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Following the foundamental work of H. Blaine Lawson [ 19], [20], we introduce
new invariants for projective algebraic varieties which we call Lawson ho-
mology groups. These groups are a hybrid of algebraic geometry and algebraic
topology: the 1-adic Lawson homology group LrH2,+i(X, Zi) of a projective
variety X for a given prime 1 invertible in OX can be naively viewed as the group
of homotopy classes of S’*-parametrized families of r-dimensional algebraic
cycles on X. Lawson homology groups are covariantly functorial, as homology
groups should be, and admit Galois actions. If i = 0, then LrH 2r+i(X, Zl) is the
group of algebraic equivalence classes of r-cycles; if r = 0, then LrH2r+i(X , Zl) is
1-adic etale homology. As discussed in [10], operations on Lawson homology
relate these special cases, thereby factoring the cycle map from algebraic cycles
to homology. For a complex algebraic variety X, we give a parallel development
of analytic Lawson homology groups LrH2r+i(Xan) which have the property
that LrH2r+i(Xan) ~ Zl is naturally isomorphic to LrH2r+i(X, Zl) whenever
i &#x3E; 0. As observed by R. Hain [15], this analytic theory admits (colimits of)
mixed Hodge structures. A detailed overview of the primary results presented
here can be found in [9].

This paper establishes some of the basic properties of Lawson homology
groups for a closed algebraic set X over an arbitrary algebraically closed field.
Our starting point is a study in section 1 of Chow varieties associated to X

provided with a projective embedding; these varieties parametrize effective
cycles on X of a given dimension and degree. In order to obtain homotopy-
theoretic information from these Chow varieties, we employ the machinery of
etale homotopy theory and homotopy-theoretic group completion. Section 2
presents the definitions and requisite formalism, as well as verifies the good
functorial behaviour of our Lawson homology groups.

Section 3 is dedicated to providing algebro-geometric analogues of Lawson’s
geometric arguments. We employ a perhaps unfamiliar technique of construct-

ing ’continuous algebraic maps’ which are not quite morphisms of algebraic
varieties but which induce maps of topological types. Even though we define

*Partially supported by the N.S.F.
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Lawson homology only for closed algebraic sets over an algebraically closed
field, we work as much as possible with closed algebraic sets over an arbitrary
field. This has the immediate benefit of providing Galois-equivariant results.
Furthermore, we envision Lawson homology over non-algebraically closed
fields (whose usefulness does not yet justify the greatly increased complexity
arising from the use of techniques of [6]).
Theorem 4.2 proves Lawson’s fundamental result in our general algebraic

context: ’algebraic suspension induces an isomorphism of Lawson homology
groups.’ Our proof, an algebraization of Lawson’s arguments, gives a purely
algebraic proof of Lawson’s analytic result. As a corollary, we compute the
Lawson homology groups of projective spaces. In Theorem 4.6, we determine
the Lawson homology groups associated to codimension 1 cycles on smooth
projective varieties, a computation which suggests the possibility that Lawson
homology groups might be remarkably well behaved.
We express our great intellectual debt to numerous friends and guides. First

and foremost, Blaine Lawson’s original work has served us as a source of
insights and techniques. Ofer Gabber patiently introduced us to Chow varieties
and sketched the outlines of several key steps in this work. Spencer Bloch, Pierre
Deligne, William Dwyer, Lawrence Ein, Gerd Faltings, William Fulton, Richard
Hain, Nicholas Katz, and Barry Mazur all helped dispel some of our apprehen-
sions and misconceptions. Finally, we warmly thank I.H.E.S. and ETH-Zurich
for their hospitality.

1. Chow varieties

In recent years, Chow varieties of projective algebraic varieties have been

eclipsed by Hilbert schemes. Nonetheless, they are the appropriate structures to

apply Lawson’s constructions. For example, Chow components of 0-cycles are

symmetric products of a variety, the ’correct’ objects to realize homology (see
Theorem 4.3 below), whereas punctual Hilbert schemes exhibit more subtle
behaviour. In this section, we recall the construction of Chow varieties and

prove a few properties useful for our purposes. The reader interested in Chow
varieties in characteristic 0 is referred to [1] for an alternate treatment.
We begin with a base field k of characteristic p  0 embedded in an

algebraically closed field Q of infinite transcendence degree over k. All fields
considered in this section (except Q itself) will be extensions of k of finite
transcendence degree inside Q. An important example to keep in mind is that in
which k is a number field and Q is the field of complex numbers C. By a

projective variety (respectively, closed algebraic set), we shall mean a reduced,
irreducible, closed subscheme (resp., reduced, closed subscheme) of some

projective space P) over some field F; more generally, a variety (respectively,
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algebraic set) is a Zariski open subset of a projective variety (resp., closed
algebraic set). If V is an algebraic set defined over F (i.e., provided with a locally
closed embedding j: V c PNF) and if E is a field extension of F, then we denote by
VE the algebraic set over E given by base change from F to E (i.e., given by the
same equations). A cycle Z on PNF is a formal, finite sum 03A3ni·Vi of closed
subvarieties Vi c pNF with each ni a non-zero integer; if Z = 03A3niVi with Vi ~ Y
for i ~ j, then ni is called the multiplicity of Vi in Z; the cycle Z is said to be an r-
cycle if each component has dimension r and is said to be effective if each ni is
positive. We recall that the degree deg(V) of a closed subvariety V c PNF of
dimension r is the number of points of intersection of YK with a sufficiently
general linear subspace LN - r c PNk, where K is the algebraic closure of F (inside
03A9); the degree of the cycle Z = 03A3ni·Vi equals 03A3 ni . deg(Vi). If X c PNF is a closed
algebraic set and Z is a cycle on PNK, then Z is said to be a cycle on PNK with
support on X if each component of Z is a subvariety of XK. For each dimension
r, the ’empty cycle’ will be admitted as the unique "effective’ r-cycle of degree 0.

Recall from [28] the existence and basic property of Chow varieties. An

elementary example of a Chow variety is given by the special case of

hypersurfaces of some degree d in PN. In this case, CN-1,d(PN) is a projective
space of dimension (N+d d) - 1: after choosing a basis for the monomials of degree
d in N + 1 variables, one associates to a point in this projective space the
hypersurface whose defining equation is given by the coordinates of that point.

1.1 PROPOSITION. There is a closed algebraic subset Cr,d(PN) of PN(r,d)k,
N(r, d) = (r + 1)(N+dd) - 1, such that for any algebraically closed field K morph-
isms Spec K ~ Cr,d(PN) over k are in natural 1-1 correspondence with effective,
degree d, r-cycles on PNK. Moreover, if j: X ~ P) is a closed immersion of a closed
algebraic set X, then there is a closed algebraic subset Cr,d(X,j) ~ Cr,d(PN)F with
the property that morphisms Spec K ~ Cr,d(X, j) over F with K an algebraically
closed field extension of F are in natural 1-1 correspondence with effective, degree
d, r-cycles on PNK with support on j(X). Furthermore, if E/F is a field extension, then
Cr,d(XE,j) equals (Cr,d(X,j))E.

Proof. To a closed subvariety Y of dimension r and degree d in PNK, one
associates the point in PN(r,d)K whose coordinates are the coefficients of the
irreducible form FV(T00..., TrN) homogeneous of degree d in each of r + 1
(N + 1)-tuples such that FV(a00, ... , aN) = 0 if and only if the r + 1 linear forms
03A3aijXj have a common zero in V; to Z = 03A3niVi with ni  0, one associates the

point whose coordinates are the coefficients of FZ = 03A0Fnii. As shown in

[28; 1.9.5], the points so obtained in PN(r,d)K are the K-points of a closed algebraic
set of PN(r,d)k which we have denoted Cr,d(PN). The equations defining Cr,d(PN) are
independent of k, so that for any field extension E/k the closed algebraic set
Cr,d(PN)E ~ PN(r,d)E equals the corresponding Chow variety over E. Should the
points be constrained to those associated to cycles with support on j(X), then
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they too are the K-points of a closed subset Cr,d(X, j) ~ C,,d(P’)F, Since the
equations defining this closed immersion depend only on X and have coeffi-
cients in F, we conclude that the closed subset (Cr,d(X, j))E of Cr,d(PN)E equals
Cr,d(X E, j) for any field extension EIF. 1:1

Proposition 1.1 implies in particular that if K is an algebraically closed field,
then the effective, degree d, r-cycles of pNK are in natural 1-1 correspondence
with closed points of Cr,d(pN)K’ We let (Z) E Cr,d(PN)K denote the Chow point of
the cycle Z. We say that a cycle Z specializes to a cycle Zo (denoted Z ~ Zo) if the
corresponding Chow points are so related (i.e., if ~Z~  ~Z0~.

Let F c E be a field extension. The cycle Z = 1 niVi on pNE is said to be defined
over F if Z can be written as a sym of cycles associated to closed algebraic
subsets of PNF. (The associated cycle on PNE of a closed algebraic subset T c PNF is
the formal sum of the irreducible components of TE c PNE.) The cycle Z = 03A3niVi
is said to be radicial over some subfield F c E if every automorphism of E over
F fixes Z. Equivalently, Z is radicial if it can be written as a sum of cycles defined
over some purely inseparable, finite extension of F.

In our next proposition, we identify morphisms from Spec F into a Chow
variety, where F is not assumed to be algebraically closed.

1.2. PROPOSITION. Let X be a closed algebraic set provided with an embedd-
ing j : X ~ P’, let E/F be a field extension, and let K be the algebraic closure of E.
Then a morphism z: Spec E ~ Cr,d(X, j) is in natural 1-1 correspondence with an
effective, degree d, r-cycle Z on PNK with support on j(X) whose Chow point ~Z~ is
rational over E. Such an r-cycle Z is always radicial over E and is actually defined
over E if it has no multiplicity greater than 1. If z: Spec E ~ Cr,d(X, j ) maps Spec E
to a generic point of Cr,d(X,j), then the corresponding cycle Z is defined over E.

Proof. Since the closed point z(Spec E) E Cr,d(X, j)K is rational over E, the

cycle Z is radicial over E (cf. [28; 1.9.4.g]). Moreover, the support of the cycle Z
(i.e., the closed algebraic subset of PNK given as the union of the irreducible
components of Z) is defined over E [28; 1.9.7.g]. If no multiplicity of Z is greater
than 1, then Z is the cycle associated to its support and is therefore defined
over E.

