Compositio Mathematica

C. J. AtKin

J. GRABOWSKI

Homomorphisms of the Lie algebras associated with a symplectic manifold

Compositio Mathematica, tome 76, no 3 (1990), p. 315-349
http://www.numdam.org/item?id=CM_1990__76_3_315_0
© Foundation Compositio Mathematica, 1990, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Homomorphisms of the Lie algebras associated with a symplectic manifold

C. J. ATKIN and J. GRABOWSKI
${ }^{1}$ Department of Mathematics, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand, ${ }^{2}$ J. Grabowski, Instytut Matematyki U.W., P.K. i N. IXp. 00-901 Warszawa, Poland

Received 5 November 1988; accepted in revised form 30 October 1989

1. Introduction

We have each given (in [1] and [7]) proofs of an algebraic result - restated for our present purposes as (6.2) below - which in effect (see (6.5)) constructs a oneone correspondence between the points of a symplectic manifold and certain subalgebras of its Lie algebra of Poisson brackets. Our aim here is, firstly, to extend this result to the Lie algebras of locally, globally, and conformally Hamiltonian vector fields determined by the symplectic structure; and then to utilise it to prove that each of these algebras determines the manifold, as far as that is possible. In fact, we approach these 'uniqueness theorems' by studying certain types of Lie homomorphism (which we classify in Section 7) between such Lie algebras, rather than by reconstructing the manifold from the algebra; this method (modelled on that in [6]) both gives and requires less structural information, but yields more facts about homomorphisms. Indeed, we have taken no pains to delve more deeply into the structure of our algebras than our techniques demand, and those techniques are perhaps more interesting than the results which motivated them.

In Section 2 we present some definitions and facts not related to symplectic structures; Section 3 introduces the notion of n-ample algebras of vector fields. In Sections 4 and 5 we review some definitions and notations, and give proofs of some properties which will be needed subsequently (and one or two which will not, such as (5.8)). Here we mostly follow, and often refer to, the well-known paper [2]. Although we allow both the real-analytic and the holomorphic (Stein) differentiability classes, the results from [2] which we quote are merely local, and as such hold in these cases without any modification. Then Section 6 gives the algebraic characterisations of the points of a symplectic manifold, Section 7 classifies suitable homomorphisms, and Section 8 considers the application to epimorphisms and isomorphisms.

Special cases of the 'uniqueness theorem' have been proved before (though not, we believe, published). Our method, however, seems to be the first which applies simultaneously to so many cases.

2. Preliminaries on manifolds and on Lie algebras

(2.1) In speaking of an n-dimensional manifold M of class \mathscr{C} over the field F, we shall mean one of three things:
(a) a real paracompact manifold of differentiability class \mathbf{C}^{∞} and of real dimension n, when \mathscr{C} denotes \mathbf{C}^{∞} and F denotes the real field \mathbb{R};
(b) a real paracompact manifold of differentiability class \mathbf{C}^{ω} and of real dimension n (when \mathscr{C} denotes \mathbf{C}^{ω} and F denotes \mathbb{R});
(c) a complex manifold of complex dimension n for which each connected component is Stein (when \mathscr{C} denotes the holomorphic differentiability class \mathscr{H} and F denotes the complex field \mathbb{C}).

We shall not consider complex manifolds whose components are not Stein, and shall often omit explicit mention of \mathscr{C}, F, or n.
(2.2) For each of (a), (b), (c), one has an embedding theorem (due to Whitney [14] in case (a), to Remmert and to Narasimhan [12] in case (c), and to Grauert [8] in case (b)): a connected manifold of class \mathscr{C} and dimension n is \mathscr{C} diffeomorphic to a closed \mathscr{C}-submanifold of $F^{2 n+1}$. (Note that by a 'closed submanifold' we understand a 'properly and regularly embedded submanifold'.)
(2.3) For a manifold M of class \mathscr{C}, we denote by $T M$ the bundle of tangent vectors (meaning, in case (c), the tangent vectors of type (1,0)), and by $T^{*} M$ the corresponding cotangent bundle. The vector space over F of exterior forms of class \mathscr{C} on M (again, in case (c), these forms are to be of type $(k, 0)$ and holomorphic) will be called $\Omega^{k}(M)$. The exterior derivative d: $\Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ is defined as usual; we write its kernel as $Z^{k}(M)$ and its image as $B^{k+1}(M)$, with the convention that $\Omega^{k}(M)=0$ when $k<0$. The chain complex $\left(\Omega^{k}(M), \mathrm{d}\right)$ is the de Rham complex of M.
(2.4) LEMMA. Let M be a manifold of class \mathscr{C}; let $p, q \in M, p \neq q$, and let k be a nonnegative integer. Given any k-jets (of F-valued functions) at p and q, there exists $f \in \Omega^{0}(M)$ which has those k-jets.

Proof. When $M=F^{n}$, this is trivial. (2.2) then gives it in general.
(2.5) For each of the cases of (2.1), there is a de Rham isomorphism

$$
Z^{k}(M) / B^{k}(M) \cong H^{k}(M ; F)
$$

where the cohomology may conveniently be assumed singular. For case (a), this is de Rham's theorem. For case (c), it is a well-known consequence of Cartan's Theorem B; see, for instance, [4], exposé XX, or p. 80 of [9]. The same argument may be applied in case (b), where Tognoli [13] has pointed out the validity of Theorems A and B in a real-analytic version.
(2.6) PROPOSITION. Let M be a manifold of class \mathscr{C} and dimension n; take $m=2 n+1$. Then there exist F-valued functions x_{1}, \ldots, x_{m} of class \mathscr{C} on M, such that, for any integer $k \geqq 0$ and any form $\psi \in \Omega^{k}(M)$, there exist F-valued functions $f_{i_{1}, i_{2}, \ldots, i_{k}}$ of class \mathscr{C} on $M\left(\right.$ for all $i_{1}, i_{2}, \ldots, i_{k}$ with $\left.1 \leqq i_{1}<i_{2}<\cdots<i_{k} \leqq m\right)$, for which

$$
\psi=\sum_{i_{1}<i_{2}<\cdots<i_{k}} f_{i_{1}, i_{2}, \ldots, i_{k}} \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}} .
$$

Proof. It will clearly suffice to prove the result for each component of M individually. So we may suppose (see (2.2)) that M is \mathscr{C}-embedded in F^{m}, with embedding $j: M \rightarrow F^{m}$. The natural monomorphism $T M \rightarrow j^{*} T F^{m}$ defined by $T j$ dualises to epimorphisms $\pi_{\ell}: \Lambda^{\ell} T^{*} F^{m} \mid j(M) \rightarrow \Lambda^{\ell} T^{*} M$ for any ℓ. Let $\Omega^{k}(M)$, $\mathbf{\Omega}^{k}\left(F^{m}\right)$ denote the sheaves of germs of k-forms of class \mathscr{C} on M, F^{m} respectively; then π_{k} induces a sheaf epimorphism (over M)

$$
J: j^{*} \boldsymbol{\Omega}^{k}\left(F^{m}\right) \rightarrow \boldsymbol{\Omega}^{k}(M)
$$

Let $\mathbf{Q}=\operatorname{ker} J$, so that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbf{Q} \rightarrow j^{*} \boldsymbol{\Omega}^{k}\left(F^{m}\right) \xrightarrow{\boldsymbol{J}} \boldsymbol{\Omega}^{k}(M) \rightarrow 0 . \tag{1}
\end{equation*}
$$

Let \mathcal{O}_{M} be the structure sheaf over M of germs of C^{∞} functions in case (a), C^{ω} functions in case (b), and holomorphic functions in case (c). Then J is a homomorphism of \mathcal{O}_{M}-modules, so that \mathbf{Q} is also an \mathcal{O}_{M}-module.

Let y_{1}, \ldots, y_{m} be the coordinate functions on F^{m}. Then $\boldsymbol{\Omega}^{k}\left(F^{m}\right)$ is free over the appropriate structure sheaf $\mathcal{O}_{F^{m}}$; indeed, it has free generators given by the sections $\mathrm{d} y_{i_{1}} \wedge \cdots \wedge \mathrm{~d} y_{i_{k}}$ for $1 \leqq i_{1}<\cdots<i_{k} \leqq m$. Hence, as $j^{*} \mathcal{O}_{F^{m}}=\mathcal{O}_{M}$ trivially, $j^{*} \boldsymbol{\Omega}^{k}\left(F^{m}\right)$ is free over \mathcal{O}_{M}, and it has free generators ($\mathrm{d} y_{i} \wedge \cdots \wedge \mathrm{~d} y_{i_{k}}$) induced from the sections

$$
\begin{equation*}
\mathrm{d} y_{i_{1}} \wedge \cdots \wedge \mathrm{~d} y_{i_{k}} \quad \text { of } \boldsymbol{\Omega}^{k}\left(F^{m}\right) . \tag{2}
\end{equation*}
$$

In the $\mathbf{C}^{\boldsymbol{\omega}}$ and holomorphic cases $\boldsymbol{\Omega}^{k}(M)$ is coherent over \mathcal{O}_{M}, and so of course is the free \mathcal{O}_{M}-module $j^{*} \boldsymbol{\Omega}^{k}\left(F^{m}\right)$. By Serre's 3-lemma, then, \mathbf{Q} is also coherent over \mathcal{O}_{M}. From Theorem B (see (2.5)) we know that $H^{k}(\mathbf{Q})=0$ for $k>1$.

In the \mathbf{C}^{∞} case, \mathcal{O}_{M} is soft (see [3] or [5]) so that \mathbf{Q} is also soft and $H^{1}(\mathbf{Q})=0$.
In all three cases, the cohomology exact sequence of (1)

$$
0 \rightarrow H^{0}(\mathbf{Q}) \rightarrow H^{0}\left(j^{*} \mathbf{\Omega}^{k}\left(F^{m}\right)\right) \xrightarrow{J_{*}} H^{0}\left(\boldsymbol{\Omega}^{k}(M)\right) \rightarrow H^{1}(\mathbf{Q}) \rightarrow \cdots
$$

leads to the result that J_{*} is onto. The given form $\psi \in \Omega^{k}(M)$ is consequently the
image J_{*} of a section ϕ of $j^{*} \mathbf{\Omega}^{k}\left(F^{m}\right)$; but, as remarked at (2), $j^{*} \mathbf{\Omega}^{k}\left(F^{m}\right)$ is free over \mathcal{O}_{M}, so that there are sections $f_{i_{1} \ldots i_{k}}$ of \mathcal{O}_{M} for which

$$
\phi=\sum_{i_{1}<i_{2}<\cdots<i_{k}} f_{i_{1} \ldots i_{k}}\left(\mathrm{~d} y_{i_{1}} \wedge \cdots \wedge \mathrm{~d} y_{i_{k}}\right)^{\sim} .
$$

Applying J_{*} (that is, compounding with J), we obtain after some bookkeeping

$$
\psi=\sum_{i_{1}<i_{2}<\cdots<i_{k}} f_{i_{1} \ldots i_{k}} \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}},
$$

where, for each $i, x_{i}=y_{i} \circ j$; this is clearly the result.
(2.7) Again let M be a manifold of class \mathscr{C}. Then $\Gamma(M)$ will denote the Lie algebra of sections of $T M$ of class \mathscr{C}. If \mathscr{F} is a foliation of M of class \mathscr{C}, let $\Gamma(\mathscr{F})$ be the Lie subalgebra of $\Gamma(M)$ consisting of vector fields everywhere tangent to \mathscr{F}. In general, if K is a vector subspace of $\Gamma(M)$ and $p \in M$, set

$$
\begin{aligned}
K(p) & =\{X(p): x \in K\} \subseteq T_{p}(M), \quad \text { and } \\
K_{p} & =\{X \in K: X(p)=0\} .
\end{aligned}
$$

(2.8) If $\alpha \in \Omega^{k}(M)$, let $\Gamma_{0}(\alpha)$ denote the class of vector fields of class \mathscr{C} which leave α invariant, and let $\Gamma(\alpha)$ be the class of vector fields which operate on α as multiplication by a locally constant function. In other words, if \mathscr{L} denotes the Lie derivative,

$$
\begin{aligned}
\Gamma_{0}(\alpha) & =\left\{X \in \Gamma(M): \mathscr{L}_{X} \alpha=0\right\}, \quad \text { and } \\
\Gamma(\alpha) & =\left\{X \in \Gamma(M):\left(\exists f \in Z^{0}(M)\right) \mathscr{L}_{X} \alpha=f \alpha\right\} .
\end{aligned}
$$

As $\mathscr{L}_{[X, Y]}=\left[\mathscr{L}_{X}, \mathscr{L}_{Y}\right]$, it follows that

$$
[\Gamma(\alpha), \Gamma(\alpha)] \subseteq \Gamma_{0}(\alpha) \subseteq \Gamma(\alpha)
$$

so that $\Gamma(\alpha)$ is a Lie subalgebra of $\Gamma(M)$ and $\Gamma_{0}(\alpha)$ a Lie ideal in $\Gamma(\alpha)$ (including its commutator).
(2.9) For any Lie algebra L over F, let $\Sigma(L)$ denote the class of all selfnormalising maximal proper finite-codimensional Lie subalgebras of L. (Notice that a maximal subalgebra is self-normalising if and only if it is not an ideal, and that it can be an ideal if and only if it includes the commutator.)

We may call $\Sigma(L)$ the 'spectrum' of L.
Let $L^{(n)}$ denote the n th. derived ideal of L, for $n=0,1,2, \ldots$; thus $L^{(0)}=L$ and, for each $n, L^{(n+1)}=\left[L^{(n)}, L^{(n)}\right]$. It will be convenient for technical reasons to
define the ' n-spectrum' $\Sigma^{n}(L)$ (for $n=1,2,3, \ldots$) as the class of subalgebras Q of L such that $Q \in \Sigma(L)$ and also

$$
\begin{equation*}
Q \nsupseteq L^{(n)} . \tag{1}
\end{equation*}
$$

We have already observed that

$$
\begin{equation*}
\Sigma(L)=\Sigma^{1}(L) \tag{2}
\end{equation*}
$$

Since $L^{(n)}$ is an ideal in $L, Q+L^{(n)}$ is a subalgebra; thus for $Q \in \Sigma(L)$, (1) is equivalent to

$$
\begin{equation*}
Q+L^{(n)}=L \tag{3}
\end{equation*}
$$

(2.10) LEMMA. Let $\Phi: L_{1} \rightarrow L_{2}$ be a surjective homomorphism of Lie algebras over F. Then, for any positive integer n,
(a) for any $Q \in \Sigma^{n}\left(L_{2}\right), \Phi^{-1}(Q) \in \Sigma^{n}\left(L_{1}\right)$;
(b) for any $Q^{\prime} \in \Sigma^{n}\left(L_{1}\right)$, either $\Phi\left(Q^{\prime}\right)=L_{2}$ or $\Phi\left(Q^{\prime}\right) \in \Sigma^{n}\left(L_{2}\right)$.

Proof. Certainly $\Phi\left(Q^{\prime}\right), \Phi^{-1}(Q)$ are finite-codimensional Lie subalgebras of L_{2}, L_{1} respectively. Let R be a Lie subalgebra of L_{2} such that $R \supseteq \Phi\left(Q^{\prime}\right)$. Then $\Phi^{-1}(R) \supseteq Q^{\prime}$; consequently, either $\Phi^{-1}(R)=Q^{\prime}$ or $\Phi^{-1}(R)=L_{1}$, and, as Φ is surjective, $R=\Phi\left(\Phi^{-1}(R)\right)$ is either $\Phi\left(Q^{\prime}\right)$ or $\Phi\left(L_{1}\right)=L_{2}$. Hence $\Phi\left(Q^{\prime}\right)$ is either L_{2} or a maximal proper Lie subalgebra. Similarly, let S be a Lie subalgebra of L_{1} such that $S \supseteq \Phi^{-1}(Q)$; then as $S \supseteq \Phi^{-1}(0), S=\Phi^{-1}(\Phi(S))$. But $\Phi(S) \supseteq Q$. Therefore $\Phi(S)=Q$ or $\Phi(S)=L_{2}$, and either $S=\Phi^{-1}(Q)$ or $S=L_{1}$; hence $\Phi^{-1}(Q)$ is a maximal proper Lie subalgebra of L_{1}.

