0(tn-r,1) is normal and, for some À,EC*,

where 03C3(03C0(tn-r,1)) denotes the spectrum of 03C0(tn-r,1).

Before we take up the proof of this proposition we will demonstrate a lemma
which will be needed in the proof.

LEMMA 4.3. (cf. Rudin [15, 12.23]). Let N, B E B(H) and suppose N is normal
with spectral decomposition E. Assume there exists a CE C* so that

BN = cNB; BN* = éN*B.

Then BE(Q) = E(c-103A9)B, for all Borel sets Q c C.
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Proof. Let p be a polynomial in two variables and let v, w E H. Then

This yields dEv,B*w(z) = dEBv,w(c-1 z). So for any Borel set Q c C we find

Proof of proposition 4.2. The equality (2.16) yields

If we apply 03C0 to (4.1), then proposition 4.1 yields the normality of 7r(t.
Now suppose 03BB1, 03BB2 c- 03C3(03C0(n-r,1)) and 03BB1 ~ 0 and 03BB2 ~ 0. We intend to prove

the existence of a k~Z so that 03BB1 = qkÂ,2. This result combined with the

compactness of the spectrum, implies the proposition.
Suppose the contrary, then there exist closed sets n1, 03C02 of C so that

03BBi~int(03A9i), q03A9i = 03A9i and 03A91 n n2 = {0}. So we find for the spectral decom-
position E of n(tn-r,l) that 0 ~ E(03A9i) ~ id. We claim that

It is sufficient to prove (4.2) for all matrix elements tij and D-1. If a = ti, 1,
(i  n - r), a = D-1 or a = tij (i ~ n - r, j ~ 1) this is obvious, since [03C0(tn-r,1),
03C0(a)] = 0 and in these cases (4.2) even holds for arbitrary Borel sets. In case
a = tij with i = n - r, j  2 or i  n - r, j = 1 it follows from (2.1), (2.14) or from
(2.1), (2.15), proposition 4.1 that the conditions of lemma 4.3 hold with c = q 1.
Hence lemma 4.3 implies (4.2) for these choices of a, which completes the proof
of (4.2).
Now (4.2) implies that we have proper closed n-invariant subspaces

HUi = E(QJN. Since ker(03C0(tn-r,1)) = 0 we have E({01) = 0, so H03A91 ~ HU2. Since n
is primary there exist non-zero n-invariant subspaces Hi of H03A9i, so that there
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exists an intertwining isometry T: H1 ~ H2. In particular T is an intertwining
isometry for 03C0(tn-r,1)|H1 and n(tn-r,1)IH2’ so these two operators must have the
same spectrum. Since restriction of an operator to some closed subspace
decreases the spectrum, the two operators 03C0(tn-r,1)|Hi must have the same
spectrum {0} = 03A91 n n2. This contradicts ker(03C0(tn-r,1)) = {0}. D

Put K = ker(03C0(tn-r,1) - 03BBI), then K is a closed subspace of H.

PROPOSITION 4.4. For i ~ n - r and j ~ 1 we have n(D), n(D-1), 7r(tij), n(tij)*:
K - K. Furthermore, we have n(t, )K = {0} for p ~ n - rand 03C0(tn-r,i)*K =
{0} for i ~ 1. 

Proof. The first part follows from [03C0(tn-r,1), 03C0(tij)] = 0, because of (2.1), (2.2)
and proposition 4.1, and from [03C0(tn-r,1), n(tij)*] = 0, because of (2.13), for
i ~ n - r and j ~ 1 and from D, D-1 c- centre(Pol(Uq(n))). The second assertion
for p &#x3E; n - r is proposition 4.1. To prove the rest of the statement we use (2.1),
(2.15) and proposition 4.1 to see that for v E K we have

and

Since 03BBq-1 ~ 03C3(03C0(tn-r,1)) the proposition follows. D

COROLLARY 4.5. IÀI = 1.
Proof. Apply 03BB to 7 = 03A3nk = 1 t*k1tk1 (cf. (2.12)) and restrict to a vector v E K.