Finally, if z: Spec E --+ Cr,d(X, j) maps Spec E to a generic point of C,,d(X, j)
we verify that each component of the corresponding cycle Z with multiplicity
greater than one must be defined over k and thus Z itself is rational over E.
Assume to the contrary, that the component Y of Z is a subvariety of PNK not
defined over k and that the multiplicity ni of Y of Z is greater than 1. Then ~niYi~
is a non-equivalent specialization of ~(ni - 1)Y’i + Y"i~ where ~Yi~  ~Y’i~,
~ Yi~  ~Y"i~ are independent equivalent specializations of Y, so that ~niYi~ is not
a constituent of a generic cycle. D

Let Y be an algebraic set defined over F. We denote by Y x PN the fibre
product over Spec F of Yand PNF. We say that a cycle Z of Yx PN is a Y relative r-
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cycle if Z = 03A3niVi, where each Vi is an irreducible subvariety of Y x PN whose
scheme-theoretic fibre above each point y of Y is a subscheme of P’Y) of pure
dimension r, k(y) the residue field of Yat y. If Y is smooth, then cycle-theoretic
intersections in Y x PN are well defined in an appropriate Chow group. Since a
Y relative r-cycle Z meets properly each cycle {y} x PN for y a closed point of Y,
the intersection Z·({y}  PN) is well defined as a cycle. We denote this

intersection-theoretic fibre cycle of Z above y by [Z]y,

This intersection can be computed by using the deformation of the regular
embedding {y} x pl c Y x PN to the embedding of the zero section of its
normal bundle [ 11; 6.1].

1.3. PROPOSITION. Let Y be a smooth variety defined over F with generic
point il = Spec k(Y) and let y be a closed point of Y. For any effective, Y-relative r-

cycle Z of Y x PN with generic fibre cycle Z,, the degree of Z~ equals that of [Z]y.
Moreover, the specialization (~, ~Z~~)  (y, ~[Z]y~) in Y x Cr,d(PN) is the unique
extension of ~  y in Y, where d equals the degree of Z,. Furthermore, if Z is flat
over Y, then the r-cycle [Z]y is the cycle Zy associated to the scheme-theoretic fibre
Z Xy {y}.

Proof. Since the degree of an r-cycle in PN can be computed as the degree of
the 0-cycle obtained by intersection with a sufficiently general linear subspace
0 - r, the equality of the degrees of Z, and [Zy] is a special case of "conservation
of number" [11; 10.2]. The fact that (ri, ~Z~~  ( y, ([Z]y») in Y x Cr,d(PN) is a
specialization which uniquely extends ~  y in Y is demonstrated in [28; IL6.8].
Finally, for any y E 1: let Ry c Spec k( Y) be a discrete valuation ring dominating
(9y, y (associated to the specialization ~  y in Y). If Z is flat over Y with pull-back
via Spec Ry ~ Y denoted Z’, then Z’ is flat over Spec Ry with generic fibre Z. and
special fibre Zy’ over the closed point y’ E Spec Ry. For such an equidimensional
cycle Z’ over Spec Ry, the intersection-theoretic fibre Z’ . ({y’} X PN) equals the
scheme-theoretic fibre Zy, [11; 7.1]. On the other hand, Z’·({y’} x PN) is

obtained from [Z]y = Z·({y} x PN) and Zy, from Zy by base change via

Spec Ry/max(Ry) ~ Spec (9y,ylmy. 0
Let j: X ~ PNF be a closed immersion of a closed algebraic set X, E a field

extension of F, and Y an algebraic set defined over E. A Y relative r-cycle Z is
said to have support on j(X) if Zn is a cycle on pN with support onj(Xk(,,») for
each generic point il of Y Modulo the awkwardness of possible inseparability of
the field of definition of a cycle over the residue field of its Chow point, the
following theorem shows that Cr,d(X, j ) represents the functor which sends a
smooth variety Y to the set of effective, Y relative r-cycles of degree d with
support on j(X).
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1.4. THEOREM. Let X be a closed algebraic set provided with an embedding
j: X ~ PNF, and let Y be a smooth variety defined over a field extension E of F with
generic point il = Spec k(Y). Then effective, Y-relative r-cycles Z on Y x PN whose
generic fibres Zl have degree d and support on j(X) are in natural 1-1

correspondence with morphismsf: Y ~ Cr,d(X, j) (over F) such that the cycle with
Chow point f(17) is defined over k(Y). Moreover, f Z f is the Y-relative r-cycle
corresponding to the map f.. Y~ Cr,d(X, j), then f(~) = ~(Zf)~~ and

f(y) = ~[Zf]y~ for each closed point y E Y
Proof. Let f: Y~ Cr,d(X, j) be a morphism over F with the property that the

cycle Zf(~) with Chow point f(17) is defined over k(Y). Write Zf(~) as E niVi,~,
where each Y,n is a k(Y)-variety. We define Y to be the closure of

Vi,~ ~ PN C pN X Y in PN x Yand set Z f = 03A3niYi. To prove that the fibres of
Z f are purely r-dimensional, it suffices to prove that no component of any fibre
has dimension greater than r. For this, it suffices to observe that the morphism
from Z to the incidence correspondence A c X x Cr,d(X, j) over Cr,d(X, j) [28;
1.9.] induces an embedding Vi c A x Cr,d(x,j) Yover Y for each Vi.

Conversely, let Z be an effective, Y-relative r-cycle on PN x Y with generic
fibre Z~ of degree d. The associated Chow point ~Z~~ is rational over k( Y) and
thereby determines a morphism Spec k(Y) ~ Cr,d(X, j). Equivalently, Z deter-
mines a rational mapf: Y~ Cr,d(X,j) with f(~) = ~Z~~. To prove that f extends
to a morphism, it suffices by the normality of Y to observe that the closure of the
graph of f projects bijectively onto Y (and thus isomorphically, by Zariski’s
Main Theorem) in view of the (existence and) uniqueness property of

(Il, ~Z~~)  (y, ~[Z]y~) given in Proposition 1.3. This also shows that for any

morphism f: Y~ Cr,d(X,j) with f(~) defined over k( Y) that f(y) = ~[Zf]y~.
To verify that these constructions are inversé of each other, we observe that

morphisms Y~ C,,d(X, j) are determined by their restrictions to ~ ~ Y (i.e.,
rationally), whereas Y-relative r-cycles Z c Y X PN are the closures of their
generic fibres Zgen’ ~

We shall frequently use the following special case of Theorem 1.4 in order to
identify specializations of cycles.

1.5. COROLLARY. Let X be a closed algebraic set provided with an embedding
j: X ~ PNF, and let C be a smooth quasi-projective curve defined over some field
extension E of F with generic point 1 = Spec k(C). Then an (r + 1)-cycle Z on
C x PN is a C-relative r-cycle if and only if Z is fiat over C. An effective, C-relative
r-cycle Z whose generic fibre Z, has degree d and support on j(X) determines a
morphism fz: C ~ Cr,d(X, j). Furthermore, if f C ~ Cr,d(X, j) is a morphism with
the property that the cycle with Chow point f(~) is defined over k(C), then the
corresponding effective, C-relative r-cycle Z f has the property that f(c) = ~(Zf)c~
for each closed point c ~ C.

Proof. The first assertion follows from the fact that over a smooth curve,
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equidimensional is equivalent to flat. The second assertion follows from the
equalities [Zf]c = (Zf)c of (1.3) andf(y) = ~[Zf]c~ of (1.4). D

In order to formulate in what sense the Chow variety of a closed algebraic set
is independent of its projective embedding, we introduce the following concept.

1.6. Definition. A proper morphism g: X’-+ X of locally noetherian schemes (e.g.,
a disjoint union of algebraic sets over k) is said to be a bicontinuous algebraic
morphism if it is a set-theoretic bijection and if for every x E X the associated map
of residue fields k(x) ~ k(g-1(x)) is purely inseparable. A continuous algebraic
map f X ~ Y is a pair (g: X’ ~ X, f’: X ~ Y) in which g is a bicontinuous

algebraic morphism. Finally, a bicontinuous algebraic map f: X ~ Y is a pair
(g: X’ ~ X, f ’: X ~ Y) in which both f’ and g are bicontinuous algebraic
morphisms.

The usefulness of the notion of a continuous algebraic map is that it induces a
map on etale homotopy types (cf. (2.1.b)) and, in the special case of complex
algebraic varieties, a continuous map of underlying analytic spaces (cf. (2.2.b)).
For our purposes, the basic example of a bicontinuous algebraic morphism is

a birational morphism g: X’ ~ X of projective varieties which induces a set-
theoretic bijection on closed geometric points. The fact that g induces a purely
inseparable extension k(x) -+ k(g-1(x)) for every x ~ X is an immediate con-

sequence of the set-theoretic bijection of closed geometric points of the closures
of {x} and {g-1(x)}. For example, if X is a plane curve with a single cusp and if
g: X’ ~ X is a desingularization of X, then g is a bicontinuous algebraic
morphism (but not an isomorphism).
The following proposition is a reformulation of a theorem of W. Hoyt [18].

We point out that even in the special case of dimension 0 cycles, the

isomorphism type of Chow varieties of a projective variety X can depend on the
embedding j : X ~ PNF if F has positive characteristic (cf. [26]).

1.7. PROPOSITION. Let X be a closed algebraic set provided with two

embeddings j: X ~ PNF, j’: X ~ P". Then there is a naturally constructed

bicontinuous algebraic map over F

Proof. Let j": X ~ PRF be the composition of j x j’: X - PNF x PMF and the Segre
embedding

Then Hoyt in [18] constructs a morphism ~d0Cr,d(X,J") ~ ~d0 Cr,d(X,j)
(not, of course, preserving degree) which extends the evident bijection on



62

geometric points. Namely, a Chow point (Z) whose coordinates are the
coefficients of the form GZ({Tij}) is sent to the point whose coordinates are the
coefficients of the greatest common divisor of the form (A1({Xi}, ..., At({Xi}),
where

Since the greatest common divisor of (A1({Xi},..., At({Xi}) has coefficients in F
whenever each of the Ai does, we conclude that this morphism is defined over F.
Since this morphism is proper, bijective on geometric points, and birational, we
conclude that it is a bicontinuous algebraic morphism. The asserted

bicontinuous algebraic map is then obtained as the composition of the "inverse"
of this morphism and the corresponding morphism

We conclude this section by introducing the "Chow monoid" Lr(X, j) and
investigating its (discrete) monoid 03C00(Lr(X,j)) of connected components. We
formulate our description of 03C00(Lr(X,j))+ in terms of algebraic equivalence of
cycles on XK, where K denotes the algebraic closure of F. (For closed algebraic
sets defined over an algebraically closed field, algebraic equivalence of cycles has
a generally accepted and classical definition [11; 10.3.2]). By Proposition 1.7,
1to(CCr(X,j)) is independent of the choice of embedding j : X - P:.

1.8. PROPOSITION. Let X be a closed algebraic set provided with an embed-

ding j: X ~ P:, and let K denote the algebraic closure of F. Then addition of cycles
determines the structure of an abelian monoid (in the category of disjoint unions of
algebraic sets/F) on

The group completion 03C00(Lr(XK,j))+ of the discrete monoid 03C00(Lr(XK,j)) is the
group of r-cycles on XK modulo algebraic equivalence, whereas 03C00(Lr(X,j))+
equals the quotient (i.e., coinvariants) of 03C00(Cr(XK,j))+ under the action of
Gal(K/F).

Proof. The pairing PN(r,d) X PN(r,e) ~ pN(r,d + e) sending forms homogeneous of
degree d and e in each of r + 1 (N + 1 )-tuples to their product restricts to
addition of cycles Cr,d(PN) X Cr,e(PN) ~ Cr,d 1 e(pN). Clearly, this pairing further
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restricts to a morphism Cr,d(X,j) x Cr,e(X,j) ~ Cr,d+e(X,j), thereby determin-
ing an abelian monoid structure on CCr(X,j).