Now, if $\Phi^{-1}(Q)$ were a proper Lie ideal of $L_{1}, Q=\Phi\left(\Phi^{-1}(Q)\right)$ would be a proper Lie ideal of L_{2}, since Φ is surjective; if $\Phi\left(Q^{\prime}\right)$ were a proper Lie ideal of L_{2}, $\Phi^{-1}\left(\Phi\left(Q^{\prime \prime}\right)\right)$ would be a proper Lie ideal in L_{1} including Q^{\prime}, and therefore would be equal to Q^{\prime}. But neither Q nor Q^{\prime} is a Lie ideal (in L_{2}, L_{1} respectively); so $\Phi^{-1}(Q)$ and $\Phi\left(Q^{\prime}\right)$ are not Lie ideals. This proves (a) and (b) when $n=1$.

Finally, suppose $n>1$. Then, as Φ is epimorphic,

$$
\begin{aligned}
\Phi\left(Q^{\prime}\right)+L_{2}^{(n)}= & \Phi\left(Q^{\prime}\right)+\Phi\left(L_{1}^{(n)}\right)=\Phi\left(Q^{\prime}+L_{1}^{(n)}\right) \\
& =\Phi\left(L_{1}\right)=L_{2}
\end{aligned}
$$

whilst, if $\Phi^{-1}(Q) \supseteq L_{1}^{(n)}$, then $Q=\Phi\left(\Phi^{-1}(Q)\right) \supseteq \Phi\left(L_{1}^{(n)}\right)=L_{2}^{(n)}$. The results now follow, by (2.9)(3) and (2.9)(1) respectively.
(2.11) LEMMA. Let L be a Lie algebra over F, and let K be a Lie ideal of L including $L^{(1)}$.

Then
(a) if $(L, K]=K^{(1)}$ and $Q \in \Sigma(L)$, there exists $N \in \Sigma(K)$ such that $Q \cap K \subseteq N$;
(b) if, for some positive integer $n, Q \in \Sigma^{n+1}(L)$, there exists $N \in \Sigma^{n}(K)$ such that $Q \cap K \subseteq N$.
Proof. Consider case (a). As K is an ideal, $K+Q$ is a Lie subalgebra of L. However, $K \nsubseteq Q$; for otherwise, as $K \supseteq L^{(1)}$, we should have $Q \supseteq L^{(1)}$ and Q would be an ideal. Hence $K+Q \neq Q$ and, by maximality, $K+Q=L$.

By hypothesis, $[Q, K] \subseteq[L, K]=K^{(1)}$. Thus, if $K^{(1)} \subseteq Q, K$ must normalise Q and (as $K+Q=L$) Q must be an ideal in L. This is false, as $Q \in \Sigma(L)$; we deduce that

$$
\begin{equation*}
K^{(1)} \nsubseteq Q . \tag{0}
\end{equation*}
$$

In case (b), $K^{(n)} \supseteq L^{(n+1)}$ and, as $Q \in \Sigma^{n+1}(L)$, it follows immediately that

$$
\begin{equation*}
K^{(n)} \nsubseteq Q . \tag{1}
\end{equation*}
$$

In either case, $K^{(1)}+Q$ is a subalgebra (as $K^{(1)}$ is an ideal) which is not equal to Q; thus $K^{(1)}+Q=L$, and as a consequence

$$
\begin{equation*}
K^{(1)}+(Q \cap K)=K . \tag{2}
\end{equation*}
$$

As $K \nsubseteq Q, K \cap Q$ is of finite positive codimension in K. Let N be a maximal proper subalgebra of K including $Q \cap K$ (which we may construct by finite induction). Then, by (2), $K^{(1)}+N=K$; in view of the maximality of N, this implies that $N \nsupseteq K^{(1)}$ and N is not a Lie ideal in K (see (2.9)). This proves (a). For (b), observe that (1) gives

$$
K^{(n)}+(Q \cap K)=K,
$$

exactly as (0) led to (2). Ergo, $K^{(n)}+N=K$, which shows $N \in \Sigma^{n}(K)$, by (2.9)(3).

3. Lie algebras of vector fields

(3.1) Once more, let M be a manifold of class \mathscr{C} and let L be a Lie subalgebra (over F) of $\Gamma(M)$ (see (2.7)). We shall say that L is n-ample, where n is a positive integer - more precisely, L is an n-ample subalgebra of $\Gamma(M)$ - if, for each $p \in M$, $L_{p} \in \Sigma^{n}(L)$ (see (2.9)).
(3.2) LEMMA. (a) Let L be an n-ample subalgebra of $\Gamma(M)$. Then

$$
\begin{equation*}
(\forall p \in M) L^{(n)}(p)=L(p) \tag{1}
\end{equation*}
$$

(b) Suppose L is a 1-ample subalgebra of $\Gamma(M)$ and satisfies (1). Then L is n ample.

Proof. (a) By hypothesis, $L_{p}+L^{(n)}=L$ (see (2.9)(3)). The result follows, as $L_{p}(p)=0$ by definition.
(b) If $L^{(n)}(p)=L(p)$, then evidently $L_{p}+L^{(n)}=L$. Apply (2.9)(3).
(3.3) LEMMA. Suppose L_{1}, L_{2} are Lie subalgebras of $\Gamma(M)$ such that $L_{1} \subseteq L_{2}$ and, for any $p \in M, L_{1}(p)=L_{2}(p)$. Then, if L_{1} is n-ample, so is L_{2}.

Proof. Take $p \in M$, and let R be a Lie subalgebra of L_{2} which includes $\left(L_{2}\right)_{p}$. Then $R \cap L_{1} \supseteq\left(L_{1}\right)_{p}$, and, as L_{1} is 1 -ample, either $R \cap L_{1}=L_{1}$ or $R \cap L_{1}=\left(L_{1}\right)_{p}$. As $L_{1}(p)=L_{2}(p)$, certainly

$$
\begin{equation*}
L_{2}=L_{1}+\left(L_{2}\right)_{p} \tag{1}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
R=\left(R \cap L_{1}\right)+\left(L_{2}\right)_{p}\left(\text { as } R \supseteq\left(L_{2}\right)_{p}\right) . \tag{2}
\end{equation*}
$$

If $R \cap L_{1}=L_{1}$, (2) and (1) show that $R=L_{2}$; whilst, if $R \cap L_{1}=\left(L_{1}\right)_{p}$, (2) shows that $R=\left(L_{2}\right)_{p}$. This establishes the maximality of the subalgebra $\left(L_{2}\right)_{p}$ of L_{2}, and it is evidently of finite codimension therein. If it were an ideal in L_{2}, $\left(L_{1}\right)_{p}=L_{1} \cap\left(L_{2}\right)_{p}$ would be an ideal in L_{1}, which it is not. This shows that, if L_{1} is 1 -ample, so is L_{2}. If L_{1} is n-ample, by (3.2)(a)

$$
L_{1}(p)=L_{2}^{(n)}(p) \subseteq L_{2}^{(n)}(p) \subseteq L_{2}(p)
$$

so that L_{2} is n-ample by (3.2)(b).

4. Symplectic structures and the associated Lie algebras

(4.1) A symplectic manifold (M, ω) of class \mathscr{C} and dimension $2 n$ is a manifold M of class \mathscr{C} and dimension $2 n$, furnished with an everywhere non-degenerate closed 2-form $\omega \in Z^{2}(M)$. Following [2], p. 2, we have then a bundle isomorphism of class \mathscr{C},

$$
\mu_{\omega}=\mu: T M \rightarrow T^{*} M: X \rightarrow-i(X) \omega
$$

(where i denotes the internal product), which induces isomorphisms, also denoted by μ_{ω}, of the tensor bundles and their spaces of sections.
(4.2) We have also $\Lambda=\Lambda_{\omega}=i\left(\mu_{\omega}^{-1}(\omega)\right): \Omega^{r+2}(M) \rightarrow \Omega^{r}(M)$ (ibid., p. 3).
(4.3) Let $L^{*}(\omega)=\mu_{\omega}^{-1}\left(B^{1}(M)\right)$ and $L(\omega)=\mu_{\omega}^{-1}\left(Z^{1}(M)\right)$ denote respectively the spaces of globally and of locally Hamiltonian vector fields on M. Certainly

$$
[L(\omega), L(\omega)] \subseteq L^{*}(\omega) \subseteq L(\omega), \quad([2], \text { p. } 7)
$$

so that $L(\omega)$ and $L^{*}(\omega)$ are Lie subalgebras of the algebra of vector fields, and (recall (2.8)) $[\Gamma(\omega), \Gamma(\omega)] \subseteq \Gamma_{0}(\omega)=L(\omega)$ ((3.1) on p. 6 of [2]). Following ([2], p. 11), we describe fields in $\Gamma(\omega)$ as 'conformally Hamiltonian'.
(4.4) A foliation \mathscr{F} (of class \mathscr{C}) of the symplectic manifold (M, ω) of class \mathscr{C} will itself be described as 'symplectic' if ω restricts to an everywhere non-degenerate form on each leaf of \mathscr{F}. Thus the leaves also become symplectic manifolds. Similarly, a subbundle S (of class \mathscr{C}) of $T M$ is 'symplectic' if ω restricts to a nondegenerate form on each fibre of S. Clearly there is the usual correspondence between symplectic foliations and integrable symplectic subbundles.
(4.5) Given $f, g \in \Omega^{0}(M)$, one defines the Poisson bracket (relative to ω) by

$$
\begin{align*}
{[f, g]_{\omega} } & =\Lambda_{\omega}(\mathrm{d} f \wedge \mathrm{~d} g) \tag{1}\\
& =\omega\left(\mu_{\omega}^{-1}(\mathrm{~d} f), \mu_{\omega}^{-1}(\mathrm{~d} g)\right)=\left(\mu_{\omega}^{-1}(\mathrm{~d} f)\right) g \tag{2}
\end{align*}
$$

by an easy computation. This makes $\Omega^{0}(M)$ into a Lie algebra, which we denote by $A(M)$. Using the non-degeneracy of ω and (2.4), one sees that the centre $C(M)$ of $A(M)$ consists of the locally constant functions of class \mathscr{C} on M; that is,

$$
\begin{equation*}
C(M)=Z^{0}(M) \tag{3}
\end{equation*}
$$

Thus d induces a linear isomorphism $A(M) / C(M) \rightarrow B^{1}(M)$, which determines a Lie algebra structure on $B^{1}(M)$; then $\mu_{\omega}: L^{*}(\omega) \rightarrow B^{1}(M)$ is a Lie algebra isomorphism. There is a Lie algebra exact sequence

$$
\begin{equation*}
0 \rightarrow C(M) \rightarrow A(M) \underset{\mu_{\omega}^{-1} \mathrm{~d}}{ } L^{*}(\omega) \rightarrow 0 \tag{4}
\end{equation*}
$$

(4.6) For $X, Y \in L(\omega)$, one has ([2], (3.3), p. 7)

$$
[X, Y]=\mu_{\omega}^{-1} \mathrm{~d} \Lambda\left(\mu_{\omega}(X) \wedge \mu_{\omega}(Y)\right)=\mu_{\omega}^{-1} \mathrm{~d}\{\omega(X, Y)\}
$$

(4.7) The Lie algebra $A(M)$ is also a commutative associative algebra under pointwise multiplication of functions, which is related to the Lie algebra structure by the structural equation derived from (4.5)(1)

$$
(\forall f, g, h \in A(M))[f g, h]_{\omega}=f[g, h]_{\omega}+[f, h]_{\omega} g .
$$

(4.8) PROPOSITION. For every $n \geqq 1$ and every $p \in M$,

$$
\left(L^{*}(\omega)\right)^{(n)}(p)=T_{p} M=\left(L^{*}(\omega)\right)(p)
$$

Proof. To avoid messy calculations, let us use the theorem of Darboux to construct coordinates ($x_{1}, \ldots x_{2 n}$) of class \mathscr{C} on a neighbourhood of p such that ω is represented on that neighbourhood as $\sum_{i=1}^{n} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{n+i}$. In these coordinates, μ_{ω}^{-1} has the form

$$
\mu_{\omega}^{-1}\left(\mathrm{~d} x_{i}\right)=\frac{\partial}{\partial x_{n+i}}, \quad \mu_{\omega}^{-1}\left(\mathrm{~d} x_{n+1}\right)=-\frac{\partial}{\partial x_{i}} \quad \text { for } 1 \leqq i \leqq n
$$

thus, in terms of principal parts, μ_{ω}^{-1} is represented by a constant linear isomorphism

$$
J:\left(F^{2 n}\right)^{*} \rightarrow F^{2 n}
$$

For a scalar-valued function f, and x in the chart in question, $\mathrm{d} f(x)$ is represented by the derivative $D f(x) \in\left(F^{2 n}\right)^{*}$; thus $J(D f(x))$ represents $\mu_{\omega}^{-1}(\mathrm{~d} f)(x)$, and the k th. derivative in these coordinates of $X_{f}=\mu_{\omega}^{-1}(\mathrm{~d} f)$ at p is obtained by identifying $D^{k+1} f(p) \in\left(\otimes^{k+1} F^{2 n}\right)^{*}$ with a linear mapping $\otimes^{k} F^{2 n} \rightarrow\left(F^{2 n}\right)^{*}$ and compounding with J.
(A) We now claim inductively that, given integers $k \geqq 0,0 \leqq \ell \leqq k$, and nonzero vectors $\xi \in \otimes^{\ell} F^{2 n}, \eta \in F^{2 n}$, there exists $X \in\left(L^{*}(\omega)\right)^{(n)}$ such that $D^{r} X(p)=0$ when $r \leqq k$ and $r \neq \ell$, whilst $D^{\ell} X(p)$. $\xi=\eta$. For $n=0$, take $X=X_{f}$, where $D^{r} f(p)=0$ for $r<k+1$ and $r \neq \ell+1$, and $D^{\ell+1} f(p)$ is a symmetric element of $\left(\otimes^{\ell+1} F^{2 n}\right)^{*}$ such that $D^{\ell+1} f(p) \cdot(\xi \otimes \tau)=J^{-1}(\eta) \cdot \tau$ for each element τ of a basis of $F^{2 n}$. The existence of such a symmetric multilinear map is an elementary exercise using multinomials; the existence of a suitable $f \in A(M)$ follows from (2.4).

Suppose the claim established for arbitrary k, ℓ, ξ, η and given $n \geqq 0$, and take $X \in\left(L^{*}(\omega)\right)^{(n)}$ so that $X(p) \neq 0, D X(p)=0, D^{2} X(p)=0, \ldots, D^{k+1} X(p)=0$. Then for any $Y \in \Gamma(M)$, the local coordinate representations of $[X, Y]$ are

$$
\begin{align*}
{[X, Y](p)=} & D Y(p) \cdot X(p)-D X(p) \cdot Y(p) \tag{1}\\
D[X, Y](p)= & D^{2} Y(p) \cdot(, X(p))+D Y(p) \circ D X(p) \\
& -D^{2} X(p) \cdot(, Y(p))-D X(p) \circ D Y(p),
\end{align*}
$$

and so on to $D^{k}[X, Y](p)=D^{k+1} Y(p) \cdot(, X(p))+$ terms combining lower derivatives of Y and higher derivatives (to order $k+1$) of X; by choice of X, then,

$$
D^{j}[X, Y](p)=D^{j+1} Y(p) \cdot(, X(p)) \quad \text { for } 0 \leqq j \leqq k
$$

If Y is chosen in $\left(L^{*}(\omega)\right)^{(n)}$ so that $D^{1} Y(p)=0, \ldots, D^{\ell} Y(p)=0, D^{\ell+2} Y(p)=0, \ldots$ $D^{k+1} Y(p)=0$, and $D^{\ell+1} Y(p) \cdot(\xi \otimes X(p))=\eta$, it follows that $[X, Y]$ satisfies the required conditions, and of course it is an element of $\left(L^{*}(\omega)\right)^{(n+1)}$. This proves the claim.

