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- oo Introduction

Let -9 be a bounded symmetric domain. r c Aut(D) be a discrete, properly
discontinuous group. If r is cocompact and acts freely, it has been known for
several decades (Kodaira: [K], Hirzebruch: [Hi]) that 0393BD is then an algebraic
variety, and in fact of general type. The Hirzebruch proportionality theorem then
tells us the (ratios of) Chern numbers of X = 0393BD, which allows us to recover
D from the Chern numbers of X if we know only that X is of the form 0393BD for
some D. The group r is then of course just the fundamental group 03C01(X). So it
can’t happen, for example, that X = 0393BD = 0393BD’ for 2 non-isomorphic bounded
symmetric domains -9 and -9’.

Arithmetically the condition r cocompact means that r has Q-rank zero.
Although occasionally such groups occur in algebraic geometry (Shimura curves,
for example), in most cases r will only be of finite covolume, and the space 0393BD
occur as moduli spaces of some sort, usually as moduli spaces of varieties with
special properties (e.g. classes of abelian varieties, K3-surfaces, curves, etc.) More
generally, the period domains according to Griffiths [GS] (classifying spaces of
Hodge structures) are all of the form rBG/H, where G is a real simple
non-compact Lie group and H is a compact subgroup, r a discrete subgroup. If
one has a Torelli theorem for a corresponding class of varieties, then these spaces,
locally homogenous complex manifolds are the moduli spaces for that class of
varieties. These spaces are all fibre bundles over some symmetric spaces, for
example

* Research supported in part by NSF Grant 8500994A2
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Returning to the situation in which 0393BD is a moduli space, in general 0393BD will
not be compact, and the compactification is instrumented by adding moduli of
the degenerations at the boundary. This leads one to consider (smooth) algebraic
varieties X which contain 0393BD as a Zariski-open subset. We call such X locally
symmetric.

Locally symmetric varieties, together with a divisor D (usually assumed to be
normal crossings) such that X - D = 0393BD, still contain a lot of "symmetry", that
is, structure determined by the group structure of Aut(D), and so we can think of
a correspondence of pairs (X, D) and pairs (D,0393), where now r = 1tl(X -D).
Thus it is now quite conceivable that given an algebraic variety X, there exist
2 different divisors D 1 and D2 such that (X, D1) corresponds to (D1, 03931) and
(X, D2 ) corresponds to (D2,03932) in the above sense, but D1 and D2 are not
isomorphic, nor even of the same R-rank for that matter. This phenomena
seemed worthy of study as soon as it occurred somewhere. For surfaces no such
examples were, up to now, known.

Let X be the following modification (blow-up) of P3 (for notations and details
see 2.5.1. below). Let D 1, ... , D4 be the 4 coordinate planes (regular tetrahedron),
D5,..., D10 the 6 symmetry planes of this tetrahedron, and D11,..., D15 be the
5 exceptional p2,S gotten by blowing up p3 at the corners and the center of the
tetrahedron. Finally let E 1, ... , E10 be the P1 x P1’s gotten by blowing up along
the 10 3-fold lines of the 10 planes (i.e. of the arrangement D = D1 ~ ··· U Dl 0’ see
2.5). The proof and study of the following result is the object of this paper:

THEOREM. (i) (X, D) corresponds to (52, r(2» in the above sense, where

S2 = Siegel upper half space of degree 2, r(2) = principal congruence subgroup of
level 2.

(ii) (X, E) corresponds to (B3, 0393(1 - 03C1)) in the above sense, B3 = complex
hyperbolic 3-ball, 0393(1 - 03C1)=principal congruence subgroup of U«3,1), (9K), K =

Q(-3), 03C1 = e203C0i/3. Here D = Y-Di, i = 1,..., 15, E = EEÂ, Â = 1,..., 10.
There are several directions into which this result can be further investigated.

On the group level, one can associate to the discrete group r a Tits building with
scaffolding. Here we find that the corresponding Tits building with scaffoldings
are dual to each other. It is not yet clear whether this is implied by the double
structure as locally symmetric space or whether this is perhaps as additional
coincidence of this particular example.

It is not difficult to determine the ring of modular forms of r(2), using theta
constants (Igusa [I1], [12]). As for the ring corresponding to the group r(1 - p),
the structure can be determined by utilizing results of Holzapfel [Hol], together
with results of Deligne-Mostow [DM]. Using in addition a result of Shimura [S]
which characterises (X, E) as a moduli space of Picard curves, one can even
describe the ring in terms of theta constants. Viewing things this way, the duality
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above turns into projective duality of varieties (the singular Baily-Borel
embeddings), and this duality is in fact classical (cf. [B]).

It turns out that both (X, D) and (X, E) have moduli interpretations, and it is
easthetically pleasing to see this duality in terms of degenerations. X - D - E
parametrises on the one hand hyperelliptic curves y2 = p6(x), genus 2 curves, and
on the other hand Picard curves y3 = p6 (x), genus 4 curves, the correspondence
being given by the zeros of p6(x). But where zeroes of p6(x) coincide (x E D ~ E),
the types of degenerations seem to be dual to each other. For the hyperelliptic
curves D corresponds to curves aquiring doublepoints, E to curves splitting into
2 components. For the Picard curves it is the other way around. This is

summarised in the table 5.4.

For each such family of curves, one can consider the Picard-Fuchs differential
equation corresponding to the dependency of the periods on the moduli. Both
our families of curves are associated with the famous hypergeometric differential
equation, but with different parameters. Here we use results of [DM] on the one
hand, and of Sasaki and Yoshida [KSY] on the other.
The variety we are studying in this paper is probably one of the most

thoroughly studied algebraic 3-folds, so we don’t claim to be deriving new results
on this variety. Rather, our object is to study in detail the 2 structures of locally
symmetric spaces and their interrelations. The Siegel picture (§1) is very well
known whence we only sketch the necessary statements and facts; we refer to [V]
for general results and to [LW] for combinatorial and cohomological results.
The Picard picture (§2) is, to the best of our knowledge, essentially new, so we give
this side of the picture in much greater detail. However, this Picard picture is an
almost straightforward 3-dimensional generalisation of the Picard picture of
a surface for which extremely detailed results are available, namely Holzapfel’s
monograph [Hol]. Hence here there is also little which is original.
As this subject also has an interesting history, as well as being a model for our

efforts in dimension 3, we now recall some of the background and results of the
surface case. As long ago as 1769, L. Euler considered the following partial
differential equation in connection with acoustics:

About a century later Riemann constructed solutions of this equation by an
inversion process, during which hypergeometric functions occurred. In 1880
Appell gave the generalisation to several variables of the hypergeometric function
which also occurs in recent work of Mostow and Deligne. In 1881 E. Picard
studied these and found the famous integral representation for Appell’s
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hypergeometric series:

He in particular studied the integral

and discovered that this function (of ti and t2) is a special solution of the Euler
equation (E1/3)! In fact, 3 of these integrals form a fundamental system of
solutions for a system of 3 partial differential equations.
One recognises immediately the integrals above as forming a base of the

(1, 0)-diflerentials on the trigonal curve

which is a genus 3 curve with Galois action by Z/37L. These are the so-called
Picard curves, of which we will be studying a suitable generalisation (we also call
our curves, genus 4 curves, Picard curves).
We now recall for the reader’s benefit some of Holzapfel’s results in the study of

the family of Picard curves. Consider the following subgroups of Aut(B2) =
PSU(2, 1):

Eisenstein lattice

Special Eisenstein lattice

(9K = ring of integers in K.

