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1. Introduction

A split B-N pair of rank 1 is a group G with 2 distinguished subgroups U and T
and a distinguished element co satisfying (N = N(T) denotes the normalizer of T
in G, B denotes the subgroup generated by U and T):

(1) B = U &#x3E; T,
(2) 03C9 ~ N and 03C92 ~ T, 03C9 ~ B,
(3) G = B ~ UCVB and each element g of G-B, can be written uniquely as uwb

for uE U, bEB.

Finite split B-N pairs of rank 1 are classified by Shult [Sh] and by Hering,
Kantor, Seitz [HKS]. The classification of infinite ones is still open.

In this paper we will assume a fourth axiom

(4) W2 = 1.

The author does not know if condition (4) holds in all simple split B-N pairs
of rank 1.

Groups satisfying the above conditions are 2-transitive groups (when viewed
as acting on the coset space G/B). Interesting examples of infinite, non-simple, 2-
transitive groups can be found in [Ca], G = PSL2(K) is a simple group
satisfying conditions (1)-(4).

Let G be a group satisfying the above conditions (1)-(4). For t E T, let b(t) = t’.
b is an involutive automorphism of T. For x ~ U* = UB{1}, x" is not in B
(because of (3)). Thus

for some unique ~(x), a(x) E U, 03B2(x) E T. In fact it is easy to show that ~(x),
a(x) E U*. From G we obtained four functions b, 03B1, 03B2, ~. The group multiplica-
tion can be written in terms of these four functions. Of course these functions

will have to satisfy some functional relations to insure e.g. the associativity of the
group product. These relations are given in Proposition 1. We learned from the
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referee that this was done by Thompson [Th] in 1972 and later we saw a similar
statement in [Su] in a special case. As the referee pointed out the relations "are
straightforward and technical and only justified by their use for proving
theorems that do not need the bulk of alpha and beta in their statements." The
sufficiency of these relations to get a split B-N pair of rank 1 is stated in

Proposition 2.
The main results of the paper are about the simplicity of a split B-N pair of

rank 1. Theorem 1, whose proof is quite easy, states that if G is simple then
CT( U) = 1 and T = Tl where

The converse of this statement is false (take G = K +  K* for some field K, then

T = {1}). In Theorem 2, whose proof is not at all conceptual, we show that if
03B1(x) = x -1 (as is the case when G = PSL2(K)) then the converse of Theorem 1
also holds except for a finite number of finite groups. An open problem is the
classification of all simple split B-N pairs of rank 1. We do not think that they
are all of the form PSL2(K) for some field K. [See [M] for a characterisation of

PSL2(K) as a permutation group).
Our notation is standard. If H is a group with 1 as identity, H* stands for

HB{1}. xy stands for y-1 xy and x-y for y-1x-ly.

2. Conditions on a, 03B2, ~ and b

PROPOSITION 1. Let G = B ~ UcoB, B = U &#x3E;a T be a split B-N pair of rank
1 (with 03C92 = 1). Let

be functions defined by

Then for all x, y ~ U* for which xy * 1 and for all t E T we have
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The proof of the above result consists of writing down the group axioms for a
group and translating them in terms of a, 03B2, 9 and b. Note that (a) gives a
definition of ç in terms of a and 03B2. Alternatively, the same equality gives the
definition of a in terms of ç and 03B2. In the sequel we will tend to use a rather than
ç. Note also that (b) gives the definition of the involutive automorphism b.
Equality (c) gives an alternative definition of b on ~03B2(x) : x ~ U*~. We will show
that if G is simple then ~03B2(x) : xe U*~ is in fact T. Therefore if G is simple, (c)
gives two more definitions of b. Condition (d) implies that a and ç are bijections
of U*. Conditions (f) and (g) are consequences of

(03C9x03C9)(03C9y03C9) = to(xy)(0.

Note that we do not have a definition of /3 in terms of a and b. Thus fixing a
and b does not necessarily pin down the group G (modulo the knowledge of B).
The converse of the proposition is also true:

PROPOSITION 2. Let B = U  T be a group. If there are 4 functions oc, fi, b, 9
satisfying the hypothesis of Proposition 1 then there is a split B-N pair G of rank 1
with

WXW = ~(x)03C903B1(x)03B2(x)

for all

The proof if elementary, one needs to check the group axioms (take G to be
the formal set Bu U 03C9 B, the product is given in the statement).
For the rest of the article, G will stand for a split B-N pair of rank 1 with

03C92 = 1. We retain the notation already introduced.
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3. Conséquences of simplicity

Let TI and T2 be the following subsets of T:

LEMMA.