Now take $k=\ell=0$ and the Proposition follows.
Note. The result when M is real follows instantly from (5.5). In the complex case, however, the above argument seems the simplest (though not the most conclusive) available, and is largely needed anyway for the next result.
(4.9) LEMMA. Let $X \in \Gamma(M), p \in M$, and $X(p) \neq 0$; suppose B is a subspace of $\Gamma(M)$ which includes $L^{*}(\omega)$. Then the subspace of B

$$
\left\{Z \in B:(\forall n \geqq 1) \mathscr{L}_{X}^{n} Z \in B_{p}\right\} \quad \text { (see (2.7)) }
$$

is of infinite codimension in B.
Proof. Use the coordinate system introduced in the proof of (4.8). Applying (4.8)(1) inductively, we find that in terms of these coordinates

$$
\begin{aligned}
\mathscr{L}_{X}^{n} Y(p)= & D^{n+1} Y(p) \cdot(X(p), X(p), \ldots, X(p))+ \\
& + \text { terms in lower-order derivatives of } Y \text { at } p
\end{aligned}
$$

but, by the assertion (4.8)(A), there exists for each $n \geqq 1$ a field $Y \in L^{*}(\omega)$ such that $Y(p)=0, D Y(p)=0, \ldots, D^{n} Y(p)=0, D^{n+1} Y(p) \cdot(X(p), X(p), \ldots, X(p)) \neq 0$. Thus $\mathscr{L}_{X}^{j} Y(p)=0$ for $0 \leqq j<n$, whilst $\mathscr{L}_{X}^{n} Y(p) \neq 0$. This evidently proves the result.

5. Commutators in the Lie algebras

(5.1) In this section, (M, ω) is a fixed symplectic manifold of class \mathscr{C} and dimension $2 n$, and we abbreviate the previous notations (from $\S \S 2,4) A(M)$, $\Omega^{r}(M), Z^{r}(M), B^{r}(M), \mu_{\omega}, \Lambda_{\omega},[,]_{\omega}$, to $A, \Omega^{r}, Z^{r}, B^{r}, \mu, \Lambda,[$,$] respectively. As$ in [2], p. 2, set $\eta=\omega^{n} / n!\in \Omega^{2 n}$, the symplectic volume form. We have

$$
\begin{equation*}
(\forall X \in L(\omega)) \mathscr{L}_{X} \eta=0 \tag{1}
\end{equation*}
$$

This follows instantly from $L(\omega)=\Gamma_{0}(\omega)$ (see (4.3)).
The symplectic adjunction operator $*$, defined on p. 2 of [2], satisfies

$$
\begin{equation*}
*^{2}=I \text { (the identity), } \quad * \eta=1 \tag{2}
\end{equation*}
$$

For the symplectic coderivative $\delta: \Omega^{p} \rightarrow \Omega^{p-1}: \alpha \rightarrow(-1)^{p} * \mathrm{~d} * \alpha$, one has

$$
\begin{equation*}
\mathrm{d} \Lambda-\Lambda \mathrm{d}=-\delta \tag{3}
\end{equation*}
$$

as is proved in [10] and quoted as (1.8)(a) on p. 3 of [2].
(5.2) THEOREM.

$$
A^{(1)}=\left\{f \in \Omega^{0}: f \eta \in B^{2 n}\right\} .
$$

Moreover, there exist elements $x_{1}, x_{2}, \ldots, x_{m}$ of $A($ where $k=4 n+1)$ such that the mapping

$$
A^{m} \rightarrow A^{(1)}:\left(f_{1}, f_{2}, \ldots, f_{m}\right) \rightarrow \sum_{i=1}^{m}\left[f_{i}, x_{i}\right]
$$

is surjective.
Proof. Suppose first that $g, h \in A$. Then, by (4.5)(2) and (5.1)(1),

$$
[g, h] \eta=\left\{\mu^{-1}(\mathrm{~d} g) h\right\} \eta=\mathscr{L}_{\mu^{-1}(\mathrm{~d} g)}(h \eta)=d\left\{i\left(\mu^{-1}(\mathrm{~d} g)\right)(h \eta)\right\}
$$

(i denotes the interior product, and we have used the fact that $\Omega^{2 n}=Z^{2 n}$). Hence $[g, h] \eta \in B^{2 n}$.

For the converse, suppose $f \in A$ and $f \eta \in B^{2 n}$. So there exists $\beta \in \Omega^{2 n-1}$ such that $f \eta=\mathrm{d} \beta$, and consequently

$$
f=*(f \eta)=*(\mathrm{~d} \beta)=-\delta * \beta
$$

Let $x_{1}, x_{2}, \ldots, x_{m}$ be as in (2.6) (with the difference that the dimension of M is now $2 n$). Hence, as $* \beta \in \Omega^{1}$, there exist functions $f_{1}, f_{2}, \ldots, f_{m} \in A$ such that

$$
* \beta=\sum_{i=1}^{m} f_{i} \mathrm{~d} x_{i}
$$

It follows that

$$
\delta * \beta=\Lambda \mathrm{d} * \beta
$$

by (5.1)(3), since Λ has degree -2

$$
=\sum_{i=1}^{m} \Lambda\left(\mathrm{~d} f_{i} \wedge \mathrm{~d} x_{i}\right)=\sum_{i=1}^{m}\left[f_{i}, x_{i}\right]
$$

by (4.5)(1). This shows that $f \in A^{(1)}$, and completes the proof.
(5.3) COROLLARY. There is a canonical isomorphism $A / A^{(1)} \cong H^{2 n}(M ; F)$.

Proof. The map $A \rightarrow \Omega^{2 n}: f \rightarrow f \eta$ is an isomorphism; by (5.2), it carries $A^{(1)}$ on to $B^{2 n}$. As $\Omega^{2 n}=Z^{2 n}$, the result follows.
(5.4) NOTES. Both A and $H^{2 n}(M ; F)$ are direct products of the corresponding functors of the individual components of M. When M is real (whether \mathbf{C}^{∞} or \mathbf{C}^{ω}), η will define the fundamental class of each compact component; for each noncompact component, the top cohomology vanishes. Thus the isomorphism $A \rightarrow \Omega^{2 n}: f \rightarrow f \eta$ of (5.3) induces, via inclusion $C_{0} \rightarrow A$ and projection $\Omega^{2 n} \rightarrow H^{2 n}(M ; F)$, an isomorphism of the space C_{0} of locally constant F-valued functions (\mathbf{C}^{∞} or \mathbf{C}^{ω} as appropriate) of compact support on M with $H^{2 n}(M ; F)$. Since C_{0} is clearly an abelian ideal of A, (5.3) now yields a Lie direct sum decomposition $A=C_{0} \oplus A^{(1)}$. As C_{0} is central, one deduces in turn that $A^{(1)}=A^{(2)}$.

These arguments do not hold in the complex case (2.1)(c). In that case, the top dimension for F-cohomology, namely $2 n$, is only the middle topological dimension, and, even for connected M, the dimension of $H_{2 n}(M ; F)$ may be any finite integer or countably infinite. Indeed, let E be any discrete subset of \mathbb{C}, and endow $M=(\mathbb{C} \backslash E) \times(\mathbb{C} \backslash\{0\})^{2 n-1}$ with the trivial symplectic structure (as a subset of $\mathbb{C}^{2 n}$). The $2 n$th Betti number of M is the number of points of E, and M is clearly Stein.

Surprisingly few examples of compact real symplectic manifolds are known. For a fairly recent, though inconclusive, survey, see [11]. There has been some progress since (by Gromov and McDuff in particular).
(5.5) LEMMA. Let M be a real symplectic manifold, of class \mathbf{C}^{∞} or \mathbf{C}^{ω}. Then

$$
\left[L^{*}(\omega), L^{*}(\omega)\right]=[L(\omega), L(\omega)]=L^{*}(\omega)
$$

Proof. By $\quad(4.5)(4), \quad L^{*}(\omega) \cong A / C(M) ; \quad$ by $\quad(5.4), \quad A=C_{0} \oplus A^{(1)}, \quad$ where $C_{0} \subseteq C(M)$. Hence $\left[L^{*}(\omega), L^{*}(\omega)\right]=L^{*}(\omega)$. This suffices (see (4.3)).
(5.6) LEMMA. Let M be a real symplectic manifold of class \mathbf{C}^{∞} or \mathbf{C}^{ω}, and suppose the symplectic form ω is exact. Then

$$
[\Gamma(\omega), \Gamma(\omega)]=[\Gamma(\omega), L(\omega)]=L(\omega)
$$

Furthermore, $\Gamma(\omega)$ is the semi-direct product of its derived ideal $L(\omega)$ with an abelian subalgebra isomorphic to $C(M)$.

Proof. See [2], p. 12. (We write Γ instead of L^{c}, ω in place of F; (5.5) must be invoked in the \mathbf{C}^{ω} case, and our formulation allows M not to be connected).
(5.7) LEMMA. Let M be a symplectic manifold of class \mathscr{C}. Then
$\left[L(\omega), L^{*}(\omega)\right]=\left[L^{*}(\omega), L^{*}(\omega)\right]$.
(Compare (5.5)).
Proof. In view of (4.5)(4), $\left[L^{*}(\omega), L^{*}(\omega)\right]$ consists of the images under $\mu^{-1} \mathrm{~d}$ of elements of $A^{(1)}$, which are characterized by (5.2). Suppose $X \in L(\omega)$ and $Y \in L^{*}(\omega)$, so that $Y=\mu^{-1}(\mathrm{~d} f)$ for some $f \in A$ and $\mathscr{L}_{X} \omega=\mathscr{L}_{Y} \omega=0$ (see (4.3)). Hence, by (4.6),

$$
[X, Y]=\mu^{-1} \mathrm{~d} \Lambda(\mu(X) \wedge \mathrm{d} f)
$$

and it is enough, by (5.2), to show that $\Lambda(\mu(X) \wedge \mathrm{d} f) \eta \in B^{2 n}$.
Now

$$
\begin{aligned}
\Lambda(\mu(X) \wedge \mathrm{d} f) & =i\left(\mu^{-1}(\omega)\right)(\mu(X) \wedge \mathrm{d} f) & & \text { by definition, (4.2) } \\
& =\omega\left(X, \mu^{-1}(\mathrm{~d} f)\right)=X f & & \text { by definition, (4.1) }
\end{aligned}
$$

But

$$
\begin{aligned}
(X f) \eta & =\mathscr{L}_{X}(f \eta)-f\left(\mathscr{L}_{X} \eta\right)=\mathscr{L}_{X}(f \eta) & & \text { by }(5.1)(1) \\
& =\mathrm{d}\{i(X)(f \eta)\}, & & \text { as } f \eta \in Z^{2 n} .
\end{aligned}
$$

This completes the proof.
(5.8) LEMMA. Let M be a connected symplectic manifold of class \mathscr{C}, and suppose the symplectic form ω is not exact. Then $\Gamma(\omega)=L(\omega)=\Gamma_{0}(\omega)$.

Proof. See p. 11 of [2] (after (5.4)); no change is needed.
Note that when M is compact, ω cannot be exact (as η is not).

6. Spectra

(6.1) By a Poisson algebra over the field F, we mean a commutative associative algebra A furnished with an F-bilinear operation

$$
(f, g) \rightarrow[f, g]: A \times A \rightarrow A
$$

with respect to which it is also a Lie algebra over F, and satisfies the structural relation

$$
[f, g h]=[f, g] h+g[f, h]
$$

for all $f, g, h \in A$. Thus, in particular, $A(M)$ is a Poisson algebra over F when (M, ω) is a symplectic manifold of class \mathscr{C} (see (4.7)).

Given a Poisson algebra A over F, let $\mathfrak{M}(A)$ denote the set of all maximal finite-codimensional proper associative ideals J in A, and let $\Sigma(A)$ be as in (2.9). The theorem which follows is proved (in superficially different formulations) in [7] and in [1].
(6.2) THEOREM. Suppose the Poisson algebra A satisfies:
(a) $A^{2}=A$,
(b) for any $J \in \mathfrak{M}(A)$, the Lie normaliser

$$
\mathfrak{M}_{A}(J)=\{f \in A:[f, J] \subseteq J\}
$$

is a proper finite-codimensional linear subspace of A.
Then the mapping $J \mapsto \mathfrak{M}_{A}(J)$ establishes a one-one correspondence between $\mathfrak{M}(A)$ and $\Sigma(A)$.
(6.3) Now let (M, ω) be a symplectic manifold of class \mathscr{C} and positive dimension. Given $p \in M$, define

$$
\begin{aligned}
& p^{*}=\{f \in A(M): f(p)=0\} \\
& N(M, p)=\{f \in A(M): \mathrm{d} f(p)=0\}
\end{aligned}
$$

On p. 17 of [6] it is proved that the map $p \mapsto p^{*}$ furnishes a bijection between M and $\mathfrak{M}(A(M))$. In addition,
(6.4) LEMMA.

$$
\mathfrak{\Re}_{\boldsymbol{A}(M)}\left(p^{*}\right)=N(M, p) .
$$

Proof. Suppose $g \in A(M)$ and $\mathrm{d} g(p)=0$; then, by (4.5)(1), $[f, g]_{\omega} \in p^{*}$. This proves that $N(M, p) \subseteq \mathfrak{N}_{A(M)}\left(p^{*}\right)$. Conversely, suppose $g \in \mathfrak{N}_{A(M)}\left(p^{*}\right)$ but $\mathrm{d} g(p)=0$. As ω is non-degenerate at p, there exists $\chi \in T_{p}^{*} M$ for which

$$
\omega\left(\mu_{\omega}^{-1}(\chi), \mu_{\omega}^{-1}(\mathrm{~d} g(p))\right) \neq 0
$$

$\operatorname{By}(2.4)$, there exists $f \in p^{*}$ with $\mathrm{d} f(p)=\chi$. Thus $[f, g]_{\omega}(p) \neq 0$ and $g \notin \mathfrak{N}_{\boldsymbol{A (M)}}\left(p^{*}\right)$. This completes the proof.
(6.5) THEOREM. The map $p \mapsto N(M, p)$ constitutes a bijection of M with $\Sigma(A(M))$.

Proof. As remarked in (6.3), $p \mapsto p^{*}: M \rightarrow \Sigma(A(M))$ is bijective; hypothesis (6.2)(a) is trivial, and (6.2)(b) follows from (6.4). Thus the result follows from (6.2) and (6.4).
(6.6) THEOREM. The map $p \mapsto N^{*}(M, p)=\left(L^{*}(\omega)\right)_{p}$ (see (2.7)) constitutes a bijection of M with $\Sigma\left(L^{*}(\omega)\right)$.

Proof. Any proper self-normalising Lie subalgebra of $A(M)$ necessarily includes the Lie centre $C(M)$, so its image under $\mu_{\omega}^{-1} \mathrm{~d}$ must be proper (see (4.5)(4)); thus, by (2.10), $\mu_{\omega}^{-1} \mathrm{~d}$ induces a bijection $\Sigma(A(M)) \rightarrow \Sigma\left(L^{*}(\omega)\right)$. The result follows from (6.5) (and the definition (4.1)).
(6.7) LEMMA. The subalgebras $L^{*}(\omega), L(\omega), \Gamma(\omega), \Gamma(M)$ of $\Gamma(M)$ are n-ample for each $n \geqq 1$.

