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Introduction

The well-known finite-dimensional complement theorems in shape theory (see
e.g. [16], [17], [20]) assert that compacta in Rn (or S"), satisfying suitable
dimension and embedding conditions, have the same shape if and only if their
complements are homeomorphic. This classifies the shapes of compacta by a
geometric property of the complements, but at the same time fails to exhibit a
classifying homotopy property. To compensate this deficiency, we developed in
[ 13] a theory of finite-dimensional categorical complement theorems. The reader
is assumed to be familiar with notation and results of [13], and should recall in

particular that (URRm, (Ad",), wH,"C) are data of a categorical complement
theorem for Sh(DMm), the Borsuk-Mardesié shape category of compacta X with
fundamental dimension FdX  m. This result removes all geometric niceness
conditions on the ambient spaces (such conditions are indispensable to establish
’ordinary’ complement theorems) and specifies what embeddings are acceptable
in order that the complements keep sufficient homotopical information for the
classification of shapes. An immediate consequence is the following ’homotop-
ical complement theorem’: Compacta X with FdXi  m, being m-admissibly
embedded into m-connected ANR’s Mi with a complete uniform structure, have
the same shape if and only if their complements Mi - Xi have the same weak
complete m-homotopy type.
The present paper continues the program of [13] in the framework of strong

shape theory (concerning ’strong shape’ see [1], [3], [4], [5], [7], [10]). Our
main result is the following.

THEOREM A. (URRm+1, (Adm + 2), Hm+1C), where Hm + 1 C is the complete
(m + 1)-homotopy category (cf. section 2), are data of a categorical complement
theorem for the strong shape category SSh«(t9Jlm) of compacta X with FdX  m. In
particular: Compacta X with FdXi  m, being (m + 2)-admissibly embedded into
(m + 1)-connected ANR’s Mi with a complete uniform structure, have the same
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shape if and only if their complements have the same complete (m + 1)-homotopy
type.

We see that the passage from shape to strong shape costs one additional
dimension of control on the complements - wHmC has to be replaced by Hm + 1 C
(this ’additional dimension of control’ reflects exactly the conceptual difference
between shape and strong shape). The essential advantage of Theorem A is that
the complementary category Hm + 1 C is a ’homotopy category’ and not a ’weak
homotopy category’ as in the case of ordinary shape. The price for such a more
natural complementary category is a more restrictive embedding condition -
(Adm) has to be replaced by (Adm + 2). Results improving upon dimensions in
Theorem A, however, are available for compacta of stable shape (for details see
section 4).

Fixing the sphere S" as an ambient space, Theorem A implies that the
assignment X ~ Sn - X induces a covariant category isomorphism from a full
subcategory of SSh(DM) to a suitable ’homotopy category of proper maps’. On
the other hand, the Strong Shape S-Duality Theorem of Q. Haxhibeqiri and S.
Nowak [6] asserts that X H S" - X induces a contravariant category isomorph-
ism from the stable strong shape category to the stable homotopy category. We
may therefore expect that there exists a ’principle of reversing the direction of
maps between open subsets of spheres’. This general idea is made precise by the
following duality theorem.

THEOREM B. Let d(n) = max{k 2k + 2  n} and c(n) = max{k|4k  n}. Let
T n be the full subcategory of the homotopy category HTop whose objects are all
complements S" - X of c(n)-shape-connected compacta X c S" having
FdX  d(n) - 1 and satisfying the inessential loops condition ILC [20], and let
Hd(n)P be the proper d(n)-homotopy category (cf. section 2). There exists a

contravariant full embedding

A: T n -+ Hd(n)P
such that 0(U) = U for each object U.

Roughly speaking, Theorem B says that each map f U ~ V between suitable
open subsets U, Y of Sn can be ’canonically reversed’ to obtain a proper map
f *: V- U, and vice versa. In certain special cases we can say even more about
this reversing process: f: U ~ V and f*: V- U can be chosen in such manner that
they are ’inverse to each other’ in a very weak sense; for details see Theorem 5.5.

1. Filtered spaces

Let X = (X; Xn) be a fiitered space (consisting of an underlying space X and a

sequence of closed subspaces Xn c X such that X o = X and Xn + 1 c int Xn for
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each n). We call X functionally filtered if there is a map h: X ~ [0, oo) with
Xn = h-1([n, ~)) for each n. The symbol F will denote the category of

functionally filtered spaces and filtered maps. Here are some properties of
functionally filtered spaces X.

1.1. PROPOSITION. (a) X x I = (X x I; Xn x I) is a functionally filtered space,
and each it : X ~ X x I, it(x) = (x, t), is a filtered map it :  ~ X x I.

(b) For each A c X, X n A = (A; Xn n A) is a functionally filtered space, and
the inclusion i: A - X is a filtered map i: X n A - .

A filtered subspace A c X (i.e. A = X n A for some A c X) is called cofinal if A
contains some X,,. In this case also the inclusion i:  ~ X is said to be cofinal.
Let 1:F denote the class of all cofinal inclusions in F, and let F 00 denote the
quotient category FBEF. It is easy to show that F 00 admits a calculus of right
fractions (cf. [5] §6.2).

Next, let C be the category of a-complete uniform spaces and complete maps
(introduced in [13]). Recall that a uniform space X is 03C3-complete iff it has a
filtration function hx, i.e. a map hx: X - [0, oo) with

(Cl) For each complete S c X, the closure cl(hx(S)) is compact.
(C2) For each n, hx 1([0, n]) is complete.

By a filtration functor on C we mean a functor V: C ~ F such that

(VI) For each X E Ob C, V(X) is a filtered model of X (i.e. V(X) = (X; hx ’([n, ~))
for some filtration function hx).

(V2) For each f E C(X, Y), V(f) = f

From [13] 2.3(2) we infer

1.2 PROPOSITION. (a) There exist filtration functors on C; in fact, each choice
of filtration functions hx, X E Ob C, determines a unique filtration functor on C.

(b) Any two filtration functors on C are naturally isomorphic.
(c) Each filtration functor on C is a full embedding.

An easy consequence of the definition of the quotient categories C~ (cf. [13])
and F 00 is

1.3 PROPOSITION. Each filtration functor V C ~ F induces a unique functor
V~:C~ ~ ~ with UF V = V~UC (where UC:C ~ C~ and UF:F ~ F~ are the
canonical quotient functors); V~ is a full embedding.