Let y, y’ ~ Cr,d(XK,j) be two closed points lying in a single irreducible
component of Cr,d(XK,j) and let Z, Z’ denote the corresponding r-cycles on PNK
with support on j(X). Choose a connected curve in Cr,d(XK,j) containing both y,
y’ (cf. [24; §6]) and let C be the normalization of this curve. Thus, we have a
morphism f: C ~ Cr,d(X,j) and two points c, c’ E C with f(c) = y, f(c’) = y’. After
replacing C by a finite, flat, radicial extension C’ if necessary, we may apply
Corollary 1.5 to conclude that f determines an effective, flat family Z J over C
with Zf(c) = Z and Zf(c’) = Z’. Thus, Z and Z’ are (effectively) algebraically
equivalent. More generally, assume y, y’ E Cr,d(X,j) are two closed points lying
in the same connected component of Cr,d(X,j). Then we may find a sequence of
closed points y = y0, y1,... , ym = y’ with yi-1, yi lying in the same irreducible
component of Cr,d(X,j) for each i, so that the cycles Z, Z’ corresponding to y, y’
are algebraically equivalent.

Consequently, the group completion 1to(CCr(XK,j))+ of 03C00(Lr(XK,j)) maps
onto the group of (not necessarily effective) r-cycles on XK modulo algebraic
equivalence. To prove injectivity, it suffices to verify for any two effective r-cycles
Z, Z’ of degree d on PNK with support on j (X) which are algebraically equivalent
that there exist effective r-cycles T, T’ of degree e on PNK with support on j(X)
with ~T~, ~T’~ in the same connected component of Cr,e(XK,j) such that
~Z + T~, ~Z’ + T’~ are in the same connected component of Cr,d+e(XK,j). As
argued previously, we may assume that Z, Z’ are fibers above points c, c’ E C of a
(not necessarily effective) flat family W over a smooth curve C of r-cycles of
degree d on PNK with support on j(X). Write W = 03A3 ni W as W = W’ - W", where
W’ (respectively, W") is the sum of those ni W for which ni is positive (resp.,
negative), and set T (respectively, T’) equal to the fiber of W" above c (resp., c’),
so that Z + T (resp. Z’ + T’) equals the fibre of W’ above c (resp., c’). Then ~T~
and ~T’~ (respectively, ~Z + T~, ~Z’ + T’~) lie in the same irreducible

component of Cr,e(XK,j) (resp., Cr,d+e(XK,j)) by Corollary 1.5.
Finally, the Leray spectral sequence in etale cohomology [23; 111.1.15] for a

proper morphism Y- Spec F and a constant torsion sheaf Z/l has the form

In particular,

so that 03C00(Y) ~ Ho(Gal(K/F), 1to(YK))’ Since the group completion of the abelian
monoid 03C00(Lr(XK,j)) is obtained as the colimit of self-maps of the monoid given
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by multiplication by elements and since Ho(Gal(K/F), -) commutes with
filtered colimits, we conclude that

2. Lawson homology

In this section, we introduce the 1-adic Lawson homology groups of a closed
algebraic set X provided with an embedding j : X ~ PNK for some algebraically
closed field K. These groups, denoted LrH2r+i(X, Zl), depend upon a choice of
prime 1 * p fixed throughout, a nonnegative integer r reflecting the con-
sideration of r-cycles on X, and another nonnegative integer i reflecting a choice
of dimension of families of r-cycles. In the special case in which K = C, we
provide a parallel development of analytic Lawson homology groups

LrH2r+i(Xan) which satisfy LrH2+i(Xan) ~ Zt ~ LrH2r+i(X, Zi). Throughout
this section, F and K will denote subfields of our universal field Q of finite
transcendence degree over our base field k of characteristic p  0; moreover, K
will be always taken to be algebraically closed.
We require two basic constructions to define Lawson homology groups. The

first is a "topological realization" functor which transforms (closed) algebraic
sets to topological spaces, whereas the second is a "homotopy-theoretic group
completion" functor applicable to spaces with a multiplication. Lawson ho-
mology groups are then defined as the homotopy groups of the homotopy-
theoretic group completion of the topological realization of the Chow monoid
IWI(Xli).

In the special case in which K = C, the functor ( - )a" which associates to a
complex algebraic set its underlying topological space with the analytic
topology is a suitable "topological realization functor" and provides us with the
analytic Lawson homology groups LrH2r+i(Xan). We recall that complex
algebraic sets with the analytic topology can be triangulated; moreover, such a
triangulation can be achieved in such a manner that any system of sub-algebraic
sets is a system of subcomplexes (cf. [17]). Consequently, the spaces we construct
for K = C will all have the homotopy type of C.W. complexes.

In the general algebraic (as opposed to analytic) context, we require the more
elaborate machinery of etale homotopy theory [8] and functors of Bousfield and
Kan [3]. We shall employ a composition of the etale topological type functor
( - )et from simplicial schemes to pro-simplicial sets, the Bousfield-Kan (Z/l)-
completion functor (Z/l)~(-) from simplicial sets to simplicial sets, the

Bousfield-Kan homotopy inverse limit functor holim( - ) from indexed families
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of simplicial sets to simplicial sets, and the geometric realization functor Re( - )
from simplicial sets to topological spaces.
We begin by introducing these ’topological realization’ functors and isolating

those properties which we shall require. For readers uncomfortable with

hypercoverings occurring in the definition of the etale topological type functor

(-)et. [8; 8.2] permits the replacement of ( - )et in (2.1) by the simpler ’Cech
topological type’ functor (denoted ( - )ret in [8]) which involves only Cech nerves
of a coverings.

2.1. PROPOSITION. Let |(-)et|: (algebraic sets)~(topological spaces) denote
the composition Re(-) holim(-)  (Z/l)~(-)  (-)et, where the maps in (al-
gebraic sets) are all scheme-theoretic maps (not necessarily over k).

(a) The set of connected components of the algebraic set X, 1to(X), is in natural 1-1
correspondence with 03C00(|Xet|).

(b) A continuous algebraic map f : X ~ Y induces a continuous map

f: |Xet| ~ |Yet|.
(c) If X, Y are algebraic sets over K (assumed algebraically closed), then the

canonical map |(X x Y)etI ~ IX etl x |Yet| is a homotopy equivalence.

Proof. By construction, 03C00(X) ~ 1to(Xet), so that (a) follows from [8; 6.10]. To
prove (b), we recall from [13; IX.4.10] that if g : X’ ~ X is a finite, surjective, and
radicial morphism of locally noetherian schemes, then pull-back via g (i.e.,
(-) x x X’) induces an equivalence between the categories of étale opens of X
and X’. We readily observe that a morphism g of locally noetherian schemes is
finite, surjective, and radiciel if and only if it is bicontinuous algebraic
morphism: finite is equivalent to finite-to-one and proper, whereas radiciel (i.e.,
universally injective) is equivalent to the condition that the induced maps on
residue fields are purely inseparable [14; L3.7.1]. Consequently, g:X’et ~ Xet is
an isomorphism whenever g is a bicontinuous algebraic morphism, so that
g IXet 1-+ IXet | is a homeomorphism. Thus, a continuous algebraic map f : X ~ Y
induces a continuous map f : |Xet| ~ let YI.

Finally, to prove (c), we use the Kunneth theorem in etale cohomology
[23; 8.13] which implies that (X x Y)et - X et  Yet induces an isomorphism in
Z/l-cohomology. This readily implies that the induced map on Artin-Mazur 1-
adic completions

is a weak equivalence (cf. [2; 4.3]). Because Xet and 1:t are weakly equivalent to
pro-simplicial sets in which each simplicial set is finite in each dimension [8; 7.2],
we conclude using [8; 6.10] that the Sullivan homotopy inverse limit of this
weak equivalence of Artin-Mazur l-adic completions is equivalent to
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I(X x Y)etl - |Xet| x |Yet|, thereby verifying that the latter map is a homotopy
equivalence. D

The analytic analogue of Proposition 2.1 is undoubtedly more familiar.

2.2. PROPOSITION. Let (-)an: (algebraic setsIC) ~ (topological spaces) be
defined by setting xan equal to the space of (closed) points of the complex algebraic
set X provided with the analytic topology.

(a) The set of connected components of the algebraic set X, no(X), is in natural 1 -
1 correspondence with no(xan).

(b) A continuous algebraic map f: X - Y induces a continuous map f: xan -+ Y’".
(c) (X X Y)’" is homeomorphic to xan x yan.

Proof. Assertion (a) is an immediate consequence of [25; 2.23]. To prove (b),
observe that a bicontinuous algebraic map g: X’ - X induces a proper, bijective,
continuous map g: (X’)an ~ xan of Hausdorff spaces which is necessarily a

homeomorphism. Finally, (c) is a standard property of the analytic topology.
D

The functorality of |(-)et| and (-)an leads to construction of the simplicial
spaces Br(Xet) and Br(Xan) associated to the Chow monoid Lr(X,j). In

Definition 2.3, we implicitly assert that the homotopy types of Br(Xet) and
Br(Xan) are independent (up to natural homotopy equivalence) of the embed-
ding j : X ~ PNK, a fact which is an immediate consequence of Propositions 1.7,
2.1, and 2.2. We restrict our attention to closed algebraic sets over the

algebraically closed field K in anticipation of Proposition 2.4.
We frequently employ the geometric realization Re(T.) of a simplicial space T.

Recall that Re(T.) is the topological space defined as the quotient of the disjoint
union of the product spaces 7i x 0394[n] by the equivalence relation generated by
(t, 03BC(x)) ~ (li(t), x), where 03BC: {0, 1, ..., k} ~ {0, 1, ..., nl is any non-decreasing
map, te Tn, x ~ 0394[n]. If each of the spaces T" has the homotopy type of a C.W.
complex, so does Re(T.) (cf. [29]). For typographic simplicity, we shall display
the simplicial space T. as

omitting any attempt to indicate the n + 1 face maps and n degeneracy maps
relating Tn and Tn-1.

2.3. DEFINITION. Let X be a closed algebraic set provided with some

embedding j : X ~ PÎK (K assumed algebraically closed) and let r be a non-negative
integer less than or equal to dim(X). We denote by W,(X,,,) (alternatively, Lr(Xan) f
K = C) the space UaEA |C03B1|, where
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Ca denotes the component of rcr(X,j) indexed by a E A, and |-| denotes |( - )et|
(alternatively, (-)an). We denote by -4,(X,,,) (alt., -4,(X"» the geometric realization
of the simplicial space

associated to the bar construction applied to the monoid Lr(X,j)). Let Lr(Xet)+
denote the loop space of the topological space and similarly let
rcr(xan)+ denote Çà-4,(X"). Then for any i  0, we define the l-adic Lawson
homology groups by

and the analytic Lawson homology groups by

In the following proposition, we exploit the fact that the functors |( - )etl and
( - )an commute up to homotopy with products. Of course, (-)an satisfies the
stronger property of commuting with products.