Proof. The first two statements are trivial. T2 is clearly closed under products.
By (b) of Proposition 1 we have, for all XE U*, b03B2(x) = 03B2(x03B2(x)), proving the
fourth and the fifth statements. By (c) and the above equality we get
03B2(x-1)-1 = f3(xP(X»). 
Thus 03B2(x)-1 = 03B2(x-03B2(x-1)). This shows that T-11 ~ TI and T21 ç T2. D

PROPOSITION 3. G1 = U T2 ~ UOUTI is a normal subgroup of G.
Proof. It follows almost immediately from the above lemma that G1 1 is a

subgroup. To show that G1 is normal we need two claims.

Claim 1. T2  T.

From (b) it follows that 03B2(xt) = t-1 f3(x)b(t). Since b2(t) = t, we also have
03B2(yb(t)) = b(t)-1/03B2(y)t. Multiplying these two, we get 03B2(xt)03B2(yb(t)) = t-103B2(x)03B2(y)t.
This proves the claim.

Claim 2. For all t ~ T, b(t)-1 T1t c Ti.
Let t E T, s1 ~ T1. There are s2 ~ T2, x ~ U* for which si = S2f3(X). Now we

compute:

But as we saw in the proof of the above lemma fi(x) = 03B2(y)-1 for some y E U*,
thus

The second claim is proved.
Now the proposition follows easily. G 1 is normalized by G1, so also by

U ~ G1 and 03C9 ~ G1. It remains to show that it is normalized by T. U T2 is

normalized by T because of claim 1. Use claim 2 to show that UwUTI is

normalized by T. n

PROPOSITION 4. CT(U)  G.
Proof. CT(U) is clearly normalized by U (in fact centralized). Since T
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normalizes U, Talso normalizes CT(U). It remains to show that w normalizes
CT(U). Let t ~ CT(U), x ~ U. Then by the definition of b and by
(b) t03C9 = b(t) = 03B2(x)-1t03B2(xt), so

Now as a consequence of last two propositions we have:

THEOREM 1. Let G be a simple split B-N pair of rank 1. Then CT(U) = 1 and
T = T1.

We will show that if a(x) = x-1 (as in PSL2(K)) then the converse of Theorem
1 also holds except for some finite number of finite groups.

4. Case a(x) = je -1

Our purpose is to prove Theorem 2 which will soon be stated. But the following
results (except may be for Lemma 6) that we will use in its proof are interesting in
their own right.

LEMMA 1. If a(x) = x-1 then conditions (a)-(g) of theorem 1 are equivalent to
b E Aut T, b2 = Id and

for all x, y E U* for which xy ~ 1 and for all t E T.
Proof Clear. n

From now on we will always assume that a(x) = x -1. Then ~(x) = x-03B2(x) by
(a) of theorem 1 and by (A) of the above lemma. Thus

LEMMA 2. Letx,yEU*.If 03B2(x) = 03B2(y) and xy = yx then x = y or y-1.
Proof. Suppose x ~ y-l. Then we can apply (D) to get yt = x2 y2 where

t = 03B2(x)03B2(yx)-1. By exchanging the roles of x and y we get Xs = y2x2 where
s = 03B2(y)03B2(xy)-1. But clearly s = t and x2 y2 - y2x2. Thus yt = xt i.e. x = y. D

LEMMA 3. Let x ~ U*. Let n be an integer  o(x). Then x and xn2 are conjugate
by T. In fact xn2 = x03B2(x)03B2(xn)-1.
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Proof. By induction on n. If n = 1 we are done. For n &#x3E; 1, take x = y" -1 in
(D) to get

Apply the induction hypothesis to the above equality to finish the proof. D

COROLLARY 4. Let xe U*. Then o(x) is either a prime number or is infinite.
Proof. Suppose o(x) = ab with a ~ 1, b ~ 1. By Lemma 3, x and X,2 have the

same order which is a contradiction. D

COROLLARY 5. For x ~ U*, Cu(x) is either a group of prime exponent or is
torsion-free.

