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Summary

In this paper all varieties will be projective and defined over C. We will prove
two results on the Hurwitz scheme of branched coverings of pl.
The first may be paraphrased by saying that ’maps of a curve to pl are usually

determined by their branch points.’ More precisely, the map Hd,g ~ Jtg x 9b
from the Hurwitz scheme of d-fold coverings of pl by a curve of genus g to the
product of the moduli space of curves of genus g and the scheme of sets of
b = 2g + 2d - 2 points of [P1, taking a point in the Hurwitz scheme to the
source curve and the set of branch points, is birational onto its image.
The second concerns the monodromy of the map from the Hurwitz scheme to

the space of sets of points in pl obtained by associating to each branched
covering its branch points: the result ’explains’ why for coverings of degrees 3 or
4 this monodromy group is smaller than the full symmetric group by giving a
geometric structure to the fiber; in particular, we give a geometric interpretation
of a result of Cohen [1974].

Introduction

Let C be a smooth irreducible curve. We say that a map f: C ~ P1 of degree d
has simple branching if the fiber over each point of P’ 1 contains at least d - 1
points; equivalently, the ramification points of f are all simple and have distinct
images (the branch points).

THEOREM 1. Let f, g: C - pl be two coverings of P’ 1 by a smooth irreducible
curve C of genus  1. Assume that both have simple branching and that the
branching occurs over the same set r c P1. If ris sufficiently general, thenf and g
are the same in the sense that there is an automorphism h making the following
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diagram commutative:

Here is a more sophisticated statement of the Theorem:

COROLLARY 2. Let Hd,g be the Hurwitz scheme of degree d branched covers of
pl by curves of genus g  1, and let fjJb be the moduli space of b-pointed rational
curves with b = 2d - 2 + 2g. The natural map

sending each branched cover C ~ P1 to the isomorphism type of C and the position
of the branch points is birational onto its image. D

Note that since the assertion of the Corollary is birational, we do not need to
worry about the part of Hd,g where the branching is not simple.
We were first led to investigate this subject because of work of Kleiman and

Speiser on Tyrrell’s conjecture that the 40 elliptic curves tangent to 6 general
concurrent lines in the plane are pairwise nonisomorphic. It turns out that these
40 curves correspond to the 40 sheets of the map H3,1 ~ P6, so that the
theorem implies this conjecture. The connection is made explicit in the third
section, below.

In the last section of the paper we present some geometric results on the
monodromy of the covering Hd,g ~ Pb. Cohen [1974] has shown that in the
case d = 3 this group is a symplectic group (see Kluitmann [1988] for a

generalization.) We give a geometric interpretation of his result, showing that
the bilinear form preserved is an avatar of the Weil pairing, and we extend these
ideas to the case d = 4 as well. In the case d = 4, our result explains and makes
more precise a remark of Maclachlan [1978, last paragraph].
Theorem 1 is the more surprising because it fails in case C ~ P1, even for

coverings of degree 3: In this case there are 4 ramification points and 4 branch
points, and the statement of the theorem with C = P1 would say that the cross
ratio of the branch points (in some chosen order) determines the cross ratio of
the ramification points in the corresponding order. We claim however that the
association of ramification point cross ratios and branch point cross ratios is a
correspondence of type 4,2 from P1 to P1, so that to almost every branch point
cross ratio there correspond at least 2 distinct ramification point cross ratios.
To see this, regard maps from P1 to P1 of degree 3 as projections of a fixed

twisted cubic in p3 from lines. If we fix 3 points on the twisted cubic, then the
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projections with these 3 points as ramification points correspond to the lines
meeting the three tangent lines Mo, M1, M~ to the twisted cubic at the 3 given
points. Let Q be the quadric containing the 3 given tangent lines as lines of one
ruling (M03BC |03BC ~ P1}; the lines in p3 meeting all 3 tangent lines are precisely the
lines {L03BB |03BB ~P1} in the other ruling of Q. Any 4th tangent line of the twisted
cubic, corresponding to a value of the ramification point cross ratio, will

intersect Q in 2 points which in general lie on distinct L03BB; thus there are in
general two maps with given ramification point cross ratios. On the other hand,
if we project from one of the LA then the points of the image P1 correspond to
the lines M03BC. Thus 1À is the cross ratio of the branch points of the map
corresponding to LA iff the plane spanned by LA and Mil is tangent to the twisted
cubic. But there are exactly 4 planes containing M03BC which are tangent to the
twisted cubic (they correspond to the ramification points of the twisted cubic
under projection from Mu), so there are 4 values of 03BB for which the branch point
cross ratio is p, as claimed.

We can make this example even more explicit: every triple branched cover is
given by a rational function of the form

for some number t. For every t, this function sends 0, 1, oo to 0, 1, oo, and is
ramified at these three points and at a fourth point

which is thus the cross ratio of the ramification points. The map

t ~ (ramification point cross-ratio off,,
branch point cross-ratio of f )
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is a map of type 2,4 as is shown above, and is actually birational onto its image
in P1  P1; for example, the two values of t for which the map is ramified at -1
are ± 31/2, and the corresponding ramification points are distinct. Thus the t-
line is actually the moduli space for the space of triple covers. The image curve in
P1  P1 has 3 ordinary nodes at (0, 0), (1, 1) and ( oo, ~) as one shows by
checking that each of these points has two distinct preimages in the t-line. Since
its arithmetic genus is 3, these are its only singularities.
The theorem also fails for higher genus if the position of the branch points is

not assumed general; an example is given at the end of section 2.