2.4. PROPOSITION. Let X be a closed algebraic set provided with some
embedding j : X ~ PNK, and let r  dim(X). Let denote |( - )et| (alternatively,
(-)an f F = C) and let Lr(|X|), Lr(|X|)+ denote the spaces Lr(Xet), Lr(Xet)+ (alt.,
Lr(Xan), Lr(Xan)+) of (2.3). Then Lr(|X|)+ is an infinite loop space. Moreover,
there is a natural map of H-spaces

which is a homotopy-theoretic group completion (i.e., has the effect of localizing
H*(Lr(|X|)) with respect to the action of A = 03C00(Lr(|X|))). Consequently, the
Lawson homology groups L,H2,(X, Zl) and L,H2,(X"’) are isomorphic to the
group of algebraic r-cycles on X modulo algebraic equivalence.

Proof. Let F denote the full subcategory of the category of pointed sets
whose objects are the finite pointed sets n = {0, 1,..., nl pointed by 0. (The
category 57 is the opposite category of the category T of [30]). The abelian
monoid structure on rcr(X,j) naturally determines a functor

Lr(X): -97 --+ (disjoint unions of closed algebraic sets/F),
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where

for n &#x3E; 0 and Lr(X)(0) = Spec F. Namely, if s: n ~ m is a pointed map, then
ttr(X)(n) -+ Lr(X)(m) maps Cal x Ca2 x ... x C03B1n via addition of cycles to

C03B21 1 x C 62 x ... x Cpm’ where f3j is the sum of oci with s(i) = j. Applying the
functor 1 - 1, we obtain a ’Segal r-space’ (cf. [30])

As shown in [7; 1.4], the fact that 1-1 commutes up to homotopy with products
implies that Br(|X|) = |Lr(X)|(03A31) is an infinite loop space, where 1:1 is the

minimal simplicial model for the circle and the P-space |Lr(X)| is extended in
the evident manner to the finite simplicial set 03A31.
The space Lr(|X|) = |Lr(X)|(1) admits a product structure given by composing

the homotopy inverse of |Lr(X)|(2) - |Lr(X)|(1) x |Lr(X)|(1) with the sum

|Lr(X)|(2) ~ |Lr(X)|(1). As discussed in [21] (see also [30]), the natural map

is a homotopy-theoretic group completion.
By Propositions 2.1 and 2.2, 03C00(Lr(|X|)+). is the group completion of

03C00(Lr(X,j)), which by Proposition 1.8 is the group of algebraic r-cycles on X
modulo algebraic equivalence. D

Using the group completion property of Lr(|X|)+, we next conclude that this
space has the homology of the ’space of stable r-cycles.’

2.5. PROPOSITION. Let X be a closed algebraic set provided with some

embedding j : X - pN and let r  dim(X). For each a E A = 03C00(Lr(X,j)), choose
some Za E Ca. Let fil, 03B22, ..., 03B2n, .... be a sequence of elements of A such that each
element of A occurs infinitely often among the Pn’s. Then the map of H-spaces of
Proposition 2.4

factors up to homotopy through a homology equivalence
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where Tel(Lr(|X|), (n) is the mapping telescope of the sequence of maps

Moreover, the maps on homotopy and homology groups induced by i are uniquely
determined as the direct limit of the corresponding maps induced by i.

Proof. We remind the reader that the mapping telescope Tel(Tn, fn) of a
sequence of continuous maps, {fn : Tn ~ Tn+1, n  01, is the topological space
defined as the disjoint union of the product spaces Tn x A[l] modulo the
equivalence relation generated by (t, 1) ~ (fn (t), 0) for any t E T,. (where 0, 1 are

the endpoints of the interval A[l]). This space has the property that a sequence
of maps gn: Tn ~ S with the property that gn+1  fn is homotopic to gn for all n
determines a map g: Tel(T,.,J;.) ~ S with the property that the composition of g
with the natural inclusion Tn ~ Tel(Tn, fn) is homotopic to gn. We caution the
reader that the homotopy type of the map g is determined by the data of the
homotopy type of each gn and the homotopy type of each homotopy relating
gn+1 fn to gn - On the other hand, the maps on homotopy and homology groups
induced by g are simply the direct limits of the corresponding maps induced by
the family {gn}. Of course, if To consists of a single point, this point serves as a
distinguished base point for Tel(Tn,fn).

Since i: Lr(|X|) ~ Lr(|X|)+ is a map of H-spaces, (n extends to a self-map of
Lr(|X|)+. We construct a homotopy inverse, sn : Lr(|X|)+ ~ Lr(|X|)+, to this
extension by defining sn to be given as pairing via the H-space structure of
Lr(|X|)+ with any point of the component of Lr(|X+)+ inverse in A+ to 03B2n. Since
the composition Sn  i  03B6n: Lr(|X| ~ W,(IXI)’ is homotopic to i, the system of

maps

determines an extension of i to i : Tel(CCr(IXI), (n) - CCr(IXI) + .
Since homology commutes with direct limits, the inclusion j : Lr(|X|)

~ Tel(Lr(|X|), (n) induces j*:H*(Lr(|X|)) ~ colim{H*(Lr(|X|)), 03B6n}, which is

precisely the localization of H*(Lr(|X|)) with respect to the action of A. Since
i: CCr(lXI) - Lr(|X|)+ is a homotopy-theoretic group completion by Proposition
2.4, i~*: H*(Tel(Lr(X 1), 03B6n))~ H*(Lr(|X|)+) is an isomorphism between localiza-
tions of H*(161(IXI». D

In order to compute the Lawson homology groups 03C0*(Lr(|X|)+), it is very
useful to know that i of Proposition 2.5 is a homotopy equivalence. Because

Lr(Xan) is an abelian monoid when K = C (whereas Lr(Xet) is only a homotopy
commutative H-space), we can demonstrate this in the analytic context. This is
done in the corollary below, whose key step was shown to us by W. Dwyer.
Theorems 4.3 and 4.6 provide special cases in which i is a homotopy
equivalence in the algebraic (i.e., etale homotopy-theoretic) content.
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2.6. COROLLARY.Let X be a closed algebraic set over C, provided with an
embedding j: X -+ PNC, and let r  dimc(X). Then the map of (2.5)

is a homotopy equivalence.
Proof. Let T denote Tel(Lr(Xan), en) and let j,,: Lr(Xan) ~ T denote the

inclusion of the n-th stage of the telescope, so that jn-1 is homotopic to jn 0 ’ne
Consider elements t E T, g ~03C01(T, t), and h ~ 03C0m(T, t). Choose n  0 and 03B1 ~ A such
that jn« ca)an) lies in the same component of T as t and such that g, h lie in the
image of (jn)# : 03C0*(C03B1)an, Z«) - 03C0*(T, t) (where we have replaced t by jn(Za»)’
Choose s &#x3E; n such that fi., = a. Then the pointed map j.: (C03B1)an~ T is homo-
topic to

which equals each of the following two compositions

where Za is the point map and y the multiplication map.
Since (id x Z03B1)# (03C01((C03B1)an, Za)) acts trivially on (Z03B1  id)# (1tm«ca)an, Za)), we

conclude that g E 1tl (T, t) acts trivially on h ~ 03C0m(T, t). In other words, T is a
simple space. Because a loop space is always a simple space, Proposition 2.5
implies that î: Tel(Lr(Xan), Cn) ~ Lr(Xan)+ is a homology equivalence between
simple spaces each of which has the homotopy type of a C.W. complex (cf. [17])
and thus a homotopy equivalence. D
The comparison theorems in etale homotopy in conjunction with Corollary

2.6 permit us to relate 1-adic and analytic Lawson homology of complex
algebraic varieties.

2.7. PROPOSITION. Let X be a closed complex algebraic set provided with
some embedding j: X ~ Pfl, and let r  dim(X). Then for any i &#x3E; 0, there is a
natural identification
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Proof : Write Lr(X) = U,,,c-,4 C03B1, with each Ca connected. By [8; 8.5], for each
a E A there is a natural chain of homotopy equivalences

where (Z/l)~  (-)an denotes the composition Re(-)(Z/l)~  Sing(-)  (-)an
and where |(Z/l)~(-)s.et| denotes the composition holim(-)  (Z/l)~ 
diag(-)  Sing.( - ) applied to the category of Cech nerves of rigid etale coverings
(cf. (8; 8.4]). Let

denote the disjoint union (indexed by a E A) of these equivalences.
The equivalences of (2.7.1) determine a commutative diagram of homotopy

groups whose vertical maps are isomorphisms

On the other hand, we have a commutative diagram of homotopy groups

where W,(Sing.Xan) is the disjoint union of the spaces Re(Sing.( Ca)), Because
(Z/l)~(-) commutes up to homotopy with products, the proof of Corollary 2.6
applies to prove that the lower (as well as the middle and upper) horizontal map
of (2.7.3) is an isomorphism. Using (2.7.2), we conclude that the proposition will
follow once we prove that the lower left vertical map of (2.7.3) is given by
tensoring with Zl.
As in Proposition 2.5, let 03B21, ... , Pli’ ... be a sequence of elements of A such

that each a E A occurs infinitely often among the Pn’s. Then the distinguished
component of Tel(Lr(Xan), (n) is given by the telescope of the sequence
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For notational convenience, let Cn denote (C On )an.
As discussed previously, the triangulability of complex algebraic sets permits

us to assume that the inductive system {Cn} satisfies the condition that each
Cn ~ Cn+1 is a simplicial inclusion. For any C.W. complex D, let sknD denote the
subcomplex consisting of the union of cells of D of dimension less than or equal
to n.

Let C denote the union of the C,,’s. Since C ~ colim(Cn) is homotopy
equivalent to C"’ x K(03C01(C), 1) (where C- denotes the universal cover of C), the
canonical map Cn ~ C factors (up to homotopy) through

where Cri is a simply connected, finite C.W. complex obtained from Cn by adding
2-cells in C but not in Cn to kill the fundamental group of Cn, where
03C01(Cn) ~ im{03C01(Cn) ~ 03C01(C)} is a finitely generated abelian group, and where
d(n) = dim(Cn)- Observe that Cn is a finite complex which is d(n)-simple. The
finiteness of C. implies that there exists some f(n) &#x3E; n such that Cn ~ Cf(n)
factors (up to homotopy) through Cn ~ Cn. We give (Ci) the structure of an
inductive system with maps Ci - C’f(n) defined to be the composition

colim 1ti(Cn) 0 Zl ~ colim 03C0i(C’n) 0 Zl,

colim 03C0i((Z/l)~Cn) ~ colim 03C0i((Z/l)~C’n)

(where the ambiguous notation colim 1ti( Cn) Q Zl is acceptable in view of the fact
that colim( - ) and ( - ) O Zl commute).

Recall that if T is a simple, finite, connected C.W. complex, then by [8; 6.6,
6.10]

Since the homotopy type (Z/l)~(C’n) in dimensions  d(n) depends only upon the

homotopy type of C’ in dimensions  d(n) by [3; IV.5.1], we conclude that

Consequently, the left vertical map of (2.7.3),
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can be identified with the composition

which is readily seen to be the map ’tensor with Zl.’ D
We now proceed to show that the usual functorality of algebraic equivalence

classes of cycles extends to all Lawson homology groups. The following lemma
formalizes our frequently used method of constructing continuous algebraic
maps.