Proof. By Corollary 4 if two elements x and y commute and they have finite
order then the orders must be the same prime. Thus we only need to show that if
o(x) = p (prime), o( y) = oo then xy :0 yx.

Suppose xy = yx. Then by Lemma 3

Thus

Applying p to both sides and using (B) we get b03B2(y) = b03B2(xy). Since b is an

automorphism, this implies 03B2(y) = 03B2(xy). This and (**) give x = 1, a

contradiction. D

LEMMA 6. Assume T2 = 1, CT( U) = 1, T = T, and 03B2(x) = 03B2(x-1) for all x E U*.
Then |G|  60.

Proof. Notice first that T2 = 1 implies T is Abelian. Secondly, (C) and the
hypothesis yield b(t) = t for all t ~ T. Thus by (B), 03B2(xt) = 03B2(x) for all x ~ U*, t E T.

SUBLEMMA 1. Elements of U have order 1, 2, 3 or 5.

Let x ~ U* have order &#x3E; 2. Then by Lemma 3, x = xt2 = x16, for some t ~ T, i.e.
X15 = 1. By corollary 4, x’ = 1 or x5 = 1.

SUBLEMMA 2. If x, y E U* are such that 03B2(x) = 03B2(y) then x = y or y-1.
Assume this is not the case. By (E), (B) and (C):
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So, with the assumption 03B2(x) = 03B2(x-1), we get

Therefore ytXyt-1 = x and x and y have the same order. Since t2 = 1, ( + ) yields:

These can be written as

(+) shows that X2 ~ 1. Suppose X3 = 1. Then by (+) (xy2X)3 = 1, i.e.

(x2y2)3 = 1, i.e. x2y2x2 = yxy. Putting this in (+ +)’ we get (y2x)4 - 1. By
Corollary 4, (y2x)2 = 1. This shows that Xy2 has order 2.
On the other hand 03B2(x) = P(y - 1). So as for x and y

But xy- 1 xy2 has order 2. Thus, for what we have proved for elements of
order 2, xy-1 = y-lx or xy-1 = x -1 y. The first equality shows that x and y
commute which gives a contradiction in view of Lemma 2. The second one
shows that x = y, which is also a contradiction.

Suppose now X5 = 1. Then y5 = 1 also. 1 claim that yxy has order 5. It does
not have order 1 (Lemma 2). If it has order 3 then by (+ +)’, x = y2, a
contradiction (Lemma 2). If it has order 2, then y-2 = Xy2X = yt so y = yt2 = y4,
again a contradiction. By sublemma 1, yx y has order 5. Similarly xyx has order
5. Thus by (+ +)’

Clearly 03B2(x) = 03B2(xt) = 03B2(yx2y). If yx2y = x then (+ +) gives y2x4y2x = 1, i.e.

y2x = xy3. But then y2x = Xy3 = yx2yy3, yx = x2y4, yxy = X2 . and with

( + + )", this implies y2 =1, a contradiction. Now if yx2 y = x-1 then from ( + + )
we get x = y, again a contradiction. Thus 03B2(yx2y) = 03B2(x) and yx2y ~ x, x -1.
Thus yx2y has order 5. Hence we may apply ( + + )" to x and yx2 y (instead of to
x and y) to get
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Let us calculate left and right sides of this equality:

Equating these we get

now using ( + + )":

Using ( + + )" once more

contradicts lemma 2.

SUBLEMMA 3.

In the beginning of the proof we noticed that 03B2(xt) = 03B2(x). Thus by sublemma
2, x’ = x or x -1 for all xe U. Now fix t ~ 1. Let A = Cu(t), B = U - Cu(t). If
A = U then t E CT(U) = 1, a contradiction. Thus B ~ 0. Let y E B. So yt = y-1.
Let x ~ A*. Since x y ~ A we have

i.e. x’’ = x-1 for all x E A, y E B. In particular A is Abelian.
If for some z, y E B, zYEB then for all x ~ A*: x -1 = xly = (Xz)y = x, x2 = 1.

Since zy c- C, (x) and X2 == 1, zy has order 2 also; but then clearly zy ~ B. Thus
B2 ~ A. So for y ~ B, Y - 2 == (yt)2 = (y2), = y2, y4 = 1, and y2 = 1. Then y ~ A, a
contradiction. So A* = 0, and the sublemma is proved.