Letting p = e203C0i/3 be a primitive cube root of unity, (1 - p) is an ideal in OK (note

that Q(-3) = Q(03C1) since 03C1 = -1+-3 2. One considers also the con-

gruence subgroups r’ = 0393(1 - p), and ’ = (1 - p) (here we are using
Holzapfel’s notation). The following results are proved in [Hol]:

I. The monodromy group of the system of partial differential equations
alluded to above is ’.

Il. The rings of automorphic forms for ’ and r are:

where the 03BEi have weight 1 and the Gj have weight j.
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III. BB2 ~ P2 -{4 points}.
IV. If FI, F 2 and F3 are 3 fundamental solutions of the system alluded to above,

then the automorphic forms of weight 1, (03BE1:03BE2:03BE3) give (up to coordinate
transformations) the inverse to the many-valued function (F1:F2:F3), in
other words, (03BE1:03BE2:03BE3) ° (F1:F2:F3) is 1 - 1, and

commutes.

V. There is also a commutative diagram

where (B’)* = BI u {-rational cuspsl, fB(182)* is the Baily-Borel compac-
tification.

VI. The (image of) f -fixed points of 1IJ2 are the set of Picard curves with

automorphism group larger than Z/3Z.

In our work below we are able to give reasonable generalisations of I, II, III and
IV to dimension 3. It would be challenging and extremely interesting to also get
a nice equation in terms of modular forms (V) and to generalise VI also to
dimension 3.

Finally we would like to remark that during the last year it has started to
emerge that this example is the first in some finite list of examples with similar
properties. An upcoming paper with Weintraub will give more details on the
other known examples related to this one.
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1 am greatly indebted to S. Weintraub for many explanations and conversations
on this and related topics, in particular for the technicalities of 2.1.

0. Notations and conventions

All varieties considered are over the complex number field C. We use freely the
standard notions of hemitian symmetric spaces. For a non-compact locally
hermitian symmetric space X, X* usually denotes the Baily-Borel compactifica-
tion, X^ some desingularisation.

Throughout, we use the following notations:

pn projective space (over C)
Bn the complex n-ball
03A3n symmetric group on n letters
An alternating group on n letters
r some arithmetic group, particular cases of which

are:

r(2), r(4) principal congruence subgroups (Siegel case)
r(l - 03C1), S0393(1 - p), r(1 - p)’ lattices in Picard groups
Fp field with p elements (p prime), which is sometimes

also denoted Z/pZ
Sp(n, R), U(p, q), SU(p, q) the usual classical groups
K number field,
OK ring of integers in K
Mn(C) n x n matrices with C-coefficients

03C01(X) fundamental group.

1. A Siegel Modular 3-fold

1.1. Let S 2 = Sp(2, R)/U(2) = {Z ~ M2(C)|Z = tz. Im(Z) &#x3E; 01 be the Siegel
upper half-space of degree 2, a 3-dimensional, R-rank 2 bounded symmetric
domain. Sp(2,Z) is a lattice in Sp(2, R) which has 0-rank 2. The action of

r = Sp(2,Z) on S2 is Z H (AZ + B)(CZ + D)-1. We are particularly interested
in the principal congruence subgroup of level 2, defined by the following exact
sequence:

r(2) is thus a normal subgroup, of index equal to Sp(2, Z/2Z)) | = 720, since
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Sp(2, Z/2Z) = S6, the symmetric group on 6 letters, as is well known. r(2) does
not act freely, but the quotient is smooth [I1], [I3], [C]. Let X(2) denote the
non-compact quotient r(2)BS2’

1.2. A compactification of X(2) is constructed in the standard way, i.e.

Baily-Borel. Adjoin to S2 the rational (with respect to r) boundary components,
which are copies of S1 in dimension 1 (rank 1), and points in dimension 0 (rank 0).
The action of r(2) extends to the rational boundary of S2, and the quotient
F(2)BS* is a compact Hausdorff space. The action of r(2) on one of the 51’s on
the boundary is via the principal congruence subgroup of level 2 of Sp(l, Z) =

Sl(2, Z), which has 3 inequivalent cusps. Since r(2) c Sp(2, Z) has 15 inequivalent
1-dimensional cusps as well as 15 inequivalent 0-dimensional ones, one gets the
following configuration on X(2)* = 0393(2)BS*2:

15 curves Ci = 0393(2)BS*1
15 points Pij Ci n Ci = cusp of Ci and Cj.
3 different Ci meet at each Pij.
Each Ci contains 3 cusps Pii

1.3. In order to describe the boundary components precisely it is convenient to
work in (Z/2Z)’. Since any two cusps are equivalent under Sp(2, Z) the exact
sequence 1.1.1 implies the natural action of Sp(2.Z/2Z) on (Z/2Z)’ gives exactly
the action of r(2) on the boundary components (see also [LW]):

1-dimensional cusps of X(2)* ~ l ~(Z/2Z)4, l = (03B51, 03B52, 03B53, 03B54), 1 # 0 ai = 0 or 1.
1-dimensional cusps of X(2)* ~ l = (03B51, E2, 03B53, 03B54), 03B5j = 0 or 1.

0-dimensional cusps of X2* ~ h = l1 ^ l2, 2-dimensional( ) 
(isotropic subs p aces.

In this scheme the curves Ci are numbered by 4-tuples (03B51,..., 84)’ 8j = 0, 1. Then
Ci n Ci is the 2-plane spanned by

and the third curve Ck meeting

1.4. A desingularisation of X(2)* was constructed by Igusa in [13] by blowing up
along the sheaf of ideals defining the boundary. In [V] van der Geer explains how
to obtain the desingularisation directly by means of toroidal embeddings of X(2).
The result is the same, and is as follows: there are 15 divisors D 1, ... , D 1 , each
itself an algebraic fibre space Di ~ Ci, whose generic fibre is a Kummer
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curve = P1 ( = elliptic curve/involution) and whose 3 special fibres are

degenerate conics in P2, consisting of 2 copies of P1 meeting at a point

The fibre space Di ~ Ci has 4 sections S 1, ... , S4 . Another way to view the D, is
as P2 blown up in the 4 3-fold points of the line arrangement in P2:

The fibering Di ~ Ci is given by the pencil of conics passing through the
4 points, and the singular fibres are the 6 lines of the arrangement, 2 of them at
a time forming a degenerate conic, and the sections Si are the exceptional P"s of
the blow-up. Therefore on each D, one can blow down the 4 sections, the result
being p2. The Di intersect 2 at a time along the singular fibres and 3 at a time at
the double points of those fibres. This describes the structure of the normal
crossings divisor D = 1 D,. For more details on the intersection behavior see 2.5.
We denote the Igusa desingularisation by X(2)^.