REMARK. The Theorem was previously known in the case where

dim Hd,g  dim that is, when d  (g - 1)/2. In this case Arbarello and
Cornalba [1981] have shown that the map Hd,g ~ Mg is generically one to one;
that is, the generic curve possessing a map to P1 of degree d  (g - 1)/2 has a
unique such, and of course Theorem 1 follows.

Here are some appealing open problems in the area:
First, though Theorem 1 is stated in characteristic 0, and the proof is very

tightly tied to characteristic 0 techniques, we know no reason to think that the
result doesn’t hold in arbitrary characteristic. In any case, it would be very nice
to have an algebraic proof.

It seems reasonable to hope that Theorem 1 still holds if Pl is replaced by an
arbitrary curve D, at least if a little caution is exercised (for example, in a map
from one elliptic curve to another there are no branch points, so the ’general
position of the branch points’ doesn’t help much.) There are so few maps
between curves of higher genus that the Theorem ought in some sense to be
easier in that setting.

Perhaps most interesting is the problem raised in the last section of

determining the monodromy groups of the Hurwitz scheme.
In the first section below we will review the (hoary) construction of curves as

branched covers, and explain what happens to the stable model of the curve and
branched cover as two branch points come together in the case of simple
branching.
The second section is devoted to the proof of Theorem 1. In the third section

of the paper we explain the connection of our work with Tyrrell’s conjecture.
The fourth section is devoted to the geometric structure of the fibers of the
Hurwitz schemes of 3 and 4-sheeted coverings.

1. Review of branched covers of pl

The technique we will use is based on the Riemann existence Theorem, which we
will now review. Suppose we are given a ’bouquet’ of b = 2d + 2g - 2 oriented
simple disjoint paths 03B31, ... , yb on Pl 

1 starting at a given base point and
encircling marked points pl, ... , pb:



99

If ~1, ... , (Pb are permutations of d letters such that:

1. The product ~1 ··· (Pb = 1 in the symmetric group;

and

2. ~1, ... , (Pb generate a transitive subgroup of the symmetric group,

then there is a unique d-sheeted covering of P1, branched only over pl, Pb
with a labeling of the fiber over the base point, such that the monodromy
around the path 03B3i is the permutation gi of the sheets. We will call the data
consisting of the pi, yi and (pi, together with the base point and the labeling of the
sheets over it, a set of branch data for the covering. The covering itself may easily
be reconstructed from the branch data as an analytic 1-manifold: one simply
takes a disjoint union of d copies of the exterior of the region in the 2-sphere P1
bounded by the paths 03B3i, and joins them with ’local plumbing fixtures’ over the
disks bounded by the y;; the local plumbing fixture for Yi is obtained by
decomposing ~i into disjoint cycles, and taking the disjoint union of a disk for
each cycle, where the map on the disk corresponding to an n-cycle is z H z".
The permutations (p, are not uniquely determined by the positions of the pi,

but depend on how the paths yi are chosen. Thus for example if we change the
i th and i + 1 st paths as in the following pictures
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it is easy to see that all the permutations but the ith are unaffected, while the ith
changes to ~-1i+1~i~i+1, the conjugation of the old ith permutation by the
i + 1 st. Such changes define an action of the braid group on n letters on the set
of branch data associated to the given covering. Clebsch [1872], pp. 224-225,
proved that by applying a suitable element of this group one can arrange the
covering data in the form

(or indeed in any of a wide range of related forms) where the first transposition
(12) occurs 2g + 2 times at the beginning and the other (i, i + 1) each occur
twice, in order. (Note that the group generated by the ~i, the monodromy group
of the cover, is an invariant; but a transitive subgroup generated by trans-
positions must be the full symmetric group, so this invariant does not provide
any obstruction.) He further proved that the same form could be achieved after
any given relabeling of the points bi; this amounts to saying that the given form
can be achieved by an element of the ’pure braid group’, the subgroup of the
braid group consisting of those elements that induce the identity permutation of
the strands. (A typical element of the pure braid group can be pictured as
producing the following transformation of the diagram:

the effect is to replace ~1 and ~2 by their conjugates under the product (~1~2.) A
stronger version of Clebsch’s result may also be found in Kluitmann [1988], but
Clebsch’s beautiful exposition, and also the subsequent wider-ranging one of
Hurwitz [1891] are still well worth reading today.
One may also interpret Clebsch’s theorem as saying that any covering of P1,

branched in a given set of points pi, can be brought into any other by a suitable
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motion of the points (here the braid action is clear!) Thus it implies that the
Hurwitz scheme Hd,g of all degree d branched covers of pl by a curve of genus g
with simple branching is irreducible.
Of course, once we know that the Hurwitz scheme is irreducible, we see that

any list of d + g - 1 pairs of copies of transpositions

such that (ai, bi) generate a transitive subgroup satisfies conditions 1 and 2, and
thus can serve as a normal form.

All the information above is quite standard. A little less standard is the

information about the stable limit of the coverings produced when two of the
branch points pi and p, are brought together, which we now explain :

Let 9b be the space of b-tuples of distinct ordered points in pl. Let e = Hd,g
be the Hurwitz scheme over Pb, and let

be the universal family of branched covers. The family W -+ H induces a map
r: H ~ JI g sending each cover to the isomorphism class of the curve on which it
is defined.