Then proposition 4.4 yields the result. D

Since 03C0(tn-r,1) is normal, we have an orthogonal decomposition

with Ho = K. Note that

For this general primary representation n of Pol(Uq(n)) we are interested in
the decomposition of a closed invariant subspace with respect to the orthogonal
decomposition (4.3). The results are contained in the following lemma.
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LEMMA 4.6. Let 1t be a primary representation of Pol(Uq(n)) in H = (9k.Z,Hk-
(i) For every subrepresentation 03C01 of 1t we have

(ii) For every non-zero closed n-invariant subspace V c H we have V ~ Hk ~ {0}
for all k with Hk ~ {0}.

(iii) H = 03C0(Pol(Uq)))H0.

Proof. To prove (i) we assume the existence of a *-subrepresentation ni of n so
that an element x ~ Pol(Uq(n)) exists with F = 03C3(03C01(x)) ~ 03C3(03C0(x)). Then F is a
proper closed subset of 03C3(03C0(x)). Without loss of generality we may assume that
every *-subrepresentation 7c of n with 03C3((x)) c F is a *-subrepresentation of n1.
Put n = ni ~ n2 corresponding to H = H1 ~H2, then H2 ~ {0}. Since 7r is

primary, equivalent *-subrepresentations 03C0’1, 03C0’2 of 03C01, n2 exist. But this

contradicts 03C3(03C0’1(x)) c F and 03C3(03C0’2(x)) ~ F.
To see (ii) we apply (i) with 03C01 = nlv and x = tn-r,1, with r as in proposition

4.1. Finally, (iii) follows from (ii) with k = 0. Indeed, if W = 03C0(Pol(Uq(n)))H0 has
a non-zero complement in H, say V, then V~ H0 ~ {0}, contradicting
H = W ~ V.

For 1  j  n - 1 we define

So S = (sij)i,j = 1,...,n-1 is obtained from T = (tij)i,j = 1,...,n by deleting the first

column and the (n - r)th row. Then the sij also satisfy the commutation
relations (2.1)-(2.2). Thus (4.5) defines an embedding of Aq(n - 1) in Aq(n). Let
Ds and DS 1 denote the determinant and its inverse for S and let Pol(Uq(n - 1))
be generated by the Sij, 1  i, j  n - 1, and Di 1 subject to the customary
commutation relations.

We define the following operators in B(K), cf. (4.4):

THEOREM 4.7. If we extendr to Pol(Uq(n - 1)) as a homomorphism, then T
becomes a *-representation of Pol(Uq(n - 1)) in the Hilbert space K.
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Furthermore, r is primary and r is irreducible if and only if 7r is irreducible.
Proof. The proof is rather long and falls into three pieces. First we show that s

is a representation of Pol(Uq(n - 1)). Then we prove that it is actually a *-

representation of Pol(Uq(n - 1)). Finally we will prove the last statement of the
theorem.

One can directly check that -r as defined in (4.6) yields a representation of

Aq(n - 1), since the scaling factor -1/q appears in every term of the relations
(2.1 )-(2.2) the same number of times. Keeping in mind that Ds coincides with the
quantum minor D" -’,1 it is easily seen that

By (2.10), proposition 4.4 and (4.7) we have

which shows that r preserves DsDs 1 = 7 = Di 1 Ds and hence 03C4 is a represen-
tation of Pol(Uq(n - 1)).
To prove that r is a *-representation of Pol(Uq(n - 1)) we have to consider

several cases. We will need

which can be proved as (4.7). First we consider the case 1  i  n - r - 1, then
by the definition of *: Pol(U q(n)) -+ Pol(Uq(n)), the development of the quantum
minor Di,j+1, proposition 4.4 and (4.8)
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Here

In a similar way one proves t(Sij)* = t(sÕ) for n - r  i  n - 1 using (4.9). Also,
by (2.10), (4.6) and (4.7),

which proves 03C4(D-s 1)* = 03C4((D-s 1)*) by corollary 4.5.
In order to prove the last statement of the theorem we investigate the relation

between the decomposition of K into closed T-invariant subspaces and the
decomposition of H into closed n-invariant subspaces. So assume that

03C0 = 03C01 ~ 03C02 corresponds to H = V ~ W and let Te R(7tl’ 03C02), then for

vc- Vk = V n Hk we have

In particular T|v0: V0 ~ Wo and by the construction of 03C4 we have T|v0~R(03C41, i2),
where 1" = il S 03C42 corresponds to the decomposition K = vo 0 Wo. We claim
that