2.8. LEMMA. Let X, Y be algebraic sets defined over a field F and assume that Y
is closed. Consider a rational map f : X -+ Yover F (i.e., a morphism over F defined
on some open, dense subset of X) and let r f denote the graph of f (closed in
X x Y). Then pari : 0393f - X is a bicontinuous algebraic morphism (and hence f is a
continuous algebraic map) if and only for every generic point Pl of X and every
specialization ~  x in XK, there exists at most one point y of YK such that
(ri, f(~))  (x, y) is a specialization in XK X YK extending ~~ x, where K is some

algebraically closed extension of F.
Proof. Since Y is closed, pr1: 0393f~ X is proper; since each generic point il of X

lies in the image of prl, we conclude that pr1 is surjective. By construction, pr 1 is
birational. Hence, pr1 is a bicontinuous algebraic morphism if and only if it is
injective on geometric points with values in K.

Since r f c X x Y is closed, (0393f)K contains for each generic point ri E X every
specialization of (~, f(~)) in XK x YK. Since r f is the closure of the graph of f,
every geometric point with values in K of r f is a specialization in XK x Y. of
(Pl, f(~)) for some generic point il of X. Therefore, pr 1 is injective if and only if for
each specialization ~~ x in X K there is a unique y in YK such that (~, f(~))~ (x, y)
is a specialization in XK x Y. extending q 1 x. 0

If f: X ~ Y is a morphism of closed algebraic sets and Va subvariety of X, we
recall that deg(V/f(V)) is defined to be 0 if dim(V) &#x3E; dim(f(V)) and

[k(V): k(f(V))] if dim(V) = dim(f(V)), where k(V), k(f(V)) are the function fields
of Vf(V). If g: W ~ X is a flat morphism of some fixed relative dimension and if
V is a subvariety of X, we recall that g-1(V) is defined to be the cycle associated
to the subscheme V X W ~ W. (The cycle associated to a subscheme T c P’ is
the formal sum Lni7i, where ~1,..., rim are the generic points of the irreducible
components of Tl, ..., T. of Tand ni is the length of the local ring of Tat ~i.) We
refer to the reader to the first chapter of [11] for further details.

2.9. PROPOSITION. Let X, Y, W be closed algebraic sets, provided with
embeddings j : X - PNF,j’: Y- PMF,j": W ~ pR. For any morphism f: X - Yover F
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and any nonnegative integer r  dim(X), there exists a continuous algebraic map
over F as indicated

For any flat morphism g: W ~ X over F of relative dimension s  0 and any
nonnegative integer r  dim(X), there exists a continuous algebraic map over F as
indicated

These continuous algebraic maps determine maps on l-adic Lawson homology
groups for any i  0

where K denotes the algebraic closure of F. Moreover, in the special case F = C,
f* and g* determine maps on analytic Lawson homology groups for any i  0

Proof. To define f*: W,(X, j) ~ Lr(Y, j’) rationally, let Pl = Spec E E C,,d(X, j)
be a generic point. By Proposition 1.2, il corresponds to an r-cycle Z, defined
over XE and therefore determines an r-cycle f*(Z~) on YE of some degree d(~)
corresponding to a morphism Spec E ~ Cr,d(,,)(1’:j’). These morphisms deter-
mine a rational map C,,d(X, j) ~ Lr(Y,j’) over F. To prove that this rational
map is a continuous algebraic map, by Lemma 2.8 we must show that the
uniqueness of specializations of (~, f(~)) in C,,d(X, j)K X Cr,d(~)(Y,j’)K extending a
given specialization ~~x in C,,d(X, j)K, where f(~) = ~f*(Z~)~ and K is an
algebraic closure of F.

Let (~, f(~))~ (x, y) be a specialization in Cr,d(X,j)K X Cr,d(~)(Y:j’)K and let

be a morphism from a smooth curve sending the generic point 03BE of C to (’1, f(’1))
and a special point c ~ C to (x, y). Then pr1  h corresponds to a C-relative r-cycle
Z with support on j(X) with generic fibre above 03BE equal to Z, and scheme-
theoretic fibre above c equal to Zx, the cycle with ~Zx~ = x.
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For any irreducible component V of the C-relative r-cycle Z, flatness of
(1 f)(V) c C x Y over C is implied by flatness of V c C x X over C. This
follows from the observation that because C is a smooth curve, it suffices to

check that (1 *f)(V) dominates C (cf. [16; 111.9.7]). Hence we conclude that
(1  f)*(Z) is a C-relative r-cycle with support on j’(Y) with ((1  f)*(Z))03BE = f*(Z~)
and ((1 f)*(Z))c = f*(Zx). We conclude using Proposition 1.3 that y must equal
~f*(Zk)~. In other words, (q, f(~))~ (x, ~f*(Zx)~) is the unique specialization of
(’1,f(11)) extending ~~ x.
We construct g*: Lr(X, j) ~ Lr+s(W,j") similarly. Namely, g* is first defined

rationally by sending a generic point ’1 = Spec E E Cr,d(X,j) corresponding to an
r-cycle Z, with support on j(X) to the Chow point g*(’1) of the (r + s)-cycle g*(Z~).
As for f*, we verify the uniqueness of specializations of (11, g*(11») in

Cr,d(X,j)K x Cr+s,d(~)(Y:j’)K extending a given specialization ~~ x in Crtd(X,j)K’
The proof is similar to that for f*: if Z is a C-relative r-cycle with support on j(X)
for some smooth curve C with generic fibre above 03BE equals to Z, and scheme-
theoretic fibre above c E C equal to Zx, then (1 x g)*(Z) is a C-relative (r + s)-
cycle with support on j "(W) with generic fibre above 03BE equal to g*(Z~) and
scheme-theoretic fibre above c ~ C equal to g*(Zx).
The previous construction applies essentially verbatim to provide continuous

algebraic maps f*, g* from Ual ... 03B1n C03B11 ···  Can for any n  1 and thus
continuous maps from Ual ... 03B1n |C03B11  ··· x CJ. The naturality of f*, g* implies
that these maps after base change from F to K determine maps of simplicial
spaces exhibited in Definition 2.3 and thus maps

The induced maps on homotopy groups are the asserted maps f# , g#. ~
We conclude this section with the following assertion concerning the existence

of Galois actions on LrH2r+i(X, Z,), We caution the reader that the analytic
Lawson homology groups LrH2r+i(Xan) for complex varieties do not admit
actions associated to discontinuous Galois automorphisms of C.

2.10. PROPOSITION. Let X be a closed algebraic set, provided with an
embedding j: X -+ PNF and let K denote the algebraic closure of F. Then the Galois
group Gal(KIF) naturally acts on LrH2r+i(XK, Z,), any 0  r  dim(X), 0  i.
Moreover, if f: X -+ Y and g: W ~ X are morphisms over F as in (2.9), then the
maps of Proposition 2.9

are Gal(K/F)-equivariant.
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Proof. Since Cr,d(X,j)K = Cr,d(XK, j) by Proposition 1.1, Gal(K, F) naturally
acts on Cr,d(XK,j). Clearly this action commutes with the monoid structure on
Lr(XK,j). The functorality of |( - )etl for all morphisms of schemes (not merely K-
maps) thus implies that Gal(K/F) acts on -4,«XK),,) and therefore on 1-adic
Lawson homology groups LrH2r+i(XK, Zl). Since the constructions in (2.9)
involved in defining f#, g* are continuous algebraic maps over F whenever
f: X ~ Y, g: W~ X are morphisms over F, functorality of |(-)et| implies that
these maps are Gal(K/F)-equivariant. 0

3. Constructions for algebraic suspensions

Lawson’s main theorem is the assertion that ’algebraic suspension determines an
isomorphism in Lawson homology.’ In this section, we lay the foundations for
an algebraic proof of this theorem in section 4. We re-work Lawson’s original
constructions [19], [20] in order that they apply in our present algebraic
context. Geometric arguments analyzing spaces of currents are reformulated, so
that continuous maps in the complex analytic context are replaced by con-
tinuous algebraic maps of algebraic sets. Our strategy is to first show that
Lawson’s constructions determine rational maps f X - Y of algebraic sets and
then verify that the condition in Lemma 2.8 is fulfilled.
As in previous sections, F is a field extension of finite transcendence degree

over our base field k and contained in our universal field 03A9, and 1 is a prime not
equal to p = char(k). As the reader will see, our arguments are achieved without
assumption on the field F, except that F is required to be infinite in Proposition
3.5.

We begin with an analysis of the (algebraic) suspension construction, which
(following Lawson) we denote by E ( - ). If j : X - PNF is an embedding of a closed
algebraic set, then 03A3j:03A3X~PN+1F is the embedding given by the same

homogeneous equations (i.e., not involving the new homogeneous coordinate of
PN+1F), so that X is the intersection of 03A3X with the ’standard embedding’
PNF c PN+1F. If Z = 03A3niZi is any r-cycle on X, define 03A3 Z to be 03A3ni(03A3 Zi).

If V and W are closed algebraic subsets of IP:, we define the (projective) join of
V and W, denoted V # W, to be the closed algebraic subset of P) consisting of
the union oî all lines in P) which meet both V and W (In the grassmannian 2 of
lines in IP:, those lines L which meet both V and W form a closed algebraic set
P; V # W ~ PNF is the projection of the incidence correspondence in PNF x 2
restricted to PNF x y). We shall often view PM+N+1F as the ’external join’ of
disjoint linear subspaces L ~ Pm and L’ ~ pN. If X, Y are closed algebraic sets
provided with embeddings jX: X ~ PMF, jY: Y ~ PMF, then the external join
jX#Y : X # Y ~ PM+N+1F of X and Y is the join of
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If V is a subvariety of PNF, then 1: V = x~ # V where x~ = ~0,..., 0, 1~ e PN+1F.
We recall that two cycles Z = 03A3niZi, Z’ = 03A3mjZ’j in an ambient algebraic

variety V are said to intersect properly (in V) if the codimension in V of each
irreducible component of Zi n Z’j is the sum of the codimensions of Zi and ZJ.
3.1. PROPOSITION. Let X be a closed algebraic set provided with an embedd-
ing j: X ~ PNF. Then sending an effective, degree d, r-cycle Z with support on j(X)
to E Z is given by a continuous algebraic map over F

Those effective (r + 1)-cycles Z of degree d on PN+1F with support on 03A3 X which
meet PNF properly (in PN+1F) form an open subset of Cr+1,d(03A3 X, 03A3j) which we
denote by Tr+1,d(03A3 X, 03A3j). Moreover, Tr+1,d(03A3 X, 03A3j) contains the image of
03A3(-).

