Compositio Mathematica

Alexandru Dimca
 On the Milnor fibrations of weighted homogeneous polynomials

Compositio Mathematica, tome 76, n 1 1-2 (1990), p. 19-47
http://www.numdam.org/item?id=CM_1990__76_1-2_19_0
© Foundation Compositio Mathematica, 1990, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

On the Milnor fibrations of weighted homogeneous polynomials

ALEXANDRU DIMCA

Department of Mathematics, INCREST, Bd. Pacii 220, RO-79622 Bucharest, Romania; Current address: The Institute for Advanced Study, Princeton, NJ 08540, USA

Received 6 October 1988; accepted 20 July 1989
Let $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right)$ be a set of integer positive weights and denote by S the polynomial ring $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ graded by the conditions $\operatorname{deg}\left(x_{i}\right)=w_{i}$. For any graded object M we denote by M_{k} the homogeneous component of M of degree k. Let $f \in S_{N}$ be a weighted homogeneous polynomial of degree N.

The Milnor fibration of f is the locally trivial fibration $f: \mathbb{C}^{n+1} \backslash f^{-1}(0) \rightarrow$ $\mathbb{C} \backslash\{0\}$, with typical fiber $F=f^{-1}(1)$ and geometric monodromy $h: F \rightarrow F$, $h(x)=\left(t^{w_{0}} x_{0}, \ldots, t^{w_{n}} x_{n}\right)$ for $t=\exp (2 \pi i / N)$. Since $h^{N}=1$, it follows that the (complex) monodromy operator $h^{*}: H^{*}(F) \rightarrow H^{*}(F)$ is diagonalizable and has eigenvalues in the group $G=\left\{t^{a} ; a=0, \ldots, N-1\right\}$ of the N-roots of unity.

We denote by $H^{\cdot}(F)_{a}$ the eigenspace corresponding to the eigenvalue t^{-a}, for $a=0, \ldots, N-1$.

When f has an isolated singularity at the origin, the only nontrivial cohomology group $H^{k}(F)$ is for $k=n$ and the dimensions $\operatorname{dim} H^{n}(F)_{a}$ are known by the work of Brieskorn [2]. But as soon as f has a nonisolated singularity, it seems that even the Betti numbers $b_{k}(F)$ are known only in some special cases, see for instance [9], [14], [17], [22], [25].

The first main result of our paper is an explicit formula for the cohomology groups $H^{k}(F)$ and for the eigenspaces $H^{k}(F)_{a}$. Let Ω^{*} be the complex of global algebraic differential forms on \mathbb{C}^{n+1}, graded by the convention $\operatorname{deg}\left(u \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}\right)=p+w_{i_{1}}+\cdots+w_{i_{k}}$ for $u \in S_{p}$. We introduce a new differential on Ω^{*}, namely $D_{f}(\omega)=\mathrm{d} \omega-(|\omega| / N) \mathrm{d} f \wedge \omega$, for $\omega \in \Omega_{p}^{k}$ with $|\omega|=p$ the degree of ω and d the usual exterior differential, similar to Dolgachev [8], p. 61.

For $a=0, \ldots, N-1$ we denote by $\Omega_{(a)}$ the subcomplex in Ω^{\cdot} given by $\bigoplus_{s \geqslant 0} \Omega_{-a+s N}$.

To a D_{f}-closed form $\omega \in \boldsymbol{\Omega}^{k+1}$ we can associate the element $\delta(\omega)=\left[i^{*} \Delta(\omega)\right]$ in the de Rham cohomology group $H^{k}(F)$, where Δ is the contraction with the Euler vector field (as in [12], p. 467 in the homogeneous case and [8], p. 43 in the weighted homogeneous case) and $i: F \rightarrow \mathbb{C}^{n+1}$ denotes the inclusion.

THEOREM A. The maps $\delta: H^{k+1}\left(\Omega^{*}, D_{f}\right) \rightarrow \tilde{H}^{k}(F)$ and $\delta: H^{k+1}\left(\Omega_{(a)}, D_{f}\right) \rightarrow$ $\tilde{H}^{k}(F)_{a}$ are isomorphisms for any $k \geqslant 0, a=0, \ldots, N-1$, with \tilde{H} denoting reduced cohomology.

The proof of this Theorem depends on a comparison between spectral sequences naturally associated to the two sides of these equalities see (1.8).

Our second main theme is that these spectral sequences can be used to perform explicit computations and to derive interesting numerical formulas, in spite of the fact that the E_{1}-term has infinitely many nonzero entries and that degeneration at the E_{2}-term happens only in special cases (see (3.10) and (3.11) below).