It is sufficient to prove for v ~ Vk we have Tv = 0, when T|V0 = 0. Lemma 4.6(ii),
(iii) imply that we can write v as

with P = tp2n-r,2 ··· tpnn-r,n, 03A3ni=2pi = k. This way of writing is in general not
unique. Then we have

which proves our claim.
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Hence there is a 1-1 correspondence between the decomposition of

H = VE9 W into closed n-invariant subspaces and the decomposition of

K = Vo E9 Wo into closed 03C4-invariant subspaces. This proves that 03C4 is irreducible

if and only if 03C0 is irreducible and (4.10) implies thatr is primary. 

Theorem 4.7 indicates that it is worthwhile to study the irreducible *-

representations of Pol(Uq(1)), which can be identified with the abelian algebra
C [t, t-1]. Hence all irreducible *-representations are of the form t ~ ei~. As an
example we classify the irreducible *-representations of Pol(Uq(2)). They are
described in the following theorem. (See Vaksman and Soibelman [19, theorem
3.2].)

THEOREM 4.8. (i) Let -4 be the unital algebra generated by t11, t21, t12 and let n
be an irreducible *-representation of Pol(Uq(2)) in the Hilbert space H, then a
unique n(e)-invariant line (v) c H exists.

(ii) The representations 03C0103B8,~ and 03C0~03B8,~, 0, lp c- [0, 2n) defined below constitute all
irreducible, mutually inequivalent *-representations of Pol(Uq(2)).
(a) nJ,qJ is a one dimensional representation defined by

(b) 03C0~03B8,~ is an infinite dimensional representation in a Hilbert space H with

orthonormal basis {ek: k~Z+} defined by

Proof. For every irreducible *-representation 03C0 of Pol(Uq(2)), we can con-
struct the irreducible *-representation t of the abelian algebra Pol(Uq(1)) ~
C[t, t-1]. Hence T is one dimensional and by proposition 4.4 the representation
space of r is n(R)-invariant.
To prove (ii) we first note that ni,tp and 03C0~03B8,~ are mutually inequivalent

irreducible *-representations of Pol(Uq(2)). We consider an irreducible *-

représentation 7c of Pol(Uq(2)). Hence the results of this section are applicable. If
r = 1 - r as in Proposition 4.1-, then it easily follows that 03C0 ~ 03C0103B8,~ for some 0,
~ ~ [0, 2n).

If r = 0, then application of the results of this section yields
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where eo denotes the normalised v of (i). This gives 03C0(D)e0 = ei(~+03B8)e0 by (2.8).
Now K = Ho = span(eo) and Hk = span(03C0(tk22)e0), so n(tk 22)eo yields an or-
thogonal basis for H. Furthermore, t*22t22 = D-1t11t22 = I + qt12t21D-1
implies

so that ~03C0(tk22)e0~2 = (1 - q2) ··· (1 - q2k). The action of 1t(tkl) for k, l = 1, 2 on
the normalised basis vector ek can now be calculated and it corresponds to

03C0~03B8,~(tkl)ek as described in the theorem. Hence 1t ~ 03C0~03B8,~. D

The next theorem describes under which conditions on r the irreducible

Pol(Uq(n))-modules L°(r) yield irreducible *-representations. To formulate this
theorem we need the following definition.

Define 1(p’ i) = # {j 11 j  i, PO) &#x3E; p(1)1’ then 1(p) = 03A3ni=1 l(03C1, i).

THEOREM 4.9. For r = (yl, ..., Yn) with |03B3i| = the modules LP(F) yield
irreducible *-representations of Pol(Uq(n)).
We only have to show the existence of an inner product on LP(r) for these

conditions on r, under which L°(r) becomes a *-representation. To prove this
we start with a linear functional 0) on Aq, which we extend to Pol(Uq(n)). We
show that this linear functional yields a sesquilinear form on VP(F), which will
finally yield the inner product on L°(r).
Next we state that these representations yield all possible mutually inequiva-

lent irreducible *-representations of Pol(Uq(n)). We will denote such a represen-
tation by 03C003C1(0393).