End of the proof of Lemma 6: Since CT(U) = 1, Sublemma 3 shows that
|T|  2. By Sublemma 2, this implies |U|  5. Thus |G|  60.

THEOREM 2. Let G be an infinite split B-N pair of rank 1 (with 03C92 = 1).
Suppose a(x) = x-1. Then G is simple if and only if CT(U) = 1 and T, = T.
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REMARK. It is possible to refine the condition ’G infinite’ of the theorem by
|G| &#x3E; N for some natural number N. But finite simple groups are known, so we
will not worry about it.

The rest of the article will be devoted to the proof of Theorem 2.
Proof Theorem 1 is half of the statement. So assume CT( U) = 1 and T, = T

(thus T2 = Talso). Let H a G, H ~ G. We want to show that H = 1. We will
show (in that order) that U ~ H = 1, T ~ H = 1, B ~ H = 1, 03C9 B ~ H = Ø,
U 03C9 B n H = 0. The third and last equalities imply H = 1.

In the sequel the symbol ’~’ will mean ’modulo H’.

Claim 1. U ~ H = 1.

Let XE U ~ H - {1}. Then for all y E U* for which xy ~ 1, we have (by (D)):

Thus for all y E U, y2 E H.
Also by (*)

Thus 03C9t E H for some t E T. Fix this t till the end of this claim. Now for all s E T

also t-103C9~H. Thus t-1b(s)-1 ts ~ H, i.e.

Since t2 = t03C903C9t =

Notice that if we set t = s in (1.1) we get t ~ b(t).
Now we will use thé fact that y2 E H for all y e U:

where the last congruence follows from (1.1) and the fact that ev == t-1. Set
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Thus zs E H. So sz2s E H also. Since z2 E H, this shows that s2 E H; replacing s by
its definition we get

i.e.

We compute once more:

So (Ys)3 E H. Since we know that S2 E H, this shows

Also 1 - (yysys)2 ~ (yys)3. Therefore for any y E U, (yys)3 E H. But also (yyS)2 E H.
Thus for any y E U,

Computing again and using the definition of s = 03B2(y)t, we get

Now we use the above result:

Thus y E H. So we showed that U ~ H.

As for x, 03C903B2(y) ~ H for all y ~ U*. This easily shows that T2 ~ H. Thus T ~ H.
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It remains to show that oi E H. But this is clear because wf3(x) E H and T ~ H. So
H = G, a contradiction. Claim 1 is now proved.

Claim 2. H n T= {1}.
Suppose t ~ H ~ T. Then for all XE U, txt-1 ~ H ~ U = 1. Thus, xt = x, i.e.

t ~ CT(U) = 1.

Claim 3. H n B = 1.

This will take some time. By Claims 1 and 2 we may assume that xt E H n B,
xe U*, t E T*. We will get a contradiction.
We first show that x and t commute. This is easy: xt E H, so tx = (xt)t-1 1 EH, so

x-1t-1 = (tx)-1 ~ H. Thus (xt)(x-1t-1) ~ H ~ U = 1. Let us record this:

By (B) and (3.1) we get 03B2(x) = 03B2(xt) = t-103B2(x)b(t), i.e. b(t) = t03B2(x):

Using (3.2) we compute (xt)03C9 modulo H:

Thus, replacing x-1 by t we get

where s = t303B2(x). Since sWEH also, we have s2 ~ H n T = 1:

i.e. sb(u) -1 1su ~ H ~ T = 1, since s’ = 1 this gives

We will now show that t2 = 1 or t3 = 1.

Since xt ~ H, by (3.1), (xt)" = xntn ~ H. In view of Claims 1 and 2, this shows
that o(x) = o(t). Now if n  o(x) then applying (3.3) to xntn we have 03C9t3n03B2(xn) E H.
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Thus st3n03B2(xn) = (s03C9)(03C9t3n03B2(xn)) E H n T = 1. Hence f3(xn) = t - 3"S. We apply this
to Lemma 3

So Xn2-1 = 1 for all n  o(x). If o(x) &#x3E; 3, take n = 3 to get xg = 1. By
Corollary 4, X2 = 1, a contradiction. Thus o(x) = 2 or 3; by 3.1 the same holds
for t:

We will now show that for any U E T, either u2 = 1 or u3 = 1.