What we need is some information on what happens to a curve simply
branched in a given way over a set of points r as two of the points of rare
brought together. The situation in general is rather complex, (see for example
the paper of Harris and Morrison [1989] for general information about these
limits) but the following will suffice for our purposes:

LEMMA 3. Suppose that {Ct ~ P1}t&#x3E;0 is a real analytic arc in the family of
branched covers with simple branching over the b-tuple of distinct points rt. If pl,t
and P2,t in rt approach each other as t - 0, but the other points of rt remain
distinct, then

(a) If the permutations associated to pl,, and P2,t in the branch data for C, are not
equal (this is independent of t so long as t ~ 0), then the stable limit of the
family of curves Ct is a smooth curve.

(b) If the permutations associated to pl,t and P2,t are equal, then the stable limit of
the family Ct is both irreducible and singular (necessarily an irreducible curve
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with one node) iff the permutations associated to the points other than p, and P2
generate a transitive permutation group of the sheets.

REMARK. Let {03C3i} be the transpositions in the branching data for C, which are
associated to the points other than pl,t and p2,t. Consider the case not treated by
Lemma 3, where the {03C3i} generate a proper subgroup of the symmetric group on
r. In this case the group generated by {03C3i} has precisely two orbits (since adding
a transposition makes it transitive), and in fact since all the 03C3i are transpositions,
it is the product of the full symmetric groups on the two orbits. Suppose that the
orbits are of sizes a and b, so that the group is Sa x Sb . Suppose that exactly
2a - 2 + a of the transpositions 03C3i belong to Sa. One can prove by the same
method as that below that in this case C, approaches a limit which is the union
of a curve of genus a and a curve of genus g - a, meeting transversely in a node;
thus for example the stable limit is nonsingular iff a = 0 or g.

Proof. The problem is local to the common limit point p of pl,t and P2,t on the
base P1, and to the (at most 4) sheets affected by the transpositions i 1 and i2
associated to pl,, and p2,t in some chosen branching data for Ct. If il and i2 are
disjoint transpositions then the family has the form

and it is clear that the limiting curve is nonsingular. If LI and i2 have just one
sheet in common, then we can find local analytic coordinates in the source and
target so that the family is given by z3 - tz - x = 0, projected to the x-axis. As t
goes to 0, this looks like

As one sees from the local equation, the three sheets form a nonsingular disk in
the limit.
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Finally, if 03C41 = T2 then we may take the family z2 - (t - x2) = 0 as the local
family; this is singular at t = 0:

In the limit, we see that there is no monodromy around p; thus if the remaining
transpositions do not act transitively, then the curve splits into two components,
necessarily joined at the node; since this curve will not be stable if one of the
components is rational, we cannot immediately decide whether the stable limit is
singular. However, if the remaining transpositions act transitively, then the
curve remains irreducible, and therefore stable, so that it is its own stable model.
This completes the proof. D

2. Proof of Theorem 1

We first explain how we use the assumption that r is general: the set of points
r E Yb such that 2 distinct points of the fiber of H over r go to the same point of

Mg is evidently closed; if the Theorem were false then it would contain a dense
set, and thus be all of Pb. By our description of A’ above in terms of branching
data we see that Jf is unramified over 9b. Thus if the theorem failed we could
find a curve C = Co and two branched covers f0, g0 : C0 ~ P1 with simple
branching over a general branch divisor ro, as in Theorem 1, having the
following property: For any path T’t starting from ro in 9b we can find a family
ft, gt : Ct ~ P1 of pairs of branched covers starting from the given pair. Because
stable limits of curves are unique, this is still true if two points in the branch set
come together at the terminal point of the path (in general we would have to
blow up the family of P1’s that are the targets for the branched covers, but in the
situations considered below this will never be necessary.) Thus because r is
chosen generally it is possible to cover an arbitrary motion of r in an open subset
of Yb by a motion of C together with the pair of maps from C to P1 branched
over r. In particular, we can meaningfully speak of the ’limits of f, g : C ~ P1 as
pi and p2 are brought together’; of course these limits will depend on the path
along which p1 and P2 are brought together.
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To prove the Theorem, we may assume by the remarks in section 1 that the

branch data for the covering f are given by the sequence of permutations

The first 2 (genus C) of these permutations are equal to 03C31 = (12), and each of
the others is repeated exactly twice.

Let 03C81, ... , 03C8b be the branch data for g. We will prove that if the points of r
are general, then the branch data of g are the same as the branch data of f up to
relabeling the sheets of the covering.