2. Homotopy relations

The concept of homotopy was defined in [5] for the categories P ( = proper
category = category of 03C3-compact spaces and proper maps) and P 00 ( = proper
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category at oo = PB(cofinal inclusions in P)), and in [12] for the category C.
More generally, in each of the categories D = P, P~, C, C~, F, F~ the cylinder
functor ’ x l’ can be used to define the relation of homotopy: ao, ai e D(A, B) are
called homotopic in D, 03B10 ~ 03B11, if there exists a homotopy H E D(A x I, B) such
that Hik = 03B1k, k = 0, 1 (where ik : A ~ A x I are the obvious morphisms in D).
We shall also need the following ’relative’ version of homotopy: Given any

class of objects 9Jl c Ob D, 03B10, al E D(A, B) are called 9R-homotopic in D,
03B10 ~ m03B11, if 03B10~ ~ 03B11 ~ for each ç E D(A’, A) with A’ E 9Jl. It is fairly obvious that
’m-homotopy in D’ is an equivalence relation for morphisms in D which is
compatible with composition. The 9X-homotopy category H9JlD is obtained from
D by identifying m-homotopic morphisms. For 9M = Ob D we get the homotopy
category HD = HObDD (note that 03B10 ~ ObD03B11 iff 03B10 ~ 03B11).

2.1 EXAMPLE. Let B(m) be the class of all a-compact polyhedra P with
dim P  m (cf. [13] 1.4). Then we obtain the proper m-homotopy category,
HmP = HB(m)P, the proper m-homotopy category at oo, HmP 00 = HB(m)P~, the
complete m-homotopy category, HmC = HB(m)C, and the complete m-homotopy
category at oo, HmC~ = HB(m)C~.
2.2 REMARK. Recall from [13] that we regard P, P 00 as full subcategories
P c C, P 00 c C~. This induces the following inclusions as full subcategories:
HP c HC, HP 00 c HC~, HmP c HmC, HmP 00 c HmCoo.

From 1.3 we infer

2.3 PROPOSITION. Each filtration functor V:C ~ F induces a unique
HY~: HC~ ~ HF~; HV 00 is a full embedding.

One also readily checks that Uc: C ~ Coo induces a quotient functor

HmUC: HmC ~ H.C..

3. The end functor

Let H(pro-Top) denote the homotopy category of pro-Top with respect to its
closed model structure as defined in [5] §2.3. Recall that the natural functor
03C0:H(pro-Top) ~ pro-HTop has the following property (see [5] 5.2.9):

(3.1) Let X, Y be inverse systems in pro-Top which are isomorphic in H(pro-Top)
to towers. Then X and Y are isomorphic in H(pro-Top) iff 03C0X and 03C0Y are
isomorphic in pro-HTop.

We now study the end functor 03B5: C~ ~ pro-Top constructed in [13].

3.2 THEOREM. e induces a full embedding
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Proof. The proof follows the lines of [5] §3.7 and §6.3. Let us first observe that
03B5: C~ ~ pro-Top carries homotopies in C~ to left homotopies in pro-Top (cf.
[15]), and therefore actually induces a functor 03B5: HC~ ~ H(pro-Top).
We now construct an end functor e’: F - tow-Top c pro-Top (tow-Top c

pro-Top is the full subcategory of towers). For each object X = (X ; Xn) of F, let
e’(X) be the tower {Xn} in pro-Top (bonded by inclusions). For each mor-
phism f : X = (X; Xn) ~  = (Y; Yn) in F, define f*: N ~ N by f*(n) =
min{r 1 f(Xr) c Yn}. Let.l;.: Xf*(n) ~ Y" be the restriction of f. Then (f.,f *) is a
map of inverse systems which represents a unique morphism 03B5’(f) ~ tow-

Top(e’(X), 03B5’()).
If j: À - À is a cofinal inclusion in F, then E’( j ) is an isomorphism in tow-Top,

and therefore e’: F - tow-Top induces a unique functor e’: F 00 --+ tow-Top such
that 8’UF = e’.

Since E’ carries homotopies in F 00 to left homotopies in tow-Top, it induces a
functor H03B5’: HF~ ~ H(two-Top) c H(pro-Top).

Let us fix an arbitrary filtration functor V.- C ~ F. It is easy to verify

(3.3) The two functors e, 03B5’° v: C ~ pro-Top are naturally isomorphic.

From this one readily infers

(3.4) The two functors a, H03B5’°HV~:HC~ ~ H(pro-Top) are naturally
isomorphic.

The telescope construction discussed in [5] §3.7 is readily seen to furnish a
functor Tel: H(tow-Top) - HF 00. Using the techniques of [5] §3.7 and §6.3 one
can verify

(3.5) There are natural isomorphisms Tel ° H03B5’ ~ 1 and H03B5’ ° Tel ~ 1. In part-
icular, He’ is an equivalence of categories and a fortiori a full embedding.

This completes the proof, since HV~ is a full embedding.

3.6. REMARK. The above proof shows that HF~ is a ’category of geometric
models’ for H(tow-Top). Note that it also follows from [5] 3.7.20 that H(tow-
Top) embeds as a full subcategory into HF 00.

Now, let 03B803B8m resp. 0* be the full subcategories of H(pro-Top) whose objects are
all inverse systems which are isomorphic in H(pro-Top) to some tower

P = {Pn, p.) such that the Pn are compact resp. arbitrary polyhedra with
dim Pn  m.

Let [B(m)] be the full subcategory of HC~ such that Ob[B(m)] = B(m). Then
HmC~ = HC~/[B(m)] (cf. [13] §2). We set

0. = Sat(03B5([B(m)]) n 0:

and obtain (cf. [13] 2.10)
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3.7. PROPOSITION. 03B5:HC~ ~ H(pro-Top) induces a full embedding Em:

HmC~ ~ H(pro-Top)/03B8m.

It is a routine exercise (using simplicial approximation, (3.1) and the telescope
construction) to verify

3.8. PROPOSITION. 03B8cm ~ 03B8m+1.

It is unfortunately not true that 03B8cm c 03B8m. This can easily be seen for m = 0. The
only non-compact 0-dimensional 03C3-compact polyhedron is a discrète space A
with infinitely many points. Given any tower X = {Xn} consisting of pathwise
connected spaces X n, there is only one morphism 03B5(0394) ~ X in H(pro-Top); i.e. an y
two morphisms ~0, ~1: Y ~ X (Y arbitrary!) are 03B5([B(0)])-equal although they
need not be 03B8c0-equal.
The following is a partial substitute for the failure of ’03B8cm ~ 03B8m’.

3.9 LEMMA. Let Y be an object of H(pro-Top) which admits a 03B8cm-equivalence
03B2: Y ~ Y’ onto a stable object Y’ of H(pro-Top).

(a) Any two om-equal morphisms ~0, ~1:X ~ Y in H(pro-Top) are also lf",-equal;
i.e. for each X the canonical pm: H(pro-Top) (X, Y) ~ H(pro-Top)/03B8cm(X, Y)
induces a unique 03C1’m : H(pro-Top)/03B8m(X Y) ~ H(pro-Top)/03B8cm(X, Y).

(b) 03C1’m is a bijection provided X admits a 03B8*m-equivalence 03B1: X ~ X’ onto some

X’ ~ O b 03B8cm.