Proof To define 03A3(-): Cr,d(X,j) ~ Cr+1,d(03A3 X, 03A3j) rationally, let

ri = Spec L, be a generic point Cr,d(X, j), with corresponding effective r-cycle Z,
defined over L~ by Proposition 1.2. Then 03A3(Z~) determines a morphism
Spec L~ ~ Cr+1,d(03A3 X, 03A3j) over F. These morphisms for all generic ~ determine
a rational map Cr,d(X,j) ~ Cr+1,d(03A3 X, 03A3j) over F, sending ~ to

03A3(~) = ~03A3(Z~)~.
To prove that this rational map is a continuous algebraic map, we proceed as

in the proof of Proposition 2.9. Let (ri, X (ri)) j, (x, y) be a specialization in

Cr,d(X,j)K  Cr+1,d(03A3 X, 03A3j)K extending a given specialization ~ ~x in

Cr,d(X,j)K, where K is an algebraically closed extension of F. Let

be a map from a smooth curve C sending the generic point 03BE of C to (1, E (~)) and
a special point c E C to (x, y). Then pr1  h corresponds to a C-relative r-cycle
Z = 03A3niVi on C x PN+1K with support on j(X) with generic fibre above 03BE equal
to Z~ and scheme-theoretic fibre above c equal to Zx, the cycle with ~Zx~ = x.

Define 03A3c(Z) = 03A3ni03A3c(Vi) on C x PN+1K with support on Ej(03A3 X) by setting
03A3c(Vi) equal to that subvariety of C x PN+1K given by the same equations (not
involving the extra homogeneous coordinate of PN+1K) as g c C x PNK. Since
03A3c(Vi) dominates C if Vi does, we conclude that lc(Z) is a C-relative (r + l)-cycle
with support on £j(£X). Moreover, the generic fibre above 03BE equals £Z, and
scheme-theoretic fibre above c equals E Zx. We conclude that y must equal
~03A3 Zx~ if (~, 03A3(~))~ (x, y) extends ~~ x. By Lemma 2.8, 03A3(-) is a continuous
algebraic map.
By [28; IL6.7], if Z~Z0 is a specialization in Cr,d(X,j) and if Zo meets PNF
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properly (in PN+1F), then Z also meets PNF properly. Thus, Tr+1,d(03A3 X, 03A3j) is an
open subset of Cr+1,d(03A3X, 03A3j). Finally, the (set-theoretic) intersection of the
(r + 1)-cycle XZ with PNF (in PN+1F) is the r-cycle Z, so that EZ meets PNF
properly; in other words, L(-) has image contained in Tr+1,d(03A3 X, 03A3j). D
The following proposition is our algebraic version of the first of Lawson’s two

geometric arguments, the argument Lawson calls "holomorphic taffy" (cf. [20;
§4]).

3.2. PROPOSITION. Let X be a closed algebraic set provided with an embedd-
ing j: X -+ PNF and let Ai denote the affine line over F. For any d &#x3E; 0, r  dim(X),
there exists a continuous algebraic map over F

whose restrictions to Tr + l,d(I:X, 03A3j)  {1} and to 03A3(Cr,d(X,j)) x {s} for any SE A F 1
are the identity and whose restriction to Tr+ 1,d(03A3X, 03A3j) x {0} is a continuous

algebraic map

(In other words, (D is a strong deformation retraction of 03A3(Cr,d(X, j)) c
Tr+ 1,d(03A3X, 03A3j)).

Proof. We define

to be the graph of the rational map PN+1F x P1F ~ PN+1F 1 whose restriction to
PN+1F x s for SE Ai - {0} is the linear automorphism 0398s: PN+1F ~ PN+1F 1 sending
(xo,..., xN, xN+1~ to (xo, ..., xN, XN+1/s~. More explicitly, A is the closed
subvariety given by the homogeneous equations

where {Xi} (respectively, {S, T}; resp., {Yj}) are "the standard linear forms" on
PN+1F 1 (resp., P§; resp., PN+1F).
We define 4J rationally by sending a generic point

to the point
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Observe that for any s ~ A1F - {0} and any r-cycle Zx with (Zx) = x E Cr,d(X, j),
the cycle pr3«Zx x s x PN+1F). A) can be computed as the projection of the
scheme-theoretic intersection of Zx  s  PN+1F with A, and thus equals 0s(Zx)’
Namely, for any irreducible component V of Zx, the subvarieties V x s x PN+1F
and A meet transversally at their intersection V x s x 0s(V) so that the

multiplicity of V x S x 0398s(V) in (Zx x s x PN+1F). 039B is 1; furthermore, the

projection pr3: 039B ~ PN+1F restricts to an isomorphism on (Zx x s x PN+1F). 039B
viewed as a cycle on A. Since the cycle (Zx x s x PN+F 1). A is defined over L [28;
II.6.6] (and implicit in [11]), this construction determines a morphism
Spec L ~ Cr+1,d(03A3X, 03A3j) and thus a rational map over F

We employ Lemma 2.8. to show that (D extends to a continuous algebraic map

Let K be an algebraically closed extension of F. Recall that if

extends a given specialization (tl, j) 1 (x, s) and if Zx x s x PN+1K intersects AK
properly in PN+1K x P’ x PN+1K, then y must equal pr3((Zx x s  PN+1K). 039BK)
[28; I.9.7.d; IL6.7]. Thus, to prove that (D extends to a continuous algebraic map,
it suffices to verify that Zx x s x PN+1K intersects AK properly for any
(x, s) E Tr+1,d(03A3X, Xj)K x Ai. For s:0 0, this follows from the identification of
pr3((Zx x s x PN+K 1) . AK) with 8s(Zx)’ If W is a subvariety of PN+K 1, then the
intersection of W x 0 x PN+1K and AK in PN+1K x P1K  PN+1K consists of those
triples (x, 0, y) such that either

i. xe Wn PNK and y ~ x~ # x (the projective line through x~ and x), or
ii. XE Wand y = Xoo’

Hence, Zx x 0 x PN+1K intersects AK properly for any xe 7r+1,d(03A3X, 03A3j)K.
As seen above, (D restricted to

is induced by es. In particular, Q restricted to Tr+ 1,d(03A3X, 03A3j) x 1 is the identity.
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Moreover, the preceding explicit description of the intersection of

W x 0 x PN+1K and AK shows that

Thus, 0 restricted to Tr+1,d(03A3X, 03A3j) X {0} has image contained in 03A3(Cr,d(X,j)).
Finally, if W = 03A3V for some subvariety V of PNF, then our explicit description
shows that the intersection of 03A3V  0 x PN+1F and A projects isomorphically
onto 03A3V. Since 03A3V  0 x PN+1F and A intersect transversally, C restricted to

is also the identity.
In particular the graph of 03A6, 039303A6, satisfies pr3(039303A6) c Tr+1,d(03A3X, 03A3j) so that (D is

a continuous algebraic map T + 1,d(03A3X, Si) x A1F~ Tr+1,d(03A3X, Si). Moreover,

restricts to an isomorphism above any regular point of Tr+1,d(03A3X, 03A3j) x A1F by
Zariski’s Main Theorem. In particular, the restriction of this projection above

Tr+1,d(03A3X, 03A3j)  0 is birational, as well as proper and bijective, thereby
determining a continuous algebraic map with domain Tr+1,d(03A3X, 03A3j) x 0. As
seen above, the range of this map is 03A3 Cr,d(X, j), so that this continuous algebraic
map is of the form

3.3. LEMMA Let X, Y be algebraic sets over F with Y closed, U c X a Zariski
open subset, W c U x Y a closed subset, and W- c X x Ythe Zariski closure of
W in X x Y Then any w ~ W- with pr1(w) ~ U is necessarily in W Consequently, if
f : X ~ Y is a rational map over F, then there exists a maximal open subset D f c X
(the "domain of continuit y" of f) such that f|Df : D f ~ Y is a continuous algebraic
map.

Proof. Since Y is a closed algebraic set, prl: U x Y ~ U is proper and so
therefore is its restriction p: W ~ U. Consider some point w E W- with pr1(w) E U.
Choose w’ E W with w’~w. Let R be a valuation ring with residue field E and
function field L together with a map co: Spec R ~ W- mapping Spec E to w and
mapping Spec L to w’. Since p: W ~ U is proper, the pair (poco: Spec R ~ U,
03C1|: Spec L - W) extends to a map 03C9~: Spec R ~ W by the valuative criterion for
properness. Since W- -+ X is separated (because Y is a separated over Spec k) co-
must equal co, thereby implying that w E W.

Let D f = {x ~ X ; #((0393f ~ (x x Y))K) = 1}. Since f is a rational map, D f is a
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dense Zariski open subset of X. By applying the first part of the lemma with W
equal to the graph of f|U and W~ equal to the graph of f, we conclude that
Df ~ U whenever Jiu is a continuous algebraic map. D
We now algebraicize Lawson’s second geometric construction, which he calls

’magie fans’ (cf. [20; §5]).

3.4. PROPOSITION. Let X be a closed algebraic set provided with an embed-
ding j : X ~ PNF. For any d, e &#x3E; 0, r  dim(X), there exists a rational map over F

such that if x1 # Z meets D properly (in PN+2F) and if x2 does not lie in an y
component of (x1 # Z) rBD, then (Z, D) is in the domain o, f ’ continuity of ’II e and

where x 1 = (0,...,0,0,1) and X2 = (0,...,0,1,1) are points of p:+2, and
pN+2 ~ pN+1 is the projection off X2 . Moreover, if Z = 1 W for some r-cycle
W on X with x1 # Z meeting D properly and X2 not lying on (X 1 # Z) rzD or if
D = e - PN+1F, then 03A8e(Z, D) (where defined) equals e - Z.

Proof. As seen in Proposition 3.1,

is a continuous algebraic map over F, where j’ = x1 # 03A3j: x1 # 03A3X ~ PN+2F.
Moreover, intersection determines a rational map over F

Namely, if (~, 03B4) = Spec L is a generic point of Cr+2,d(x1# 03A3X,j’) 
CN+1,e(PN+2F) with corresponding pair of cycles (Z,,, Dâ), then both Zn and Dô are
defined over L by Proposition 1.2 and hence Z~. Db is also defined over L (cf. [28;
IL6.6] or implicit in [11]); hence (r¡, £5) determines a morphism
Spec L - Cr + 1,de(x1 # 03A3X, j’) over F. We verify that a pair (Z, D) lies in the
domain of continuity of this rational map whenever Z and D intersect properly
by applying the ’Theorem of Specialization’ [28; 11.6.7] (cf. also [11; 10.1]).

Furthermore, P2 determines a rational map over F

(x # 03A3X is a double suspension and projecting off x2 is projecting along a
suspension coordinate). Namely, if 03BE = Spec E is a generic point of
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Cr+1,de(x1 # 03A3X,j’) with corresponding (r + l)-cycle Z03BE, then Z03BE has no compo-
nent containing X2 so that P2(Zç) is a well defined r-cycle supported on EX and
defined over E [28; I.9.7.d]; hence, 03BE determines a morphism
Spec E - Cr,de(I:X, 03A3j). Applying [28; I.9.7.d) once again, we conclude that Z is
in the domain of continuity of this map whenever no component of Z contains
X2.
We define ’lie to be the composition of these rational maps. The assertion

concerning the domain of continuity of IF,, is immediate from the above

discussion. If D = e·PN+1F as a (degenerate) degree e hypersurface in PN+2F, then

since (x1 # Z) intersects PN+1F transversally.
Finally, if Z = 03A3W = x~ #W is a suspended cycle, then P2«Xl # Z). D) equals

p2((x2#Z)·D). Since D has degree e, we conclude that D meets each line
x2 # y c PN+2F exactly e times (counting multiplicities) for any y ~ PN+1F. Thus,
(x2 # Z)·D is an e-sheeted covering of Z. Hence, P2«X2 # 03A3W)·D) = e·03A3W. D

Investigating the rational map ’II e of Proposition 3.4 more closely, we obtain a
’continuous algebraic homotopy’ between multiplication by e on Cr+ 1,d(03A3X, E/)
and a map which factors through Tr+1,de(03A3X, 03A3j). The determination of

codimensions in the proof of Proposition 3.5 closely follows an argument of
Lawson (cf. [20; §5]).