Since ~2i-1 = ~2i and the other (~j generate a transitive group, we must have

03C82i-1 = t/I 2i and the other t/I j generate a transitive group by Lemma 3; else the
curve C would move in a family with two distinct stable limits as P2i-l and P2i
are brought together. Similarly, we must have 03C81 = 03C82 = ... 03C82(genus C), so
that the branch data for g may be written as

Because the subset

obtained by leaving out ii generates a transitive group of permutations, we see
that the letters interchanged by ii must also be moved by other 03C4j; thus each of
the d letters occurs in at least two of the i; . Since there are only d permutations r,
it follows that each letter occurs in precisely two.
We next use Lemma 3 in a more subtle way to show that 03C4i does not commute

with 03C4i+1 (interpreting i modulo d + 1, the argument also shows that rd does not
commute with 03C41). Choose an i  2(genus C), and consider a path in 9b starting
from r = {p1, ... , pj which begins by moving P2i+1 in a loop around P2i (but
no other pj) and back to its starting point, and then brings p2i and P2i-l
together. Considering the branch data of the cover f, we see that after the first
part of the motion ~2i is replaced by the permutation (i, i + 2), while

qJ2i-l = (i - 1, i) is unchanged. Thus by Lemma 3a the limit of C at the end of
the motion is a nonsingular curve. Now consider the limit from the point of view
of the branch data of g. If i; and ’ri + 1 commute, then the inital part of the motion
does not change g and its branch data at all, and thus the total motion would
have as its limit a singular curve. This contradiction shows that ri and 03C4i+1 do
not commute.
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We can now show combinatorially that the ii and the ui differ only by a
relabeling of the sheets. Suppose that after a relabeling we have arranged that,
for some j a 1,

and consider 03C4j+1. Since 03C4j+1 is a transposition and does not commute with 03C4j,
they must share exactly one letter. Since every letter occurs among the ii exactly
twice, this shared letter must be j + 1 (or, in case j = 1, may be taken to be so
after relabeling.) The other letter involved in 03C4j+ 1 must be either 1 or some new
letter which can be taken by relabeling to be j + 2. In the latter case we may
proceed with our induction. In the former case, 03C41, ... , 03C4j+1 involves each of the
letters 1,..., j + 1 exactly twice, so these letters do not occur in any ri other than
these. If j + 1  d then the group generated by all the 03C4i would not be transitive,
contradicting the description of branch data. Thus j + 1 = d and 03C41, ... ,

03C4j = (1, 2), ..., (d - 1, d), (d, 1) as required. This finishes the proof. D

We next sketch an alternative proof that works only in the case where the
genus of C is &#x3E; 1, but contains a nice geometric idea:

Suppose that genus C &#x3E; 1, and that the branch data of f take the form

As before it follows from Lemma 3b that if 03C81,... , t/1 b are the branch data of the
covering g, then 03C81 = 03C82 and the rest of the t/1 j act transitively on the sheets.

Let D be a disk in Pl which contains pi and P2 but no other pi, and let A be the

diagonal in D x D. Because ~1 = ~2 and 03C81 = 03C82 there is no monodromy in the
family of C, f, g obtained by moving pl and p2 in D. Thus there is a family
L ~ D x D, whose fibers over A are singular curves with one node, and a family
of ramified covers f, g defined on the fibers of W extending the given pair of
ramified covers on C, such that on the fiber over ql x q2 E D x D - A, the covers
f, g are branched over ql, q2, P3, .... , p,. (This family may be described explicitly
as the one obtained by gluing in the plumbing fixture defined, as a covering of
the x-line branched over the points tl, t2 ~ D  D, by the local equation
z2 - (x - tl)(x - t2).) To describe the fiber Cp of W over a point p of A, let Cf be
the curve obtained from C by removing the preimage Df of D under f in sheets 1
and 2 and replacing it with two disjoint disks in such a way that the map f
extends to Cf; this is possible because the monodromy transformations of f over
pl and P2 are both given by the permutation (1, 2), so that around the boundary
of D there is no monodromy. We abuse notation and write f for the maps on Cf
and on the Cp which agree with f away from 15f, and similarly with g. The fiber
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Cp is then the curve obtained from Cf by identifying the points qp, rp in sheets 1
and 2 over p, as in the following pictures:

Of course the corresponding construction can also be made using g. Since the
isomorphism class of Cp is independent of which construction is used, we see
that for each p there is an isomorphism hp: Cf - Cg taking the unordered pair
{qfq, rfq} to the unordered pair {qgp, rgpl.
Suppose that one of the h , say h, takes qfp to qp or rg for infinitely many values

of p. It follows that gh = f on an infinite subset of Cf, so they are equal
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everywhere on Cf. But Cf agrees with C outside of a pair of disks, and these
disks are identified with the corresponding disks of Cg by h. Since C can be
reconstructed from either one of Cf and Cg by replacing these disks by
isomorphic ’plumbing fixtures’ f and g, we may restrict the isomorphism ho
to Cf minus these two disks, and extend it again to an automorphism h of C - it
extends without difficulty because the map h respects the identifications of Cf
and Cg with the base P1 near the boundaries of the disks. Since gh = f on the
open subset of C coming from Cf, we see that gh = f everywhere on C, and the
theorem is proved.

If the genus of Cf is at least 2, then the automorphism group of Cf is finite, so
one of the hp takes qp to qll or rp for infinitely many values of p, as required. If the
genus of CJ is only 1 (that is, the genus of C is 2), then a further argument is
necessary, which we omit.