Proof. By (4.8), $\left(L^{*}(\omega)\right)^{(n)}(p)=T_{p} M=\left(L^{*}(\omega)\right)(p)$ for each $p \in M$ and each n. By (6.6), $L^{*}(\omega)$ is 1 -ample. By (3.2)(b), $L^{*}(\omega)$ is n-ample. By (3.3), the same holds for $L(\omega), \Gamma(\omega)$, and $\Gamma(M)$.
(6.8) THEOREM. The map $p \rightarrow \hat{N}(M, p)=(L(\omega))_{p}$ (see (2.7)) constitutes a bijection of M with $\Sigma(L(\omega))$.

Proof. By (6.7), $\hat{N}(M, p) \in \Sigma(L(\omega))$ for each $p \in M$. Secondly, for each p

$$
\left(L^{*}(\omega)\right)_{p}=L^{*}(\omega) \cap(L(\omega))_{p} \quad \text { obviously, }
$$

so that (by (6.6)) $\hat{N}(M$,) must be one-one. It remains to show that $\hat{N}(M$,$) is$ surjective. So let $Q \in \Sigma(L(\omega))$. In (2.11)(a), take $L=L(\omega)$ and $K=L^{*}(\omega)$; the hypotheses are satisfied, by (4.3) and (5.7). Thus there exists $N \in \Sigma\left(L^{*}(\omega)\right)$ with $Q \cap L^{*}(\omega) \subseteq N$. By (6.6) again, there exists $p \in M$ such that $N=\left(L^{*}(\omega)\right)_{p}$. This does not immediately show $Q \subseteq(L(\omega))_{p}$.

Now $[Q, Q] \subseteq[L(\omega), L(\omega)] \subseteq L^{*}(\omega)$, and consequently $Q^{(1)} \subseteq Q \cap L^{*}(\omega)$. If there exists $X \in Q$ for which $X(p) \neq 0$, it follows that

$$
(\forall Y \in Q) \mathscr{L}_{X} Y=[X, Y] \in Q \cap L^{*}(\omega),
$$

and, by induction, $\mathscr{L}_{X}^{n} Y \in Q \cap L^{*}(\omega) \subseteq N \subseteq(L(\omega))_{p}$ for all $n \geqq 1$; but, as $X(p) \neq 0$, the subspace

$$
\left\{Z \in L(\omega):(\forall n \geqq 1) \mathscr{L}_{X}^{n} Z \in(L(\omega))_{p}\right\}
$$

is of infinite codimension in $L(\omega)$, by (4.9). This contradicts the definition of Q, and we conclude that each $X \in Q$ vanishes at p; that is, $Q \subseteq(L(\omega))_{p}$. But, as Q is maximal, it follows that $Q=(L(\omega))_{p}$, and this completes the proof.
(6.9) LEMMA. For each $n \geqq 1, \Sigma(A(M))=\Sigma^{n}(A(M)), \Sigma\left(L^{*}(\omega)\right)=\Sigma^{n}\left(L^{*}(\omega)\right)$, and $\Sigma(L(\omega))=\Sigma^{n}(L(\omega))$. (See (2.9)).

Proof. By (3.2)(b), (4.8), both $L^{*}(\omega)$ and $L(\omega)$ are n-ample; by (6.7), (6.8), this means every element of their spectra is also in the corresponding n-spectrum. The converse inclusion is trivial (see (2.9)). As in the proof of (6.6), (2.10) gives a one-one correspondence $\Sigma^{n}(A(M)) \leftrightarrow \Sigma^{n}\left(L^{*}(\omega)\right)$ induced by $\mu_{\omega}^{-1} \mathrm{~d}$; thus the first assertion follows.
(6.10) THEOREM. For any $n \geqq 2$, the map $p \mapsto \tilde{N}(M, p)=(\Gamma(\omega))_{p}$ (see (2.7)) constitutes a bijection of M with $\Sigma^{n}\left(\Gamma(\omega)\right.$). In particular, $\Sigma^{n}(\Gamma(\omega))$ does not depend on n when $n \geqq 2$.

Proof. Repeat the proof of (6.8), reading $L^{*}(\omega)$ for $L(\omega), \Gamma(\omega)$ for $L(\omega)$, (6.8) for (6.6), $\tilde{N}(M, p)$ for $\hat{N}(M, p), \Sigma^{n}$ for $\Sigma,(2.11)(b)$ for (2.11)(a); and suppressing mention of (5.7).
(6.11) REMARKS. It is definitely untrue in general that every element of $\Sigma(\Gamma(\omega))$ is of the form $(\Gamma(\omega))_{p}$ for some $p \in M$. Suppose that M is real, with first Betti number 1 , and that ω is exact. (An example would be $M=S^{1} \times \mathbb{R}$, as quotient of \mathbb{R}^{2} with the 'constant' symplectic structure $\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}$). Then (5.5), (5.6), (4.3) show that

$$
\Gamma(\omega)^{(1)}=L(\omega), \quad L(\omega)^{(1)}=L^{*}(\omega), \quad L(\omega) / L^{*}(\omega) \cong \mathbb{R} \cong H^{1}(M ; \mathbb{R})
$$

$\Gamma(\omega) / L(\omega) \cong H^{0}(M ; \mathbb{R}) ; L(\omega)$ has a complementary subalgebra B in $\Gamma(\omega)$.
Thus $L^{*}(\omega)+B=\Gamma(\omega)^{(2)}+B$ is a subalgebra of $\Gamma(\omega)$ which is proper and maximal (being of codimension 1), and does not include $\Gamma(\omega)^{(1)}$; so it belongs to $\Sigma(\Gamma(\omega))$. However, it cannot be of the form $(\Gamma(\omega))_{p}$, since it includes $L^{*}(\omega)$. This example suggests how (6.10) might be proved otherwise, at least in the real case; and clarifies why it is precisely Σ^{2} that is crucial.

It is worth noting that (6.8) and (6.10) in effect prove that, in their specific circumstances, the subalgebras N of (2.11)(a), (b) respectively are unique and equal to $Q \cap K$.

7. Homomorphisms

(7.1) LEMMA. Let $M_{i}(i=1,2)$ be a manifold of class \mathscr{C}, and let ω be a closed 2form of class \mathscr{C} on M_{2} which is non-zero on a dense subset of M_{2}. Assume M_{1} has dimension greater than 1 , and write A_{i} for $A\left(M_{i}\right)$.

Suppose $\hat{\varphi}: B^{1}\left(M_{1}\right) \rightarrow \Omega^{1}\left(M_{2}\right)$ is an F-linear map such that, for any $f \in A_{1}$, there exists $c(f) \in C\left(M_{2}\right)$ for which

$$
\begin{equation*}
\mathrm{d}(\hat{\varphi}(\mathrm{~d} f))=c(f) \omega \tag{1}
\end{equation*}
$$

and $\psi: M_{2} \rightarrow M_{1}$ is any map which is not constant on any component of M_{2}. If,for any $p \in M_{2}$ and $f \in A_{1}$,

$$
\begin{equation*}
[\hat{\varphi}(\mathrm{d} f)](p)=0 \Leftrightarrow \mathrm{~d} f(\psi(p))=0 \tag{2}
\end{equation*}
$$

then ψ is a submersion of class \mathscr{C}, and there exists $c_{0} \in C\left(M_{2}\right)$ such that, for all $f \in A_{1}, \hat{\varphi}(\mathrm{~d} f)=c_{0} \psi^{*}(\mathrm{~d} f)$.

Proof. For $f, g \in A_{1}$ and $p \in M_{2}$,

$$
\{\mathrm{d}(f g)-f(\psi(p)) \mathrm{d} g-g(\psi(p)) \mathrm{d} f\}(\psi(p))=0 .
$$

Thus (2) gives at each point of M_{2}

$$
\begin{equation*}
\hat{\varphi}(\mathrm{d}(f g))=(f \circ \psi) \hat{\varphi}(\mathrm{d} g)+(g \circ \psi) \hat{\varphi}(\mathrm{d} f) \tag{3}
\end{equation*}
$$

Applying (3) with $g=f$ and with $g=f^{2}$ in turn, we find

$$
\begin{equation*}
\hat{\varphi}\left(\mathrm{d}\left(f^{2}\right)\right)=2(f \circ \psi) \hat{\varphi}(\mathrm{d} f) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\varphi}\left(\mathrm{d}\left(f^{3}\right)\right)=3\left(f^{2} \circ \psi\right) \hat{\varphi}(\mathrm{d} f) \tag{5}
\end{equation*}
$$

Choose $g \in A_{1}$ so that $\mathrm{d} g(\psi(p)) \neq 0$ (see (2.4)). Then, by (2), $[\hat{\varphi}(\mathrm{d} g)](p) \neq 0$, and there is a neighbourhood U of p on which $\hat{\varphi}(\mathrm{d} g)$ does not vanish. Now $\hat{\varphi}\left(\mathrm{d}\left(g^{2}\right)\right)$ and $\hat{\varphi}(\mathrm{d} g)$ are forms of class \mathscr{C}; as $\hat{\varphi}(\mathrm{d} g)$ does not vanish on U, (4) shows that $g \circ \psi$ is of class \mathscr{C} on U.

Retaining the same g, consider (3) with arbitrary $f \in A_{1}$. Since $\hat{\varphi}(\mathrm{d}(f g)), \hat{\varphi}(\mathrm{d} g)$, $\hat{\varphi}(\mathrm{d} f)$ are forms of class $\mathscr{C}, \hat{\varphi}(\mathrm{d} g)$ does not vanish on U, and $g \circ \psi$ is a function of class \mathscr{C} on U, we deduce that $f \circ \psi$ is of class \mathscr{C} on U. However, as p was arbitrary, it follows that $f \circ \psi \in A_{2}$. Hence - for instance by the embedding theorems (2.2) - we find that $\psi: M_{2} \rightarrow M_{1}$ is of class \mathscr{C}.

Again, take arbitrary $f \in A_{1}$. Differentiate (4), and apply (1):

$$
\begin{equation*}
c\left(f^{2}\right) \omega=2 \mathrm{~d}(f \circ \psi) \wedge \hat{\varphi}(\mathrm{d} f)+2(f \circ \psi) c(f) \omega \tag{6}
\end{equation*}
$$

(Notice we are using the fact, just proved, that $f \circ \psi \in A_{2}$.) Similarly, from (5),

$$
\begin{equation*}
c\left(f^{3}\right) \omega=6(f \circ \psi) \mathrm{d}(f \circ \psi) \wedge \hat{\varphi}(\mathrm{d} f)+3\left(f^{2} \circ \varphi\right) c(f) \omega \tag{7}
\end{equation*}
$$

Substituting from (6) in (7), and recalling that ω is nonzero on a dense subset, we have

$$
c\left(f^{3}\right)=3(f \circ \psi) c\left(f^{2}\right)-3\left(f^{2} \circ \psi\right) c(f) .
$$

In this equality, $c\left(f^{3}\right), c\left(f^{2}\right)$, and $c(f)$ are locally constant; so differentiate:

$$
\begin{equation*}
c\left(f^{2}\right) \mathrm{d}(f \circ \psi)=c(f) \cdot 2(f \circ \psi) \mathrm{d}(f \circ \psi) \tag{8}
\end{equation*}
$$

Suppose now that $\psi^{*} \mathrm{~d}\left(f^{2}\right)=2(f \circ \psi) \mathrm{d}(f \circ \psi)$ does not vanish at p. Thus it does not vanish on an open neighbourhood U of p; and, on U, (8) reduces to

$$
c\left(f^{2}\right)=c(f) \cdot 2(f \circ \psi)
$$

Differentiating, $0=c(f) \cdot \mathrm{d}(f \circ \psi)$ on U; but as $\mathrm{d}(f \circ \psi)$ is there nonzero, $c(f)=0$ on U. In effect, then, $c(f)=0$ at any point where $\psi^{*}\left(\mathrm{~d}\left(f^{2}\right)\right)$ does not vanish. It is easy to see from (2.4) that, for any $q \in M_{2}$, and any $f \in A_{1}$, there exist $g_{q}, h_{q} \in A_{1}$ such that $f=g_{q}+h_{q}$ and $\psi^{*} \mathrm{~d}\left(g_{q}^{2}\right)(q) \neq 0, \psi^{*} \mathrm{~d}\left(h_{q}^{2}\right)(q) \neq 0$. Thus

$$
c(f)(q)=c\left(g_{q}\right)(q)+c\left(h_{q}\right)(q)=0
$$

and $c(f)=0$ at all points of M_{2}; so that (2) becomes

$$
\begin{equation*}
\left(\forall f \in A_{1}\right) \mathrm{d}(\hat{\varphi}(\mathrm{~d} f))=0 . \tag{9}
\end{equation*}
$$

Differentiate (3), and use (9). We find that, for any $f, g \in A_{1}$,

$$
\begin{equation*}
\mathrm{d}(f \circ \psi) \wedge \hat{\varphi}(\mathrm{d} g)+\mathrm{d}(g \circ \psi) \wedge \hat{\varphi}(\mathrm{d} f)=0 . \tag{10}
\end{equation*}
$$

Taking $f=g$, we have in particular

$$
\begin{equation*}
\psi^{*}(\mathrm{~d} f) \wedge \hat{\varphi}(\mathrm{d} f)=0 \tag{11}
\end{equation*}
$$

Define

$$
\begin{aligned}
S(f) & =\left\{x \in M_{2}: \mathrm{d} f(\psi(x)) \neq 0\right\} \\
& =\left\{x \in M_{2}:[\hat{\varphi}(\mathrm{d} f)](x) \neq 0\right\}, \quad \text { by }(2) .
\end{aligned}
$$

In (11), both factors are 1 -forms. It follows that, at each point $p \in S(f)$, there is a scalar $e_{f}(p)$ such that

$$
\begin{equation*}
\psi^{*}(\mathrm{~d} f)(p)=e_{f}(p)[\varphi(\mathrm{d} f)](p) . \tag{12}
\end{equation*}
$$

Again by (2) - and by (2.4) - $\hat{\varphi}$ induces a linear monomorphism

$$
\begin{equation*}
\hat{\varphi}_{p}: T_{\psi(p)}^{*} M_{1} \rightarrow T_{p}^{*} M_{2} \tag{13}
\end{equation*}
$$

for each $p \in M_{2}$. As M_{1} is of dimension greater than 1 , so is the image of $\hat{\varphi}_{p}$.

Given $g, h \in A_{1}$ and $p \in S(g) \cap S(h)$, one may therefore choose $k \in A_{1}$, by (2.4), so that

$$
\begin{equation*}
[\hat{\varphi}(\mathrm{d} k)](p) \wedge[\hat{\varphi}(\mathrm{d} g)](p) \neq 0 \neq[\hat{\varphi}(\mathrm{d} k)](p) \wedge[\hat{\varphi}(\mathrm{d} h)](p) \tag{14}
\end{equation*}
$$

Taking h in place of f and k in place of g in (10), and substituting from (12),

$$
\begin{aligned}
0= & e_{g}(p)[\hat{\varphi}(\mathrm{d} g)](p) \wedge[\hat{\varphi}(\mathrm{d} k)](p) \\
& +e_{k}(p)[\hat{\varphi}(\mathrm{d} k)](p) \wedge[\hat{\varphi}(\mathrm{d} g)](p)
\end{aligned}
$$

so that $e_{g}(p)=e_{k}(p)$ by (14); and similarly $e_{k}(p)=e_{h}(p)$.
Once more, (2.4) shows that the sets $S(f)$ cover M_{2} as f varies over A_{1}. So we have shown that there is a well-defined function e on M_{2} such that, for any $f \in A_{1}$ and any $p \in S(f)$,

$$
\begin{equation*}
\psi^{*}(\mathrm{~d} f)(p)=e(p)[\hat{\varphi}(\mathrm{d} f)](p) . \tag{15}
\end{equation*}
$$

But, in view of (2), this equality holds automatically when $p \notin S(f)$. It also shows that, on $S(f)$ (and hence everywhere), e is of class \mathscr{C}.

