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Introduction

The purpose of this paper is to show that a non-degenerate ternary recurrence of
rational numbers has zero-multiplicity at most six. To be more precise, consider
the sequence {un}n~Z of rational numbers satisfying a relation of the form

where P, Q, R ~ Q, R ~ 0 and un e Q for all n and not all zero. The polynomial
X3 - PX 2 + QX - R is called the companion polynomial of the recurrence. Let
01, 02, 03 be its roots. We call the sequence non-degenerate if none of the ratios
03B8i/03B8j(i ~ j) is a root of unity. It is well known that the terms can now be written
as

for suitable 03B11, 03B12, 03B13. We shall consider non-degenerate recurrences only and
call the number of solutions n ~ Z of Un = 0 the zero multiplicity. We prove the
following theorem

THEOREM 1. Let {un}n~Z be a non-degenerate ternary recurrence of rational
numbers. Then the zero-multiplicity is at most six.

To give a little history of the problem, in 1957 it was conjectured by M. Ward
[W] that the zero-multiplicity is at most five. That this conjecture is erroneous is
shown by an example of Berstel [Ber] which has multiplicity six. Take

un+3 = 2un + 2 - 4un + 1 + 4un, UO = u1 = 0, U2 = 1, then UO = u 1 = U4 = U6 =

Mis = u52 = 0. It is generally expected however, that this is essentially the only
exception to Ward’s conjecture. In more special cases the conjecture can be
verified. For example, if 03B81, 03B82, 03B83 are all real, Smiley [S] showed by a simple
argument that the zero-multiplicity is at most three. In the special case when
03B83 = 1, the recurrence can be written as Un = 03B11 03B8n1 + 03B1203B8n2 + a3 and the problem
Un = 0 is the same as 03BDn = -03B13, where v" = aloi + 03B1203B8n2 satisfies the binary
recurrence vn + 2 = (P - 1)vn + 1 - Rvn. When P, ReZ the multiplicity of such
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integral binary recurrences has been treated by K. Kubota [K] and the author
[Beu]. It turns out that Ward’s conjecture is true in this case.

In [K, III] Kubota claims to be able to prove Theorem 1. However, this claim
has not been substantiated up till now. In the meantime, B. Deshommes [D1]
has found a complete solution for the case when uo = u 1 = 0 using p-adic
methods. The methods used in this paper have been dormant for several years.
In an earlier version of 1983 1 proved a multiplicity upper bound of seven with
the possibility of lowering it to six. The work involved looked so messy though,
that I decided it would be better to wait for more elegant proofs. Unfortunately,
several efforts in this direction were in vain. So at last I took up the original
method again and tidied it up as much as possible. In particular I would like to
thank B. Deshommes for her encouragement to get this work finished. For more
information on the history of recurrent sequences in general we refer to [LP] or
[T] and to [ST, Ch. 1, 2, 3] for very recent results.
The present paper is divided into two sections. The first one provides the

necessary tools in a series of Lemmas which consider the equation
03BB03B1x + 03BC03B2x = 1 in x e Z, where a, fi, 03BB, 03BC are given algebraic numbers. Obviously,
this equation is a general version of expression (1) put equal to zero. Lemma 1 is
taken from [BT], where it is proved by means of hypergeometric polynomials.
This Lemma provides an upper bound for the second or third largest solution.
Lemma 2, 3, 4 provide means to create large gaps between consecutive solutions,
thus providing lower bounds for them. Then, in Lemma 5 and 6 we show that
our equation has at most six solutions for a wide range of values of a and fi. In
section 2 we prove Theorem 1.

The interested reader may consult Table III at the end of this paper for

examples of recurrences having zero-multiplicity at least four.

1. Some technical lemmas

In Lemmas 1 up to 6 we consider the equation

03BB03B1x + mox = 1 (2)

in x e Z, where ce, fi, 03BB, 03BC are non-zero numbers in an algebraic number field K.
We assume that none of a, fi, 03B1/03B2 is a root of unity. We also assume that (2) has
the solutions x = 0, k, 1, m with 0  k  1  m.

Let 0eK, 03B8 ~ 0 and let a0Xd + a1Xd-1 + ··· + ad be its minimal polynomial
over Z, with gcd(ao, al, ... , ad) = 1. We define the Mahler height M(O) of 0 to be

a0 03A0i max(1, |03B8i|), where the product is taken over all conjugates of 0,
including 0 itself. In an earlier paper [BT] we used the canonical height h(0)
which is related to M(O) by M(O) = h(e)d.
Throughout this section we shall adhere to the assumptions and notations we

just made.
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LEMMA 1. Suppose m  101. Let H = max(h(a), h(p), h(03B2/03B1)) and suppose H &#x3E; 1.