EXAMPLE. If the points of rare not in general position, then the Theorem
fails. For example, consider the elliptic curve E defined as the 4-fold covering of
P1 branched over the points a, - a, b, c, - b, - c, d, - d ~ A1 with branching
data

Composing with the automorphism - 1 on Al, we see that this is isomorphic to
the curve with branching data

however, it can be shown that Bi and B2 are not equivalent under relabeling of
sheets, so that there is no commutative diagram as in Theorem 1.
Of course in this example the two coverings differ by an automorphism of P1,

but this is not always the case. Indeed, the map Hd,1 ~ YI x JI 1 has image of
codimension 1; as soon as the image is singular, as in the example above, it must
be singular in codimension 2 in Yb x M1 and thus the preimage of the singular
set is of codimension 1 in Hd,1. If 2 branches meet at some points of the singular
set in the image, then this will be so on a dense subset of a component of the
singular set of the image, so there are pairs of codimension 1 loci in Hd,1 which
are identified to one another in the image. These loci are of course precisely
maps not determined by their branch loci! On the other hand the locus in .9b
consisting of b-tuples of points permuted by a nontrivial automorphism of P1 is
of codimension &#x3E; 1 in Yb for b  7. Thus for example there are elliptic curves
that can be expressed as branched covers of P1 of degree 4 in two different ways
having the same branch set, even if the branch set is not permuted by any
nontrivial automorphism of P1.
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3. Tyrrell’s conjecture

Choose a point x ~ P2 and choose 6 general lines, Ll, ..., L6 through p. The
family of plane cubics tangent to all the Li is parametrized by a closed 3-fold,
denoted T, in the p9 of plane cubics. Denote by E the open subscheme of p9
parametrizing the nonsingular plane cubics; we have a map

which associates to each elliptic curve its j-invariant.
We now show that j is constant, where defined, on each irreducibile

component of T. Indeed, as Tyrrell explains [1973], following Cayley [1868],
we choose homogeneous coordinates so that p = (o, o,1), and suppose that

is the equation of a smooth cubic off p, tangent to the Li . Then, for constants a, fl
and y, the equation

also defines a smooth cubic tangent to the 6 lines. Varying a, fi and y, we obtain
an irreducible 3-parameter family, that is, a component of T. The curves in
this irreducible family are all isomorphic, so they all have the same value of j.
Having checked that j is constant on each component of T, Tyrrell showed

that the number of components of T is the number of ways a binary sextic (the
discriminant, on Pl, of the projection from p of a smooth cubic off p, tangent to
the 6 lines) can be written as the sum of a square and a cube. Tyrrell then
observed that this number is 40, citing a result of Clebsch [1869] on the
invariants of binary forms. Tyrrell then gave a new proof of Clebsch’s result,
using enumerative techniques.
Another proof that there are 40 components follows from the combinatorial

description of branched covers, which we have sketched above. This description
is also due to Clebsch [1872], although Tyrrell does not mention it. In our

situation, the branch data of any triple cover, simply ramified over 6 given
points of P1, can be brought into a unique normal form, beginning with the
transposition (12), taken one or more times, followed by (13). This branch data
consists of 6 transpositions, the last one uniquely determined by the requirement
that the product of the 6 must be the identity. Distinguishing cases on the basis
of how many times (12) appears, we immediately find 27 + 9 + 3 + 1 = 40
possibilities.
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Further, let

denote any one of these, and write Y for f*OP2(1). The proj ection f corresponds
to a 2-dimensional linear subspace

Choosing appropriate coordinates, C embeds in the plane p2 = P(r(C, 2)),
such that the inclusion of V defines a projection from the center p to the line
P 1 = P(V), with the given branch points. In other words, C is tangent to the 6
lines Li from p to the branch points, and C is off p. This construction shows that
a representative of each of the 40 classes of abstract covers branched at the 6
given points appears in the 3-parameter family parametrized by T. Conversely,
any smooth cubic C, off p, tangent to the Li, gives a branched cover, via the
projection from p. It follows that there are 40 components.
Having checked that there are 40 components, Tyrrell conjectured the

following statement.

THEOREM 4. (Tyrrell’s Conjecture). For general concurrent lines Ll,..., L6,
the 40 components of T determine 40 distinct values of j.

Proof. This follows immediately from Corollary 2, with g = 1 and b = 6,
because the Li, hence the given branch points on Pl, are general.

Theorem 4 has an interesting further interpretation, which motivated Tyrrell
to make his conjecture. The sextics in the dual plane p2 are parametrized by a
p27. We denote by r the closure, in p9 x P2’, of the correspondence which
associates to each smooth plane cubic its dual sextic. As Tyrrell observed, the
components of T correspond canonically to the branches of r through the
pullback of the Veronese surface V c p9 parametrizing the triple lines in P’.
Indeed, it was known classically that when a smooth cubic degenerates to a
triple line, the dual sextic degenerates to a union of 6 lines through the point in
ê2 dual to the tripled line. We can view the corresponding point of r as a triple
line equipped with 6 unordered points, called vertices.
Given a triple line with 6 general vertices, it is in fact easy to construct a

degeneration which realizes it as a point of r. Indeed, choose a point p off the
triple line, and join it to the vertices with lines L 1, ... , L,. Choose a smooth
cubic C, tangent to the 6 lines, and move it toward the triple line through a
family of linear transformations which hold p fixed and fix the tripled line
pointwise. The dual sextic then degenerates to the union of the lines dual to the
vertices. (For more details, consult Kleiman-Speiser [1990].)
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It was also known classically (by Maillard [1871] for example, see Kleiman-
Speiser [1990]) that r has 40 branches over the pullback of the Veronese.
Because the normalization n(r) can be viewed as a compactification of E, we can
define j as a rational map on n(r). By normality, j is defined except perhaps on a
subvariety of codimension  2 on n(r). The pullback of E however, has
codimension 1, so each branch of r, over a general point of E has a well-defined
limiting value of j. The explicit degenerations above, together with Theorem 4,
give the following result.