THEOREM 4.10. 03C003C1(0393) for peSn and r as in theorem 4.9 yield all mutually
inequivalent irreducible *-representations of Pol(Uq(n)).
The rest of this section is devoted to the proof of these theorems. As a

byproduct we find a suitable basis for the representation space L°(r).
Let us introduce the linear map 0): d q -+ C by

This is well-defined because of (3.5), where the nP and n ’ are to be understood as
ordered monomials. If we let X. be the right ideal in d q generated by the matrix
elements of N-03C1, then we see that OJ is defined on R03C1BAq/L03C1, since R03C1 is the span
of n-03C1h03C1n+03C1 with n; =1= 1. This can be proved in a similar way as the corresponding
statement for 9;,.
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LEMMA 4.11. For ae.s4q(n) we have

(i) w( atkl) = 0, for tkl ~N+03C1,
(ii) 03C9(at03C1(i),i) = 03B3i03C9(a),
(iii) «tkl a) = 0, for tkl c- N.
(iv) 03C9(t03C1(i),ia) = 03B3i03C9(a).

Proof. The proof uses the notions of badness and index as introduced in
section 3. To prove (i) we let a be any, not necessarily ordered monomial and we
put x = atkl. We will show that w(x) = 0 by induction with respect to the
badness of x, b(x), and for fixed b(x) by induction with respect to the index of x,
ind(x).

If b(x) = 0 or if ind(x) = 0, then clearly w(x) = 0. To make the induction step
we have to consider two cases. First assume that ind(a) &#x3E; 0, then we have

atkl = C 1 al tkl + C2a2tkh where b(ai)  b(a) or b(ai) = b(a) and ind(ai)  ind(a).
Hence 03C9(x) = 0 in this case. Otherwise, if ind(a) = 0, but ind(x) &#x3E; 0, then we
must have x = a3t03C1(i),jt03C1(r),l with i &#x3E; j, 03C1-1(k) = r &#x3E; 1 and tp(i),j &#x3E; tp(r),l. If

b(t03C1(i),jt03C1(r),l) = 0 then we have 03C9(x) = c303C9(a3t03C1(r),lt03C1(i),j) = 0 by induction on the
index. If b(t03C1(i),jt03C1(r),l) = 1 we have

The first term yields zero by the induction on the index. To deal with the second
term we note that t03C1(i),l and t03C1(r),j commute and at least one of them is an element

of N+03C1, hence induction with respect to the badness shows that the second term
yields zero as well.
For (ii) we let a be as in (i) and we use induction with respect to the length,

badness and index of at03C1(i),i. If the length is 1 or if b(at03C1(i),i) = 0 or if

ind(at03C1(i),i) = 0, then (ii) is true. Suppose next that ind(at03C1(i),i) &#x3E; 0, then we have
two possibilities. If ind(a) &#x3E; 0, then it can be dealt with in a similar way as in the

proof of (i). If ind(atp(i),i) &#x3E; 0, ind(a) = 0, then we must have atp(i),i = a1t03C1(k),lt03C1(i),i
with k  1 and t03C1(k),l &#x3E; t03C1(i),i. If k = 1, then t03C1(k),k and t03C1(i),i commute modulo !R p
and hence 03C9(at03C1(i),i) = 03C9(a1t03C1(i),it03C1(k),k). By induction on the index and on the
length this equals YkYico(al) and by induction on the length we have

03C9(a) = 03B3k03C9(a1).
If k &#x3E; 1 and b(t03C1(k),lt03C1(i),i) = 0, then «a) = 0. But in this case part (i) implies

that 03C9(at03C1(i),i) = c03C9(a1t03C1(i),it03C1(k),l) = 0. Finally if k &#x3E; 1 and b(t03C1(k),lt03C1(i),i) = 1, then
03C9(a) = 0 and

Part (i) shows that the first term yields zero, but also that the second term
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vanishes, since t03C1(k),i and t03C1(i),l commute and at least one of them is an element of

Np.
The proof of (iii) and (iv) is analogous to the proof of (i) and (ii). D

Now for a basis element a as in (4.11) we calculate aD. By (2.8) we have

and from lemma 4.11 it follows that 03C9(aD) = 0 if n-03C1 ~ I ~ n;. In case

n-03C1 I = n+03C1 all terms vanish except for u = p by lemma 4.11. Hence for all a we
find

This shows that if we define

the map ru: Pol(Uq(n)) ~ C is well-defined. Note that we can extend lemma 4.11
to a E Pol(Uq(n)).
From now on we assume the condition of theorem 4.9 fulfilled, i.e. that

|03B3i| = ql(03C1,i).
LEMMA 4.12. For a ~ Pol(Uq(n)) we have

(i) 03C9(t*kla) = 0, for tkl c- N+03C1,
(ii) 03C9(t*03C1(i),ia) = i03C9(a).