1.5. We now describe another important set of divisors, the Humbert surfaces of
discriminant 1. For each natural number A - 0 or 1 mod(4) there is such
a Humbert surface H0394 ([V], §2), but we will only describe Hl here. The diagonal
S1 x S1 ~ S2 has 10 inequivalent transforms under r(2), and the action
of 0393(2) restricted to each copy is by ri(2)xri(2)cSl(2,Z)x
SI(2, Z). (Here r 1 (N) denotes the principle congruence subgroup of level N and
degree 1, i.e. in SL(2, Z).) Let E1,..., E10 be the images in X(2)* of these

diagonals. Then each Ei = 03931(2)S*1 x 03931(2)BS*1 is a copy of P1 x P1. The Ej
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are disjoint, but intersect the Di in X(2)^ at the sections of each. Each E03BB intersects
6 Di, 3 in each direction:

1.6. To describe the incidences E03BB n Di =1= 0, we follow [LW, §2]. Let A =

{03B4, 03B4~}, an unordered pair of b, a non-singular plane and bl, its orthogonal
complement. Such A are in 1 - 1 correspondence with the E03BB, and E03BB n Di 0
iff c- ô or e 03B4~. Hence the E03BB can be numbered by {(03B5i03B1) ^ (03B5j03B1), (03B5k03B1) A for
example. We just give one example of this. Say El will be numbered by
(1, 0, 0, 0) A (0, 0,1, 0) and (0,1, 0, 0) A (0, 0, 0,1), and the other D j’s meeting El are
(1, 0,1, 0) and (0,1, 0,1) which, plugging into the above scheme, describes all
intersections quite explicitly. The action of Sp(2, Z/2Z) induces an action of the
E03BB, i.e. gE03BB = E03BC, E03BB associated to A and E03BC associated to Ag, for g E Sp(2, Z/2Z).
1.7. Finite covers

We just state a result here which follows from Theorem 3.3.2. and the proof of
Theorem 2.7.1, but whose statement belongs here. Let r(4) denote the principle
congruence subgroup of level 4. This is a normal subgroup of r(2) and
Pr(2)/Pr(4) = (Z/2Z)’ (it is the projective groups that are acting effectively). This
is the Galois group of the Fermat cover of degree 2 branched along the
arrangement H (see 2.7. and [Hu] for Fermat covers), and in fact

THEOREM 1.7.1. The (smooth) Fermat cover Y(2, H) branched along H,

is the (Igusa compactification of the) Siegel modular 3-fold of level 4.

2. A Picard Modular 3-fold

2.1. Let B3:=SU(3,1)/S(U(3) x U(1)) = {z ~ C3 |03A3|zi|2  1} be the complex
hyperbolic 3-ball, a 3-dimensional, R-rank 1 bounded symmetric domain. The
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best-known lattices in SU(3,1) are the Picard modular groups. For each

square-free integer d let K = Q(-d) be the imaginary quadratic field

associated with d and (9, = the ring of integers in K. Then (9K ce C is a lattice, and
SU(3, 1 ; OK) is the Picard Modular group of discriminant D (D the discriminant of
K) which is a lattice in SU(3,1) (note that whereas Sp(2, R) is a group with real
coefficients, so integer coefficients give a lattice, SU(3, 1) is a group of complex
matrices, so we need coefficients in a lattice in C). We shall be concerned in this
paper with the field of Eisenstein numbers K = Q(-3), and the corresponding
Picard modular group. Actually, the group more basic to our applications is
the lattice U(3,1;OK). These lattices are related as follows: SU  U, and

U/(SU = 7Lj37L, since an element E U(3, 1 ; OK) may have determinant = p or p2, as
well as 1. We will refer to U as the Picard lattice, and to SU as the special Picard
(or Eisenstein) lattice.
The action of Aut(B3) = PU(3,1) (PU since the center acts trivially) is by

fractional linear transformations. For YE Aut(B3), Z = (Z1,Z2,Z3)~ B3, this

action is described as follows:

The jacobian of the action is (03A3ai4zi)-1 at z = (zi). When considering lattices r in
U(3, 1) or SU(3, 1) we will, without mentioning it, take their images in PU(3, 1).
However, as this is a potential source of confusion, we describe this in some detail.
Since the result is quite different in dimensions 2 and 3 we describe both. Let r,
r, r’, ’ be as in the introduction (Holzapfel’s notation) and let a P in front of one
of the groups denote the projectivised group. Let Z(G) denote the center of
a group G. Then:

Thus we have the diagrams:
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and then a diagram relating the congruence subgroups:

the bottom sequénce of which Holzapfel proves is exact [Hol, 1.3.1]. Both
inclusions P0393’ c Pr’ and Pi c Pr are of index 3.
We now give the corresponding diagrams in dimension 3, and fix, for the rest of

this paper, the following notations:

congruence subgroup,

congruence subgroup.

Here we have

giving the following diagrams:

Furthermore, from the Atlas of finite simple groups we have

We have the following sequence
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(where A6 is the alternating group on 6 letters), and PS0393(1 - p) c P0393(1 - p) is an
isomorphism, whereas PSr c Pr is a subgroup of index 2.

Now just like r(2) in Section 1, r(l - p) does not act on B3 freely but it turns
out that the quotient is nonetheless smooth. The subgroup r(l - P)’ does act
freely, and the singularities of 0393(1 - 03C1)BB3 can be analysed by studying the cover
corresponding to 0393(1 - p)’ c 0393(1 - p). We will describe this in 2.8 below. Let
Y(1 - p) denote the non-compact quotient 0393(1 - 03C1)BB3.
2.2. We now discuss the boundary components of B3 with respect to r. To do
this, think of B3 c Y4, a 4-dimensional vector space over C with hermitian form

Let 9 c V be the positive cone, i.e. -4 = {v c V03A6(v, v) &#x3E; 01. This looks as follows:

Then B3 = p(R), p: V - P(V) the natural projection. From this one sees that
~B3 = p(ôé3) = p(g), g c V the set of isotropic vectors, C = {v E V ) 1 0(v, v) = 01.
With this picture in mind it is obvious that the K-boundary components (or the
boundary components with respect to r) are: (here we should fix an embedding
K c C),

these are the isotropic lines in ¡P(K4). Hence the number of r-cusps is the order
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of 0393B~KB3. This question is discussed in [Z, I] for any discriminant and

corresponding Picard group. The answer is: rd has 03BC(d) cusps, where p(d) =
# equivalence classes of hermitian unimodular lattices in K4|. This number has
been calculated by Hashimoto [HK] and for d = 3 there is a unique equivalence
class (1 cusp).

2.3. Hence, to determine the number of cusps of 0393(1 - p), just consider the exact
sequence 2.1.2, and the ensuing action of 0393/0393(1 - p) = PU(3,1;Z/3) = 03A36 on
(Z/3)4. The number of cusps is just the number of totally isotropic lines

{v E Z/3’ |03A6(v, v) = 0}/ ± 1 (note that F*3 = ± 1), just reducing the form 03A6 mod 3.
This works as follows. The form on C4 is zizi + z2z2 + z3z3 - z4z4. The
involution z - z in O (where it is given by p ~ p2) descends to the trivial

involution on Z/3 (as it must, Z/3 having no non-trivial automorphisms) which
can be seen by the fact that p == 1 mod(1 - p) so p2 = 12 = 1 ~ p mod(l - p). It
is easily checked that there are, up to sign, 10 isotropic vectors: (1, 0, 0,1),
(1,0,0,-1), (0,1,0,1), (0,1,0, -1 ), (0, 0,1,1 ), (0, 0,1, -1 ), ( 1,1,1, 0), ( 1,1, -1, 0),
(1, -1, 1, 0) and ( -1, 1, 1, 0). 1 am indebted to Steve Weintraub for this nice
exposition.

2.4. A desingularisation of Y(1 - p)* is constructed by blowing up at the cusps.
The resolving divisor is A/z, A = E x E an abelian surface which is a product of
2 copies of the elliptic curve with complex multiplication by 3 and i is the
involution (z1,z2) ~ (-z1,-z2), in other words the resolving divisors are

P1 x P1’s. This can be extracted from the standard construction ([He], [Ho1]).
This is of course the same as a desingularisation by means of toroidal embeddings
which in the case of 0-rank 1 yields isolated resolving divisors. Let Y(1 - 03C1)^
denote this resolution. We will see below that Y(1 - p)" is actually already
smooth.