COROLLARY 5. The j-invariant separates the branches of r over a general
point of K

The parameter space E is a very simple kind of Severi variety, in the sense of
Diaz-Harris [1989]. Compactifying it by associating the dual curve and the
moduli point, we obtain a variety which is nonsingular in codimension 1, and is
thus suitable for enumerative geometry. In Kleiman-Speiser [1990], the charac-
teristic numbers for smooth plane cubics were found using a natural open
subscheme, denoted by E, of n(r) to parametrize the smooth plane cubics, their
duals, and their most general degenerations. The choice of E, by what we have
shown, reflects the basic principle that to understand families of plane curves, we
should study them not only in the plane, but also in moduli.

4. Some remarks on monodromy of Hd,g ~ 9b

In this section we study the monodromy of the map Hd,g ~ 9b. Recall that we
have defined Yb to be the set of ordered b-tuples of distinct points of P1, so that
the fundamental group of the base is the pure braid group; it is a classical, largely
unsolved problem to know its image Go, the monodromy group, in the group of
permutations of the fiber. By taking the branch points unordered, we also get a
monodromy map of the full braid group to the group of permutations of a fiber;
we write G for its image.

It is easy to see that Go is always contained in the alternating group, since its
action is generated by elements of order 3, as one can check from the description
given in the first section above. But aside from this we do not know any general
restrictions.

However, the numbers of sheets of the map Hd,g ~ Pb are already interesting
for small d. They were computed for d  6 by Hurwitz [1891, p. 18] as being
(with b = 2g + 2d - 2, the number of branch points):
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Now (3" - 1)/2 is the number of points in the projective space of dimension
n - 1 over the field of 3 elements, while 2" - 1 is the number of points in a
projective space over a field of 2 elements. Thus if d is 3 or 4 one might hope that
the fibers of the Hurwitz scheme could be given some corresponding geometric
structure, which would lead to a restriction on the transformations in the

monodromy group. Indeed, in the case d = 3 Cohen [1974, p. 502] (see also
Kluitmann [1988 Theorem 6. iv case 03A6 = 1]) has shown by combinatorial
methods that G is isomorphic to the projective symplectic group over the field
F3 of 3 elements, PSp(2(g + 1), F3), reinforcing this idea. For d = 4, Maclachlan
[1978, last paragraph] remarks that the monodromy group should at least be a
wreath product with quotient group a similar symplectic group. On the other
hand, for d &#x3E; 4 no such structure is apparent.

In the next result we ’explain’ the numbers of triple and 4-fold covers: we give
the set of triple covers a geometrically natural structure of a projective space on
a vector space over the field of 3 elements, and we show that the set of 4-fold
covers naturally maps to such a projective space, the fiber acquiring the
structure of a projective space on a vector space over the field with 2 elements.
Furthermore, these vector spaces support natural skew-symmetric forms
(coming from the Weil pairings), which further limit the monodromy:
THEOREM 6. Fix a point 0393 ~ Pb, (b = 2g + 2d - 2) and let Co be the (unique)
double cover of pl branched over the points of r.

(1) If d = 3 then the fiber of Hd,g ~ Yb over r is in one-to-one correspondence
with the projective space associated to the F3-vector space of 3-torsion
elements of the Picard group of Co. The monodromy group G of Gd,g ~ Pb
preserves the Weil pairing on this vector space, and thus is a subgroup of
PSp(2go, F3). (By Cohen’s result, it is actually all of PSp(2go, F3).)

(2) If d = 4 then the fiber of Hd,g ~ 9b over r maps surjectively to the projective
space associated to the F3-vector space Wo of 3-torsion elements of the Picard
group of Co. The points of this projective space correspond naturally to the
curves CI which are unramified triple covers of Co. Given such a curve C1, the
points of the fiber of Hd,g ~ 9b which correspond to Cl are in one to one
correspondence with the elements of the projective space associated to a certain
2g + 2-dimensional F2-vector space W1 of 2-torsion elements of the Picard
group of C1. The monodromy group G of Hd,g ~ -9b preserves the Weil pairing
on Wo, and the elements fixing a given point Cl preserve the Weil pairing on W1.
Thus G is naturally a subgroup of the wreath product of PSp(2go, F3) and a
projective orthogonal group.
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It seems natural to hope that the monodromy group in case (2) is all of the
wreath product.
The theorem shows that the subgroup of the monodromy group fixing a given

sheet of :Ye d,g -+ 9 b must preserve the set of sheets corresponding to lines

orthogonal to the given sheet with respect to the Weil pairing. We immediately
obtain:

COROLLARY 7. If d = 3 or 4 then the monodromy of Ad,,, -+ 9b is not doubly
transitive. D