Then

Proof. See [BT, Lemma 7].

The purpose of this Lemma is clear, it gives a bound on the larger solutions of

(2). The following Lemmas create large gaps between the solutions.

LEMMA 2. Let v be a finite valuation on K such that |03B1|v  1 and Ifil, = 1. Then
there exists a positive integer d with the following properties,

(i) d &#x3E; 1 and d divides both m - 1 and 1 - k.

(ii) If there is an extra solution n of (2) with 0  n  k, then d  4.
(iii) If |03B1|kv|03B2 - 1|v  |p|1/p-1v, where p is the rational prime above v, then

|(m - l)/d|v  |03B1|l-kv and |(l - k)/dlv =1.

Proof. Since À + 03BC = 1, it follows from 03BB03B1x + p,px = 1 that px - 1 =

03BB(03BB - 1)-1(ax - 1) and hence |03B2k - 1 I" = |03B2l - 1 I v = Ipm - 1|v. Denote this value
by Q and remember that Q  IP - llv. After elimination of 03BB, Jl from

03BB03B1x + 03BC03B2x = 1 with x = 0, k, 1 we obtain

Hence

In the same way,

For d we choose the smallest natural number such that |03B2d - 1|v  |03B1|kvQ. We
must have d &#x3E; 1, since d = 1 would imply |03B2 - 1|v  |03B1|kvQ  IP - 1|v, contra-
diction. Furthermore, Ipx - 1|v  |03B1|kvQ implies dix. In particular, d Il l - k and
d m - 1. This proves our first assertion. Notice by the way, that (3) also implies
Ipd - Ilv = |03B1|kvQ.
To prove our second assertion we derive in a similar way as we did for (3), that

|03B2k-n - iL = |03B1|nvQ.
Choose e ~ N minimal such that |03B2e - 1|v  |03B1|nvQ. Again, by the same

arguments as above, e &#x3E; 1, e divides k - n and we have Ipe - 11" = |03B1|nvQ. Since
n  k we now see that e must be a non-trivial diviser of d and hence d  4.
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To prove our third assertion, put fi’ = 1 + 03C0 and keep in mind that

Inlv = |03B1|kvQ. Write t = (m - 4/d. Then

The v-adic value of the sum between brackets can be estimated by

and the last term is smaller than 1 according to our assumption

and thus

as asserted. The statement |(l - k)/dlv = 1 follows from

LEMMA 3. With the assumptions above, let fi = , 03BC = J:, where the bar denotes
complex conjugation. Suppose also |03B1|  4/3. The argument of a complex number z,
denoted by Arg z, will be taken between - n and 1t. Then,

(i) If k &#x3E; 50 and 10-4  |Arg(/03B1)|  03C0 - 10-4, then m - k  |03B1|k
(ii) If |03B1|  2.1 and k  2, then m - k &#x3E; 2|03B1|k.

Proof. Eliminate Â, À from 03BB03B1x + x = 1 with x = 0, k, l, m to obtain

If these quotients equal one, then ak would be real and â/a a root of unity,
contrary fo our assumptions. Put

Then il *- 0, |~|  2. Notice, that
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Hence

A straightforward verification shows that the assumptions in either (i) or in (ii)
ensure that both righthand sides in (5) are smaller than 1 in absolute value. For
any complex number w with |1 + w| = 1 and |w|  1 the inequalities
|w|  larg(l + w)|  (03C0/3)|w| hold. Application of this principle with w equal to
the righthand sides of (5) yields

where r, se Z and 03BC, v are real numbers with 1  |03BC|, |v|  n/3. We eliminate
Arg()/03B1) from these equalities and find that

is either zero or larger than 203C0 in absolute value.

We first show that E ~ 0. Suppose E = 0. Then, by ~ ~ 0

(m - l)03BC|03B1l-k - 1| = (l - k)v|1 - 03B1l-m|.