2.5. We now describe another important set of subvarieties, which we call
modular subvarieties. Let D = B2 c B3 be a totally geodesic embedding such
that 0393D act properly discontinously, that is rD := {03B3~ ri yD = D} c Aut(B2) is
properly discontinous. That is to say the diagram

commutes. This is what is usually called a modular embedding (rD, D) c (0393,B3).
We will be interested in the rD such that rD = U(2, 1; (9K(l - p)) is the Picard
(surface) group. We can then draw on the very detailed results of Holzapfel for
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these surfaces (i.e. the whole book [Hol]). As we will see below there are 15
modular subvarieties of this kind on Y(1 - p). These 15 meet in a union of special
curves on each copy, the r-reflection discs of [Hol, 1.3.3]. To describe their
intersections (which will be identified as such below) we use the figure alluded to
in the introduction. Let H 1, ... , H10 be the 10 planes consisting of the 4 facet
planes and 6 symmetry planes of a regular tetrahedron in P3:

This arrangement has the following singularities (i.e. is not a normal crossings
divisor because of):

5 6-fold points (4 corners and the center)
10 3-fold lines (6 edges and 4 diagonals).

The divisor H = "’LHi is turned into a normal crossings divisor by blowing up
P3 at the 5 points, then along the 10 lines just mentioned. Let 3 denote this
blow up, [Hi] =: Di the proper transforms, D11,...,D15 the exceptionallP2’s
and E1,..., E10 the exceptional P1 x P1’s. Then under the isomorphism
Y(1 - 03C1)^ = 3 (see 2.7) D 1, ... , D 15 are the modular varieties just introduced.
Notice that after the blow-up each of the D,, i = 1, ... 15, is identical. Each is the
blow up of 1P2 at 4 points in general position, the 3-fold points of the linear
arrangement 1.4.2, hence in each Di there are 10 P1,s, all of which have

self-intersection ( -1) in each Di. These are of course the same surfaces occurring
in 1.4.

L5 acts in a natural way permuting the 10 P1,s; in fact Di - P, (P = 1 Pi, Pi
the exceptional divisors under the modification Di ~ p2) is a GIT-quotient,
arising as follows: Let (xi, yi), i = 0, ... , 4 be a set of homogenous coordinates on
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(P1)5. Let X c (P1)5 be the Zariski open subset consisting of those (xi, yi) such
that no 3 of the 5 are identical. PGL(2, C) acts freely on X, and the quotient can be
compactified to P2 blown up in 4 points ([Y], p. 140). The action of 03A35 is thenjust
permutation of the factors on X.
On the other hand we have the natural action of 03A34 on the Di as described in

[Ho1, 1.3.ff]. This comes about as soon as you have chosen a subset of 4 (disjoint)
out of the 10 P"s to be blown down, i.e. identified a set of cusps.

2.6. We now give the combinatorial description of the Di in Z/3Z4. Obviously, in
K4 each such Di(K) (K-valued points) is given by the intersection of the cone of
2.1 with a hyperplane, fixed by r as in 2.5. However, in Z/3Z4 there is no
distinction between signature (3, 0) and (2, 1), so we must find the hyperplanes
H c K4 such that (D restricted to H m B has signature (2, 1), then take their
images in Z/3Z4. Note that we can find representatives of the cusps (cf. 2.3) in
Z4 ~ K4:

Letting the cusps (now in Z4) be denoted by vi (i = 1,..., 10), there are (103) = 120
sets of 3 of them. For each such triple, say (vi, vj, vk), we can find an orthogonal
base of the 3-space they span:

(Here (,) denotes the form 03A6 for notational simplicity). Using this base we can
calculate the signature: (note (vi, vj)  0 for any i, j)

so on any such 3-space, the form 0 has signature (2, 1). Of these 120, there
are exactly 15 which contain a 4th cusp, and the images of these 15 subspaces
of 7L4 in Zj37L4 give the combinatorial description of the modular subvarieties.
This amounts then, a postiori, to a linear combination, in Zj3Z, of the cusps
given in 2.3. For example, the 3-plane spanned by (v1,v2,v8) also contains
v9: -vl + V2 + v. --- v9(mod 3).

2.7. We now come to the proof of

THEOREM 2.7.1. Y(1 - 03C1)^ = 3, the Di are the modular subvarieties of 2.5.
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i = 1,..., 15 and the E03BB are the compactification divisors of 2.4. 03BB = 1,..., 10.
Proof. Let Y(3,H) be the Fermat cover of degree 3 associated to the

arrangement H (see [Hu] for details on this construction), i.e. the variety whose
function field is

where {li = 01 = Hi. In [Hu] 1 constructed a desingularisation and calculated
the Chern numbers of Y(3, H), as well as the logarithmic Chern classes of
( Y(3, H), E), where E = 03C0-1(03A3E03BB). It turned out that ë1 3(y, E) = 3c1 c2(Y, É)
(logarithmic Chern numbers) so by Kobayashi’s generalisation of Yau’s theorem
quoted in [Hu], (also proved by Yau), Y - E is a smooth, non-compact ball
quotient, Y its compactification. The desingularisation described in [Hu] is

affected by blowing up P3 in exactly the same manner as above, so the smooth
cover Y ~ 3 is a branched cover of p3, or put differently, p3 is a ball quotient;
we just have to identify the group. Let r y be the group such that 0393YBB3 = Y - E.
Then 0393 ~ 0393Y, 0393 = 03C01(3 - E - D), as 0393YBB3 is a cover of p3 which is

unramified over p3 - E - D. The quotient r/r y = (Z/3Z)9 is the Galois group
of Y --+ p3 .

Utilising known results on the hypergeometric differential equation, r is the
monodromy group of Appell’s equation, number 1 in the [DM] list in dimension
3. Later we will identify this differential equation with the Picard Fuchs equation
of the periods of Picard curves, whose monodromy group is easily identified with
r(l - 03C1)^ = U(3,1;OK(1 - p)) (see §5-§6). The identification of this particular
group is thus by means of the scheme:

(Fermat cover) L ([DM]-#) 2 ~ (Picard curves) 3 ~ (monodromy group).

Step 1 was done in [Hu]. Step 2 will be done in Sections 5-6, Step 3 in Section 6.
The statements about Di and E03BB follow from [Hol] (identification of the D,) and
direct calculations (showing E03BB is an abelian variety as in 2.4).

Let us just mention that much of this is more or less well-known.