3.5. PROPOSITION. Let X be a closed algebraic set provided with an embedd-
ing j: X ~ PNF for some infinite field F. For any d &#x3E; 0, r  dim(X), there exists a
positive integer E(d, r) such that for any e &#x3E; E(d, r) the rational map ’II e of (3.4) has
the following property: there exists an F-rational projective line

Le ~ CN+1,de(PN+2F) with e·PN+1F ~ Le such that ’lie restricts to a continuous
algebraic map over F

with the property that the further restrictions of ’P e yield continuous algebraic
maps over F

Proof. We consider the closed subset A c Cr+1,d(03A3X, 03A3j) x CN+1,e(PN+2F)
defined by
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For any r + 1-cycle Z with support on 03A3j(03A3X), we let A(Z) denote the fibre of A
above Z. We proceed to verify that

as e ~ oo. This will clearly imply the existence of some E(d, r) such that

Since 0394(Z) = ~0394(Vi) whenever Z = 03A3niVi, it suffices to restrict attention to
irreducible cycles Z = V in (3.5.1). Let Y’ denote x1 # Y c PN+2F and H denote
x2 # PNF c PN+2F. Observe that H meets Y’ n D improperly if and only if H

contains some component of Y’ n D if and only if the image of G in r(V’, (9(e»
lies in the image of

where G is a form of degree e with associated divisor D. Thus,

As a function of e, the right hand side of the above inequality grows as a
polynomial of degree r - 1 with leading coefficient deg(Y’)/(r + 1)!. This clearly
implies inequality (3.5.1).
Consider the projective variety L of all lines in the projective space

CN+ 1,e(PN+2F) passing through the F-rational point e·PNF E CN+ 1,e(PN+2)· Assume
e &#x3E; E(d, r), so that a generic L" E L intersects pr2(0394) only at e·PNF by (3.5.2).
Observe that neither xl nor x2 lies on such a generic L, . Since F is infinite, the F-
rational points of L are dense, so that there exists some F-rational line Le ~ L
intersecting pr2(0394) only at e - PNF and such that neither Xi nor x2 belong to any
D E Le - e ’ PNF.

Since D meets x1 # Z properly for any Z ~ Cr+1,d(03A3X, 03A3j) whenever D does
not contain xl, Proposition 3.4 implies that Cr+1,d(03A3X, 03A3j) x Le is contained in
the domain of continuity of ’Y,,. As argued at the end of the proof of Proposition
3.2, ’lie therefore restricts to a continuous algebraic map

Moreover, for D0 = e·PNF ~ CN+1,e(PN+2F), Proposition 3.4 implies that ’lie
restricted to Cr+ 1,d(03A3X, 03A3j) x {D0} is multiplication by e. For e’ PNF ~ D E Le, D
does not lie in pr2(0394); in other words, x2 # PNF meets (x1 # Z) n D properly so
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that PNF meets 03A8e(Z, D) properly. We conclude that ’P e restricted to

Cr+ 1,d(03A3 X, 03A3j) x {D} has image in 7;+ 1,de(03A3X, 03A3j). D

4. Theorems for Lawson homology

In this section, we reap the benefits of the formal developments of the preceding
sections. Theorem 4.2 is our algebraic/analytic generalization of Lawson’s
suspension theorem applicable to an arbitrary algebraic set over an algebrai-
cally closed field K. Following Lawson, we derive as a corollary (our Corollary
4.4) the computation of l-adic Lawson homology for projective spaces over
algebraically closed fields. However, to derive this corollary, we require an
algebraic version of the Dold-Thom theorem (our Theorem 4.3), a result of
independent interest because it provides a new definition of etale homology.
Finally, in Theorem 4.6, we determine the Lawson homology in codimension 1
of a smooth projective variety over K.
As in section 2, F and K will dénote subfields of Q of finite transcendence

degree over k of characteristic p  0 and a prime 1 ~ p. We shall only use K to
denote algebraically closed fields.

4.1. LEMMA. Let V be an algebraic set defined over a field F and let
e: V x A1F ~ Y be a continuous algebraic map over F. Then for any pair of F-
rational points a, b~A1F, the restrictions ea, eb of e to V x a, V x b determine
homotopic maps ea, 0398b: |Vet| ~ |Yet|. Moreover, if F = C, then 0398a, 0398b: van -+ Yan
are also homotopic.

Proof. We recall that pr 1: V x A1F ~ V induces an isomorphism in 7LI1-
cohomology [23; VI.4.12, VI.4.15]. As argued in the proof of Proposition 2.1,
this implies that pr1: |(V  A1F)et| ~ |Vet| is a homotopy equivalence. Since

pr1  ic: V ~ V x A1F ~ Vequals the identity of V for any F-rational point c E A1F,
we conclude that the homotopy type of 0398  ic = 0398c: |Vet| -+ |Yet| is independent of
c. The analytic assertion is immediate from the contractibility of (A1C:)an. ~

Having rephrased Lawson’s analytic arguments into our algebro-geometric
context in section 3, we can now prove the following algebraic/analytic
generalization of Lawson’s suspension theorem, the main theorem of [20].

4.2. THEOREM. Let X be a closed algebraic set provided with an embedding
j: X ~ PNF and let K be the algebraic closure of F. For any r  dim(X), algebraic
suspension determines a homotopy equivalence
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which is Gal(KIF)-equivariant. This homotopy equivalence induces Gal(K/F)-
equivariant isomorphisms of l-adic Lawson homology groups

Furthermore, if F = C, then algebraic suspension determines a homotopy
equivalence

and thus isomorphisms of analytic Lawson homology groups

Proof. As in section 2, we let 1-1 denote either |(-)et| or ( - )an in order to
consider both Lr((XK)et)+ and Lr(Xan)+ simultaneously. As argued in the proof
of Proposition 2.10, the fact that E( - ) in Proposition 3.1 is defined over F

implies the Galois equivariance of 03A3: Lr((XK)et)+ ~ Lr((03A3XK)et+. For nota-
tional convenience, we now assume F = K and proceed to verify the asserted
homotopy equivalences. Observe that

is a submonoid of Lr+1(03A3X, 03A3j) = ~d0 Cr,d(03A3XK, I:j), with 03C00(Pr+1(03A3X, 03A3j))
equal to A = 03C00(Lr(X, j)) by Proposition 3.2. As in Definition 2.3 for Br(|X|),
denote by -9,, 1(|03A3X|) the geometric realization of the simplicial space

As in Proposition 2.5, we conclude that

is a map of H-spaces factoring through a homology equivalence

where ’n = Zp. + (-): Pr+ 1(|03A3X|) ~ Pr+1(|03A3X|) as in (2.5) with the added
condition that Z03B2n E Rn.
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By Lemma 4.1, the existence of the continuous algebraic map

of Proposition 3.2 implies that E - 0 and the identity of 7§) are homotopic (via a

Gal(K/F)-equivariant homotopy), whereas ~  03A3: |Ca| ~ |Ta| ~ Cal equals the

identity for each a E A. Consequently,

is a homology equivalence whose induced map on homotopy groups fits in a
commutative square

whose vertical maps are isomorphisms. Thus, the map of H-spaces

induces an isomorphism on homology groups and is consequently a homotopy
equivalence.

In a similar fashion, we apply Lemma 4.1 to the restriction

of the continuous algebraic map of Proposition 3.6, where Al denotes the
complement in Le of some point different from e·PN+1K. Choose some
D ~ e·PN+1K E Le . Let A’ = 03C00(Lr+1(03A3X, 03A3j)), let Y-: A -+ A’ be the map induced
by 03A3: Lr(X, j) ~ Wr 11 1(03A3X. 03A3j), and let 03C8: A’ ~ A be the map induced by

of Proposition 3.5. By Proposition 3.5, for any 03B2 ~ 03C00(Cr+1,d(03A3X, 03A3j) ~ A’ the
maps

are homotopy equivalent, as are the maps 03B1 ~ 03C00(Tr+1,d(03A3X, 03A3j)) c A
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where i: Pr+1(03A3 X, 1: j) ~ Lr+1(03A3 X, 03A3j) is the natural inclusion. Consequently,

is a homotopy equivalence, implying as above that

is also a homotopy equivalence.
The asserted homotopy equivalences are the compositions of (4.2.1) and

(4.2.2). The asserted isomorphisms of Lawson homology groups are the maps on
homotopy groups induced by these equivalences. D
The Dold-Thom theorem [5] asserts that if T is a pointed, connected C.W.

complex and if SP°°(T) - colimd SPd(T) denotes the infinite symmetric product
of T, then the map on homotopy groups induced by the inclusion T- SP°°(T)
can be identified with the Hurewicz homomorphism 03C0*(T) ~ H*(T). In view of
the triangulability of complex algebraic sets [17], this immediately implies the
natural isomorphisms

for any complex projective algebraic variety X.
Using P. Deligne’s analysis of the etale cohomology of symmetric products of

an algebraic variety [4], we prove the analogous statement in the context of
etale homotopy and etale homology of algebraic varieties.