Proof. (a) Let P ~ Ob 03B8cm and 03C8: P ~ X. We have to show ~003C8 = ~103C8. Since
03B2: Y ~ Y’ is a 03B8cm-equivalence and P ~ Ob 03B8cm, it suffices to show 03B2~003C8 = 03B2~103C8.
Since V is stable in H(pro-Top), the canonical map 7r H(pro-Top) (P, Y) ~ pro-
HTop(nf, nX’) is a bijection. It therefore suffices to show 03C0(03B2)03C0(~0)03C0(03C8) =
03C0(03B2)03C0(~1)03C0(03C8). We may assume that P = f Pn, pn} with compact polyhedra Pn of
dimension  m. We set P* = ~r Pr  {r} and obtain (as in the proof of [13] 2.11)
a ’canonical’ morphism jT: B(P*) ~ P in pro-Top. Let y: 03B5(P*) ~ P be the image of
f in H(pro-Top). Since ~0, ~1 are 03B8m-equal, ~003C803B3 = ~103C803B3. Hence 03C0(~0)03C0(03C8)03C0(03B3) =
03C0(~1)03C0(03C8)03C0(03B3), which implies 03C0(~0)03C0(03C8) = 03C0(~1)03C0(03C8) (see again [13] 2.11). This
completes the proof of (a).

(b) Since lf", ~ 03B8*m, 03C1cm: H(pro-Top) - H(pro-Top)/03B8cm induces a full functor

Fm : H(pro-Top)/03B8*m ~ H(pro-Top)/03B8cm; since 03B8m ~ 03B8*m, 03C1m: H(pro-Top) ~ H(pro-
Top)/03B8m induces a full functor Gm: H(pro-Top)/03B8*m ~ H(pro-Top)/03B8m. Consider the
following commutative diagram (cf. [13] 2.4, 2.7):
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We infer that the Fm are bijections; hence Gm is an injection. Since Gm is a full
functor, (b) is proved.

3.10 THEOREM. Let A be a (J-complete metrizable space and B be a (J’-complete
m-connected ANR.

(a) H mUe: HmC(A, B) ~ HmC~(A, B) is a bijection provided 03B5(A) admi ts a 03B8m-
equivalence (fJ: E(A) ~ A onto some A e Ob Om.

(b) HmUC: HmC(A, B) ~ HmC~(A, B) is a bijection provided e(A) admits a 0:-
equivalence (fJ: E(A) ~ A onto some A e Ob 03B8cm and 03B5(B) admits a 03B8cm-equivalence
03C8: 03B5(B) ~ B onto a stable object B of H(pro-top).

Proof. (1) Injectivity. A straightforward modification of the proof of [13] 2.14
yields injectivity in both cases.

(2) Surjectivity. We only prove (b), the other case is similar. By 3.7 and 3.9, E
induces a bijection 03B5’m: HmC~(A, B) ~ H(pro-Top)/03B8cm(03B5(A), 03B5(B)). Since 03C1cm(~) is an
isomorphism in H(pro-Top)/03B8cm, there exists ~’: A ~ e(A) with 03C1cm(~’) = 03C1cm(~)-1.

Consider f ~ C~(A, B). By 3.2, there exists g ~ C~(A, B) such that

e([g]) = 03B5([f])~’~, where [ ] denotes equivalence class in HC~. We have
03B5’m([g]m) = 03C1cm03B5([g]) = 03C1cm03B5([f]) = 03B5’m([f]m), where [ ]m denotes équivalence class
in HmC~. This implies [g]m = [f]m. But now the equation 03C003B5E([g]) =
03C0(03B5([f])~’)03C0~ shows, as in the proof of [13] 2.14, that 9 has the form 9 = Uc(G)
with a complete G : A - B.

4. The categorical complément theorems

The following result is basic for our purposes (see [13] for notation).

4.1 THEOREM. Let M be an ANR and X c M be an (m + 1)-admissible
compactum. Then i: U*(X) ~ U(X) is a 03B8*m-equivalence in H(pro-Top).

The proof of 4.1 will be prepared by two technical Lemmas.

4.2. LEMMA. Let P = (P; P n) be a filtered CW-complex(i.e. P is a CW-complex
and each Pn is a subcomplex of P). For each subcomplex Q c P, the inclusion
i: P n Q ~ P is a filtered cofibration, i.e. each filtered map F: P x I n

(P x {0} ~ Q x 1) ~ X has a filtered extension F’: P x 1 ~ X.

The proof is a slight modification of the classical homotopy extension
theorem for CW-complexes and is left to the reader.

4.3. LEMMA. Let M be an ANR and X c M be an m-admissible compactum.

(a) There is a cofinal subtower N(X) = {Nr} of U(X) such that 03C0k(Nr + 1,
Nr + 1 - X) ~ 03C0k(Nr, N, - X) is trivial for ail k = 0, ..., m + 1 and all r.
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(b) Let  = (P;Pn) be a filtered CW-complex, Q c P be a subcomplex with
dim(P - Q)  m + 1, and let f:  ~ Tel N(X) be a filtered map such that
f(P) c Telm + 2N(X) and f(Q) ~ Tel N*(X), where N*(X) = {N, - X}. There
is a filtered map g:  ~ Tel N(X) such that g(P) c Tel N*(X) and f ~ g via a
filtered homotopy rel. Q.

Proof. (a) is trivial.
(b) We construct by induction filtered maps f(i):  ~ Tel N(X) such that

f(i)(P) ~ Telm + 1- i N(X), f(i)(P(i) U Q) c Tel N*(X) and f ~ f(i) via a filtered

homotopy rel Q (then g = f(m + 1) is the required map). The induction starts with
f(-1) = f. Given f(i), i  m, we have to construct f(i+1). Choose integers
0 = no  n 1  n2···. such that f(i)(Pnr) c Telm + 1- i + r N(X). Consider an open
(i + 1)-cell 03C3 of P - Q with a characteristic map ~: Di+ 1 ~ cl(a) c P. Let