The eigenspaces $H^{\bullet}(F)_{0}$ are particularly interesting. If $\mathbf{P}=\mathbf{P}(\mathbf{w})$ denotes the weighted projective space $\operatorname{Proj}(S), V$ the hypersurface $f=0$ in \mathbf{P} and $U=\mathbf{P} \backslash V$ the complement, then there is a natural identification $H^{*}(F)_{0}=H^{*}(U)$. We conjecture an inclusion between the filtration on $H^{*}(F)_{0}$ induced by the spectral sequence mentioned above and the (mixed) Hodge filtration on $H^{*}(U)$, having a substantial consequence for explicit computations and extending to the singular case an important result of Griffiths [12], see (2.7.ii) below.

To prove the analogous result for these filtrations on the whole $H^{*}(F)$, we establish first some subtle properties of the Poincaré residue operator
$R: H^{\cdot}\left(\mathbb{C}^{n+1} \backslash F\right) \rightarrow H^{0^{-1}}(F)$ (see (1.6), (1.20), (1.21) and (2.6)) which may be useful in their own.

Note that the Betti numbers $b_{k}(V)$ are completely determined by $b_{k}(U)$ and hence one can get by our method at least upper bounds for all $b_{k}(V)$ as well as the exact value of the top interesting one (i.e. $b_{n+m-1}(V)$ where $\left.m=\operatorname{dim} f^{-1}(0)_{\text {sing }}\right)$ in a finite number of steps see (2.8).

Then we specialize to the case when f has a one-dimensional singular locus, a situation already studied (without the weighted homogeneity assumption) by N. Yomdin and, more recently and more completely, by D. Siersma, R. Pellikaan, D. van Straten, T. de Jong. We relate the spectral sequence $\left(E_{r}(f)_{0} d_{r}\right)$ to some new spectral sequences associated to the transversal singularities of f, these being the intersections of $f^{-1}(0)$ with transversals to each irreducible component of $f^{-1}(0)_{\text {sing }}$. We hope that these intricate local spectral sequences will play a fundamental role in understanding better even the isolated hypersurface singularities (see for instance the nice characterization (3.10') of weighted homogeneous singularities). Concerning the numerical invariants in this case, we get interesting and effective formulas for the Euler characteristics $\chi(V)$ and $\chi(F)$ extending in highly nontrivial way the known formulas for the homogeneous case (we conjecture them to hold in general and check them under certain assumptions on the transversal singularities of f, see (3.19.ii)).

The last section is devoted to explicit computations with our spectral sequence. The first two of them are just simple illustrations of our technique, while the third offers a more subtle example, for which we know no other method to get even the Betti numbers for V. It is interesting to remark that if one wants to compute the Euler characteristic $\chi(V)$ in this case using Theorem (3.1) in Szafraniec [26], then one is led to compute bases of Milnor algebras (and signatures of bilinear forms
defined on them) of a huge dimension $\left(\simeq 6^{7}\right)$ and this is an impossible task even for a computer!

A more theoretical application (improving a result of Scherk [20]) is given in the end, the key point in the proof being again an explicit computation with the spectral sequence.

A basic open problem is to decide whether the spectral sequence $\left(E_{r}(f), d_{r}\right)$ or its $\operatorname{local} \operatorname{analog}\left(E_{r}(g, 0), d_{r}\right)$ degenerates always in a finite number of steps and, in the affirmative case, to determine a bound for this number in terms of other invariants of f or g.

1. Some spectral sequences

In this section we shall use many notations and results from Dolgachev [8] without explicit reference.

Let $\Delta: \Omega^{k} \rightarrow \Omega^{k-1}$ denote the contraction with the Euler vector field $\Sigma w_{i} x_{i} \partial / \partial x_{i}$. For $k \geqslant 1$ we put $\bar{\Omega}^{k}=\operatorname{ker}\left(\Delta: \Omega^{k} \rightarrow \Omega^{k-1}\right)=\operatorname{im}\left(\Delta: \Omega^{k+1} \rightarrow \Omega^{k}\right)$ and let Ω_{P}^{k} denote the associated sheaf on \mathbf{P}. One has also the twisted sheaves $\Omega_{\mathrm{P}}^{k}(s)$, for any $s \in \mathbb{Z}$.