2.8. Finite covers
In this section we clarify a few questions which were left untouched up till now.

We consider the following coverings:
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We explain now the inclusion Y(2) c p3, which will be given an easy proof in the
next section. Delete uDi from p3. Then the inclusion Y(2) c p3 is such that the
Humbert surfaces are the divisors E 1, ... , E 10 . As mentioned above, each Di is
a Kummer modular surface (compactification divisor), and p3 is the Igusa
desingularisation of Y(2)*.
Taking that for granted, one has two natural covers,

(using obvious notations). We claim these are in fact both Fermat covers, of
degrees 2 and 3, respectively. To see this, first note that both Pr(4)/Pr(2) and
P0393(1 - 03C1)/P0393(1-03C1)2 are abelian. In fact, it is true that 0393(D)/0393(D2) is abelian for
any ideal D. (Steve Weintraub pointed this out to me. Just calculate (A +
B)2 mod(D2).) The coefficients are in Z/4Z/Z/2Z = Z/2Z and OK(1 - p)j(9K(l -
p)’ = Z/3Z, respectively, and a matrix in PSp(2, Z) and PU(3, 1 ; OK), respectively,
will have 9 independent entries.
Once we know the groups are correct, we just have to note that the fixed point

set under these Galois groups which consists of the union uDi u Ej of 2.5, are
hermitian symmetric , and in fact identical in the Fermat covers as well as in
Y(4)^ ~ Y(2)^ and Y(l - 03C1)2^ ~ Y(1 - 03C1)^, respectively. This also allows us to
count modular subvarieties and compactification divisors:

Siegel: 10·24 = 160 modular subvarieties, 15·23 = 120

compactification divisors,
Picard: 15·33 = 135 modular subvarieties, 10·34 = 270

compactification divisors.

We remark that this discussion finishes, modulo the proof of 3.3.3. below, the
proof of 1.7.1. above.

3. Modular forms

In this paragraph we prove the theorem stated in the introduction, utilising for
the proof modular forms. First we recall the structure of R(r(2)), a result due to
Igusa [I1]. We then deduce the structure of R(r(1 - p)). It turns out that these
rings are dual to each other, i.e. the projective varieties Proj(R(r(2))) and
Proj(R(r(1 - p))) are dual. This implies they are birational, and our theorem
follows.



220

3.1. Theta Constants

In this section we review the work of Igusa [Il]-[12]. For later use we will need
theta constants of genus 2 and 4, so in this section we give definitions and results
for any g. Let t E Sg, z E C9, and m = (m’, m") E Q2g.

DEFINITION 3.1.1. The theta function of degree g and characteristic m is

The corresponding theta constant is

Igusa has studied these theta constants. Some of his results are:

LEMMA 3.1.2. 03B8m(03C4) ~ 0 ~ mmod(l) satisfies exp(4nit(m’)(m"» = -1.

The Siegel modular group 0393g(1) := Sp(g, Z) acts on the arguments (i, z) by:

M(i, z) = ((Ai + B)(C03C4 + D)-l, (CT + D)-1z) (3.1.2a)

and on the characteristic itself by

The behavior of the thetas under M is given by

LEMMA 3.1.3. (Igusa’s transformation law), [11], p. 226

where K(M) is some 8th root of unity,

In particular, for the theta constants the formula becomes

3.2. The ring of modular forms for r(2).
We review the results of Igusa describing R(r(2)), the ring of modular forms for

r(2). For the rest of this section we take the following particular case of 3.1: g = 2,
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m = (m’, mil) E t Z4. There are 16 such characteristics, 6 of which yield odd theta
functions (03B8m(03C4, z) = - 03B8m(03C4, - z)) and hence zero theta constants (this is a special
case of 3.1.2). There are 10 even characteristics, and among their fourth powers
there are 5 linear relations (Riemann theta formula). In fact,

THEOREM 3.2. [Il, p. 397] Let

Then,

This theorem implies in particular, that the (singular) quartic defined by R is the
Baily-Borel embedding of X(2). The yi are modular forms of weight 2 with respect
to r(2), as follows from the transformation law 3.1.3. A more symmetric
description of the same variety is given by van der Geer in [V, §5]. This is done by
taking all thetas 03B84 m (03C4), and the map into P9,

The image being onto the P4 which is cut out by the 5 linear relations. The
equation for X(2)* is then ([V], 5.2)

In this description the action of Sp(2, Z/2Z) on X(2)* is the action on the

characteristics 3.1.2b. It is known that each theta vanishes along exactly one of
the Humbert surfaces, so we can identify this action with the action of 1:6 on H1
described in 1.6. This replaces the rather artificial action 3.1.2b by the much
more natural one of 03A36 on (Z/2Z)’ described in 1.6. This observation is due to van
der Geer [V] and Lee and Weintraub [LW].

3.3. The ring of modular forms on Y(1 - p)*
We now proceed in the following manner: first we recall the (well-known)

identification of Y(1 - 03C1)* with the Segre Cubic. Then, since we know the
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coordinate ring of the Segre cubic, we know the coordinate ring of Y(1 - p)*.
Finally it is not difficult to see that the natural coordinates used are indeed
modular forms.

The Segre Cubic

There is a unique cubic 3-fold S in P4 with 10 ordinary doublepoints. S is given
most symmetrically by the following 2 equations in the homogenous variables
xo, ... , xs on P5:

The double points are (1, 1, 1, -1, -1, -1) and its permutations under Y-6,
which acts naturally on S by permuting coordinates. There are 15 p2,S lying on
S:

The GIT-Quotient

It was already mentioned above that the following was proved in [LW], see also
[KLW]:

LEMMA 3.3.1.  = 3 = GIT-quotient # 1 in [DM]. (9 denotes the (big)
resolution of S).

From this and 2.7.1 it follows first that S = Y(l - p)* and from this that the
coordinate ring of Y(l - p)* coincides with that of S, i.e.

An important additional bit of information we get from the argument of 2.7. is
the following: The Di, being in the branch locus of the cover Y - p3, are pointwise
fixed under the Galois group, hence subball quotients. (The only submanifolds in
the universal cover B3 fixed under automorphisms are subballs.) This implies on
the one hand the fact (that we already know) that the Di are modular subvarieties,
and on the other implies that the divisors Di are the zero-loci of modular forms
(since roots of their quotients give the field extension of the finite cover Y ~ 3
described in 2.5). Hence there are 15 modular forms ôi, i = 1,..., 15, with the
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property that each vanishes identically along precisely one of the Di and does not
vanish identically at any other. Taking all of these forms as coordinates we get
a map

onto the Baily-Borel compactification (the xi above will be linear combinations of
the bi) much in the spirit of van der Geer’s (3.2.1.-3.2.2. above).

THEOREM 3.3.3. P3 is the common resolution of singularities of X(2)* and
Y(1 - p)*, i.e. we have a diagram

Using the notation in the introduction, we have

(3, D) corresponds to (S2, r(2))
(3, E) corresponds to (B3@ r(l - p)).

This follows from the above results as follows: we know X(2)* is the quartic
described in 3.2, Y(l - p)* is the Scgre cubic, and classically (1880’s !) it is known
that these varieties are dual to each other. This implies they are birational, and Q1
and 62 have been explicitly described above. Q1 blows down the Di to P1,S, 62
blows down the Ej to ordinary double points.