Du = O(S’) c P(‘) and r(Q) = max{r |03C3 c Pnr}. A homotopy ha: cl(03C3) x I ~

Tel N(X) is defined by ha(x, t) = ( fl(x), (1 - t)f2(x) + t(m - i + r(03C3))), where
f(i)(x) = (fl (x), f2(x)) c- Tel N(X) c No x [0, oo). Define 03BB: Di + 1 x I ~ Di + 1 x 1 by
03BB(x, t) = (2x/(2 - t), t) for Il x Il (2 - t)/2 and 03BB(x, t) = (xl Il x 11, 2 - 211xl!) for
~x~  (2-t)/2. Let H = h03C3(~  1)03BB:Di+1 I~Tel N(X). Since H(~ 1)-1 is

single-valued, there is a homotopy H.: cl(Q) x I - Tel N(X) with H = H03C3(~ x 1).
Let D’ = {x ~ Di + 1|~x~  1 2} and D = ~(D’) c u; D is an (i + 1)-ball. By con-
struction, Ha is stationary on Du and H03C3(x, 1) ~ Tel* N(X) for x ~ D°. Consider
g = H03C3,2|D; this is a map into Nm + 1 - i + r(03C3) x {m - i + r(03C3)} ~ Nm - i + r (03C3) x
{m - i + r(03C3)} c Tel N(X). Since g(aD) c (Nm + 1-i+r(a) - X) x {m - i + r(03C3)}, g
is homotopic rel ôD (in Nm-i+r(03C3)  {m - i + r(03C3)}) to a map g’: D - Tel N(X)
with g’(D) c (Nm - i + r(03C3) - X) x {m - i + r(u)l. Combining this homotopy with
H., we obtain a homotopy Ga : cl(Q) x I - Tel N(X) which is stationary on au
and satisfies G03C3,0 = f(i)|cl(03C3), G03C3,1(cl(03C3)) ~ Tel N*(X) and G03C3(cl(03C3) I) ~
Telm-i+r(03C3)N(X). Consider the homotopy G: (~(P(i+1)~Q))  I ~ Telm - i N(X)
defined by GJG = f(i)|Q and G|cl(03C3) x I = Ga for or in p(i+1) - Q. Clearly, G is
filtered. By 4.2, G extends to a filtered homotopy H(i + 1): P x I ~ Tel N(X) such
that H(i+1)0 = f(i) and H(i+1)( I) ~ Telm-iN(X). By construction,
f(i + 1) = H(i+1)1 has the desired properties.
We are now ready to prove 4.1:

Choose a cofinal subtower N(X) ~ U(X) as in 4.3(a). It suffices to show that i:

N*(X) ~ N(X) is a 03B8*m-equivalence. Let P = {Pn, pn} be a tower of polyhedra Pn,
dim Pn  m, and piecewise-linear bondings pn. We have to show that i induces a

bijection H(pro-TopXP, N*(X)) ~ H(pro-Top)(P, N(X)). Since Tel : H(tow-

Top) ~ HF~ is a full embedding, this is equivalent to showing that HF~(Tel P,
Tel N*(X)) ~ HF~(Tel P, Tel N(X)) is a bijection. Since Tel P has the structure
of a filtered CW-complex of dimension m + 1, this actually follows from 4.3(b)
(note that we can always choose representatives for morphisms resp. homo-

topies in F~ which satisfy all assumptions in 4.3(b)).
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Putting together the pieces collected so far, we obtain

4.4 THEOREM. (U9l9l, (Adm + 2), Hm + 1C~) are data of a categorical complement
theorem for SSh(DMm).

Proof. Let V(X) be the Vietoris system associated to a compactum X (cf. [5]
8.2.7). If X c M, M an ANR, there exists an isomorphism U(X) ~ V(X) in

H(pro-Top) (note that U(X) and V(X) admit cofinal subtowers and apply 3.1).
Since £(M - X) can be identified with a cofinal subsystem of U*(X), we infer
from 4.1 the following.

(4.5) If X c M is (m + 2)-admissible, then there exists a 0:+ 1-equivalence ~(M,X):
e(M - X) ~ V(X) in H(pro-Top).

Moreover, we clearly have

(4.6) If FdX  m, then V(X)~Ob 03B8cm c Ob 03B8m + 1.

We can write SSh(X, Y) = H(pro-TopX V(X), V(Y)), i.e. for X ~ Dmm (cf. [ 13]
2.4): .

(4.7) SSh(X, Y) = H(pro-Top)/03B8m+1(V(X), V(Y».

The proof of 4.4 is now very similar to that of [ 13] 4.2: Define T: Hm + 1C~(Dmm,
URR, (Adm+2)) ~ SSh(Dmm) by T(03B1) = [~(N,Y)]03B5m+ 1(03B1)[~(M,X)]-1 eSSh(X, Y) for
03B1~Hm+1C~(M - X, N - Y). Here [ ] denotes equivalence class in H(pro-
Top)/03B8m + 1. Clearly, T is an equivalence of categories. The following diagram
may be useful to illustrate the definition of T.

THEOREM A from the Introduction follows now immediately from 4.4 and
3.10(a).

4.8 REMARK. There is a modification of Theorem A with a slightly weaker
embedding condition. Let L(m) be the class of telescopes Tel({Pn, pn}), where
{Pn, p.1 is a tower of compact polyhedra P n with dim Pn  m - 1 and piecewise-
linear bondings Pn. We now obtain the telescope m-homotopy categories Hz(.) C,,,,
and HX(m)C (cf. §2). It is fairly obvious that e: HC~ ~ H(pro-Top) induces a full
embedding eX(m): HL(m)C~ ~ H(pro-Top)/03B803B8cm. Adapting the proof of 4.4, we see
that (URR, (Adm+1), HX(m+ 1)C~) are data of a categorical complement theorem
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for SSh(Dmm). Using a suitable version of 3.10, we infer moreover that

(URRm+1, (Adm+1), HL(m+ 1)C) are data of a categorical complement theorem for
SSh(Dmm).

Theorem A yields various corollaries (cf. §4 of [13]), for example

4.9 COROLLARY. Let M be an (m + 1)-connected ANR with a complete
uniform structure. Then the strong shape category of (m + 2)-admissible compacta
X c M with FdX  m is isomorphic to the complete (m + 1)-homotopy category
of their complements M - X.

4.10 COROLLARY. Let M be an r-connected piecewise-linear manifold with a
complete uniform structure such that r  0 and dim M  2. Let k e {0,..., min(r,
d(M))}, where d(M) = max{s ~ N 12s + 2  dim M}, and let m ~ {k, ..., min(r,
dim M - 2 - k)}. Then the strong shape category of ILC compacta X in the
interior of M with FdX  k - 1 is isomorphic to the complete m-homotopy
category of their complements M - X. If r  d(M), one can always choose
k = m = d(M).

4.11 REMARK. If M is compact, one can replace the complete m-homotopy in
the above two results by the proper m-homotopy category.

The rest of this section is devoted to compacta of stable shape, i.e. of the shape of
a (not necessarily compact) polyhedron.

4.12 THEOREM. Let DMstm be the class of compacta X e Dmm which have stable
shape. The following are data of a categorical complement theorem for SSh(DMstm):

(a) (URR, (Adm+1), HmC~)
(b) (URRm, (Adm+1), HmC)

4.13 REMARK. Recall that the canonical functor SSh(Dmstm) ~ Sh(Dmstm) is a
category isomorphism.

Proof of 4.12. (a) By 3.9, we can define an equivalence of categories T:

HmC~(DMstm, URR, (Adm+1)) ~ SSh(Dmstm) by T(03B1) = [~(N,Y)]03B5’m(03B1)[~(M,X)]-1 for
03B1~HmC~(M - X, N - Y). Here, [ ] denotes equivalence class in H(pro-
Top)/03B8cm.