So,

and hence

Suppose we are in case (i). Because |03B1|  4/3, k &#x3E; 50, the right hand sides of (6)
are smaller than 10-6. The condition on Arg(/03B1) together with (6) now implies
that min(l - k, m-1)  3. Because 1 - k = m - 1 = 3 cannot happen according
to Lemma 4 we have either l - k  4, m - 1 a 3 or l - k  3, m - l  4.
Together with |03B1|  4/3 these inequalities give a contradiction when substitued
in (7). Suppose we are in case (ii). Since l - k ~ m - 1 we have either l - k  2,
m - l  1 or l - k  1, m - 1  2. Together with |03B1|  2.1, these inequalities
give a contradiction when substituted in (7).
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Having shown that E ~ 0, we now find that

Hence m - k  3(1 + |03B1|-1)-1|03B1|k, from which our assertions follow. 

LEMMA 4. Suppose that the equation 03BB03B1x + Jlpx = 1 with 03BB03BC03B103B2 ~ 0 has the
integer solutions p, p + d, q, q + d. Then oc and pare roots of unity.

Proof. From 1 = 03BB03B1p + 03BC03B2p = 03BB03B1p + d + 03BC03B2p + d and 1 = 03BB03B1q + pfiq =
03BB03B1a + d + JlPq+d it follows that the coefficient determinant of 03BB, 03BC vanishes,

This determinant equals 03B2p03B1q(03B1d - 1)(03B2d - 1)((03B2/03B1)q-p - 1). Thus at least one of
the factors vanishes, so that a or f3 is a d-th root of unity or f3/a is (q - p)th root
of unity. Going back to the original equation it is not very hard to see that
actually both 03B1 and f3 are roots of unity. D

REMARK. In words, Lemma 4 states that a given difference between solu-
tions of (2) can occur at most once, unless a and f3 are roots of unity. In par-
ticular, if XI  X2  X3  ... xn are solutions, then xn - xi a (2) and

X3 - x2 ~ x2 - x1.

LEMMA 5. Let 03B1 ~ , |03B1|  4 and h(03B1)  2 1/3 . Then

has at most six solutions.

Proof. Suppose that the equation has seven solutions, which we may as-
sume to be 0  x1  X2  x3  x4  x5  x6. By Lemma 3 (ii) we have
x6 - X4 &#x3E; 21alx4. By Lemma 4, x4  10, and so we certainly have x6  10x4.
Application of Lemma 1 yields

A lower bound for x4 is obtained by application of Lemma 3 3(ii)
x4  x2 + 2|03B1|x2 and so we find,

In particular, x + 2.4x1 + 1  81 + 50 3x1, which implies xi = 1. On the other
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hand, x2  3 and so (8) implies 3 + 2.43  81 + 530, which is impossible. Hence
there are at most six solutions. 

LEMMA 6. Let K be a numberfield and À., Jl, 03B1, 03B2 e K with 03BB03BC03B103B2 ~ 0 and such that
max(h(03B1), h(03B2), h(03B1/03B2))  21/6. Let v be a valuation such that |03B1|v  1 and |03B2|v = 1.
Let p be the rational prime above v and suppose that vlp has ramification index at
most 2. Then (2) has at most six solutions.

Proof. Suppose that (2) has seven solutions, which we may assume to be
0  Xi  x2  x3  X4  X5  X6. By Lemma 4 we know x2  3. Since v has
ramification index at most 2, we have automatically |03B1|x2v  |03B1|3v  |p|1/p-1v.
Application of Lemma 2 with k = x2, 1 = x3, m = x4 yields

for some d  4. Since v has ramification index  2, we infer

Similarly,

By Lemma 2 we also have d|x3 - x2, hence x3 - x2  4. It is straightforward to
verify that x6 - x2  10(x5 - x2), so we can apply Lemma 1 with k = x3 - x2,
1 = x4 - x2, m = xs - X2 and H  21/6 to obtain,

A lower bound for xs - X2 is obtained from (9) and (10) implying

This clearly contradicts (11) since x3 - x2  4.

2. Proof of theorem 1

In this section we consider the equation

where 03B81, 02, 03B83 are the roots of a cubic polynomial X3 - PX2
+ QX - R ~  [X] with R ~ 0, and 03B11, 03B12, a3 are such that all numbers

U. =’%10"1 + cx202 + 03B1303B8n3, neZ are rational and not all zero. We assume that
none of the ratios Oil0j (i :0 j) is a root of unity. It is easy to see that the sequence
{un}n~Z satisfies the recurrence un + 3 = Pun+2 - QUn + 1 + Ru" and solving (12) is
equivalent to solving u. = 0 in n ~ Z.
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LEMMA 7. Let notations be as above and suppose that uo = 0. Suppose we can

find a, b E Q, positive integers d, c5 and a prime p such that

(i) 03B8di = a + b03B803B4i (i = 1, 2, 3).
(ii) Iblp  1/4, IRI, = lalp = 1, |un|p  1 for all n ~ Z.