For example, if d = 3, g = 1, b = 6, then the cover Hd,g ~ 9b has 40 sheets,
corresponding to the points of the projective 3-space P’(F3). If we denote the
alternating form on (F3)4 stabilized by PSp(4, F3) by ~ -, - ), then the stabilizer
of a sheet s has two orbits besides {s}: One of order 12 consisting of the
hyperplane in P3(F 3) of points t with (s, t~ = 0, and the other its complement, of
order 27.
The situation for d &#x3E; 4 is not so clear, but from Hurwitz’ computation of the

number of sheets one can see that in general the fiber of :Ye d,g -+ Pb can no longer
be identified with a projective space over a field. Thus no result of the type above
can hold, and it seems natural to expect that the monodromy group will be
doubly transitive, perhaps even the full alternating group, in general.
To prove Theorem 6 we begin by considering the case of general d. Let n:

C ~ P1 be a covering of degree d with only simple branching. Since the
monodromy group of n is transitive and generated by simple transpositions, it is
the full symmetric group on d letters, Sd . This monodromy group is equal to the
Galois group of the normal closure L/C(t) of the field extension K(C)/C(t)
corresponding to 03C0 (see for example the proof of Proposition 8, below, or Harris
[1979].) We may write L as K(D), the field of rational functions on a smooth
curve D covering C, so that C is the quotient of D by Sd-1, the stabilizer of a
point of D.

Let Co be the quotient of D by the alternating group Aa, so that Co is a double
cover of the projective line.
We claim that Co is the (unique) double cover of P1 ramified over the same

points as C, and that the covering D ~ Co is unramified. To see this, we use the
following well-known result relating Galois Theory and monodromy:

Let C - A be a map of smooth curves, and let D ~ C - A be the maps of

curves corresponding to the Galois closure of the function field extension
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K(C)/K(A). Let H be a subgroup of the Galois group G = Gal(D/A), and let
Co = DIH be the corresponding curve. Let po E A be a base point (not a branch
point of D), and y c A a loop based at po. If we identify G with the monodromy
group of D/A, then y induces an element g of G. If we identify G with the fiber of
D over po, then the fiber of Co over po can be identified with the coset space G/H.
PROPOSITION 8. With these conventions, the monodromy transformation
corresponding to y on the fiber of Co -+ A over po is left multiplication by g, and the
monodromy group of C0 ~ A is thus G modulo the intersection of the conjugates
of H.

Proof. The statement about y follows at once from the special case H = ~1~,
Co = D. To establish this case, let r be the branch locus of C ~ A, and let
K c 03C01(A - r) be the subgroup of the fundamental group corresponding to the
covering C, so that the fiber of C over po corresponds to the coset space
03C01(A - r)/K. The group 1tl(A - r) acts on the coset space by left multiplication,
and this is the monodromy action. The kernel of the action is the intersection N
of all the conjugates of K in 03C01(A - r), and thus the monodromy group is
G1 = 1tl(A - r)/N.
The main point is that the Galois closure D is the covering D, corresponding

to N. Since the monodromy action of 03C01(A - r) on D 1 is by left multiplication
on 03C01(A - r)/N, this will suffice to prove the proposition. 

First, G 1 acts naturally on D 1 preserving the map to A (on which G 1 acts
trivially, so that G1 acts on K(D1) fixing K(A).) Since the order of G1 is the degree
of D1 over A, which is in turn the degree of the field extension K(D1)/K(A), we see
that K(D1)Gl = K(A), that K(D1)/K(A) is Galois, and that G 1 is its Galois group,
all by the fundamental theorem of Galois theory. Again comparing orders and
degrees, we see that the subfield fixed by K/N c G1 is precisely K(C). If now
K(D1) were not the Galois closure of K(C)/K(A), there would be a nontrivial
subgroup of K/N, corresponding to the Galois closure, which was normal in G 1.
Since N is the intersection of the conjugates of K, this is ridiculous, and we are
done. D

COROLLARY 9. In the situation in the diagram above, C and Co have the same
branch divisor in P1; in particular, Co depends only on the branch locus of 1t and
not on the isomorphism type of C. On the other hand, D is unramified over Co.

Proof. Proposition 8 shows immediately that Co cannot be ramified over any
point where C is not. Conversely, if p is a point over which C is ramified, then the
monodromy transformation of the fiber in C corresponding to a small loop y
around p is a simple transposition; since this transformation is not in the

alternating group, the proposition shows that y induces a nontrivial mono-
dromy transformation of the fiber of Co. Thus Co is also ramified over p. This
proves the first statement.

To show that D is unramified over Co, note that by the same argument as
above, D can be ramified over P1, and thus a fortiori over Co, only over branch
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points of C. On the other hand, the monodromy transformation of D over one of
these branch points is of order 2 by Proposition 8 (in fact the proposition
shows that it is the product of d!/2 disjoint 2-cycles.) Thus the ramification
points of D over P’ are all simple. From this we see that if the map D ~ Co were
ramified at q ~ D, the image of q in Co could not be a ramification point of Co
over pt, though of course q would be a ramification point of D - P1. On the
other hand, since the degree of C0 ~ P1 is 2, and Co is branched over the same
points as C, we see that Co is totally ramified over each branch point; thus the
image in Co of every ramification point of D ~ P1 must be a ramification point
of Co - P1, and we see that D ~ Co is unramified as claimed. D

We now return to the proof of Theorem 6. The covering C ~ P1 is determined
by D ~ pl since C is the quotient of D by the subgroup of the Galois group
fixing one sheet, and the different subgroups of this form are conjugate. Thus the
points in the fiber of Je d,g -+ Yb over r correspond to unramified covers D of Co
which are Galois over P1 with Galois group Sd .