Proof. To prove (ii) we consider t*03C1(i),i = ( - q)i-03C1(i)D03C1(i),iD-1 modulo the right
ideal R03C1. We find

where 03C1’ ~ Sn-1 is obtained from p by restriction to {1, ..., , ..., nl. Hence,

Now i = yi lq 21(p,i) and since

and
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(ii) follows.
Finally, to see (i) we develop the quantum minor Dkl consecutively along the

p( 1 )th row until the p(Qth row. Application of m after each of the developments
along the row p(l), ..., p(l - 1) leaves only one term, which can be dealt with by
lemma 4.11. The development along the p(Qth row yields zero. p

Lemmas 4.11 and 4.12 imply that

is a well defined sesquilinear form on V03C1(0393). Note that the only possible
eigenvalues for the action of t03C1(1),1 on VP(r) are 03B31qk for k~Z+. This follows
directly from the proof of proposition 3.5(iii).

It follows from (4.14) and proposition 3.5(ii) that the occurrence of til or tfi,
p( 1 )  i  n, in a product a of matrix elements gives m(a) = 0.

PROPOSITION 4.13. Suppose n’, m’ e /§ n Pol(Uq(n - 1)) with the identifi-
cation (4.5) with r = p(1). Then we have with s = p(l) - 1

and

The ordering is defined by (pl, - - ., ps)  (ql, ..., qs) if 03A3si=1 Pi  03A3si=1 qi or if
03A3si=1 Pi = 03A3si=1 qi and (p1,..., Ps)  (q 1, ... , qs) in the lexicographical ordering.

Proof. We start with some identities in VP(r).

First we prove (4.15). By (2.13) tp(1),l commutes with (n;)*, which gives the
result for i = 03C1(1). If i  03C1(1), then t03C1(1),1ti1(ns+)*·v+ = q-103B31ti1(n+s)*·v+, which
proves (4.15) in this case, because of the remark following (4.14). If i &#x3E; 03C1(1), then
it follows from proposition 3.5(ii).
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For (4.16) we need to show that t*03C1(1),1(n+s)*.·v+ = 03B31(n+s)* · v+, which can be
proved by induction on the degree of (n;)*. If the degree of (n+)* is zero, we use
(4.13) with f1Iip replaced by L03C1, which is easily seen to be true. This implies that
t;(1),l . v+ = 7i v +. To make the induction step we note that either t;(1),l and t*kl
commute or

The first case is obvious and in the second case we develop the quantum minor
D03C1(1),l along the first column and apply (4.15). This proves (4.15) and (4.16).
We first prove the second assertion. Put P = n+s tp111 ··· tpbb,1, (Pb  1),

Q = m+s tq111 ··· tqaa,1, (qa  1), and Q = Q’ta1. Consider the case k = 03A3si=1 pi 
03A3si = 1 qi = l, then the vector v = QP*·v+ is an eigenvector of t03C1(1),1 with

eigenvalue 03B31qk - l. According to the remark following (4.14) we have v = 0.
Assume now that k = 03A3si=1 pi = 03A3si=1 qi, then we will use induction on k, the

case k = 0 being trivial. Since (2.14) reduces to qt*r1ti1 = ti1t*r1 for s = 1, we have

In particular, if b  a we find QP* · v+ = 0 by (4.15). Now we assume a  b and
we use (2.16) with s = 1 to interchange ta, and t*a1. This yields

By (2.14), (2.1 ) we see that we can pull t11til to the right in the sum at the cost of a
factor q2(pa-1+pa-1+···+p1). Now (4.15) and (4.16) give

Repeating this process on the first part of the right hand side yields

Now we can pull ta to the right by (2.14) at the cost of some power of q and
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(4.15) shows that the first term yields zero. The induction hypothesis can now be
applied to the second term and it yields zero if P  Q and Cm+s(n+s)*·v+ if

P = Q.
If k = 03A3si=1 pi &#x3E; 03A3si-1 qi = l, then PQ*·v+ = 0. So (4.14) with a = I and

b = PQ* implies 03C9(QP*) = 0. If k  1, then it follows from part two that

m(QP*) = 0. Next we assume k = 1. Taking inner products with v+ in the

equalities above then yields

and induction on k finishes the job.