(b) This follows from (a).

Let us now say that a compactum X in an ANR M satisfies the embedding
condition (Adstm), if X c M is m-admissible and 7tB(M - X) is stable in pro-

HTop.

4.14 EXAMPLE. Let X be an ILC compactum in the interior of a piecewise-
linear manifold M. If X is a subpolyhedron of M, or if dim M  5 and X has the
shape of a compact polyhedron P with dim P  dim M - 3, then X c M
satisfies (Ad:imM-2-Fdx); see [16] Theorem 5.6. Notice that X c M (in general)
does not satisfy (Addim M-1-FdX).
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4.15 LEMMA. Let X c M satisfy (Adstm). If S~Dmm, then X~Dmstm.
Proof 03C003B5(M - X) ~ U(X) is an 03A9*m-equivalence in pro-HTop (cf. [13]).

Hence, U(X) is dominated in pro-HTop by the stable object 03C003B5E(M - X) and a
fortiori by a single space Z. Choose morphisms u: U(X) ~ Z and d: Z - U(X)
such that du = 1. Obviously, u factors through an ANR (the open neighbour-
hoods of X form a cofinal subsystem of U(X)). Hence, X is shape dominated by
an ANR, and therefore X has stable shape.

4.16 THEOREM. The following are data of a categorical complement theorem
for SSh(Dmstm):

(a) (URR (Adstm), HmC~)
(b) (URRm, (Ad:), HmC)

Proof We have shown in [13] that (URR, (Adm), wHmCocJ and (URRm, (Adm),
wHmC) are data of a categorical complement theorem for Sh(DMm). It therefore
suffices to show: If X c M, Y c N and 1lB(N - Y) is stable, then

(a) HmC~(M - X, N - Y) ~ wHmC~(M - X, N - Y) is a bijection.
(b) HmC(M - X, N - Y) ~ wHmC(M - X, N - Y) is a bijection for m-

connected N - Y

It is clear that both maps are surjective since homotopy implies weak homotopy.
Let f o, f1 ~ C~(M - X, N - Y) represent the same morphism in wHmCoo, and let
g ~ C~(P, M - X), where P is au-compact polyhedron of dimension m. Then
f og and f1g represent the same morphism in wHC~. Hence 1t8([fog]) = 03C003B5([f0g]),
where [ ] denotes equivalence class in HC~ (cf. [13] 2.2). Since 03C003B5(N - Y) is
stable, 03B5([f0g]) = s([fi9]). This means [f0g] = [f1g]. Therefore, f0, f1 represent
the same morphism in HmC~, which proves (a). Now let f0, f1 ~ C(M - X,
N - Y) represent the same morphism in wHmC, and let g e C(P, M - X), where
P is as above. By (a), [UC(f0g)] = [UC(f0g)]. Then the argument of [13] 2.14
shows that f0g, f1g are homotopic in C. Thus, fo, fl represent the same morphism
in HmC, which proves (b).

5. The Duality Theorem

In this section we prove Theorem B of the Introduction. In addition to our

categorical complement theorems we shall need the following two ingredients.

5.1 THEOREM (Strong Shape S-duality Theorem of Q. Haxhibeqiri and S.
Nowak [6]). Let Stab-SShn be the full subcategory of the stable strong shape
category Stab-SSh having as objects all compacta X c S", and let Stab-HTopn be
the full subcategory of the stable homotopy category Stab-HTop having as objects
all complements sn - X of compacta X c 5’". Then there exist a contravariant
category isomorphism Dn: Stab-SShn ~ Stab-HTop" with Dn(X) = S" - X for all
objects X.
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5.2 THEOREM (Strong Shape Suspension Theorem). Let X be a compactum of
fundamental dimension FdX = m, and let Y be an r-shape connected compactum.
Then the suspension E: SSh(X, Y) ~ SSh(03A3X, 03A3 Y) is a surjection provided m  2r
and a bijection provided m  2r - 1.

5.3 REMARK. Let CM be the category of compacta ( = compact metrizable
spaces) and continuous maps, and let S be the class of strong shape equivalences
in CM. Then the strong shape category SSh is the quotient category CMBS (see
[2], [3]). We let q: CM ~ SSh denote the quotient functor. The suspension
functor E on CM has the property 1:(S) c S; hence there is a unique functor
1: = 03A3SSh: SSh - SSh with Esshq = ql, called the strong shape suspension.
Theorem 5.2 is the strong shape analogue of the classical suspension theorem in
homotopy theory (see e.g. [18], [19]). We remark that the corresponding result
in the Borsuk-Mardesic shape category Sh says that 1:: Sh(X, Y) - Sh(03A3X, E Y)
is a surjection provided m  2r + 1 and a bijection provided m  2r (this was
essentially established by S. Nowak in [14]). A proof of Theorem 5.2 can be
based on Yu. T. Lisica’s description of SSh via the coherent homotopy category
of towers (cf. [8]), applying the classical suspension theorem to maps and
homotopies. Details are given in the Appendix.

The proof of Theorem B is now straightforward: Let X, Y c S" be ILC compacta
such that FdX, FdY  d(n) - 1 and X, Y are c(n)-shape-connected. Using
Theorem 5.2, Theorem 5.1 and the classical Suspension Theorem (noticing that
S" - Y is (n - FdY- 2)-connected; cf. [13] 3.9), we obtain a bijection

D: SSh(Y, X) ~ Stab-SSh( Y, X) ~ Stab-HTop(S" - X, S" - Y)

Finally, the category isomorphism theorem 4.10 yields a bijection
R: SSh( 1: X) ~ Hd(n)P(Sn - Y, S" - X). Now set à = RD-1; this yields the

desired functor A: Tn ~ Hd(n)P.
In the polyhedral case, there is a modification of Theorem B with a slightly

improved connectivity condition.

5.4 THEOREM. Let c’(n) = max{k |4k + 2  n}, and let Tn be the full sub-
category of HTop having as objects all complements sn - X of c’(n)-connected
piecewise-linear embedded compact polyhedra X c S" with dim X  d(n) - 1.
Then there is a contravariant full embedding

0394’: T’n ~ Hd(n)P
such that A,(Sn _ X) = Sn - X for each object sn - X.

Proof. There are bijections D’: HTop(Y, X) ~ HTop(Sn _ X, Sn _ Y) and R’:
HTop(Y, X) ~ Hd(n)P(sn - 1’: sn - X).
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Let us say that a map f: A - B is homotopically associated in degree m to a
proper map g: A ~ B, f ~mg, if the following holds: For each closed A’ c A such
that f|A’ is proper, f|A’ ~mg|A’. Here ~m denotes proper m-homotopy.
The functor A’ has the following remarkable property.