(iii) |ur|p  1 and 0  r  d + 2c5 implies u, = 0.

Then Un = 0 implies either 0  n  d or n = d + r, where 0  r  d,
Ur = ur+03B4 = o.

REMARK. Condition (i) may seem outlandish at first glance, but as soon as we
have three solutions 0, c5, d of (12), the determinant

vanishes, hence the columns are dependent and (i) readily follows. Notice also
that, according to Lemma 4, ur = ur + 03B4 = 0 can happen for at most one r.

Proof. Suppose Un = 0 and put n = dq + r with q E Z, 0  r  d. Since

and 01 = a + b03B8hj, Un = 0 can be written as

Taking binomial expansions, we get a p-adically converging series,

Hence

Since |ur+t03B4|p  1, Iblp  1, we see that (13) implies lu,l,  1 and condition (iii)
tells us that u, = 0. So ur can be dropped from (13). If q = 0 we are done. Suppose
q ~ 0. After- division by qbla we are left with

because lblp  1/4, we have |(b/a)t-1/t|p  1 for all t  2 and (14) implies
|ur+03B4|p  1. Condition (iii) tells that ur+03B4 = 0. If q = 1 we are done. So suppose
q ~ 1, put ur + a = 0 in (14) and divide by (q - 1)b/a to obtain
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Since |b|p  1/4, we have l(b/aY- 2/t(t - 1)lp  1 for all t  3 and (15) implies
|ur+203B4|p  1. Condition (iii) tells us that ur+203B4 = 0. According to Lemma 4
ur = ur+03B4 = ur + 203B4 cannot happen. Thus we have found either q = 0, 0  r  d or
q = 1, ur = u, + a = 0, as asserted. D

Proof of theorem 1. Since the recurrence is non-degenerate, the roots 01, 02, 03
of X3 - PX 2 + QX - R are all distinct and there exist al, OE2, 03B13 ~ (03B81, 02, 03)
such that

We now study the equation (12) in the unknown n ~ Z. If one of the ai is zero, the
problem becomes trivial, so we assume 03B1103B1203B13 ~ 0 from now on. If the 03B8i are all
real, we know that there are at most three solutions according to a theorem of
Smiley [S]. For completeness we prove that (13) has at most four solutions when
the 0, are real. Rewrite (12) as

Suppose that there are five solutions. Then there must be at least three solutions
having the same parity, say even. This implies that 03B11(03B81/03B83)2x + 03B12(03B82/03B83)2x
considered as a function of x E R has at least two stationary points, which is
impossible, unless (03B81/03B83)2 = (03B82/03B83)2 = 1.

So we may now assume that we have one real root and two complex
conjugate roots. Thus we have the possibilities that one of the roots is rational
and the others are conjugates in an imaginary quadratic field or that the roots
are conjugate cubic numbers. Consider the finite valuations of the field

K = Q(03B81, 02, 03B83). If there exists a valuation v such that |03B81|v, |03B82|v, |03B83|v are all
distinct, then it is trivial to see that (12) has at most three solutions. Suppose
there exists a valuation v such that |03B83|v ~ |03B81|v = |03B82|v. Consider the equation

in neZ. If 1831v  1821v we can apply Lemma 6, provided we show that v has
ramification index  2 over Q. This is obvious however, since ramification index
3 would imply |03B81|v = |03B82|v = |03B83|v. If |03B83|v &#x3E; 1821v we replace n by - n and
consider the equivalent equation

Thus we are left with |03B81|v = |03B82|v = |03B83|v for all finite valuations v of K. Let 03 be
the real root. It is clear that 03B81, 03B82 cannot be conjugates in an imaginary
quadratic field, since |03B81|v = 1021v for all finite v would imply that 03B81/03B82 is a root
of unity. Hence 03 is a cubic number and 01, e2 are its algebraic conjugates.
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Let us now make some normalisations. First of all, if |03B83| &#x3E; |03B81|, we consider
equation (12) with 03B8-i 1 instead of 03B8i and replace n by - n. So we can assume
|03B83|  1011. Multiply 01, 03B82, 03 by the same rational number to make sure that the
new ei are algebraic integers, not all divisible by the same rational integer and
03 &#x3E; 0.