Differentiate (15), recalling (9). Thus

$$
\mathrm{d} e \wedge \hat{\varphi}(\mathrm{~d} f)=0
$$

or, for each $p \in M_{2}$,

$$
\begin{equation*}
\mathrm{d} e(p) \wedge \hat{\varphi}_{p}(\mathrm{~d} f(\psi(p)))=0 \tag{16}
\end{equation*}
$$

As remarked at (13), $\hat{\varphi}_{p}$ has image of dimension not less than 2, and (by (2.4)) all its elements are of the form $\hat{\varphi}_{p}(\mathrm{~d} f(\psi(p)))$ for some $f \in A_{1}$. Thus (16) can only hold for all $f \in A_{1}$ if $\mathrm{d} e(p)=0$; and p was arbitrary, so e is locally constant. Now, if e vanishes at any point, it vanishes on a whole component of M_{2}, and (12) implies that $\psi^{*}(\mathrm{~d} f)$ vanishes at all points of this component for any $f \in A_{1}$. Ergo, the tangent map of ψ vanishes at each point of the component (using (2.4)), and ψ is constant thereon. This is contrary to hypothesis; so e does not vanish.

Finally, as $\hat{\varphi}_{p}$ is monomorphic (see (13)), (12) shows that

$$
\psi_{p}^{*}: T_{\psi(p)}^{*} M_{1} \rightarrow T_{p}^{*} M_{2}
$$

is also monomorphic, for each $p \in M_{2}$. Thus $\psi: M_{2} \rightarrow M_{1}$ is a submersion. (Of course c_{0} is just the reciprocal of the non-vanishing function e.)
(7.2) THEOREM. Let $\left(M_{i}, \omega_{i}\right)$ be a symplectic manifold of positive dimension and of class \mathscr{C}, for $i=1,2$. Write μ_{i} for $\mu_{\omega_{i}}$. Then

$$
\varphi: L^{*}\left(\omega_{1}\right) \rightarrow \Gamma\left(\omega_{2}\right)
$$

is a Lie algebra homomorphism over F whose image is a 1-ample subalgebra of $\Gamma\left(M_{2}\right)($ see (3.1)) if and only if there are a submersion of class \mathscr{C}

$$
\psi: M_{2} \rightarrow M_{1}
$$

and a nowhere vanishing function $c_{0} \in C\left(M_{2}\right)$, with the properties that
(a) $D=\mu_{2}^{-1} \psi^{*}\left(T^{*} M_{1}\right)$

$$
=\left\{\mu_{2}^{-1} \psi_{p}^{*} \xi: p \in M_{2}, \xi \in T_{\psi(p)}^{*} M_{1}\right\}
$$

is a symplectic subbundle of TM_{2} of class \mathscr{C};
(b) ω_{2} agrees on D with $c_{0} \psi^{*}\left(\omega_{1}\right)$;
(c) $\varphi=c_{0} \mu_{2}^{-1} \psi^{*} \mu_{1}$.

In these circumstances, the following additional properties must also hold:
(d) D is an integrable subbundle of TM $_{2}$, with corresponding symplectic foliation \mathscr{F} of $\left(M_{2}, \omega_{2}\right)($ see (4.4));
(e) on each leaf of \mathscr{F}, ψ is a local diffeomorphism (both a submersion and an immersion);
(f) the formula (c) extends φ to a Lie algebra homomorphism

$$
\begin{aligned}
& \bar{\varphi}: \Gamma\left(M_{1}\right) \rightarrow \Gamma\left(M_{2}\right) \\
& \text { such that } \quad \bar{\varphi}\left(\Gamma\left(M_{1}\right)\right) \subseteq \Gamma(\mathscr{F}) \quad(\text { see } \quad(2.7)) \quad \text { and } \quad \bar{\varphi}\left(L\left(\omega_{1}\right)\right) \subseteq L\left(\omega_{2}\right), \\
& \bar{\varphi}\left(L^{*}\left(\omega_{1}\right)\right) \subseteq L^{*}\left(\omega_{2}\right) ;
\end{aligned}
$$

(g) $\left(\forall p \in M_{2}\right)\left(\forall X \in \Gamma\left(M_{1}\right)\right) \psi_{* p}(\bar{\varphi}(X))(p)=X(\psi(p))$ (that is, X and $\bar{\varphi}(X)$ are $\psi-$ related);
(h) $\tilde{\varphi}=c_{0} \psi^{*}: A\left(M_{1}\right) \rightarrow A\left(M_{2}\right)$ is also a Lie algebra homomorphism, which quotients (see (4.5)(4)) to $\bar{\varphi}: L^{*}\left(\omega_{1}\right) \rightarrow L^{*}\left(\omega_{2}\right)$; that is,

$$
\bar{\varphi} \mu_{1}^{-1} \mathrm{~d}=\mu_{2}^{-1} \mathrm{~d} \tilde{\varphi} ;
$$

(i) $\bar{\varphi}\left(L^{*}\left(\omega_{1}\right)\right), \bar{\varphi}\left(L\left(\omega_{1}\right)\right), \bar{\varphi}\left(\Gamma\left(\omega_{1}\right)\right)$, and $\bar{\varphi}\left(\Gamma\left(M_{1}\right)\right)$ are n-ample subalgebras of $\Gamma\left(M_{2}\right)$, for any $n \geqslant 1$;
(j) ψ and c_{0} are uniquely determined by φ.
(7.3) NOTES. For convenience, we shall usually write A_{i} for $A\left(M_{i}\right), L_{i}^{*}$ for $L^{*}\left(\omega_{i}\right), L_{i}$ for $L\left(\omega_{i}\right), \Gamma_{i}$ for $\Gamma\left(\omega_{i}\right)$. However, $\Gamma\left(M_{i}\right)$ will not be abbreviated. With
these conventions, (6.2)(f) and (h) may be described by the commutative diagram of Lie algebra homomorphisms

$$
\begin{aligned}
& A_{1} \xrightarrow{\mu_{1}^{-1} \mathrm{~d}} L_{1}^{*} \subseteq L_{1} \subseteq \Gamma_{1} \subseteq \Gamma\left(M_{1}\right) \\
& \downarrow_{\tilde{\varphi}=c_{0} \psi^{*}} \downarrow_{\varphi} \downarrow_{\bar{\varphi} \mid L_{1}} \downarrow_{\bar{\varphi}} \\
& A_{2} \xrightarrow[\mu_{2}^{-1} \mathrm{~d}]{ } L_{2}^{*} \subseteq L_{2} \subseteq \Gamma_{2} \subseteq \Gamma\left(M_{2}\right) .
\end{aligned}
$$

It is not in general true that $\bar{\varphi}\left(\Gamma_{1}\right) \subseteq \Gamma_{2}$. The reason is that the requirements of the theorem only specify the restriction of ω_{2} to D, whilst Γ_{2} is defined in terms of ω_{2} on $T M_{2}$. (Counterexamples are easily constructed in which $M_{1}=F^{2 m}$, with trivial symplectic structure ω_{1}, and $M_{2}=F^{2 n}$, with ψ as a linear epimorphism but ω_{2} non-constant.) We do not know of any conditions appropriate to the present context that would make $\bar{\varphi}\left(\Gamma_{1}\right) \subseteq \Gamma_{2}$.

It is worth noting that (7.2)(e) expresses the fact that \mathscr{F} is transverse to the foliation of M_{2} by the fibres of ψ. Thus M_{2} decomposes locally as a product, in a fashion which (unlike the local representation of a submersion) is completely determined by the data.
(7.4) PROOF OF (7.2). Suppose in the first place that $\varphi: L_{1}^{*} \rightarrow \Gamma_{2}$ is a Lie algebra homomorphism whose image $K^{*}=\varphi\left(L_{1}^{*}\right)$ is 1-ample. By (2.10),

$$
\left(\forall p \in M_{2}\right) \varphi^{-1}\left(K_{p}^{*}\right) \in \Sigma^{1}\left(L_{1}^{*}\right)=\Sigma\left(L_{1}^{*}\right) .
$$

Write $N_{1}^{*}(q)$ for $N^{*}\left(M_{1}, q\right)=\left(L^{*}\left(\omega_{1}\right)\right)_{q}$; then use (6.6) to define

$$
\begin{equation*}
\left(\forall p \in M_{2}\right) \psi(p)=\left(N_{1}^{*}\right)^{-1}\left\{\varphi^{-1}\left(K_{p}^{*}\right)\right\} \in M_{1} . \tag{1}
\end{equation*}
$$

It follows immediately that, for any $X \in L_{1}^{*}$ and $p \in M_{2}$,

$$
\begin{equation*}
\varphi(X)(p)=0 \Leftrightarrow X(\psi(p))=0 . \tag{2}
\end{equation*}
$$

Set

$$
\begin{equation*}
\hat{\varphi}=\mu_{2} \varphi \mu_{1}^{-1} \tag{3}
\end{equation*}
$$

Then $\hat{\varphi}: B^{1}\left(M_{1}\right) \rightarrow \Omega^{1}\left(M_{2}\right)$ is certainly linear over F, and, whenever $f \in A_{1}$, $p \in M_{2}$, (2) gives

$$
\begin{equation*}
[\hat{\varphi}(\mathrm{d} f)](p)=0 \Leftrightarrow \mathrm{~d} f(\psi(p))=0 . \tag{4}
\end{equation*}
$$

Suppose there were a component Q of M_{2} on which ψ were constant with value $a \in M_{1}$. Then, if $X \in L_{1}^{*}$ were such that $\varphi(X)$ vanish at $q \in Q$, (2) would give $X(a)=0$, and, in turn, $\varphi(X)$ would therefore vanish at all points of Q. Hence, for any $q \in Q$, the Lie subalgebra K_{q}^{*} of $\varphi\left(L_{1}^{*}\right)$ would actually be a Lie ideal; this contradicts the hypothesis that $\varphi\left(L_{1}^{*}\right)$ is 1 -ample.

Now apply (7.1), whose hypotheses have all been verified. Thus ψ is a submersion of class \mathscr{C}, and there is an everywhere non-zero function $c_{0} \in C\left(M_{2}\right)$ such that

$$
\begin{equation*}
\hat{\varphi}=c_{0} \psi^{*} \tag{5}
\end{equation*}
$$

However, φ is a Lie algebra homomorphism. Thus, for any $X, Y \in L_{1}^{*}$, we have from (4.6)

$$
\varphi\left(\mu_{1}^{-1} \mathrm{~d}\left\{\omega_{1}(X, Y)\right\}\right)=\mu_{2}^{-1} \mathrm{~d}\left\{\omega_{2}(\varphi(X), \varphi(Y))\right\}
$$

Subsituting (5) and (3),

$$
c_{0} \psi^{*}\left(\mathrm{~d}\left\{\omega_{1}(X, Y)\right\}\right)=\mathrm{d}\left\{\omega_{2}(\varphi(X), \varphi(Y))\right\}
$$

as c_{0} is locally constant, this means

$$
\mathrm{d}\left(c_{0}\left\{\omega_{1}(X, Y) \circ \psi\right\}-\omega_{2}(\varphi(X), \varphi(Y))\right)=0
$$

Hence the function on M_{2}

$$
\begin{equation*}
F(X, Y)=c_{0}\left\{\omega_{1}(X, Y) \circ \psi\right\}-\omega_{2}(\varphi(X), \varphi(Y)) \tag{6}
\end{equation*}
$$

is locally constant. Once more, let Q be a component of M_{2}, and take $q \in Q$; suppose first that $\varphi(X)$ is not identically zero on Q.

Certainly $X=\mu_{1}^{-1}(\mathrm{~d} f)$ for some $f \in A_{1}$; clearly one may adjust f by a constant to make $f \circ \psi(q)=0$. By (2), df cannot vanish at all points of $\psi(Q)$ (since $\varphi(X)$ is not identically zero on Q), and so there exists $p \in Q$ with $f \circ \psi(p) \neq 0$. Now set

$$
\begin{aligned}
& X_{1}=(2 f(\psi(p)))^{-1} \mu_{1}^{-1} \mathrm{~d}\left(f^{2}\right) \\
& X_{2}=-(2 f(\psi(p)))^{-1} \mu_{1}^{-1} \mathrm{~d}\left\{(f-f(\psi(p)))^{2}\right\}
\end{aligned}
$$

Then $X=X_{1}+X_{2}$ and $X_{1}(\psi(q))=0, X_{2}(\psi(p))=0$. By (2),

$$
\varphi\left(X_{1}\right)(q)=0 \quad \text { and } \quad \varphi\left(X_{2}\right)(p)=0
$$

Applying (6), $F\left(X_{1}, Y\right)(q)=F\left(X_{2}, Y\right)(p)=0$. Since $F\left(X_{1}, Y\right)$ and $F\left(X_{2}, Y\right)$ are constant on Q (see (6)), it follows that

$$
F(X, Y)=F\left(X_{1}, Y\right)+F\left(X_{2}, Y\right)
$$

vanishes at all points of Q. The same conclusion is trivial when $\varphi(X)$ is identically zero on Q. We deduce that

$$
\begin{equation*}
\left(\forall X, Y \in L_{1}^{*}\right) \quad \omega_{2}(\varphi(X), \varphi(Y))=c_{0}\left\{\omega_{1}(X, Y) \circ \psi\right\} \tag{7}
\end{equation*}
$$

Use (4.1) to rewrite this (in a self-explanatory notation) as

$$
\left(\forall p \in M_{2}\right) \quad\left\langle\varphi(X), \mu_{2} \varphi(Y)\right\rangle_{p}=c_{0}(p)\left\langle X, \mu_{1}(Y)\right\rangle_{\psi(p)} .
$$

From (5) and (3), this can be expressed as

$$
\left(\forall p \in M_{2}\right) \quad\left\langle\varphi(X), c_{0}(p) \psi^{*} \mu_{1}(Y)\right\rangle_{p}=c_{0}(p)\left\langle X, \mu_{1}(Y)\right\rangle_{\psi(p)} .
$$

As c_{0} is everywhere non-zero, it follows that, for all $X, Y \in L_{1}^{*}, p \in M_{2}$,

$$
\left\langle\psi_{* p}(\varphi(X)(p)), \mu_{1}(Y)(\psi(p))\right\rangle_{\psi(p)}=\left\langle X(\psi(p)), \mu_{1}(Y)(\psi(p))\right\rangle_{\psi(p)} .
$$

In view of (2.4), $\mu_{1}(Y)$ may take arbitrary values at $\psi(p)$. Ergo,

$$
\begin{equation*}
\left(\forall X \in L_{1}^{*}\right)\left(\forall p \in M_{2}\right) \psi_{* p}(\varphi(X)(p))=X(\psi(p)) . \tag{8}
\end{equation*}
$$

(That is, X and $\varphi(X)$ are ψ-related when $X \in L_{1}^{*}$.)
Again, applying (5) and (3),

$$
K^{*}=\varphi\left(L_{1}^{*}\right)=c_{0} \mu_{2}^{-1} \psi^{*} \mu_{1}\left(L_{1}^{*}\right)=c_{0} \mu_{2}^{-1} \psi^{*}\left(B^{1}\left(M_{1}\right)\right),
$$

and, because of (2.4), we deduce

$$
\begin{equation*}
\left(\forall p \in M_{2}\right) \quad K^{*}(p)=\mu_{2}^{-1} \psi^{*}\left(T_{\psi(p)}^{*} M_{1}\right) . \tag{9}
\end{equation*}
$$

As ψ is a submersion, D, as defined in the statement of (7.2)(a), is a subbundle of $T M_{2}$; (9) states in effect that

$$
\begin{equation*}
\left(\forall p \in M_{2}\right) \quad K^{*}(p)=D_{p}, \text { the fibre of } D \text { over } p . \tag{10}
\end{equation*}
$$

It follows that D is an integrable subbundle of $T M_{2}$, since, for each $p \in M_{2}$, it has a base of sections in a neighbourhood of p furnished by vector fields in the Lie
subalgebra K^{*} of $\Gamma\left(M_{2}\right)$, and the bracket of two such fields also takes values in D.