5.5 THEOREM. For each 03B1~T’n(Sn - X, S" - Y), there exist representatives f :
Sn - X ~ Sn - Y of 03B1 and f*:Sn - Y ~ Sn - X of 0394’(03B1)~Hd(n)P(Sn - Y,Sn - X)
such that

(1) ff * is a proper map with ff* ~d(n) 1;
(2) f*f ~d(n) 1.

5.6 REMARK. Since f* is proper, f *(S" - Y) is closed in sn - X. It follows then
from (1) that f|f*(Sn - Y) must be proper, which sheds some more light on (2).
We may regard f and f* as ’inverse to each other’ in a very weak sense; however,
we emphasize that this strongly depends on the ’correct’ choice of represen-
tatives fe 03B1, f* c- 0394’(03B1).

Proof of 5.5. Let us first observe that we can extend the functor 0394’ to the full
subcategory T" of HTop having as objects all complements S" - W of c’(n)-
connected PL embedded compact polyhedra W c S" with FdW  d(n) - 1 and
dim W  n - 3. We now consider 03B2 ~ HTop(Y, X) and construct adequate
representatives f of D’(fl) and f * of R’(P); see the proof of 5.4. Let 0 = [g] with a
PL map g: Y ~ X, and let Z be the PL mapping cylinder of g. Clearly, the
problem is unchanged if we move X and Y to other places by PL homeomorph-
isms of S". In particular, by the dimension hypothesis dim X, dim Y  d(n) - 1,
we may assume that X, Y c Z c Sn - 1 c S", and that there is a collapsing map
r: Z - X with g = ri (where i: Y- Z is the inclusion). Note that Z is c’(n)-
connected with FdZ  d(n) - 1 and dim Z  n - 3.

Step 1. Clearly D’([i]) is represented by the inclusion i# : S" - Z ~ Sn - Y
Define 03BB: Sn ~ Sn+ = {(x1, ... , xn+1)~Sn|xn+1  01 by À(Xl, ..., Xn+ 1) = (xi, ..., 
Xn, |xn+1|). Let n: Sn+ ~ Dn = {(x1,..., Xn, 0)~ Rn+1|03A3x2i  1} be the homeomor-
phism 03C0(x1, ..., xn+1) = (x1,..., xn, 0). Choose co: Dn ~ I such that 03C9-1(1) = Y
and define ~Y: Dn ~ D" by Xy(x) = 03C9(x)x. Finally, define i*: S" - Y- S" - Z by
i*(x) = 03C0-1 ~Y03C003BB(x). This is a proper map which can be pieced together with
i: Y- Z to a continuous F: Sn ~ S". But now [13] 4.9 and the proof of 4.16 above
imply that R’([i]) is represented by i*. By construction, i#i* is a proper map
which can be pieced together with ly to the above map F. Hence R’([1Y]) is
represented by i#i*, i.e. i#i* ~d(n) 1Sn-Y. Finally, let 03BBX:Sn - X ~ Sn - X,
03BBX(x) = 03BB(x). This is a proper map with Àx ~d(n) 1 (repeat the arguments above).
It is easy to see that i*i# ~d(n)03BBX which implies i* i# ~d(n) 1.

Step 2. We have shown in [11] that there exists a map H: Dn+1 ~ Dn+1 such
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that H carries Dn+1 - Z homeomorphically onto Dn + 1 - X, H restricts to a
retraction r’: Z - X, and H = id outside of a regular neighbourhood N’of Z in
Dn+1.

Let h: Sn - Z ~ Sn - X be the homeomorphism induced by H. Then R’([r]) is
represented by h (note [r] = [r’] and argue as in Step 1). By construction, h is
the identity outside a regular neighbourhood N of Z in Sn. Hence, h is

homotopic to the inclusion j : Sn - Z - Sn - X (recall that N - Z z DN x

(0, 1] ~ N - X). We conclude that D’([r]) is represented by h-1: Sn - X-
Sn - Z: Let i’: X ~ Z be the inclusion, and let { } denote stable homotopy
classes. Then {[r]} = {[i’]}-1, thus {D’([r])} = {D’([i’])}-1 = {[j])}-1 =
{[h]}-1 = {[h-1]}.

Step 3. Set f = i#h-1 and f * = hi*. Then fl* = i#i* is a proper map such
that ff* ~d(n) 1. Moreover, f *f = hi*i#h-1 is clearly homotopically associ-
ated in degree d(n) to h1h-1 = 1. By construction, [f] = [i#][h-1]=
D’([i])D’(Cr]) = D’([g]) and [f*]d(n) = [h]d(n)[i*]d(n) = R’([r])R’([i]) = R’([g]).

Appendix. Proof of the Strong Shape Suspension Theorem

We begin with some notation. Let DI = {0, 1} be the boundary of 1 = [0, 1]. For
each homotopy H: A  I ~ B, we define Ht:A ~ B by Ht(x) = H(x, t). If fo,
fl: A -+ B are maps and A’ c A, the notation H:f0 ~ f1 rel A’ indicates that
H: X x I ~ Y is a homotopy such that HIA’ xl is stationary and Hk = fk, k = 0, 1
(if A’ = 0, we write H:fo ~ f1). For homotopies HO, Hl: A  I ~ B we prefer to
write 03B8: H0 ~ H1 instead of 03B8: H0 ~ H1 rel A x DI (0 is then a homotopy of
homotopies).
For each pointed space (A, a), let p = p(A,.): A  I ~ A x I/{a} I denote the

projection map, written as p(x, t) = [x, t], and let (A, a) Q 1 denote the pointed
space (A  I/{a}  I’*) with * = p({a} x I ). By (A,a)Q9aI we mean the pointed
subspace ( p(A x DI), *). For each t E l, let it: (A, a) ~ (A, a) Q9 7 be the pointed
map it(x) = [x, t]. If fo, fl: (A, a) ~ (B, b) are pointed maps, we also write
H:f0 ~*f1 instead of H:f0 ~ f1 rel{a}; H is then a pointed homotopy. Moreover,
for two such pointed homotopies H°, H1 we also write 0: H’ ~* H1 instead of
03B8: H0 ~ H1 rel A  ~I ~ {a} x 1. Given any pointed homotopy H, we let

H: (A, a) Q I ~ (B, b) denote the unique pointed map satisfying Hp = H. We let
q = q(A,a): A xl -+ A  I/{a}  I ~ A  ~I denote the projection map, written as

q(x, t) = (x, t), and let S(A, a) = (A x I/{a}  I~A  a,,*) denote the reduced suspen-
sion of (A, a), where * = q({a} xl u A x ~I). It is easy to see that 03BC = 03BC(A,a):
S(A, a) Q i - S((A, a) ~ I), 03BC([x, s&#x3E;, t]) = [x, t], s), defines a natural

homeomorphism. Then for each pointed map G: S((A, a) Q I) ~ (B, b), the map
G# = GJlp: S(A, a) x I ~ B is a pointed homotopy from GS(io) to GS(il).
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Recall that the reduced suspension S and the loop space functor Q are adjoint:
In fact, the exponential law yields a natural bijection 03B2: Topo(S(A, a),
(B, b)) - Topo((A, a), Q(B, b)) between sets of pointed maps. For (B, b) = S(A, a)
we obtain the map p = 03C1(A,a) = 03B2(1): (A, a) ~ 03A9S(A, a) which is a (2r + 1)-
equivalence provided (A, a) is an r-connected pointed CW-complex; see [18] or
[19].