Next we will establish a link between the linear functional m on Pol(Uq(n)) and
a similarly defined linear functional co’ on Pol(Uq(n - 1)) We use (4.5) with n - r
replaced by p( 1 ) to obtain an embedding Aq(n - 1) c: W,(n). If we define

03C1’(i - 1) = 03C1(i) if 03C1(i)  03C1(1) and 03C1’(i - 1) = 03C1(i) - 1 if 03C1(i) &#x3E; 03C1(1), then

p’c- S,, - 1 and t03C1(i),i = s03C1’(i-1),i-1 for i = 2, ... , n. Note that

l(03C1) = l(03C1’) + #{i|03C1(i)  03C1(1)}.
Define

then |03B3’i| = ql(03C1’,i). Using the above identification we consider

defined by

From (4.18) and (4.11) with (4.17) it follows that for ik ~ 03C1(1), jk ~ 1 we have

We can even generalise (4.19) to the whole of Pol(Uq(n - 1)) as follows.



224

PROPOSITION 4.14. For products of matrix elements x, YEdq(n - 1) we have

where *s denotes the *-operation in Pol(Uq(n - 1)) and M(x) denotes the number of
matrix elements tij in x with i &#x3E; p(l).

Proof. Pick tij ~ d q(n - 1) and develop the quantum minor Dij along the first
column. All terms cancel except for 03C1(1), which yields a factor 03B31. To see this we
note that for ik :0 p(1), ik :0 1 we have

Since t03C1(1),1 commutes with all possible elements the case i = p( 1 ) is a direct
consequence of lemma 4.11. To prove the case i ~ p( 1 ) we use induction on N,
the case N = 0 being contained in lemma 4.11. If il :0 i, then [ti1, t*ii,j1] = 0 by
(2.13) and this gives the induction step in this case. Finally, if i = i1, then by (2.15)

If i &#x3E; p( 1 ) this is zero by the induction hypothesis. If i  03C1(1), then we use (2.12)
with j = 1 and i = j1. Then 03A3nl=i+1 tthtl1 = -03A3il=1 tthtl1, and we obtain the
same conclusion. 

Hence,

where 03B1i = 1 - 03C1(1) if 03C1(1)  i and 03B1i = 2 - 03C1(1) if 03C1(1) &#x3E; i. Under the mentioned

identification we have Ds = DP(1),l and

where ci = 1 if p( 1 )  i and ci = (-q)-1 if p( 1 ) &#x3E; i. Thus

Now (4.17), (4.18) and (4.19) imply the proposition.
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Proof of theorem 4.9. We will use the following basis for N+03C1

where we order the first part in an arbitrary fashion and the second part
according to tij  tkI if j &#x3E; 1 or if j = 1 and i  k. Then n-03C1h03C1(D-1)ln0P+ span
Pol(Uq(n)).

Let us assume for the moment that co satisfies

whenever n0 ~ I or m0 ~ I or n-03C1 ~ I or ml, :0 1 or P ’ :0 Q + . Then we can write
an arbitrary a E Pol(Uq(n)) in a possibly non-unique way as

where for all i El either (no)i ~ 7 or ni :0 1. Then m(a*a) is independent of the
form of a, since m is well defined on Pol(Uq(n)). By (4.20) we have

By propositions 4.13 and 4.14 and (4.11), (4.12), (4.17), (4.18), (4.19) as well as
lemmas 4.11 and 4.12 we can find Ci &#x3E; 0, bk ~ C and ak ~ Aq(n - 1) so that

This implies that cv is a positive linear functional on Pol(Uq(n)) if 03C9’ is a positive
linear functional on Pol(Uq(n - 1)) and ro satisfies (4.20). We will show that these
conditions are fulfilled by induction with respect to n.