Now, if $\xi \in D_{p}$, and $\left(\forall \eta \in D_{p}\right) \omega_{2}(\xi, \eta)=0$, we may use (10) to write $\xi=\varphi(X)(p)$ for some $X \in L_{1}^{*}$. Then, again by (10),

$$
\left(\forall Y \in L_{1}^{*}\right) \quad \omega_{2}(\varphi(X)(p), \varphi(Y)(p))=0 .
$$

Recalling (7), we see that this entails

$$
\left(\forall Y \in L_{1}^{*}\right) \quad \omega_{1}(X(\psi(p)), Y(\psi(p)))=0,
$$

so that, by (2.4) and the non-degeneracy of ω_{1} at $\psi(p)$,

$$
X(\psi(p))=0
$$

and, by (2), $\varphi(X)(p)=\xi=0$. This proves that ω_{2} is non-degenerate on D. By (4.4), D generates a symplectic foliation \mathscr{F} of M_{2}, and of course $K^{*} \subseteq \Gamma(\mathscr{F})$ by (10) (see (2.7)).

Substitute (8) in (7); we find that, for $p \in M_{2}$ and $X, Y \in L_{1}^{*}$,

$$
\begin{aligned}
c_{0}(p) \omega_{1}(X(\psi(p)), Y(\psi(p))) & =c_{0}(p)\left\{\psi^{*} \omega_{1}\right\}(\varphi(X)(p), \varphi(Y)(p)) \\
& =\omega_{2}(\varphi(X)(p), \varphi(Y)(p)),
\end{aligned}
$$

which, with (10), shows that ω_{2} and $c_{0} \psi^{*}\left(\omega_{1}\right)$ agree on D. We have now proved that the conditions (a), (b), (c) are necessary.

Suppose in turn that ψ and c_{0} are given and (a), (b) are satisfied. Let $p \in M_{2}$, and let $\xi \in T_{\psi(p)}^{*} M_{1}$ be such that

$$
\begin{equation*}
\left(\forall Y_{p} \in D_{p}\right)\left\langle\psi_{* p} Y_{p}, \xi\right\rangle_{\psi(p)}=0 \tag{11}
\end{equation*}
$$

Then

$$
\left(\forall Y_{p} \in D_{p}\right)\left\langle Y_{p}, \psi_{p}^{*} \xi\right\rangle_{p}=0
$$

or (see (4.1))

$$
\omega_{2}\left(Y_{p}, \mu_{2}^{-1} \psi_{p}^{*} \xi\right)=0
$$

By (a), $\mu_{2}^{-1} \psi_{p}^{*} \xi \in D_{p}$. Since ω_{2} is non-degenerate on D_{p}, this shows $\mu_{2}^{-1} \psi_{p}^{*} \xi=0$. However, ψ is a submersion, and consequently

$$
\begin{equation*}
\psi_{p}^{*}: T_{\psi(p)}^{*} M_{1} \rightarrow T_{p}^{*} M_{2} \tag{12}
\end{equation*}
$$

is injective; therefore $\xi=0$. Referring back to our hypothesis (11), we have shown that

$$
\begin{equation*}
\psi_{* p}\left(D_{p}\right)=T_{\psi(p)} M_{1} . \tag{13}
\end{equation*}
$$

Take $X_{p}, Z_{p} \in D_{p}$. By (b),

$$
\begin{aligned}
\omega_{2}\left(X_{p}, Z_{p}\right) & =c_{0}(p)\left\{\psi^{*} \omega_{1}\right\}\left(X_{p}, Z_{p}\right)=c_{0}(p) \omega_{1}\left(\psi_{* p} X_{p}, \psi_{* p} Z_{p}\right) \\
& =\left\langle\psi_{* p} X_{p}, c_{0}(p) \mu_{1} \psi_{* p} Z_{p}\right\rangle_{\psi(p)} \\
& =\left\langle X_{p}, c_{0}(p) \psi_{p}^{*} \mu_{1} \psi_{* p} Z_{p}\right\rangle_{p} \quad(\text { see (12)) } \\
& =\omega_{2}\left(X_{p}, c_{0}(p) \mu_{2}^{-1} \psi_{p}^{*} \mu_{1} \psi_{* p} Z_{p}\right) \quad \text { by (4.1). }
\end{aligned}
$$

Since ω_{2} is non-degenerate on D_{p}, by (a), this implies that

$$
\begin{equation*}
\left(\forall Z_{p} \in D_{p}\right) \quad Z_{p}=c_{0}(p) \mu_{2}^{-1} \psi_{p}^{*} \mu_{1} \psi_{* p} Z_{p} \tag{14}
\end{equation*}
$$

Observe that (13) establishes the surjectivity of $\psi_{* p} \mid D_{p}$, whilst (14) gives its injectivity; this proves (7.2)(e). Also, (13) and (14) together lead to

$$
\begin{equation*}
\left(\forall W \in T_{\psi(p)} M_{1}\right) \quad W=c_{0}(p) \psi_{* p} \mu_{2}^{-1} \psi_{p}^{*} \mu_{1} W \tag{15}
\end{equation*}
$$

Define

$$
\begin{equation*}
\bar{\varphi}: \Gamma\left(M_{1}\right) \rightarrow \Gamma\left(M_{2}\right): X \mapsto c_{0} \mu_{2}^{-1} \psi^{*} \mu_{1}(X) . \tag{16}
\end{equation*}
$$

Then, by (15), we have instantly

$$
\begin{equation*}
\left(\forall X \in \Gamma\left(M_{1}\right)\right)\left(\forall p \in M_{2}\right) \quad \psi_{* p}(\bar{\varphi}(X)(p))=X(\psi(p)), \tag{17}
\end{equation*}
$$

as asserted by $(7.2)(\mathrm{g})$. That $\bar{\varphi}\left(\Gamma\left(M_{1}\right)\right) \subseteq \Gamma(\mathscr{F})$, as stated in (7.2)(f), is immediate from the definitions of $\bar{\varphi}$ and D.

By definition (see (4.3)), $X \in L_{1} \Leftrightarrow \mathrm{~d}\left(\mu_{1}(X)\right)=0$. In that case, $\mathrm{d}\left(\mu_{2} \bar{\varphi}(X)\right)=$ $\mathrm{d}\left(c_{0} \psi^{*} \mu_{1} X\right)=c_{0} \psi^{*}\left(\mathrm{~d}\left(\mu_{1} X\right)\right)=0$, so that $\bar{\varphi}\left(L_{1}\right) \subseteq L_{2}$. Likewise, if $X=\mu_{1}^{-1}(\mathrm{~d} f) \in L_{1}^{*}$, where $f \in A_{1}$, then

$$
\begin{equation*}
\bar{\varphi}(X)=c_{0} \mu_{2}^{1} \psi^{*}(\mathrm{~d} f)=\mu_{2}^{-1} \mathrm{~d}\left\{c_{0}(f \circ \psi)\right\} \in L_{2}^{*} . \tag{18}
\end{equation*}
$$

We write φ for $\bar{\varphi} \mid L_{1}^{*}: L_{1}^{*} \rightarrow \Gamma_{2}$. Notice that (f) has been proved.
Set $\tilde{\varphi}=c_{0} \psi^{*}: A_{1} \rightarrow A_{2}$. Then, firstly,

$$
\begin{equation*}
\mu_{2}^{-1} \mathrm{~d} \tilde{\varphi}=c_{0} \mu_{2}^{-1} \mathrm{~d} \psi^{*}=c_{0} \mu_{2}^{-1} \psi^{*} \mathrm{~d}=\varphi \mu_{1}^{-1} \mathrm{~d} \tag{19}
\end{equation*}
$$

so that φ is the quotient linear map of $\tilde{\varphi}$ (see (4.5)(4)). Secondly, given $f, g \in A_{1}$ and $p \in M_{2}$, apply (4.5)(2) and (19).

$$
\begin{aligned}
& {[\tilde{\varphi}(f), \tilde{\varphi}(g)]_{2}(p)=\omega_{2}\left(\mu_{2}^{-1} \mathrm{~d}(\tilde{\varphi}(f)), \mu_{2}^{-1} \mathrm{~d}(\tilde{\varphi}(g))\right)(p)} \\
& \quad=\omega_{2}\left(c_{0}(p) \mu_{2}^{-1} \psi_{p}^{*}\{\mathrm{~d} f(\psi(p))\}, c_{0}(p) \mu_{2}^{-1} \psi_{p}^{*}\{\mathrm{~d} g(\psi(p))\}\right) \\
& \quad=c_{0}(p)\left\{\psi_{p}^{*}\left(\omega_{1}\right)\right\}\left(c_{0}(p) \mu_{2}^{-1} \psi_{p}^{*}\{\mathrm{~d} f(\psi(p))\}, c_{0}(p) \mu_{2}^{-1} \psi_{p}^{*}\{\mathrm{~d} g(\psi(p))\}\right)
\end{aligned}
$$

(by the hypotheses (a) and (b))

$$
\begin{aligned}
& =c_{0}(p) \omega_{1}\left(c_{0}(p) \psi_{* p} \mu_{2}^{-1} \psi_{p}^{*}\{\mathrm{~d} f(\psi(p))\}, c_{0}(p) \psi_{* p} \mu_{2}^{-1} \psi_{p}^{*}\{\mathrm{~d} g(\psi(p))\}\right) \\
& =c_{0}(p) \omega_{1}\left(\mu_{1}^{-1} \mathrm{~d} f(\psi(p)), \mu_{1}^{-1} \mathrm{~d} g(\psi(p))\right) \quad \text { by }(15) \\
& =c_{0}(p)[f, g]_{1}(\psi(p))=\left(\tilde{\varphi}[f, g]_{1}\right)(p) .
\end{aligned}
$$

Consequently $\tilde{\varphi}: A_{1} \rightarrow A_{2}$ is a Lie algebra homomorphism (and so must be its quotient map $\varphi: L_{1}^{*} \rightarrow L_{2}^{*}$). This proves (h).

Again, take $p \in M_{2}$. Repeating an earlier argument (see (10) and its sequel), use (2.4) to take functions $f_{1}, f_{2}, \ldots, f_{m} \in A_{1}$ such that the fields $\mu_{1}^{-1} \mathrm{~d} f_{i}$, for $1 \leqslant i \leqslant m$, form a local basis for $T M_{1}$ over a neighbourhood of $\psi(p)$. The definitions of φ and of D (see (16), (7.2)(a)) show - since ψ is a submersion, so that φ is injective in each fibre-that φ transforms these fields into a local basis for D over a neighbourhood of p. Because φ is a Lie homomorphism, it follows that D is an integrable subbundle, as stated in (7.2)(d).

Let $X, Y \in \Gamma\left(M_{1}\right)$. Then, as X and $\bar{\varphi}(X), Y$ and $\bar{\varphi}(Y)$, are ψ-related (see (17)), so are $[X, Y]$ and $[\bar{\varphi}(X), \bar{\varphi}(Y)]$; that is,

$$
\begin{align*}
& \left(\forall p \in M_{2}\right) \psi_{* p}([\bar{\varphi}(X), \bar{\varphi}(Y)](p))=[X, Y](\psi(p)) \\
& \quad=\psi_{* p}(\bar{\varphi}([X, Y])(p)), \quad \text { again by }(17) . \tag{20}
\end{align*}
$$

However, $\bar{\varphi}(X)$ and $\bar{\varphi}(Y)$ are in $\Gamma(\mathscr{F})$; therefore so is $[\bar{\varphi}(X), \bar{\varphi}(Y)]$, and $[\bar{\varphi}(X)$, $\bar{\varphi}(Y)](p) \in D_{p}$. But, as already remarked, $\psi_{* p} \mid D_{p}$ is injective (see (14)), and (20) must imply that

$$
\begin{equation*}
[\bar{\varphi}(X), \bar{\varphi}(Y)]=\bar{\varphi}([X, Y]) \tag{21}
\end{equation*}
$$

(at the arbitrary point $p \in M_{2}$). This completes the proof of $(f) ;(k)$ is obvious.
The only assertion which remains to be proved is $(7.2)(\mathrm{j})$. Now, from the definition (16), and by the injectivity of ψ_{p}^{*},

$$
\varphi(X)(p)=0 \Leftrightarrow X(\psi(p))=0
$$

for any $p \in M_{2}$ and $X \in \Gamma\left(M_{1}\right)$. As an immediate consequence,

$$
\begin{align*}
& \left(\bar{\varphi}\left(L_{1}^{*}\right)\right)_{p}=\bar{\varphi}\left\{\left(L_{1}^{*}\right)_{\psi(p)}\right\},\left(\bar{\varphi}\left(L_{1}\right)\right)_{p}=\bar{\varphi}\left\{\left(L_{1}\right)_{\psi(p)}\right\} \\
& \left(\bar{\varphi}\left(\Gamma\left(M_{1}\right)\right)\right)_{p}=\bar{\varphi}\left\{\left(\Gamma\left(M_{1}\right)\right)_{\psi(p)}\right\},\left(\bar{\varphi}\left(\Gamma_{1}\right)\right)_{p}=\bar{\varphi}\left\{\left(\Gamma_{1}\right)_{\psi(p)}\right\} \tag{22}
\end{align*}
$$

On the other hand, $\bar{\varphi}\left(L_{1}^{*}\right)(p)=\bar{\varphi}\left(L_{1}\right)(p)=\bar{\varphi}\left(\Gamma_{1}\right)(p)=\bar{\varphi}\left(\Gamma\left(M_{1}\right)\right)(p)=D_{p}$ by the definitions (7.2)(a) and (16), and by (2.4). Therefore (22) entails that

$$
\begin{align*}
& \bar{\varphi}\left\{\left(L_{1}^{*}\right)_{\psi(p)}\right\} \neq \bar{\varphi}\left(L_{1}^{*}\right), \bar{\varphi}\left\{\left(L_{1}\right)_{\psi(p)\}}\right\} \neq \bar{\varphi}\left(L_{1}\right), \\
& \left.\bar{\varphi}\left\{\Gamma\left(M_{1}\right)\right)_{\psi(p)}\right\} \neq \bar{\varphi}\left(\Gamma\left(M_{1}\right)\right), \bar{\varphi}\left\{\left(\Gamma_{1}\right)_{\psi(p)}\right\} \neq \bar{\varphi}\left(\Gamma_{1}\right) . \tag{23}
\end{align*}
$$

As $\bar{\varphi}$ is a Lie algebra homomorphism (see (21) above), we may apply (2.10)(b). Since $\left(L_{1}^{*}\right)_{\psi(p)} \in \Sigma^{n}\left(L_{1}^{*}\right),\left(L_{1}\right)_{\psi(p)} \in \Sigma^{n}\left(L_{1}\right),\left(\Gamma\left(M_{1}\right)_{\psi(p)} \in \Sigma^{n}\left(\Gamma\left(M_{1}\right)\right),\left(\Gamma_{1}\right)_{\psi(p)} \in \Sigma^{n}\left(\Gamma_{1}\right)\right.$ for all $n \geqslant 1$, by (6.7), we deduce from (23) and (2.10)(b) that $\bar{\varphi}\left\{\left(L_{1}^{*}\right)_{\psi(p)}\right\} \in \Sigma^{n}\left(\bar{\varphi}\left(L_{1}^{*}\right)\right)$ and so on. In turn, (22) now proves that $\left(\bar{\varphi}\left(L_{1}^{*}\right)\right)_{p} \in \Sigma^{n}\left(\bar{\varphi}\left(L_{i}^{*}\right)\right)$, and similarly in the other cases. This completes the proof of (7.2)(j).