A.1 PROPOSITION. Let (B, b) be an r-connected pointed C W-complex, (A, a) be
a pointed CW-complex, and fo, fl: (A, a) ~ (B, b) be pointed maps.

(1) Let dim A  2r and H: S( fo) ~* S( f 1 ). Then there exists G: fo ~*f1 such that
S(G) # ~* H. 

(2) Let dim A  2r - 1 and Go, G1: fo ~*f1. If S(0)# ~* S(1)#, then

G0 ~* G1.

Proof. (1) Define f : (A, a) ~ ~I ~ (B, b) by f([x, k]) = fk(x). One verifies

03C1(B,b)f = 03B2(03BC-1(A,a))|(A,a) (&#x26;,01. Since 03C1(B,b) is a (2r + 1)-equivalence, there is a map
g: (A, a) (D I ~ B such that g|(A,a) ~ ôl = f and 03C1(B,b)g ~ 03B2(03BC-1 (A,a)) rel (A, a) ~ DI
(cf. [ 18] p. 404). Let 03B8:((A, a)~ I)  I ~ be such a homotopy; in
particular, 0 is a pointed homotopy. One readily verifies (03B2-1(03B8))#:
03B2-1(03C1(B,b)g) ~ 03B2-1 03B2(03BC-1(A,a) rel S((A, a) 0 ~I). Since 03B2-1(03C1(B,b)g) = S(g), we have
found r: S(g) ~ 03BC-1(A,a) rel S((A, a) Q DI). Set G = gp: A  I ~ B and

0393+ = 0393(03BC(A,a)p(A,a)  1I): S(A, a) x I x I ~ S(B, b). Then G:f0 ~*f1 and 0393+:

S()# = S(9) # ~* H.
(2) S(k)#, k = 0, 1, are pointed homotopies from S( fo) to S( fl). Let

03B8: S(A, a) x I x I - B, 0: S(0)# ~* S(1)#. There is a unique map
~: (S(A, a) p I) x I - B satisfying ~(03BC(A,a)p(A,a)  1I) = 0, and one easily verifies
that ~: S(0) ~ S(1) rel S((A, a) Q ~I). In particular, is a pointed homotopy.
Define Z = (A, a) ~ I ~ ~I ~ (A, a) ~ ~I ~ I and define f : Z ~ B by
f([[x, t’], k]) = Gk(x, t’), f ([[x, k], t]) = fk(x). Straightforward computations
show that 03C1(B,b)f = 03B2(03BC-1(A,a)~I)|z. Since P(B,b) is a (2r + 1)-equivalence, there
exists a map g: (A, a) ~ 1 (D I ~ B such that g|z = f. Set g(P(A,a) X 1I)p(A,a)~I:
A x 7 x I ~ B. Then one can check 03C8: Go ~* G1.

We shall now apply A.1 to the unpointed setting. For each space A, let SA
denote its unreduced suspension and q’ = q’A: A x I ~ SA the canonical quotient
map, usually written as q’(xs) = x, s&#x3E;’. We adopt the convention 03A3~ = S0.
Given a homotopy H: A x I ~ B, we define EH: (EA) x 7 ~ YB by
03A3H(x, s&#x3E;’, t) = H(x, t), s)’. Note that H:fo ~ f1 implies EH: 03A3f0 ~ 03A3f1.
Moreover, if we have pointed maps fo, fl: (A, a) ~ (B, b) and a pointed homotopy
H: f0 ~ *f1 then 03C0(B,b)03A3H = S()#(03C0(A,a)  1I), where 1t = 03C0(C,c): 03A3C ~ S(C, c)
denotes the obvious quotient map, C = A, B.
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A.2 THEOREM. Let B be an r-connected CW complex, A be a CW-complex, and
f0, f1: A ~ B.

(1) Let dim A  2r and H: 03A3f0 ~ Efl. Then there exists G: fo rr fi such that
03A3G ~ H.

(2) Let dim A  2r - 1 and G°, G1: f0 rr fi. If 03A3G0 ~ 03A3G1, then G0 ~ G1.
Proof. The case A = 0 is trivial. For A ~ ~, let us fix basepoints a e A and

b~B.

(1) Step 1. Assume that fo, fl: (A, a) ~ (B, b) are pointed maps and

H(a, s&#x3E;’,t) = b, s&#x3E;’ for all s, t.
Then H induces a pointed homotopy H’: S(A, A)  I ~ S(B, b), H’:S(f0) ~*

S(fl)’ characterized by H’(1t(A,Q) XII) = 1t(B,b)H. By A.l, there is G:f0~*f1 with
S(G)# ~* H’. We shall show 03A3G ~ H. Let 0: S(A, a) x I  I ~ S(B, b),
03B8: S()# ~* H’. Define Z = 03A3X  I  ~I ~ 03A3X  ~I  I and F: Z ~ 03A3B by
F(03BE, t’, 0) = (03A3G)(03BE, t’), F(03BE, t’, 1) = H(03BE, t’) and F(03BE, k, t) = (03A3fk)(03BE). One checks
03C0(B,b)F = 03B8(03C0(A,a)  1I I)|z. Since 1t(B,b) is a homotopy equivalence, there is

03C8: EA x 1 x 1 -+ EB with 03C8|z = F. It is obvious that 03C8: 03A3G ~ H.

Step 2. Assume that fo, fl: (A, a) ~ (B, b) are pointed maps.
Then, since the inclusion EA x al u EA x 1 -+ EA x 1 is a cofibration, and EB

is 1-connected, one can use a standard homotopy extension argument to find a
homotopy H’: 03A3f0 ~ !:.fl such that H’ ~ H and H’«a, s&#x3E;’, t) = (b, s&#x3E;’. Now
apply Step 1.