Let $i: U \rightarrow \mathbf{P}$ denote the inclusion and put $\Omega_{U}^{k}(s)=i^{*} \Omega_{\mathrm{P}}^{k}(s)$.
The Milnor fiber F is an affine smooth variety and according to Grothendieck [13] one has $H^{\bullet}(F)=H^{\cdot}\left(\Gamma\left(F, \Omega_{F}^{\cdot}\right)\right)$. Let $p: F \rightarrow U$ denote the canonical projection and note that

$$
\begin{equation*}
p_{*} \Omega_{F}^{\cdot}=\bigoplus_{a=0}^{N-1} \Omega_{U}(-a) \tag{1.1}
\end{equation*}
$$

If we let $A_{a}^{\cdot}=\Gamma\left(U, \Omega_{U}^{\cdot}(-a)\right)$ and $A^{\cdot}=\bigoplus_{a=0}^{N-1} A_{a}^{\cdot}$, then we clearly have

$$
\begin{equation*}
H^{\cdot}(F)=H^{\cdot}(A), \quad H^{\cdot}(F)_{a}=H^{\cdot}\left(A_{a}^{*}\right) . \tag{1.2}
\end{equation*}
$$

There is a natural increasing filtration F_{s} on A_{a}^{\cdot}, related to the order of the pole a form in A_{a}^{\cdot} has along V, namely

$$
\begin{equation*}
F_{s} A_{a}^{j}=0 \text { for } s<0 \text { and } F_{s} A_{a}^{j}=\left\{\omega / f^{s} ; \omega \in \Omega_{s N-a}^{j}\right\} \text { for } s \geqslant 0 \text { similar to [12]. } \tag{1.3}
\end{equation*}
$$

But for obvious technical reasons it is more convenient to consider the decreasing filtration.

$$
\begin{equation*}
F^{s} A_{a}^{j}=F_{j-s} A_{a}^{j} \tag{1.4}
\end{equation*}
$$

The filtration F^{s} is compatible with d, exhaustive (i.e. $A_{a}^{\cdot}=\bigcup F^{s} A_{a}^{\cdot}$) and bounded above $\left(F^{n+1} A^{\bullet}=0\right)$. Here d denotes the differential of the complex A_{a}^{\cdot} which is induced by the exterior differential d in Ω_{F}^{\cdot} via (1.1) and which is given explicitly by the formula

$$
\begin{equation*}
\mathrm{d}\left(\omega / f^{s}\right)=\mathrm{d}_{f}(\omega) \cdot f^{-s-1} \quad \text { where } \quad \mathrm{d}_{f}(\omega)=f \mathrm{~d} \omega-(|\omega| / N) \mathrm{d} f \wedge \omega \tag{1.5}
\end{equation*}
$$

By the general theory of spectral sequences e.g. [16], p. 44 we get the next geometric spectral sequence.
(1.6) PROPOSITION. There is an E_{1}-spectral sequence $\left(E_{r}(f)_{a}, d_{r}\right)$ with

$$
E_{1}^{s, t}=H^{s+t}\left(F^{s} A_{a}^{\bullet} / F^{s+1} A_{a}^{\bullet}\right)
$$

and converging to the cohomology eigenspace $H^{\cdot}(F)_{a}$.
Moreover one can sum these spectral sequences for $a=0, \ldots, N-1$ and get a spectral sequence $\left(E_{r}(f), d_{r}\right)$ converging to $H^{*}(F)$. And $\left(E_{r}(f)_{0}, d_{r}\right)$ and $\left(E_{r}(f), d_{r}\right)$ are in fact spectral sequences of algebras converging to their limits as algebras. Note that $H^{\cdot}(F)_{0} \simeq H^{\cdot}(U)$, either using the fact that $U=F / G, G$ acting on F via the geometric monodromy or the fact that Ω_{U} is a resolution of \mathbb{C} [24].

We pass now to the construction of some purely algebraic spectral sequences. Let ($B_{a}, d^{\prime}, d^{\prime \prime}$) be the double complex $B_{a}^{s, t}=\Omega_{t N-a}^{s+t+1}, d^{\prime}=d$ and $d^{\prime \prime}(\omega)=$ $-|\omega| / N \mathrm{~d} f \wedge \omega$ for a homogeneous differential form ω. Note that the associated total complex B_{a}^{\cdot}, with $B_{a}^{k}=\bigoplus_{s+t=k} B_{a}^{s, t}, D=d^{\prime}+d^{\prime \prime}$ is precisely the complex $\left(\Omega_{a}^{\cdot-1}, D_{f}\right)$.