Let y E U*. Since 03C9s ~ H  G, we have:

Let us record this for future use:

In particular, all properties stated above for x and t are also valid for y03B2(y)ysy03B2(y)
and f3(y) -1 ls unless they are 1. (3.7) shows that for any y E U* there is a z E U for
which z03B2(y)-1 s ~ H. Since T2 = Tand S2 = 1, this easily implies that for any u E T,
there is a z E U for which zu E H. So as in (3.6) U2 = 1 or U3 = 1; thus we showed:

(3.7) and (3.1) give (y03B2(y)ysy03B2(y))03B2(y)-1s = y03B2(y)ysy03B2(y) for all y ~ U*, i.e.

ysys03B2(y)-1sys = y03B2(y)ysy03B2(y). By (3.5) this means ysyb03B2(y)-1ys = y03B2(y)ysy03B2(y), which is by
(A) and (C) equivalent to

On the other hand (ySyP(Y)ys)6 = 1 by (3.6) and (3.7). This and the equality (3.9)
give (yP(Y)ys)9 = 1. By Corollary 4, (yP(Y)ys)3 = 1. Using (3.9) once more this gives
(y03B2(y)ysy03B2(y))2 = 1. But now by (3.6) and (3.7) (f3(y) - 1 S)2 = 1, i.e. 03B2(y)-1 = f3(y)s. By
(3.5) 03B2(y)-1 = b03B2(y) and by (C) 03B2(y) = f3(y - 1):
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For any :

Assume now 03B2(x) = 03B2(y) and xy ~ 1, xy-1 ~ 1. We will show that X2 ~ 1,
x3 e 1. By (E)

by (B)

by (3.10)

Now as in Sublemma 2 of Lemma 6 we have

y and x are conjugate.

This shows that X2 ~ 1. So assume X3 = 1. Thus y3 == 1 also. In particular yx2 y,
x2y2 - (YX)-l and xy have order 3. Similarly xy2x has order 3. If t2 = 1, as in
Sublemma 2 we get a contradiction. So t3 == 1 (by (3.8)). Then

So (yx2)14 = 1. By Corollary 4, (yx2)2 = 1 or (yx2)7 = 1. If (yx2)2 = 1 we get a

contradiction by replacing x by x -1 in the above argument: as above

03B2(yx2) = 03B2(x2y), since yx2 has order 2, we must have yx2 = x2 y or

yx2 - (x2y)-1 = y2x; the first case contradicts Lemma 2, the second case gives
x = y. Thus (yx2)7 = 1. Similarly (y2x2)7 = 1. But we have showed (after (3.11)
that (y2x2)3 = 1. This shows that y2X2 = 1, i.e. x = y-1, a contradiction. Hence

Now suppose U E T and u3 = 1. We showed just before (3.8) that yu E H for
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some y E U. By (3.3) WU3 f3(y) E H. Thus su303B2(y) E H n T = 1 thus f3(y) = s and so
by (3.12) and (3.1) the set

has cardinality  3. Since for each such u there is a unique such y, T has at most
2 elements of order 3, the rest of its elements having order 2. Thus if T has an
element of order 3, say u, then 2 = lu’l = |T/CT(u)|. But CT(U) contains only
elements of order 3 (if not Twould have elements of order 6). Thus ICT(U)L = 3.
Thus 1 TI = 6, i.e. T = S3. (3.1) shows that U has finitely many elements of order 2
and 3. As for T, U must be finite (use Corollary 5). Thus G is finite. (In fact (3.12)
shows that U has at most 12 elements of order 2 and 3).

If T has no elements of order 3 then T2 = 1 and since (3.10) holds we can
apply Lemma 6 that shows that |G|  60.

Claim 4. H n wB = 0.
Let mxt E H for x ~ U, t E T. We have xtxt = (03C9xt)03C9(03C9xt) E H n B.
So by Claim 3, xtxt = 1, hence t2 = 1.

Now for any y E U*:

for some ze U. Thus f3(y-l) = t, so for all y E U*, f3(y) = t. Hence T = {1, tl,
T2 = 1 and b = Id. So by (C) f3(y) = 03B2(y-1). Lemma 6 again implies that G is
finite ; |G|  60.

Claim 5. H = 1.

By claim 3, H n B = 1. If xevb E H(x E U, b E B), then cvbx E H n evB = -n.
This finishes the proof of Theorem 2. D
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