3.4. Theta constants of degree 4
Assume for the moment we have a modular embedding (B3, i’(1 - p)) c

(S4, r(?)), where r(?) is a not further specified level subgroup. We will see later in
Section 5 that this exists via Jacobians of Picard curves. Consider the diagram

It follows from Igusa’s results ([12, Cor., p. 235]) that theta constants can be used
to embed X4(?) in projective space (ala Satake-Baily-Borel). Restricting these
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thetas to 0393(1 - 03C1)BB3 yields Picard modular forms. This is the idea behind
Feustel’s proof (in dimension 2) of

THEOREM 3.4.1 [F, II]. The modular forms 03BEi mentioned below in 6.1.8 for
U(2, 1 ; (9K(l - 03C1)) can be written as follows in terms of theta constants:

This gives at least partial information on r(?): it contains the group r(6, 36). Since
we have Di given by the equations, say

we can use xl, X2 and X3 as coordinates on r(l - 03C1)BB2, so by 3.4.1, the xi can be
written in terms of genus 3 thetas when restricted to the Di. Hence in principle at
least, we can take the modular forms in 3.3.2 to be genus 4 theta constants which
restrict on the modular subvarieties Di to the theta constants in 3.4.1. It would be

very interesting to get some explicit results in this direction. This is, however,
a highly non-trivial task. One would first have to find an explicit embedding
(B3, r) c (S4, r(?)) together with 15 compatible sub-modular embeddings

The 15 subballs will give the intersection of (B3, r) with the zero locus of the
sought for theta constants. Let us briefly describe what this looks like in local
coordinates. Say

and
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The modular embeddings are:

These 4 spaces parameterise:

S4 = principally polarised abelian 4-folds
u

E = Shottky divisor = locus of jacobians = genus 4 curves
u

B3 = Jacobians with complex multiplication = Picard curves
S4 ~ S3 = genus 3 curves ( = degenerating abelian 4-folds)

(B2 = Picard curves (Jacobians with complex multiplication)
I I
B3 n S3 = Degenerate Jacobians with complex multiplication.

Next one would have to find the right level groups acting on S3 and S4 and
show the equivariance of the diagram above with respect to the groups involved.
Finally, one would have to describe the genus 3 thetas as special values of genus
4 theta constants on S4. As the embeddings involved are rather complicated (see
for example those given by Resnikoff-Tai), this would seem to be a formidable
task.

4. Tits buildings with scaffoldings

4.1. Let r c Go be an arithmetic subgroup, and Pl, Pk a complete set of
r-inequivalent maximal parabolics. One can construct a simplicial complex
associated to r, the Tits Building, as follows:

......

First, let r = Sp(2, Z). Then there are 2 maximal parabolics P1, P2 , correspond-
ing to the 0-dimensional and 1-dimensional boundary components, respectively.
There is one inclusion Pl c P2. Hence the Tits building is:

The building for r A = SU(3, 1 ; (9K) is even more boring, being just one point:
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Now we consider the congruence subgroups r(2) and 0393(1- 03C1). The building of
r(1 - p) is still not too interesting, consisting of 10 disjoint verticies:

The interesting Tits building is that of r(2). There are 15 verticies v1,..., v15
corresponding to the 1-dimensional components, and 15 verticies w1,..., w15
corresponding to the 0-dimensional components. Each wi has 3 inclusions into

v;’s, and vj contains 3 wi :

There are therefore 3(15 + 15).! = 45 edges, see Figure 4.1.2.
We now "blow-up" this Tits building, i.e. replace each wi by a 2-simplex:

and we note that the blown-up Tits building is the dual complex of the normal
crossings divisor D. This means we have 1 vertex for each component, 1 edge for
each double intersection and 1 2-simplex for each triple point:
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Figure 4.1.2.

4.2. Modular Scaffoldings
We consider a fixed locally symmetric space (X, A) = (D, r) (we recall that this

notational convenience explained in the introduction means X - A = 0393BD), and
modular subvarieties (Di, A n Di) = (Di, r) for i E Index set.

DEFINITION 4.2.1. A finite set (Di, ri) c (D, r), i = 1,..., N, is called a
Modular scaffolding of (D, r), if:
(i) Each (Di, 0393i) c (D, r) is a modular embedding.

(ii) Each intersection (Di n Dj, A n (Di n Dj)) = (Dij, rij) is a modular embed-
ding in both (Di, Fi) and (Dj, 0393j).

(iii) ~03BBi,03BCj~Q CI (X) = lÂiDi + 03A303BCj0394j, 0394 = 03A30394j.
Now it is an easy matter to see that the modular subvarieties discussed in 1.5 and
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2.5 form modular scaffoldings of X(2) and Y(1 - p), respectively. The necessary
Chern class calculations can be found in [V, §3], for example.

4.3. Scaffoldings on buildings
We now introduce a notion due to Lee-Weintraub ([LW1]), in a somewhat

different fashion. According to 4.2 a modular scaffolding on (X, A) will be
a normal crossings divisor.

DEFINITION 4.3.1. A scaffolding on the Tits building of (X, A) is the dual
complex of a modular scaffolding.

This dual complex is a simplicial complex consisting of 1 vertex for each
component, 1 edge for each simple intersection, and so on. Now just looking at
the example above, we have:

PROPOSITION 4.3.2. The scaffolding of Y(l - p) is the blown-up Tits building
of X(2). The scaffolding of X(2) is the Tits building of Y(l - p).

We now would like to combine the Tits building with the scaffolding of (X, A).
The easy way to do this is to take the graph of the normal crossings divisor A + D,
A the compactification divisor and D the modular scaffolding as above. We call
this complex the Tits building with scaffolding, Tbws.

PROPOSITION 4.3.3. The Tits building with scaffolding of r(2) and of 0393(1 - p)
are the same, and the scaffolding of r(2) is isomorphic to the Tits building of
i’(1 - p) and vice versa.

This is what we mean by saying that r(2) and 0393(1 - p) have dual Tits buildings
with scaffolding. Now going back to the diagramm in 3.3.3 we recall the

GIT-quotient had both A and D as compactification divisor. Consider its

(blown-up) Tits building.

PROPOSITION 4.3.4. The GIT-quotient’s (blown-up) Tits building coincides
with the Tbws mentioned in 4.3.3. The scaffolding of this GIT-quotient is trivial.

Hence we see the Tits building of the GIT-quotient specialising to a Tbws in
2 different manners (dual to each other).

5. Modular interpretation

5.1. Families of marked lines

Let S = {1,2, 3,4,5,6} and {xi}i~S a set of 6 points on P1, i.e. a map 0: S ~ P1.
The set of all such maps is naturally isomorphic to (¡P l )6. The "diagonals" A are
the divisors {xi = xj, i :1= j = 1,..., 6} and their intersections. PGL(2) acts on
X := (P1)6 - A and the quotient, which is the GIT quotient discussed in 3.3, is
isomorphic to P3 - H. H the arrangement consisting of the 10 planes of 2.5. In
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other words we have a fibre space

with fibre PGL(2). The explicit form of this map is given in [LW, §6], as
mentioned above in Section 3. Here we are using the identification of P3 - H
with S - D, S the Segre cubic, derived in 3.3. We let 3Eo denote this family of
marked P"s over P3 - H.

5.2. Hyperelliptic curves
Let the {xi}i~S be as in 5.1, and consider the hyperelliptic curve

which is a branched cover of P1, branched at each of the xi. We let U0 ~ F0 be
the double cover of F0 branched at the {~i}. To be precise, this object only exists
in the category of algebraic stacks, i.e., the universal curve only exists locally, and
cannot be globally constructed as -1 E r(2). However this is sufficient for our
purposes. Hence, for each {xi} mod PGL(2) E P3 - H, the fibre (U0){xi} is the
double cover of P1 branched at the {xi} mod PGL(2). Thus we get a "fibre space"

of genus 2 curves.
We now describe the degenerations of 5.2.1 corresponding to the divisors

D (compactification divisor, 1.4) and E (Humbert surfaces, 1.5). We shall employ
the following notation:

Di, i = 1,..., ,15: 2 of the xn coincide

Dij = Di n Dj: 2 pairs of the xn coincide
Dijk = Di n Dj n Dk : 3 pair of the xn coincide
EA, Â = 1,..., 10: 3 of the xn coincide

Di ~ EÂ: 1 pair and 1 triple of the xn coincide
Dij n EA: 2 triples of the x. coincide

Di: If 2 of the xn coincide, then we have a double cover with 5 branch points;
this is a genus one curve (elliptic) with one double point.