REMARK. In this theorem, $L^{*}\left(\omega_{1}\right)$ occupies a special position because of the use of $B^{1}\left(M_{1}\right)$ in (7.1). To extend the result to $L\left(\omega_{1}\right)$ and $\Gamma\left(\omega_{1}\right)$, we require a technical lemma.
(7.5) LEMMA. Let R be a Lie algebra over F, and S an ideal of R. Suppose that σ_{1}, σ_{2} are Lie algebra homomorphisms $R \rightarrow \Gamma\left(M_{2}\right)$, and
(a) $\sigma_{1}\left|S=\sigma_{2}\right| S=\sigma$,
(b) $\sigma(S)$ is a 1-ample subalgebra of $\Gamma\left(M_{2}\right)$ (see (3.1)),
(c) for every $p \in M_{2}, \sigma(S)(p)=\sigma_{1}(R)(p)=\sigma_{2}(R)(p)$.

Then $\sigma_{1}=\sigma_{2}$.
(Note that (b), (c) imply that $\sigma_{1}(R), \sigma_{2}(R)$ are 1-ample, by (3.3)).
Proof. Take any $p \in M_{2}$ and $X \in R$. By (c),

$$
\sigma_{1}(X)(p)-\sigma_{2}(X)(p) \in \sigma(S)(p)
$$

and so there exists $Y \in S$ such that

$$
\begin{equation*}
\sigma(Y)-\sigma_{1}(X)+\sigma_{2}(X) \in\left(\Gamma\left(M_{2}\right)\right)_{p} \tag{1}
\end{equation*}
$$

Now, for any $Z \in S$, apply (a):

$$
\left[\sigma(Z), \sigma_{1}(X)-\sigma_{2}(X)\right]=\sigma_{1}[Z, X]-\sigma_{2}[Z, X]=0
$$

(as S is an ideal and $\sigma_{1}\left|S=\sigma_{2}\right| S$). Hence

$$
\begin{equation*}
[\sigma(Z), \sigma(Y)]=\left[\sigma(Z), \sigma(Y)-\sigma_{1}(X)+\sigma_{2}(X)\right] \tag{2}
\end{equation*}
$$

Suppose $\sigma(Z) \in(\sigma(S))_{p}$. Then $[\sigma(Z), \sigma(Y)]=\sigma[Z, Y] \in \sigma(S)$, as S is an ideal of R; and (2) expresses $[\sigma(Z), \sigma(Y)]$ as the bracket of two elements of $\left(\Gamma\left(M_{2}\right)\right)_{p}$ - see (1). Consequently,

$$
\begin{equation*}
\left[(\sigma(S))_{p}, \sigma(Y)\right] \subseteq(\sigma(S))_{p} \tag{3}
\end{equation*}
$$

It follows that $(\sigma(S))_{p}+F \sigma(Y)$ is a subalgebra of $\sigma(S)$. If $\sigma(Y) \notin(\sigma(S))_{p}$, then (b) implies that $(\sigma(S))_{p}+F \sigma(Y)=\sigma(S)$; in turn, (3) now tells us that $(\sigma(S))_{p}$ is an ideal in $\sigma(S)$, which contradicts (b). So $\sigma(Y) \in(\sigma(S))_{p}$, and, by (1), this means that $\sigma_{1}(X)(p)=\sigma_{2}(X)(p)$. The result follows.
(7.6) THEOREM. Let $\left(M_{i}, \omega_{i}\right)$ be a symplectic manifold of positive dimension and of class \mathscr{C}, for $i=1$, 2. Then

$$
\varphi: L\left(\omega_{1}\right) \rightarrow \Gamma\left(\omega_{2}\right)
$$

is a Lie algebra homomorphism over F whose image is a 1-ample subalgebra of $\Gamma\left(M_{2}\right)\left(\right.$ see (3.1)) if and only if there exist ψ and c_{0}, as in (7.2), such that (7.2)(a)-(c) hold. In this case (7.2)(d)-(k) also hold.
Proof. Let $\varphi\left(L_{1}\right)=K$ and $\varphi\left(L_{1}^{*}\right)=K^{*}$. Given $p \in M_{2}, K_{p} \in \Sigma(K)$ by hypothesis; so $\varphi^{-1}\left(K_{p}\right) \in \Sigma\left(L_{1}\right)$, by (2.10)(a), and there exists $q \in M_{1}$ such that $\varphi^{-1}\left(K_{p}\right)=\left(L_{1}\right)_{q}$ by (6.8). But now

$$
\left(L_{1}^{*}\right)_{q}=L_{1}^{*} \cap\left(L_{1}\right)_{q}
$$

and

$$
\begin{equation*}
K_{p}^{*}=\left(\varphi \mid L_{1}^{*}\right)\left(\varphi^{-1}\left(K_{p}\right) \cap L_{1}^{*}\right)=\varphi\left(\left(L_{1}^{*}\right)_{q}\right) \tag{1}
\end{equation*}
$$

However, $\left(L_{1}^{*}\right)_{q} \in \Sigma\left(L_{1}^{*}\right)$ by (6.6), so that, by (2.10)(b) applied to (1), either $K_{p}^{*} \in \Sigma\left(K^{*}\right)$ or $K_{p}^{*}=K^{*}$. Suppose, if possible, that $K_{p}^{*}=K^{*}$. Then $K_{p} \supseteq K^{*}$ and $\varphi^{-1}\left(K_{p}\right)=\left(L_{1}\right)_{q} \supseteq L_{1}^{*}$, which is impossible. The contradiction establishes that $K_{p}^{*} \in \Sigma\left(K^{*}\right)$. Thus K^{*} is 1 -ample, and (7.2) may be applied to $\varphi \mid L_{1}^{*}$. In particular, $\varphi \mid L_{1}^{*}$ extends to a Lie algebra homomorphism $\left(\varphi \mid L_{1}^{*}\right)^{-}: \Gamma\left(M_{1}\right) \rightarrow \Gamma\left(M_{2}\right)$ such that $\left(\varphi \mid L_{1}^{*}\right)^{-}\left(L_{1}\right) \subseteq L_{2}$, which is given by the formula (7.2)(c).

To complete the proof that (7.2)(a) - (c) are necessary, it is therefore only necessary to demonstrate that

$$
\begin{equation*}
\left(\varphi \mid L_{1}^{*}\right)^{-} \mid L_{1}=\varphi \tag{2}
\end{equation*}
$$

Take in (7.5) $R=L_{1}, S=L_{1}^{*}$ (and recall that $L_{1}^{*} \supseteq\left[L_{1}, L_{1}\right]$, by (4.3)); $\sigma_{1}=\varphi$, $\sigma_{2}=\left(\varphi \mid L_{1}^{*}\right)^{-} \mid L_{1}$. The hypothesis (7.5)(a) is automatic, whilst (7.5)(b) has just been proved (K^{*} is 1 -ample). As for (7.5)(c), we have for each $p \in M_{2}$

$$
\varphi\left(L_{1}\right)(p) \supseteq \varphi\left(L_{1}^{*}\right)(p) \supseteq \varphi\left(L_{1}\right)^{(1)}(p)=\varphi\left(L_{1}\right)(p)
$$

by (3.2)(a), since $\varphi\left(L_{1}\right)$ is 1 -ample; and, since (7.2)(j) assures us that $\left(\varphi \mid L_{1}^{*}\right)^{-}\left(L_{1}\right)$ is also 1 -ample, the same argument applies to it. This proves (7.5)(c). The required equality (2) now follows. (The converse implication, that (7.2)(a)-(c) are sufficient, is already contained in (7.2)(f), (j).)
(7.7) THEOREM. Let $\left(M_{i}, \omega_{i}\right)$ be a symplectic manifold of positive dimension and of class \mathscr{C}, for $i=1,2$. Then, if

$$
\varphi: \Gamma\left(\omega_{1}\right) \rightarrow \Gamma\left(\omega_{2}\right)
$$

is a Lie algebra homomorphism over F whose image is a 2-ample subalgebra of $\Gamma\left(M_{2}\right)$ (see (3.1)), there exist ψ and c_{0}, as in (7.2), such that (7.2)(a)-(k) hold.

Proof. Repeat the proof of (7.6), reading Σ^{2} in place of Σ, L_{1} instead of L_{1}^{*}, Γ_{1} instead of L_{1}, and (7.6) in place of (7.2). (Note also that 2-ample implies 1 -ample.)
(7.8) NOTES. As remarked in (7.3), the formula (7.2)(c) defines a homomorphism $\Gamma\left(M_{1}\right) \rightarrow \Gamma\left(M_{2}\right)$ which need not carry Γ_{1} into Γ_{2}. Thus there can be no converse implication in (7.7). Nor would it be sufficient to require only that $\varphi\left(\Gamma_{1}\right)$ be 1-ample. Take $M_{1}=M_{2}=S^{1} \times \mathbb{R}$, and let x denote the standard coordinate in \mathbb{R}, θ the standard local coordinate in S^{1} (defined modulo 2π). The symplectic form is to be $\mathrm{d} \theta \wedge \mathrm{d} x=\mathrm{d}(-x \mathrm{~d} \theta)$, as in (6.11). Now - again compare (6.11)-
$L_{1}=L_{1}^{*} \oplus \mathbb{R} X, \quad$ where $X=\frac{\partial}{\partial x}$ for instance,
$\Gamma_{1}=L_{1} \oplus \mathbb{R} Y$, where $Y=x \frac{\partial}{\partial x}$ for instance.
(Direct computation shows that these choices for X and Y are possible.) Observe that $[X, Y]=X$, so that X and Y span a subalgebra Q of Γ_{1} which is complementary to the ideal L_{1}^{*}. Define the quotient-inclusion homomorphism $\varphi: \Gamma_{1} \rightarrow \Gamma_{2}$ by: $\varphi\left|L_{1}^{*}=0, \varphi\right| Q$ is the identity map of Q. Then $\varphi\left(\Gamma_{1}\right)=Q$ is $1-$ ample (but not 2-ample, since $Q^{(2)}=0$). Indeed,

$$
Q=\{(\alpha+\beta x) X: \alpha, \beta \in \mathbb{R}\}, \quad Q^{(1)}=\{\alpha X: \alpha \in \mathbb{R}\}
$$

and so $Q_{p}=\{(\alpha+\beta x) X: \alpha+\beta x(p)=0\}$ does not include $Q^{(1)}$ and is of codimen-
sion 1, which shows it is in $\Sigma(Q)$. However, φ cannot be derived from ψ and c_{0} as in (7.2); if it were, its image would have to be infinite-dimensional.

Although it is convenient to consider 1-ample or 2-ample images in order to deduce (7.6) and (7.7) from (7.2), these are not conditions of a very explicit kind, and from the algebraic point of view they are quite unsatisfactory.

8. Epimorphisms

We retain the conventions of (7.3).
(8.1) THEOREM. Let $\left(M_{i}, \omega_{i}\right)$ be a symplectic manifold of class \mathscr{C} and of positive dimension, for $i=1,2$. Then
(a) if $\varphi: L_{1}^{*} \rightarrow \Gamma_{2}$ is a Lie algebra epimorphism, then $\Gamma_{2}=L_{2}^{*}$;
(b) if $\varphi: L_{1} \rightarrow \Gamma_{2}$ is a Lie algebra epimorphism, then $\Gamma_{2}=L_{2}$;
(c) if $\varphi: L_{1}^{*} \rightarrow L_{2}$ is a Lie algebra epimorphism, then $L_{2}=L_{2}^{*}$;
(d) if $\varphi: \Gamma_{1} \rightarrow L_{2}^{*}$ is a Lie algebra epimorphism, then $L_{2}^{*}=\Gamma_{2}$;
(e) if $\varphi: \Gamma_{1} \rightarrow L_{2}$ is a Lie algebra epimorphism, then $L_{2}=\Gamma_{2}$;
(f) if $\varphi: L_{1} \rightarrow L_{2}^{*}$ is a Lie algebra epimorphism, then $L_{2}^{*}=L_{2}$.
(See Section 5 for the significance in certain situations of the equalities asserted.) The proof of this result, with that of (8.2), will be given at (8.3).
(8.2) THEOREM. Given $\left(M_{i}, \omega_{i}\right)$ as in (8.1), suppose that either (a) $\varphi: L_{1}^{*} \rightarrow L_{2}^{*}$, or (b) $\varphi: L_{1} \rightarrow L_{2}$, or (c) $\varphi: \Gamma_{1} \rightarrow \Gamma_{2}$, is a Lie algebra epimorphism. In each case, there is a diffeomorphism ψ of M_{2} with an open and closed subset of M_{1}, and a function $c_{0} \in C\left(M_{2}\right)$ which is everywhere non-zero, such that $\omega_{2}=c_{0} \psi^{*}\left(\omega_{1}\right)$ and the map $\bar{\varphi}: \Gamma\left(M_{1}\right) \rightarrow \Gamma\left(M_{2}\right)$ defined by

$$
\left(\forall X \in \Gamma\left(M_{1}\right)\right) \quad \bar{\varphi}(X)=c_{0} \mu_{2}^{-1} \psi^{*} \mu_{1}(X)
$$

is a Lie algebra homomorphism satisfying the equality

$$
\begin{equation*}
\left(\forall X \in \Gamma\left(M_{1}\right)\right) \quad \bar{\varphi}(X)=\psi_{*}^{-1}(X \mid \psi(C)) \tag{1}
\end{equation*}
$$

and agreeing with φ on the domain of φ. Both ψ and c_{0} are uniquely determined by φ.
(8.3) Proof of (8.1) and (8.2). Let us write V for the domain, and W for the range, of φ, in each of the nine cases. By (6.7), W is 2 -ample. Thus, in every case, either (7.2) or (7.6) or (7.7) applies, and the assertions (7.2)(a)-(k) hold.

By (7.2)(f), $\bar{\varphi}\left(\Gamma\left(M_{1}\right)\right) \subseteq \Gamma(\mathscr{F})$. As φ is an epimorphism and $W \supseteq L_{2}^{*}$, it follows that $L_{2}^{*} \subseteq \varphi(V) \subseteq \Gamma(\mathscr{F})$. Use (4.8): the subbundle D tangent to \mathscr{F} must be the
whole of $T M_{2}$. Hence, by (7.2)(e), ψ is a local diffeomorphism of M_{2} with an open subset of M_{1}.

Suppose $p, q \in M_{2}$ and $p \neq q$. By (2.4), there exists $X \in L_{2}^{*}$ with $X(p)=0$ but $X(q) \neq 0$. But there exists $Y \in V$ such that $X=\varphi(Y)$; by (7.2)(c), then, $Y(\psi(p))=0$ and $Y(\psi(q)) \neq 0$, and so $\psi(p) \neq \psi(q)$. This proves that ψ is one-one, and therefore maps each individual component of M_{2} diffeomorphically on to an open set in M_{1} (although we do not yet know that it is a homeomorphism of M_{2} with $\left.\psi\left(M_{2}\right)\right)$. Ergo, we may define $\psi_{*}^{-1}\left(X \mid \psi\left(M_{2}\right)\right) \in \Gamma\left(M_{2}\right)$, for given $X \in \Gamma\left(M_{1}\right)$, by treating each component of M_{2} separately.