Step 3. General case.
Since a e A is nondegenerate and B is path-connected, f0, f1 are homotopic to

pointed maps/o,/i: (A, a) ~ (B, b). This reduces the problem to Step 2: Let
hk:fk ~ f’k and set H’ = (03A3h1)°H°(03A3h0)-1, where ’0’ denotes juxtaposition of
homotopies (starting from the right side) and ’-1’ denotes the inverse homotopy.
Then H’:03A3’0 ~ 03A3f’1, and we find G’:f’0 ~ f’1 with 03A3G’ ~ H’. The desired

homotopy G is defined by G = (h1)-1°G’° h0.

(2) This is proved by similar arguments and left to the reader (the case r = 0 is
trivial; for r  1 the first step is to assume that fo, fl: (A, a) ~ (B, b) are pointed
maps, G°, G1: f0 ~*f1 and 03B8:03A3G0 ~ !:.G1 with 03B8(a, 5)’, t’, t) = b, s) for all
s, t’, t).

We now come to the proof of the Strong Shape Suspension Theorem. We first
need explicit descriptions of SSh and 03A3SSh. 03A3 extends in an obvious way to a
functor E: pro-Top -+ pro-Top; if f is a level homotopy equivalence in pro-Top,
then so is Ef. Hence, E induces a functor 03A3: H(pro-Top) ~ H(pro-Top). The
Vietoris functor V: CM ~ pro-Top (cf. [5] §8, [10] III §9) induces a full

embedding V: SSh ~ H(pro-Top) with the property YE = E Y (we identify
V(03A3X) and 03A3V(X); cf. [5]). Now, a category K is defined as follows. The objects
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are triples (X, X, p), where X is a compactum, X is an inverse system of spaces
and p: V(X) ~ X is an isomorphism in H(pro-Top). The morphisms are defined
by K(X, X, p), (X’, X’p) = H(pro-Top)(X, X’). It is obvious that the suspen-
sion functor on H(pro-Top) induces a suspension functor 1:: K - K (for the

objects E(X, X, p) = (EX, EX, Ep)). A functor 0: K ~ SSh is defined as follows.
For the objects ~(X, X, p) = X ; for the morphisms f E K((X, X, p), (X’, X’, p’)),
0(f) = V-1«e’)-lfp). Obviously q5 is an equivalence of categories which satisfies
03A3~ = ~03A3.
For - 1  r, m  oo let T(r, m) be the class of towers X = {Xn} of compact r-

connected polyhedra X. with dim Xn  m.
Given a compactum X with FdX = m and an r-shape-connected compactum

Y, there exist xeT(-1,m) and Ye T(r, oo) admitting isomorphisms
p: V(X) ~ X and q : V(Y) ~ Y in H(pro-Top). By the above considerations, the
Strong Shape Suspension Theorem follows from

(A.3) Let X ~ T(-1, m) and Y ~ T(r, ~). Then E: H(tow- Top)(X, Y) ~ H(tow-
Top)(EX, 03A3Y) is a surjection if m  2r and a bijection if m  2r - 1.

To prove (A.3), we shall employ Lisica’s description [8] of H(tow-Top) via the
coherent homotopy category of towers, Coh, which is defined as follows. Objects
are all towers X = {Xn} of spaces. A pre-morphism f x - Y consists of a strictly
increasing index function 9: N ~ N, maps fn: X~(n) ~ 1’:. and homotopies h,,:
X~(n+1)  I ~ Yn, hn: bond fn + 1 fn bond. Pre-morphisms f = {~,fn, hn} and
f’ = {~’, f’n, h’n} are homotopic if there exists a pre-morphism H = {~, F n, Hnl:
X  I ~ Y such that ~  ~, ~’, Fn: fn bond ~ f’n bond and Hn(x, 0, t)
= hn (bond(x), t), Hn(x, 1, t) = h’h(bond(x), t). A morphism of Coh is then a
homotopy class of pre-morphisms; composition comes from the obvious

composition of pre-morphisms (see [8] for details). There is an obvious

suspension functor 1:: Coh - Coh: 03A3X = {03A3Xn}, 03A3f = (ç, 03A3fn, Yhnl for a pre-
morphism f. Moreover, the canonical functor 03BB: tow-Top - Coh given by
03BB(X) = X and 03BB({~,fn}) = {~,fn, stationary homotopy}, is readily seen to induce
a category isomorphism 03BB: H(tow-Top) ~ Coh such that 03BB03A3 = 1:Â. Note also that
the strong shape theories based on H(tow-Top) (cf. [5]) and on Coh (cf. [8]) are

already known to be equivalent by [9], Theorems 2 and 3. We have now seen
that (A.3) is equivalent to

(A.4) Let X e T( -1, m) and Y e T(r, oo). Then E: Coh(X, Y) Coh(EX, 03A3Y) is a
surjection if m  2r and a bijection if m  2r - 1.

In the proof of (A.4) we need the following easily established fact.

(A.5) Given a pre-morphism f = {~,fn, hn} : X ~ Y and homotopies tD.:
X cp(n) x I ~ 1’:., 03A6n: fn ~ f’n. Then the pre-morphism f* = {~,f’n,
03A6n (bond xII) 0 hh 0 bond 03A6-1n+1} is homotopic to f.

Proof of (A.4).
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(1) Let m  2r. Consider any pre-morphism f = {~,fn, hn}: 03A3X ~ 1 Y Each
J,.: 03A3X~(n) ~ 03A3Yn desuspends, i.e. there is gn: X~(n) ~ Y" with fn ~ 03A3gn. By (A.5) we
may assume that already fn = 03A3gn. But then hn: (03A3 bond)(03A3gn+1) ~
(03A3gn)(03A3bond). By A.2, there is h;,: bond gn + 1 ~ gn bond with 03A3h’n ~ hn. It is now
obvious that g = {~, gn, h’n}: X ~ Y is a pre-morphism such that 03A3g is homo-
topic to f.

(2) Let m  2r - 1. Consider pre-morphisms f = {~, fn, hnl, f’ = {~’, f’n, h’l:
x - Y such that Ef and 03A3f’ are homotopic. This homotopy is realized by a
pre-morphism H = {~, Fn, Hn}: EX x I ~ 1:X We may assume X = (p = (p’. By
A.2, the homotopies Fn: 03A3fn ~ 03A3f’n desuspend, i.e. there are ~n: f" ~ f’n with
03A3~n ~ F". By (A.5) the pre-morphism f* = (ç, fi, h*n =

~n(bond  1I) ° hn ° bond ~-1n+1} is homotopic to f; hence 03A3f* is homotopic to Ef
and therefore homotopic to Ef’. The homotopy between Ef * and 03A3f’ is now

realized by a premorphism H* = {~, F*n, H*n} where each F*n: f’n ~ f’n is a

stationary homotopy. But then the Ny may be regarded as homotopies of
homotopies 03A3h*n ~ Yh. By A.2, we infer h*n ~ h’n. But this implies that f* andf’
are homotopic, i.e. that f and f’ represent the same morphism of Coh.
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