Let us therefore assume that for every 03C1’ ~ Sn-1 and F e Cn - 1 as formulated in
theorem 4.9 an irreducible *-representation nP’ (r’) in L03C1’(0393’) exists so that the
corresponding positive linear functional

satisfies (4.18) and (4.20) in the Pol(Uq(n - 1)) case. This is obvious for

n - 1 = 1.
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So it is sufficient to prove (4.20). This is a direct consequence of the

assumption on w’, propositions 4.13 and 4.14, lemmas 4.11 and 4.12 as well as
(4.14).

Hence, for arbitrary 03C1 ~ Sn and 0393 ~ Cn as described in the theorem we have a
positive linear functional 03C9. Now

is a proper invariant subspace and VP(r)/K yields a p-highest weight *-

representation of weight r of Pol(U,(n». According to corollary 3.7 this

representation is irreducible and by proposition 3.5 it is isomorphic to LP(r).
Il

Proof of theorem 4.10. The representations nP(r) are mutually inequivalent.
Now it can be proved that every irreducible *-representation of Pol(Uq(n)) is a p-
highest weight module of weight r with IYilq’(p,i) by induction on n by use of
theorems 4.8, 4.7, (4.6) and proposition 4.4 and corollary 4.5. D

COROLLARY 4.15. (i) With the ordering tij  tkl if j &#x3E; 1 or if j = 1 and i  k an
orthogonal basis of L03C1(0393) is given by

(ii) There exists a total ordering on the elements P + as in (i) so that

Proof. Part (i) is clear and we could prove part (ii) by induction on n and
proposition 4.13, if we could show that for nsedQ(n - 1)) we have

Since nP(r) is an irreducible *-representation this follow from theorem 4.7. D

5. The quantum group C(Uq(n))

In this section we complete the Hopf *-algebra Pol(Uq(n)) into a C*-algebra
C(Uq(n)). Then we will recall the definition of a compact matrix quantum group
and we will show that the constructed C*-algebra C(Uq(n)) fits into this
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definition. We end this section by proving that the C*-algebra C(Uq(n)) is of
type I.
By R we denote the collection of all *-representations of Pol(Uq(n)). For an

element a c- Pol(U,(n» we put

where we use the operator norm in B(H,,) on the right hand side and H03C0 is the
representation space of 03C0. Note that II a  oo, since ~03C0(tij)~  1 for all 03C0 ~ R

because of (2.12).
We want to complete Pol(Uq(n)) with respect to the norm (5.1) to obtain a C*-

algebra in which Pol(Uq(n)) is dense. So we have to show that all non-zero
elements of Pol(Uq(n)) have a non-zero norm. To prove this we restrict our
attention to the irreducible *-representations 7r(r) = 03C003C1o(0393) with po:

1 - n + 1 - i. Note that as constructed in theorem 4.7 from n(r) possesses the
same property.
For the representation space of n(r) one can give two natural bases. First the

one described in corollary 4.15, 03C0(r)((n+)*)v+, n+ ~ N+03C10 = N+, but in this

special case one proves in a similar way that 03C0(0393)(n-)v+, n - c- N-03C10 X - yields
an orthogonal basis for LP(r) as well. This basis cannot be expected to exist for
other choices of p, since # N-03C1 = (2) for all 03C1~Sn, whereas

for all 03C1 ~ po.

PROPOSITION 5.1. Let a ~ Pol(Uq(n)) with lia Il = 0, then a = 0.

Proof. Theorem 3.4 implies that we can write an arbitrary element

a E Pol(Uq(n)) as

where are all index sets are finite. We suppose that all n: are différent for
différent k e K and that the n-i’s are different for i~1k. Let ns+ be the smallest
element in the ordering of corollary 4.15 so that ci,j,s ~ 0 for some i and j. We
will prove that ~a~ = 0 implies ci,j,s = 0.