If |03B81/03B83|  4 we can deal with (13) by using Lemma 5. Thus we assume from
now on, 101/031  4. Together with 1011v = 1021v = t031v for all finite v and our
normalisation, this yields a finite list of 0, which is reproduced in Table I, where
we also give an explanation of how this table is compiled. Notice in particular,
that always |03B81/03B83| &#x3E; 4/3 and 10-4  |Arg(03B81/03B82)|  n - 10-4.
Suppose that (12) has seven solutions, which we may assume to be

0 = Xo  xl  X2  ...  x6. Suppose first that X2 &#x3E; 100. We can apply Lemma
3(i) with m = x6, 1 = xs, k = x4, 03B1 = 01/03 to obtain x6 - X4 &#x3E; |03B81/03B83|x4 &#x3E;

(413)X4. Since X4 &#x3E; 100, this certainly implies X6 &#x3E; ’OX4 and we can apply
Lemma 1. Note that H &#x3E; (4/3)1/3 and hence

On the other hand, we have from Lemma 3(i) the lower bound

x4 - x2 &#x3E; IOl/03Ix2 &#x3E; (4/3)x2 which certainly contradicts (16) when X2 &#x3E; 100.

Hence x2  100. To each entry in Table I there corresponds a recurrence
relation given by P, Q, R~Z. We have determined all starting values uo, ul, U2
such that uo = 1 and such that Un = 0 has at least three solutions n, 0  n  250.

These recurrences are listed in Table II. In particular, the recurrence we are
studying should be in this list. Suppose our recurrence has three or four
solutions n with 0  n  250. Hence X4 &#x3E; 250. Inequality (16) still holds. From
Table II we infer x1  2 with one exception, and (16) yields X4  250,
contradiction. The exceptional case corresponds to P = - 2, Q = 0, R = 4. In
this case H &#x3E; (1.8)1/3 and the 196 in (16) can be improved to 100. Then x 1 = 4
again yields a contradiction. So X4  250, i.e. the recurrence has at least five
solutions n with n  250. Our list of recurrences has now dwindled to the

following Table..

The second recurrence is a subsequence of the first. We deal with nrs 1, 3, 4 by
using Lemma 7. For recurrence nr 1 we take d = 52, c5 = 1, a = - 206.234,
b = 159.234, P = 53, for nr 3 we take d = 16, c5 = 2, a = 4, b = - 7, p = 7 and for
nr 4, d = 22, 03B4 = 1, a = 26.214, b = -23.214, p = 23.
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Table 1

Let 01, 02, 03 be the roots of the cubic polynomial X3 - Px2 + Qx - R, P, Q,
R ~ Z. Suppose that the discriminant is negative and that 03B81, 02 are the complex
conjugate roots. In this table we list all P, Q, R such that 03 &#x3E; 0, |03B81/03B83|  4,
|03B81|v = |03B82|v = |03B83|v for all finite valuations v and 01, 03B82, 03 have no common
factor in Z.

The table is compiled as follows. First note, that |03B81|v = |03B82|v = |03B83|v implies
that either 1011v = 1 or v ramifies of order three above the corresponding rational
prime. Hence there exist units ~1, 112, 113 (conjugates) and a natural number M
such that 03B831 = M11i(i = 1, 2, 3). Notice that |03B81/03B83|  4 implies 1111/1131  64 and

together with 111112113 = 1 this yields 1  11111 = |~2|  4, |~3|  1. Using these
bounds it is not hard to compute all polynomials having zeros which satisfy
these conditions. The discriminants of these polynomials give the possible
rational primes which ramify of order three in Q(~1, 112, ~3) and thus the
possibilities for M.

Table II

For each P, Q, R from Table 1 we have determined uo, ul, U2 in such a way that
the sequence {un}n0 given by Un = Pun - 1 - Qun - 2 + Run - 3 (n  3) has at least
three zeros n with 0  n  250 one of which is 0 itself, i.e. uo = 0. Clearly, if

{un}n0 is listed we do not list its multiples, although they satisfy the

requirements. Moreover, if {un}n0 is listed, we do not list its shifted versions
{un+k}n0 for any k~N.
The table is compiled as follows. For each m, 0  m  250 we determine u1
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Table III

Here we list P, Q, R, uo, Ul, U2 such that the corresponding recurrence sequence
has at least four zeros. We call two recurrent sequences {un}n~Z, {vn}n~Z
equivalent if there exist 03BB~Q*, k ~ Z and a choice of ± sign such that

vn = 03BBnu ± n + k for all n ~ Z. From each equivalence class we list at most one
representant. We do not claim this list to be complete, although it seems hard to
find other examples.
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