In the case d = 3 we have A3 = Z/3, so that D is an unramified cyclic
extension of Co. Any such extension has the form

for some line bundle 2 on Co with 23 = OC0, the sheaf OC0 ~ L ~ ’p2 being
regarded as a sheaf of (9c.-algebras by means of this identification. The line
bundles (9c., 2, L2, viewed as points of the F3-vector space of 3-torsion
elements in the Picard group of Co, form a line through the origin; that is, a
point of P2g’-1(F3), where g’ = g + 1 is the genus of Co. Since the construction is
reversible, we see that the fiber of H3,g ~ 9b is in natural correspondence with
P2g’-1(F3). Since the Weil pairing is constant in families (it may be regarded as
the intersection form on the singular cohomology group H1(C0, Z/3)) we see
that it is preserved by the monodromy action, and the result is proved. (Since the
family of 3-torsion points in Pic Co is unramified over 9b, we can follow Ef and
22 individually around a loop, so that the monodromy preserves the Weil
pairing exactly - not just up to scalars - and we get PSp rather than the group of
transformations preserving the Weil pairing up to scalars.)
Turning to the case d = 4, we note that A4 has a normal subgroup N of order

4 (consisting of the products of pairs of disjoint transpositions), with quotient
Z/3, so that D determines an unramified Z/3 covering CI of Co, and we get as
before a point of p2g’ - l(F 3), where g’ = g + 2 is the genus of Co in this case.
Every unramified irreducible Z/3 covering occurs in this way, as follows from
the construction below. As before, we see that the monodromy group of
H4,g ~ Pb maps to PSp(2g’, F3).
Let H be the fiber of H4,g ~ 9b over 0393 ~ Pb, and let W be the F3 projective

space of the lines in the 3-torsion subgroup of Pic Co. We may identify a line w in
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W with an unramified cyclic triple cover CI of Co, which has genus 3g + 4 by
Hurwitz’ formula. To identify the fiber of H ~ W over w, note that the points of
the fiber correspond to (certain) Galois covers with group N = Z/2 x Z/2. Such
a cover is the composite of 2 unramified cyclic covers of degree 2, so to each
point of the fiber we may associate a 2-dimensional subgroup Vof the 2-torsion
subgroup of Pic C 1, which we regard as a vector space over the field of 2
elements F2. The subgroup V is isomorphic as an F2[S3]-module to the module
Vo defined by the property:

(*) S3 = S4/N acts on the 3 nonzero elements of V0 ~ F22 via the natural
permutation action of S3.

This is because the action on the nonzero elements of Yo is the same as the action
on the intermediate subfields of K(D)/K(C1).

Conversely, every subgroup of Pic Cl which is isomorphic to Vo as an F2[S3]-
module corresponds to a point in the fiber over w because it determines a

covering of pl with Galois group S4.
To complete the proof, we must identify the set of subgroups Yc Pic Cl such

that V L--- Vo as F2[S3]-modules with a projective space over F2. In fact, if we
choose a transposition J E S3, then each such subgroup V contains a unique
nonzero J-invariant element, which we may take as a ’representative’ of V; the
fiber over w is thus identified with the projective space on the vector space W1
spanned by these representative elements. The Weil pairing on W1 is preserved
by the subgroup of the monodromy group fixing w, and thus this subgroup acts
as a subgroup of a projective orthogonal group on W1 as claimed.
We could now complete the proof by deducing the dimension 2g + 1 of the

projective space of representative elements from Hurwitz’ formula for the
number of points in the fiber in the 4-sheeted case, but this number follows easily
from representation theory, so we derive it directly; at the same time, our
considerations will ’locate’ the copies of Vo in Pic Cl:

First consider the action of the Sylow 3-subgroup Z/3 = (1) c S3. The group
algebra F2[Z/3] is semisimple, and decomposes into two irreducible sub-
modules : the trivial representation and the two-dimensional representation V
(regarded as an F2[Z/3]-module) whose 3 nonzero elements are cyclically
permuted by 03C4. Thus the 2-torsion subgroup (Z/2)6g+8 of Pic C 1 decomposes
under the action of Z/3 into two pieces: the set of i-invariant elements, which is
isomorphic to the 2-torsion subgroup (Z/2)2g+4 of Pic Co, and its complement
H’ ~ (7-/2)49+4, which, at least as an F2 [Z/3]-module, is a direct sum of copies of
Yo.

It now follows that H’ is a direct sum of copies of Vo as an F2[S3]-module. To
see this, note that 1 + r + i2 is a central idempotent in F2[S3] which splits
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F2[S3] into the two blocks

and

(All we really need of this is that B = F2[S3]/(1 + 03C4 + i2) is semi-simple, which
follows at once because B = B(Q + i) 0 B(J + i2), and the summands are
irreducible B-modules.) Thus there is a unique irreducible F2[S3]-module
annihilated by 1 + 1 + i2, which is Vo; and every F2[S3]-module annihilated by
1 + 1 + i2 is a direct sum of copies of Yo. In particular, this applies to H’,
proving our assertion.

Since Vo is 2-dimensional, we must have H’ ~ V2g+20, so the subspace W1 of J-
invariant elements is of dimension 2g + 2. It follows that the fiber over w is

P2g+1(F2), which has 22g+2 - 1 points, as Hurwitz found. D
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