4.3. THEOREM. Let X be a closed, geometrically connected, algebraic set

provided with an embedding j: X ~ PNF, let K be the algebraic closure of F, and let
xo E X be an F-rational point. Then the homology equivalence of (2.5)

is a homotopy equivalence. Moreover, the identity component of Tel(L0((XK)et), ’n)
can be identified in a Gal(K/F)-equivariant manner with colimd |Spd(XK)et 1, where
Spd(XK) is the d- fold symmetric product of X x with itself and where

SPd(XK) ~ SPd+ 1(XK) is given by addition with xo. Finally, there are Gal(K/F)-
natural identifications

where the (inverse) limit is indexed by pairs arising from the indexing category of
the pro-simplicial set (X K)et and the natural numbers n &#x3E; 0.
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Proof. As discussed in [26; §6], there is a natural bicontinuous algebraic
morphism SPd(X) ~ Co,d(X, j): functions on Co,d(X, j) are those symmetric
functions expressible in terms of "fundamental symmetric forms.’ Moreover,
Spd(XK) is connected for any d &#x3E; 0, so that we may choose (n to be addition by
deg«(n)’ xo. Hence, these natural morphisms Spd(X) -+ Co,d(X, j) determine a
Gal(K/F)-equivariant homotopy equivalence

where rd(-) is the construction of mod-l cohomology which satisfies rd(H*(T,
Z/4) = H*(SPdT, Z/l) for any finite connected simplicial set T. We recall that

rd( - ) applied to a finite 7LIl vector space W in a given cohomology degree t

consists of ’constructions with length satisfying constraints depending upon d’
among those ’constructions’ which give H*(K(W, t), Z/1) where K(W, t) is the
Eilenberg-MacLane space with 03C0t(K(W, t)) = W (cf. [22]). Let {T03B1} be an inverse
system in the homotopy category of connected simplicial sets finite in each
dimension weakly equivalent to (Xk)et (cf. [8; 7.2]). Then there are natural

isomorphisms

Observe that if U ~ XK is etale and surjective, then SPd(U) ~ SPd(XK) is also
etale and surjective as can be seen by identifying the geometric fibres of this map.
Hence, the natural maps

determine a natural (in particular, Gal(K/F)-equivariant) map SPd(XK)et ~
SPd((XK)et). As argued in the proof of Proposition 2.1, (4.3.2) implies that this
map induces a homotopy equivalence

Since the homological connectivity of SPd(T03B1) ~ SP~(T03B1) goes to infinity at least
as fast as a function c(d) (approximately equal to 2d ) which satisfies

colimd c(d) = oo [22] and since SP~(T03B1) is a generalized Eilenberg-MacLane
space for any a, we conclude that the action of 03C01(|SPd((XK)et)|) on
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03C0i(|SPd((XK)et)|) is trivial for all i  c(d). Consequently, colimd|Spd((XK))et| is a

simple space, so that (4.3.1) implies that Tel(L0((XK)et), (n) is also simple. Thus,
the homology equivalence

is a homotopy equivalence.
By [8; 6.10],

where (-)^l denotes the 1-adic completion functor on abelian groups. Hence, for
0  i  c(d), the Dold-Thom theorem applied to each T03B1 determines Gal(K/F)-
equivariant isomorphisms

Using the fact that PNK is the r-fold algebraic suspension of PN-rK for any r  N,
we easily conclude the following corollary of Theorems 4.2 and 4.3.

4.4. COROLLARY. Let K be an algebraically closed field. Then

Proof. By Theorems 4.2, LrH2r+i(PNK, Zl) ~ L0Hi(PN-rK, Zl). By Theorem 4.3,
the latter is isomorphic to Z for i = 0 and is isomorphic to lim. Hi((PN-rK)et, Z/ln)
for i &#x3E; 0. These groups are well known to be as asserted in the statement of the

corollary (cf. [8; 8.7]). D

Let Pic(T) denote the group of isomorphism classes of invertible scheaves on a
scheme T. If X is a smooth, projective variety of dimension m over a field F with
an F-rational point, then the functor sending an F-scheme S to Pic(X x S)/Pic(S)
is representable by a complete scheme Picx provided with a universal invertible
sheaf ôl on Picx x X. Moreover, the reduced scheme (Picx)rea has connected
component (Pic0X)red which is an abelian variety (cf. [12]). The group no(Picx) is
the group completion A+ of the abelian monoid A = 03C00(Lm-1(X j)), where the
natural map 03C00(Lm-1(X, j)) ~ no(Picx) sends the algebraic equivalence class of
an effective divisor D to the algebraic equivalence class of the associated line
bundle L(D).
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4.5. PROPOSITION. Let X be a projective, smooth variety of dimension m

provided with an embedding j: X ~ P’ and an F-rational point. Write

W. - i (X, = UaEA Ca, and for each 03B1 ~ A let Pica,x denote the corresponding
component of (Picx)rea with universal invertible sheaf fiJ a on Pica,x x X. Let
03C003B1: Pic,,,,x x X - Pic,,,,x and 03C403B1: P(03B1) = Proj (03C003B1*P03B1) ~ Pic«,x denote the project-
ions, and let ~ ~ A denote the component of a hyperplane section. 1hen for each a
there exists an integer na such that if n &#x3E; na and fl = a + nt¡

(a) t fJ: P(03B2) ~ Pic03B2,X is a projective bundle with fibres PN(03B2), N(03B2) = dim r(X k(z)’
Lz) - 1, where Lz represents some z E Pic03B2,X.

(b) there exists a natural bicontinuous algebraic morphism ~03B2 : P(03B2) ~ Co.

Proof. For each y E Pica,x there exists an ny &#x3E; 0 such that Hi(Xk(y), Ly(n)) = 0
for all i &#x3E; 0 whenever n &#x3E; n(y), where Ly represents y and Ly(n) = Ly (8) (9x(n).
Observe that LY(n) is the restriction of fiJa O pr, * «9x(n» on X x Pica,x’ By the
upper semi-continuity of (Zariski) sheaf cohomology for the projective morph-
ism pr2: X x Pic«,x ~ Pic,,,,x and the coherent sheaf fiJ a (8) pr1 * «9x(n» flat over
Pic«,x [16; III.12.8], for each i &#x3E; 0 there is some neighborhood of y E Pica,x such
that Hi(Xk(y’), Ly’(n)) = 0 for all y’ in this neighborhood. Using the finite

dimensionality and compactness of X, we conclude the existence of some n(a)
such that Hi(Xk(y), Ly(n)) = 0 for all i &#x3E; 0 and all y E Pica,x whenever n &#x3E; n(a).
Because the Hilbert polynomial of Ly is independent of y E Pica,x [16; III.9.9], we
conclude that dim(H0(Xk(y), Ly(n))) is independent of y E Pica,x whenever

n &#x3E; n(a). Since the pull-back of Yp on Picp,x x X via the translation isomorph-
ism Pic«,x - Pico,x is L03B1 O prl * «9x(n», [24; 95, Cor. 2] implies that n*fiJ fJ is
locally free on Pic03B2,X with fibre above z E Pic03B2,X equal to r(X k(z)’ Lz). This implies
(a).
To construct 00: P(fl) - C03B2, it suffices by Theorem 1.4 to exhibit an effective

P(fl)-relative (m - l)-cycle on P(p) x PN with support on j(X). For each open
subset U c Pic03B2,X restricted to which 1t*fiJ fJ is trivial, the invertible sheaf

(t fJ x 1)*Y, on P(p) x X has the property that the restriction of (03C403B2 x 1)*Yo to
(P(03B2) x X)  Pic03B2,X U has a section canonically determined up to scalar multiple.
The zero loci of these local sections of (03C403B2 x 1)*Yo patch together to determine
the natural P(03B2)-relative (m - l)-cycle D(03B2) on P(fl) x PN with support on j(X).

Since both P(P) and C03B2 are projective, Op is proper. If f: C ~ P(03B2)K is a map
with domain a smooth curve over K, then the pull-back f - 1 (D(fi» via f is the
zero locus of the distinguished local sections of the pull-back sheaf

(f- -rp x 1)*L03B2 on C x X. Thus, D(p), = [D(p)], for any geometric point t of

. Consequently, we can verify by inspection that Op is bijective on
geometric points: for any point t ~ P(03B2)K mapping to y E Picp,x., D(B)t is the zero
locus of st ~ 0393(X, Ly) (where s, is determined up to scalar multiple by
tE ti 1(y) E Proj(r(X, Ly)). Finally, 0,, is birational: by Proposition 1.2, the
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generic divisor D03B2 E Co (whose field of definition is the field of fractions of P(03B2)) is
defined over the residue field of its Chow point, the field of fractions of C03B2. D
Using Proposition 4.5, we identify the Lawson homology in codimension 1 of

a smooth projective variety. We recall that the Neron-Severi group NS(X) of a
projective variety X is the group of divisors modulo algebraic equivalence.

4.6. THEOREM. Let X be a smooth, projective algebraic variety of dimension m
provided with an embedding j: X ~ PNF and let K be the algebraic closure of F.
Then the homology equivalence of (2.5)

is a homotopy equivalence. Moreover, there are Gal(K/F)-natural identifications

Furthermore, if F = C, then

Proof. The determination of Lm-1H2m-2(XK, ZI) and Lm-1H2m-2(Xan) is

achieved in Proposition 2.4.
Let fi = a + nt! be as in the conclusion of (4.5). For any geometric point

Spec K ~ Picp,x, the natural map (PN(03B2))et ~ fib((03C403B2)et) induces an isomorphism
in Z/1 cohomology [8; 10.8]. This implies that the induced map of Artin-Mazur
1-adic completions

is a weak homotopy equivalence [2; 4.3]. Since 1:p is a projective bundle, the
monodromy action of 03C01(Pic0XK) on H*((PN(03B2)K)et, Z/ln) is trivial. This implies that
the natural map

is also a weak homotopy equivalence [2; 5.9; 4.11]. Applying [8; 6.10] to (7:fJ)et"
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and replacing |P(03B2)et| by I(CP)etl in view of the bicontinuous algebraic morphism
’0": P(03B2) ~ Cq of Proposition 4.5, we conclude that the triple

is a fibration sequence.
Since translation determines isomorphisms Pic03B2,XK ~ (Pic0XK)red and since

(Pic0XK)red is an abelian variety, |(Pic03B2,XK)et)| is a simple space. By the comparison
theorems in etale cohomology (cf. [8; 8.7] which provides an explicit com-
parison on the level of homotopy types), |(PN(03B2)K)et| has one non-vanishing
homotopy group in degrees 2N(03B2) which is 03C02(|PN(03B2)K)et|) = Zl. Hence, the
triviality of the monodromy action of 03C01(Pic03B2,XK) on H2((PN(03B2)K)et, Z/ln) implies
that I(CP)etl I is 2N(03B2)-simple. We conclude that each component of

Tel(Lm- 1((XK)et), (n) is homotopy equivalent to the simple space obtained as an
infinite telescope of such I( C P)et 1, so that i- is a homotopy equivalence.
The liftability to characteristic 0 of abelian varieties in positive characteristics

[27] implies that Pic’. is liftable to an abelian variety over a field of

characteristic 0 whose analytic type is that of a complex torus. Hence, the
comparison theorem [8; 8.7] implies that I(PicfJ,xK)et | has one non-vanishing
homotopy group which is 03C01(|Pic0XK)et|) = limH1((PicXK)0)et, Z/ln). If 03B1’ &#x3E; a,
n &#x3E; n03B1’, n &#x3E; n03B1, 03B2’ = 03B1’ + nq, and fl = a + n~, then ~Z03B1’-03B1~ + (-): P(03B2) ~ P(03B2’)
covers the translation isomorphism PiC03B2,XK ~ Picp,,x. and restricts to a linear
embedding PN(03B2)K ~ PN(03B2’)K on fibres. We now apply the long exact sequence in
homotopy for the colimit of the fibration sequences in (4.6.1) together with the
fact that (Pic0XK)red - Pic0XK induces an equivalence of etale topologies [23;
1.3.23] to conclude the asserted computation for Lm-1H2m-2+i(XK, Zl), in view
of the identifications

Finally, if K = C, Picx is reduced. Proposition 4.5 implies that

is a fibration sequence. Recall that â is a homotopy equivalence in the analytic
context by Corollary 2.6. Hence, upon replacing (4.6.1) by (4.6.2), the above
discussion applies to prove the asserted computation for Lm-1H2m-2+i(Xan).

D
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