Dii: Reasoning as above we get here a rational curve with 2 double points.



230

Dijk: Now we have only 3 branching points and at each branch point the
degeneration is:

so that the double cover splits into 2 curves which are permuted by the Galois
group, and each branch point is now a double point of the covering.

EA : when 3 of the xn coincide, the curve is y2 = II i (t - xn), an elliptic curve. To
see precisely what is going on, let

be the original equation, and write it as

and the degeneration is then given by letting À - oo. The limit curve is

with 4th branch point at infinity, and changing variable to T = Ât we get

which for À - oo becomes

with 4th branch point at infinity. Therefore, over p E E03BB the corresponding
degeneration consists of 2 elliptic curves 5.2.2 and 5.2.3, meeting at their common
branch point.

REMARK. The degeneration just described of course depends on the birational
model of X(2)" used. That described here corresponds to the big resolution
described in 2.4. There is also a small resolution of the ordinary double point, and
in that case the degeneration is just an elliptic curve.
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It is now obvious what the remaining degenerations are. A summary is given
below in table 5.4.

5.3. Picard curves

Let {xn}n~S be again as in 5.1 and consider the trigonal curve

This curve is called a Picard curve, being studied by Picard more than a century
ago (actually it was the genus 3 curve he studied [P]). It is a genus 4 curve, whose
Jacobian has complex multiplication by a cube root of unity, coming from the
Galois action on the curve. As above we construct the triple cover L0 ~ F0 whose
fibre (L0){xn} is the curve 5.3.1. We get a fibering

of genus 4 curves. This result was first proven by Shimura [S].
We now describe the degenerations of 5.3.1. corresponding to the divisors

D (modular subvarieties, 2.5) and E (compactification divisors, 2.4). We use the
same notations as in 5.2.

Di : If one pair of the Xn coincide, we get a 3-fold cover, branched at 5 points,
which is a smooth, genus 3 Picard curve (see the introduction and 2.5.)

Dij: Now the equation becomes y3 = 03A041(t - xn), and each branch point
induces:

so after 2 branch points we see that the cover splits into one elliptic and one
rational component.

Dijk: the picture now becomes:

so the cover splits into 3 rational curves.
EA : At a point where 3 of the xn coincide, the action of the Galois group is 1 2 3 - - 1 2 3

at that branch point, so it is a double point of the curve, and checking euler
numbers it has genus 2.
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EA n Di : As above, where the pair of {xn} coincide the cover is still smooth,
with the double point of E03BB (from the triple of the {xn} which coincide), and an
euler number calculation shows it is elliptic.
EA n Dij: Here one gets a rational curve with 2 double points.

We can extend the family Wo - Y(l - p) - D to all of Y(1 - 03C1)^ by adding in the
degenerations just described. We denote this by W A - Y(1 - 03C1)^. We note that
this is not a semi-stable family of curves (the arithmetic genus changes).

5.4. Totally degenerate stable curves of genus 3.
There is (at least) yet another moduli interpretation of p3, described in detail in

[GHv]. 1 am indebted to F. Herrlich and L. Gerritzen for this.

DEFINITION 5.4.1. A connected projective curve C, of arithmetic genus g, is
called a totally degenerate stable curve of genus g if:
(a) every irreducible component of C is a rational curve.
(b) every singular point of C is an ordinary doublepoint, and
(c) every non-singular component Ci of C meets C - L in at least 3 points.

Naturally associated with such a degenerate curve is a more combinatorial
object, a tree;

DEFINITION 5.4.2. A connected set of mutually intersecting P1,S is called an
n-pointed tree of projective lines if;

(i) the components intersect in ordinary double points
(ii) The intersection graph is a tree, and

(iii) given is a set {p1,..., pn} of distinct ("marked") points on the components.
It is called stable if, in addition,

(iv) on every component there are at least 3 points which are either singular or
marked.

Totally degenerate curves are also parameterised by the (xi) ~ 3. The generic
curve is as follows:

In the following we describe the 6-pointed trees corresponding to the loci Di and
FA as above:
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The corresponding degenerate curves depend in addition on the identification of
the double points, for example the tree:

We have included these in the following table.

6. Differential equations

6.1. Picard-Fuchs equations and monodromy
Let 03C0: L ~ S be a family of smooth curves over a parameter space S, i.e. W, S are

algebraic varieties, and is a holomorphic map. We consider the sheaf R103C0*C,
which is a locally constant sheaf whose stalk at x ~ S is just H1(Fx, C), where Fx is
the fibre at x. Since Fx is a Riemann surface this stalk splits according to the
Hodge decomposition:

H1,0(Fx) is the vector space of holomorphic 1-forms, and the decomposition is
such that the position of H1,0(Fx) in H1(Fx, C) = H1(F, C) depends holomor-
phically on x (here F is a typical fibre). Fix a base co 1 (x),..., 03C9g(x) of H1,0(Fx), and
let 03B41,..., 03B42g be 1 cycles forming a basis for H1(F, Z). The period matrix of S is
the g x 2g matrix

which can be put in a normalised form Q(x) = (lg, Z(x)), where Z(x) E Sg.
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Associated with the family 6 - S one then gets a holomorphic period map:

Furthermore the Torelli theorem tells us that from Z E S, (mod Sp(g, Z)) we can
recover the curve Fx such that Z = Z(x). This is the general picture, and
well-known.

Now fix a section of the (1, 0) part of R103C0*C, in other words, fix a holomorphic
1-form cv(x) on each fibre, depending smoothly on x. Then the periods

are functions of the parameters, i.e. of x. It was first observed by Fuchs that, given
co, the 2g periods 03B4i03C9 are all solutions of a linear differential equation of degree
2g, the Picard-Fuchs equation. See Katz [Ka] for general remarks and
higher-dimensional analogues.

Getting back to our family W - S it is intuitively clear that if the fibres are
"special" this leads to "special" Picard-Fuchs equations. For example, the special
case of cycloelliptic curves

is discussed in detail in part II of Holzapfel’s book [Ho1], yielding equations he
calls of Euler-Picard type. Both of our families are in fact special cases of these
curves (§5.2: hyperelliptic, §5.3. arigonal). Our special Picard-Fuchs equations will
turn out to be hypergeometric differential equations.
We now just sketch how the monodromy of an algebraic differential equation

relates to the geometry of the base space. First of all, the Picard-Fuchs equations
have regular singular points (see e.g. [Gr] for precise definitions and statement of
results). The singular locus E c S is a divisor, which may be taken as normal
crossings. For any x ~ S - E, local solutions 0(x) will be single-valued. If the
space of solutions of the differential equation has dimension d, let 0 1, - . - , Od be
a local base at some fixed point *E S - 1. For y E 03C01(S - 03A3,*) we can consider
analytic continuation of the ~i, and the continued solution, upon returning to *,
can be written as a linear combination of the cPï’s one started with, yielding
a representation

called the monodromy representation. Of course, interesting things might happen
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if the image of p lies in some particular subgroup. For example, suppose L ~ S is
a family of elliptic curves over a curve, i.e. L is an elliptic surface. The

Picard-Fuchs equation here is a second-order linear differential equation (see
[St])

with P and Q being singular at the discriminant of the family W - S. One then has
the theorem [St, §3]:
The differential equation 6.1.4 coming from a family W - S of elliptic curves is

characterised as follows:

(1) The dimension of the solution space is 2.
(2) If 03C91 and Q)2 are 2 linearly independent solutions, then 03C91(x)/03C92(x)~S1 for

x E S - I;.
(3) The monodromy lies in SL(2, Z).
If S = P1, 1 = {0,1, ~}, the resulting equation 6.1.4 is the hypergeometric
differential equation (in 1 variable). In that case the curve Wx is given by the
equation

i.e. a double cover of P1 1 branched at {0, 1, oo and x}. The differential in this case is

and the solutions to the HGDE are coi = 17i CO, yi, y2 a basis of H1(Lx, Z). Taking
their quotient we get a many-valued function

which takes values in the upper half plane (for x ~ S - 03A3), yielding a diagram:

The composition of these two maps is now a well defined (single-valued) function
from S - 03A3 to P1, since the many-valuedness of m(x) is precisely offset by the
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SL(2, Z)-invariance of the modular function J. For S = P1, X = {0, 1, ~}, this
map is an isomorphism onto P1- {0, 1, ~}. For a complete list of examples in this
case, i.e. elliptic surfaces over P1 with 3 singular fibres see [SH].

In the upcoming sections we will find diagrams analogous to 6.1.6 for the
families J( and W considered in Section 5. Before we go into some of the details, let
us begin by describing some of the very detailed results of Holzapfel for the
analogous case where S is 2-dimensional (in our cases it will be 3-dimensional).
One might start by considering the simplest 2-dimensional analogue of 6.1.5.

however this of course doesn’t define a family of smooth curves. Instead, consider

branched also at oo. This is a genus 3 curve. Let S = P2, 03A3 = Il U... ~ l6, the six
lines forming the arrangement 1.4.2. Then 6.1.7. defines a smooth family over
S - 03A3, and its period matrix has the form (~1 = dx/y, ~2 = dx/y2, n3 = x dx/y2 )

where

from which it follows that II is already determined by the first row: x ~
(03B11~1: 03B12~1: 03B13~1) is a many valued map from S - 03A3 into P2, whose image lands
in B2 c P2. Hence, in analogy to 6.1.6 above, we get a diagram

where w(x) = (03B11~1(x): 03B12~1(x):03B13~1(x)), and the (03BE1:03BE2:03BE3) are automorphic
forms of weight 1 ([Hol, pp. 20-21], see also 3.4.1 above).
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6.2. The Hypergeometric Differential Equation (HDE)
A general reference for this section is Terada [T]. Let Pn be given synthetic

coordinates {(x0,..., xn+ 1) 1 E xi = 01. The natural way to get these coordinates
is to consider the Cn+1 ~ Cn+2:

Cn+1 = {(xi)~Cn+2|03A3xi = 0},

and we take Pn = p(Cn + 1) with the induced homogenous coordinates. Since
03A3n+2 acts naturally on Cn+2 by permuting the coordinates and Cn+1 is an in-
variant subspace, we get the so-called projective symmetric representation of
03A3n+2 (cf. [Ho2]). In different language 03A3n+2 is a unitary reflection group, and as
such defines an arrangement H of planes in Pn (cf. [OS]). The first 3 such
arrangements are:

The hypergeometric differential equation is:

where the 03BBi are rational numbers with 03A303BBi = n + 1. This is an algebraic differen-
tial equation on Pn with regular singular points, non-singular off the arrangement
H c Pn defined by 03A3n+2· A solution of 6.2.1 is the period of a holomorphic 1-form
on the curve

for parameters Milv = 1 - 03BBi. This is part of more general results of [DM]. The
exact conditions on the parameters Mi are known for the differentials úJi =

03B3iy-1 dx to give a uniformisation into the ball Bn. If this is the case, the mono-
dromy group is a discrete subgroup in PU(n, 1), and the parameter space
therefore is locally symmetric. These conditions are:
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There are a finite number of parameter values {03BCi} satisfying INT, listed in [T]
and [DM, §14].

6.3. Picard Curves

In this section we consider Picard curves as in Section 5,

which are curves as considered in 6.2 with parameter values

yielding a particular HDE, the one listed as # 1 in [DM]. Let p : 03C01(S - 03A3) ~
GL(3, C) be the monodromy representation.

THEOREM 6.3.2. The monodromy group of the HDE associated with the family
6.3.1. is the Picard lattice r(l - p).

Proof. There are several ways to prove this. The most straightforward is
analogous to Holzapfels proof of the surface case. [Ho pp. 120-125]. We sketch
this argument, in a series of lemmas.

LEMMA 6.3.3. Let Y be the monodromy group of the Picard family 6.3.1.,

03C01(S - X) the fundamental group, 03B31, ..., 03B310 E 03C01 (S - 03A3) generators. 7hen p(yi) E
U(3, 1; OK(1 - 03C1)).

COROLLARY 6.3.4. 1 c U(3,1; (9K(I - p)) has finite index.

This follows from [DM]: ~ is an arithmetic lattice in PU(3,1). From this one gets
a diagram

and x is a finite branched cover. 6.3.2 then follows from

LEMMA 6.3.5. x is unbranched.

In fact, since (0393(1 - 03C1)BB3)* is simply connected, it has no unbranched covers,
and 6.3.5 implies x is an isomorphism. 6.3.5 could be proved in a manner similar
to [Hol], (his 6.3.11), which is a detailed analysis of x near the cusps.

There is a somewhat easier proof of 6.3.2, which we now sketch. The idea is
simple: we will identify fundamental domains of 0393(1-03C1) and ~ in B3. First of all,
both groups have 10 cusps. For r(l - p) this was shown in 2.2, and for 1 it can be
proved using the cover Y ~ P3 described in 2.7. Secondly, both have a scaffolding
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consisting of 15 modular subvarieties. Proof of this is the same. Now utilising the
map

from above, we see both groups have the same fundamental domain in B3: the
fundamental domain of ~ would consist of deg x-copies of the fundamental
domain of 0393(1 - p) if 0393(1 - p) acted freely. But since 0393(1 - p) and ~ have the
same elliptic points (see the discussion in 2.8) this is sufficient.

Putting all this together, we get the following diagram:

where m(x) is the map given by the periods giving solutions of 6.2.1, and (03BEi) are
the modular forms discussed in 3.3.

6.4. Hyperelliptic curves
In this section we consider the family of Section 5.1.

Here, once again, we have exponents, this time

and a corresponding HDE. However this set of (Mi) does not fulfill the condition
INT, and so the situation here is different than that considered in 6.3 (as it should
be). Sasaki and Yoshida [HSY] have succeeded in figuring this example out,
yielding a diagram analogous to 6.3.6 in this case. This goes as follows:

THEOREM 6.4.2. Let E(-f ) be the HDE in 3 variables with all parameters = t. Let
E A E be the wedge product, a 6-dimensional system. Then for these parameter
values, the solution space of E A E splits into an irreducible 5-dimensional

space + complement. This 5-dimensional space is spanned by the 2 x 2 minors of
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the periods:

of the family 6.4.1.
Let us denote this solution by Q = {03C31,..., u.l. Then we get a diagram

analogous to 6.3.6. Here we identify S2 with the non-compact dual of the
hyperquadric Q3 in p4, and S2 maps onto projective coordinates.

There is the notion of dual differential equation, [HSY, §4], and one of the
things proven in [HSY] is that E(2) is the unique HDE which is self-dual. This
raises

PROBLEM. Is the self-duality of E(1 2) related to the double structure of p3 as
locally symmetric space?
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