Let n(rxa) = 0 act on the basis element 03C0(0393)((n+s)*)v+ of the representation
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space of 03C0(0393). By corollary 4.15 we have

where 03B1j is some multiindex. From the remark above it follows that 03C0(0393)(ni- )v+
also yields a basis for the representation space of n(r). Hence,

Since all the 039303B1j-lj(1,...,1) are different by theorem 3.4, we have a polynomial in y 1,
... , 03B3n, which must be zero for all possible choices of y 1, ... , 03B3n, as described in

theorems 4.9 and 4.10. This implies Ci,j,s = 0 for all j ~ Ji,s, and all i ~ Is, which
proves the proposition. D

Let C(Uq(n)) be the completion of Pol(Uq(n)) with respect to this norm (5.1),
then C( Uq(n)) is a C*-algebra in which Pol(Uq(n)) is dense.
Next we will consider the quantum group associated with Uq (n) in the sense of

Woronowicz. We define

So we will use an analogue of U(n) ~ S(U(n) x U(1)) c SU(n + 1).
Let us now recall the definition of a compact matrix quantum group, cf [21,

def. 1.1]. The pair (A, u), consisting of a unital C*-algebra A and a N x N matrix

u = (uij)i,j = 1,...,N, uij E A is a compact matrix quantum group if the following
three conditions are satisfied:

(i) the *-algebra A generated by the matrix elements Uij is dense in A,
(ii) there exists a unital C*-homomorphism 03A6: A ~ A (8)min A so that

(iii) there exists a linear antimultiplicative mapping K: A ~ .xl so that
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and

REMARK. The algebraic tensor product A (8) A is in a natural way a *-algebra.
We can make it into a C*-algebra by completing A (8) A with respect to the
injective C*-cross norm defined by

The resulting C*-algebra is the injective tensor product A (8)min A. See Takesaki,
[18, Chapter 4.4].

THEOREM 5.2. (C(Uq(n)), u) with u as in (5.2) is a compact matrix quantum
group.

Proof. Condition (iii) follows directly from the results in sections 1 and

2. Condition (i) is fulfilled because of the above construction of C(Uq(n)).
From section 2 it also follows that 4) is a unital *-homomorphism from

Pol(Uq(n)) ~ Pol(Uq(n)) Q Pol(Uq(n)) satisfying (5.3). So we only have to prove
that 03A6 can be extended from Pol(Uq(n)) to C(Uq(n)).

Let us prove the continuity of 03A6 on Pol(Uq(n)). Pick 03C01, 03C02 ~ R, then

(03C0,~03C02)°03A6 is a *-representation of Pol(U,,(n» in the Hilbert space

H03C01 2H03C02 (cf Takesaki [18, Chapter 4.1]). Hence (ni (D 03C02)°03A6~R and

In case A is a type 1 C*-algebra there is only one C*-cross norm on the

algebraic tensor product A (D A. Since C(Uq(1)) is abelian it is a type 1 C*-

algebra. For C( Uq(2)) we can prove that it is a type 1 C*-algebra as follows. First
we note that all irreducible *-representations (cf theorem 4.8) contain a Hilbert-
Schmidt operator. In case 7rè,, this is trivial and in the infinite dimensional case
we see that 03C0~03B8,~(t21) is Hilbert-Schmidt. Now Sakai [16, theorem 4.6.4], which
states that a C*-algebra A for which every non-zero irreducible *-representation
03C0 there exists a non-zero compact operator in 03C0(A) is a type 1 C*-algebra, implies
that C(U,(2» is a type 1 C*-algebra.

This criterion can also be used to show that C(Uq(3)) is a type 1 C*-algebra.
There are 3! = 6 possibilities for the representations which all have to be

checked on the existence of a non-zero compact operator. See Bragiel [2] for the
case C(SUq(3)), which is analogous to the case C(Uq(3)). However, for n  4 we
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need another criterion to prove that C(Uq(n)) is a type 1 C*-algebra. According
to Dixmier [3, théorème 9.1] a separable C*-algebra is of type 1 if and only if all
primary representations are of type I.

THEOREM 5.3. C(Uq(n)) is a type 1 C*-algebra.
Proof. We use induction on n, the cases n = 1, 2 being covered. Since C(Uq(n))

is separable, we have to show that all primary representations of C(Uq(n)) are of
type I.

Let n be a primary representation of C(Uq(n)), then we can consider n as a
primary representation of Pol( Uq(n)) and because of (5.1) all primary represen-
tations arise in this way. Construct the primary representation i of C(Uq(n - 1))
as in theorem 4.7, then by the induction hypothesis we have r = il 0 Ï2. where
si is irreducible. In the corresponding decomposition of 03C0 = 03C01 ~ 03C02 (cf proof of
theorem 4.7) 1tl is irreducible. Hence n is of type I. Q
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