Take $p \in M_{2}$ and $Y \in T_{p} M_{2}$. Then

$$
\begin{aligned}
\omega_{1} & \left(\psi_{*} c_{0}(p) \mu_{2}^{-1} \psi^{*} \mu_{1}(X), \psi_{*}(Y)\right)(\psi(p)) \\
& =\left\{\left(\psi^{*} \omega_{1}\right)\left(c_{0} \mu_{2}^{-1} \psi^{*} \mu_{1} X, Y\right)\right\}(p) \\
& =\omega_{2}\left(\mu_{2}^{-1} \psi^{*} \mu_{1} X, Y\right)(p) \quad \text { as } c_{0} \psi^{*} \omega_{1}=\omega_{2} \\
& =\left\langle Y,-\psi^{*} \mu_{1}(X)\right\rangle_{p} \quad \text { by definition (4.1) } \\
& =\left\langle\psi_{*} Y,-\mu_{1}(X)\right\rangle_{\psi(p)} \\
& =\omega_{1}\left(X, \psi_{*} Y\right)(\psi(p)), \quad \text { by }(4.1) .
\end{aligned}
$$

As p is an arbitrary point of M_{2} and $\psi_{*} Y$ is an arbitrary element of $T_{\psi(p)} M_{1}$, we deduce

$$
c_{0} \mu_{2}^{-1} \psi^{*} \mu_{1}(X)=\psi_{*}^{-1}\left(X \mid \psi\left(M_{2}\right)\right),
$$

thus proving (8.2)(1).
Let C be any component of M_{2}, and C_{1} the component of M_{1} which includes $\psi(C)$. Suppose x is in the closure of $\psi(C)$ (and therefore in C_{1}). By (4.8), there exists $X \in L_{1}^{*}$ such that $X(x) \neq 0$. Define $Y \in \Gamma\left(M_{2}\right)$ to agree with $\psi_{*}^{-1}(X)$ on C and to vanish elsewhere. Then $Y \in L_{2}^{*}$, since (1) applies on C (compare (7.4)(18)), and, off C, it is obvious.

By construction, $\psi_{*} Y|\psi(C)=X| \psi(C)$. Hence, if there exists $Z \in V$ such that $Y=\varphi(Z)=\psi_{*}^{-1}\left(Z \mid \psi\left(M_{2}\right)\right)$, necessarily $Z|\psi(C)=X| \psi(C)$ and, by continuity, $Z(x)=X(x) \neq 0$. It follows that $Y \notin \varphi\left(V_{x}\right)$. Since $V_{x} \in \Sigma^{2}(V)$ and $\varphi\left(V_{x}\right) \neq W$, (2.10)(b) yields that $\varphi\left(V_{x}\right) \in \Sigma^{2}(W)$. From (6.6)-(6.10), we know that then

$$
\begin{equation*}
\varphi\left(V_{x}\right)=W_{y} \text { for some } y \in M_{2} \tag{2}
\end{equation*}
$$

If possible, suppose $\psi(y) \neq x$. Then, by (2.4), there exists $U \in L_{1}^{*}$ such that $U(x)=0$ and $U(\psi(y)) \neq 0$. The formula (1) shows that

$$
\varphi(U)=\psi_{*}^{-1}\left(U \mid \psi\left(M_{2}\right)\right),
$$

and therefore $\varphi(U) \notin W_{y}$ and $U \in V_{x}$, contradicting (2). Hence $\psi(y)=x$. Furthermore, $y \in C$; for, as C is closed in M_{2} and ψ is both open and one-one, the assumption that $y \notin C$ is incompatible with our hypothesis that $x=\psi(y)$ is in the closure of $\psi(C)$. In fact, then $x \in \psi(C)$, and $\psi(C)$ must be closed. Since it is also open and connected, $\psi(C)=C_{1}$. This evidently proves that ψ is a diffeomorphism of M_{2} with the union of certain components of M_{1}; and (8.2) is therefore proved in full. However, (8.1) is now almost obvious: φ may be factorised as $\psi_{*}^{-1} j$, where j is the map which transforms a vector field on M_{1} to its restriction over $\psi\left(M_{2}\right)$, and both ψ_{*}^{-1} and j clearly carry the fields of a given kind (globally, locally, or conformally Hamiltonian) onto all fields of the same kind on M_{2} or $\psi\left(M_{2}\right)$ respectively; the assertions (8.1)(a)-(f) follow.
(8.4) COROLLARY. In (8.1)(a)-(f), each of the epimorphisms must split in the category of Lie homomorphisms.

(8.5) REMARKS.

(a) The conclusion of (8.1) holds under weaker hypotheses. The proof (8.3) requires only that the image of φ be 1 -ample when the domain is L_{1} or $L_{1}^{*}, 2-$ ample when the domain is Γ_{1}; and that it satisfy certain 'separation hypotheses' which were ensured in (8.3) by its including L_{2}^{*}.
(b) We have of course tacitly (though largely unnecessarily) assumed our manifolds have empty boundary. If they were allowed to have boundaries, we could not prove as in (8.3) that $\psi(C)=C_{1}$ or that the image of ψ is open. However, our method may be somewhat tediously modified to prove that, in this case also, ψ is a diffeomorphism with its image.
(8.6) THEOREM. Suppose that, in any of the cases (8.1)(a)-(f), (8.2)(a)-(c), the Lie homomorphism φ is an isomorphism. Then there exist a diffeomorphism ψ of M_{2} with M_{1} and an everywhere non-zero function $c_{0} \in C\left(M_{2}\right)$ such that $\omega_{2}=c_{0} \psi^{*}\left(\omega_{1}\right)$ and

$$
\varphi=\psi_{*}^{-1}
$$

in particular, the domain and range of φ must consist of vector fields of the same kind.
(8.7) THEOREM. Suppose that, for $i=1,2,\left(M_{i}, \omega_{i}\right)$ is a symplectic manifold of class \mathscr{C} and of positive dimension; and let $\varphi: A\left(M_{1}\right) \rightarrow A\left(M_{2}\right)$ be an epimorphism of Lie algebras. Then there are a diffeomorphism ψ of M_{2} with an open and closed subset of M_{1} and an everywhere non-zero function $c_{0} \in C\left(M_{2}\right)$, and an F-linear map $\Phi: A_{1} \rightarrow C\left(M_{2}\right)$ vanishing on $A_{1}^{(1)}$, such that $\omega_{2}=c_{0} \psi^{*}\left(\omega_{1}\right)$ and

$$
\begin{equation*}
\varphi=c_{0} \psi^{*}+\Phi \tag{1}
\end{equation*}
$$

Each of ψ, c_{0} and Φ is uniquely determined by φ.

Proof. Use the notations of (7.3). By (4.5)(4), $\mu_{i}^{-1} \mathrm{~d}$ is a Lie epimorphism with kernel $C\left(M_{i}\right)$. As φ is epimorphic,

$$
\varphi\left(C\left(M_{1}\right)\right) \subseteq C\left(M_{2}\right)
$$

consequently φ induces a Lie epimorphism $\kappa: L_{1}^{*} \rightarrow L_{2}^{*}$ such that $\mu_{2}^{-1} \mathrm{~d} \varphi$ $=\kappa \mu_{1}^{-1} \mathrm{~d}$. By (8.2), there is a diffeomorphism ψ of M_{2} with an open and closed subset of M_{1}, and there is a non-vanishing $c_{0} \in C\left(M_{2}\right)$, such that ω_{2} $=c_{0} \psi^{*}\left(\omega_{1}\right)$ and $\kappa=c_{0} \mu_{2}^{-1} \psi^{*} \mu_{1}$. Hence $\mu_{2}^{-1} \mathrm{~d} \varphi=c_{0} \mu_{2}^{-1} \mathrm{~d} \psi^{*}$ and $\mathrm{d}\left(\varphi-c_{0} \psi^{*}\right)$ $=0$. It follows that

$$
\begin{equation*}
\Phi=\varphi-c_{0} \psi^{*} \text { maps } A_{1} \text { into } C\left(M_{2}\right) \tag{2}
\end{equation*}
$$

However, it is easily checked, for instance from (4.5)(2), that $c_{0} \psi^{*}$ is a Lie algebra epimorphism. Thus, for any $f, g \in A_{1}$,

$$
\Phi[f, g]=\left[\varphi f, \varphi g-c_{0} \psi^{*} g\right]+\left[\varphi f-c_{0} \psi^{*} f, c_{0} \psi^{*} g\right]=0
$$

from (2). This completes the proof of the Theorem.
(8.8) ADDENDA. It is trivial that, for ψ, c_{0}, and Φ as in the theorem, $\Phi+c_{0} \psi^{*}$ is a Lie homomorphism $A_{1} \rightarrow A_{2}$. In general, it is not onto (for instance, ψ might be the identity of a compact real symplectic manifold $M, A_{1}=A_{2}=A(M)$, and c_{0} might be identically equal to unity. Then $c_{0} \psi^{*}$ is the identity of $A(M)$, but it is clear from (5.4) that - in the notation used there - if

$$
\Phi: C_{0} \oplus A^{(1)} \rightarrow C(M):(f, g) \mapsto-f,
$$

then $\Phi+c_{0} \psi^{*}$ is not epimorphic, being the projection on $A^{(1)}$). Thus the homomorphisms to which Theorem (8.7) applies are, more generally, those which differ from epimorphisms by linear maps whose kernel includes $A_{1}^{(1)}$ and whose image is included in $C\left(M_{2}\right)$. When $H^{2 n}\left(M_{1}, F\right)=0$, as for the real case when M_{1} has no compact components, then (5.3) shows that all such linear maps vanish, so that all epimorphisms $A\left(M_{1}\right) \rightarrow A\left(M_{2}\right)$ are of the form $c_{0} \psi^{*}$.
(8.9) NOTES
(a) As in (8.5)(a), one may prove (8.6) under weaker hypotheses (those which ensure that (8.3) remains valid). An alternative approach would be to construct ψ directly from (6.5) - but in the present context it would be uneconomical to do so.
(b) Suppose that M_{1} is real and compact, with components Q_{1}, \ldots, Q_{a}; and M_{2} has components R_{1}, \ldots, R_{b}. Whether in (8.2) or (8.6), M_{2} must also be
compact and $b \leqslant a$. We may suppose $\psi\left(R_{j}\right)=Q_{j}$ for $1 \leqslant j \leqslant b$, and identify $C\left(M_{1}\right)$ with $\mathbb{R}^{a}, C\left(M_{2}\right)$ with \mathbb{R}^{b}, and $\psi^{*}: C\left(M_{1}\right) \rightarrow C\left(M_{2}\right)$ with the projection on the first a coordinates $\mathbb{R}^{b} \rightarrow \mathbb{R}^{a}$, in the obvious way, with isomorphisms

$$
\tau_{1}: \mathbb{R}^{a} \rightarrow C\left(M_{1}\right), \quad \tau_{2}: \mathbb{R}^{b} \rightarrow C\left(M_{2}\right) .
$$

The isomorphisms $A_{i} \cong C\left(M_{i}\right) \oplus A_{i}^{(1)}$ of (5.4) give rise to projections $\pi_{i}: A_{i} \rightarrow C\left(M_{i}\right)$ which, in view of (5.3), may be expressed by

$$
\begin{equation*}
\pi_{1}(f)=\tau_{1}\left(\alpha_{1}, \ldots, \alpha_{a}\right), \quad \text { where } \alpha_{j}=\left(\int_{Q_{j}} f \eta\right) /\left(\int_{Q_{j}} \eta\right) \tag{1}
\end{equation*}
$$

and similarly for π_{2}. Hence the Φ of (8.6) takes the form $\Phi=\tau_{2} \Delta \tau_{1}^{-1} \pi_{1}$, where $\Delta: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b}$ is a linear map, and π_{1} is given by (1). However, $c_{0} \psi^{*}$ carries $C\left(M_{1}\right)$ on to $C\left(M_{2}\right)$:

$$
\begin{equation*}
c_{0} \psi^{*} \tau_{1}\left(\alpha_{1}, \ldots, \alpha_{a}\right)=\tau_{2}\left(\lambda_{1} \alpha_{1}, \ldots, \lambda_{b} \alpha_{b}\right) \tag{2}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{b}$ are the values of c_{0} on R_{1}, \ldots, R_{b} respectively; and $c_{0} \psi^{*}$ also carries $A_{1}^{(1)}$ on to $A_{2}^{(1)}$. It follows that $\varphi=c_{0} \psi^{*}+\Phi$ will be surjective if and only if $T+\Delta: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b}$ is surjective, where

$$
T\left(\alpha_{1}, \ldots, \alpha_{a}\right)=\left(\lambda_{1} \alpha_{1}, \ldots, \lambda_{a} \alpha_{a}\right)
$$

(Any noncompact components of M_{1} or M_{2} may be ignored for the purposes of the question of surjectivity; on the corresponding factors of A_{1}, Φ vanishes and $c_{0} \psi^{*}$ is onto.)
(8.10) THEOREM. Let $\left(M_{i}, \omega_{i}\right)$ be a symplectic manifold of positive dimension and of class \mathscr{C}, for $i=1$, 2. If $\varphi: A\left(M_{1}\right) \rightarrow A\left(M_{2}\right)$ is a Lie algebra isomorphism, then there is a diffeomorphism ψ of M_{2} with M_{1}, and there is a nonvanishing function $c_{0} \in C\left(M_{2}\right)$, such that $\omega_{2}=C_{0} \psi^{*}\left(\omega_{1}\right)$ and $\varphi-c_{0} \psi^{*}$ vanishes on the commutator of $A\left(M_{1}\right)$ and takes values in the centre of $A\left(M_{2}\right)$.
(8.11) REMARK. A symplectic manifold (M, ω) of class \mathscr{C} has dimension zero if and only if $\Gamma(\omega)=0$; or if and only if $L(\omega)=0$; or if and only if $L^{*}(\omega)=0$; or if and only if $A(M)$ is abelian. It is therefore trivial to describe what happens to the preceding results if one omits the requirement that the manifolds be of positive dimension.

References

1. C. J. Atkin, A note on the algebra of Poisson brackets, Math. Proc. Camb. Phil. Soc. 96 (1984), 45-60.
2. A. Avez, A. Diaz-Miranda and A. Lichnerowicz, Sur l'algèbre des automorphismes infinitésimaux d'une variété symplectique, J. Diff. Geom. 9 (1974), 1-40.
3. G. E. Bredon, Sheaf Theory; McGraw-Hill, New York, 1967.
4. Séminaire Cartan (École Normale Supérieure), 1951/52.
5. R. Godement, Topologie Algébrique et Théorie des Faisceaux; Hermann, Paris, 1958.
6. J. Grabowski, Isomorphisms and ideals of the Lie algebras of vector fields, Invent., Math. 50 (1978), 13-33.
7. J. Grabowski, The Lie structure of C^{*} and Poisson algebras, Studia Math. 81 (1985), 259-270.
8. H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. Math. 68 (1958), 460-472.
9. B. Kaup and L. Kaup, Holomorphic Functions in Several Variables, de Gruyter, Berlin-New York 1983.
10. A. Lichnerowicz, Sur les variétés symplectiques, C.R. Acad. Sci. Paris 233 (1951), 723-726.
11. D. McDuff, Symplectic diffeomorphisms and the flux homomorphism, Invent. Math. 77 (1984), 353-366.
12. R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917-934.
13. A. Tognoli, Some results in the theory of real analytic spaces, Espaces Analytiques (Séminaire, Bucharest, 1969), 149-157; Editura Acad. R.S.R., Bucharest, 1971.
14. H. Whitney, Differentiable manifolds, Ann. Math. 37 (1936), 645-680.