Similarly $B^{\cdot}=\bigoplus B_{a}^{\cdot}=\left(\Omega^{\cdot^{-1}}, D_{f}\right)$.
Consider the decreasing filtration F^{p} on B_{a}^{\cdot} given by $F^{p} B_{a}^{k}=\bigoplus_{s \geqslant p} B_{a}^{s, k-s}$ and similarly on B^{\cdot}. Using the contraction operator Δ, we define the next complex morphisms, compatible with the filtrations:

$$
\begin{aligned}
& \bar{\delta}: B_{a}^{\cdot} \rightarrow A_{a}^{\cdot} \quad \text { and } \quad \bar{\delta}: B^{\cdot} \rightarrow A^{\cdot}, \\
& \bar{\delta}(\omega)=\Delta(\omega) f^{-t} \quad \text { for } \quad \omega \in B_{a}^{s, t} .
\end{aligned}
$$

Note that B^{\cdot} and A^{\bullet} are in fact differential graded algebras, but $\bar{\delta}$ is not compatible with the products.
(1.7) PROPOSITION. There is an E_{1}-spectral sequence $\left({ }^{\prime} E_{r}(f)_{a}, d_{r}\right)$ with

$$
E_{1}^{s, t}=H^{s+t}\left(F^{s} B_{a}^{\cdot} / F^{s+1} B_{a}^{\cdot}\right)
$$

and converging to the cohomology $H^{*}\left(B_{a}^{*}\right)$. The operator $\bar{\delta}$ induces a morphism $\delta_{r}:\left({ }^{\prime} E_{r}(f)_{a}, d_{r}\right) \rightarrow\left(E_{r}(f)_{a} . d_{r}\right)$ of spectral sequences.

Moreover one can sum these spectral sequences ${ }^{\prime} E_{r}(f)_{a}$ and get a spectral sequence $\left({ }^{\prime} E_{r}(f), d_{r}\right)$ converging to $H^{\cdot}\left(B^{\prime}\right)$ and a morphism ($\left.{ }^{\prime} E_{r}(f), d_{r}\right) \rightarrow\left(E_{r}(f)\right.$, $\left.d_{r}\right)$. The proof of these facts is standard e.g. [16], p. 49. Let $\widetilde{E}_{r}(f)_{0}\left(\operatorname{resp} . \widetilde{E}_{r}(f)\right)$ denote the reduced spectral sequence associated to $E_{r}(f)_{0}\left(\right.$ resp. $\left.E_{r}(f)\right)$ which is obtained by replacing the term at the origin $E_{1}^{0,0}=E_{\infty}^{0,0}=\mathbb{C}$ by zero. For $a \neq 0$, we put $\tilde{E}_{r}(f)_{a}=E_{r}(f)_{a}$.

We clearly have natural morphisms $\tilde{\delta}_{r}:^{\prime} E_{r}(f)_{a} \rightarrow \widetilde{E}_{r}(f)_{a}, \widetilde{\delta}_{r}:^{\prime} E_{r}(f) \rightarrow \tilde{E}_{f}(f)$ induced by δ_{r}. We can state now a basic result.
(1.8) THEOREM. The morphisms $\widetilde{\delta}_{r}$ are isomorphisms for $r \geqslant 1$ and they induce isomorphisms $H^{\cdot}\left(B_{a}\right) \cong \tilde{H}^{\cdot}(F)_{a}$ and $H^{\cdot}(B) \cong \tilde{H}^{\cdot}(F)$.

Proof. Since $F^{n+1} B^{\cdot}=F^{n+1} A^{\bullet}=0$, the filtrations F are strongly convergent [16], p. 50 and hence it is enough to show that δ_{1} is an isomorphism. The vertical columns in' $E_{1}(f)$ correspond to certain homogeneous components in the Koszul complex K^{*}.

$$
\begin{equation*}
K^{\prime}: 0 \rightarrow \Omega^{0} \xrightarrow{\mathrm{~d} f} \Omega^{1} \xrightarrow{\mathrm{~d} f} \cdots \xrightarrow{\mathrm{~d} f} \Omega^{n+1} \rightarrow 0 \tag{1.9}
\end{equation*}
$$

of the partial derivatives $f_{i}=(\partial f) /\left(\partial x_{i}\right), i=0, \ldots, n$ in S. To describe the vertical columns in $\widetilde{E}_{1}(f)$ is more subtle. Note that $f K^{*}$ is a subcomplex in K^{\cdot} and let \bar{K}^{\cdot} denote the quotient complex $K^{\bullet} / f K^{\cdot}$. There is a map $\bar{\Delta}: \bar{K}^{\cdot} \rightarrow \bar{K}^{\cdot-1}$ induced by Δ which is a complex morphism and hence $\tilde{K}^{\cdot}=\operatorname{ker} \bar{\Delta}$ is a subcomplex in \bar{K}^{\bullet}.

Let $\tilde{\Delta}$ denote the composition $K^{\bullet} \rightarrow \bar{K}^{\bullet} \xrightarrow{\Delta} \tilde{K}^{\cdot-1}$.
Then the vertical lines in $\widetilde{E}_{1}(f)$ correspond to certain homogeneous components in the cohomology groups $H^{\bullet}\left(\tilde{K}^{\bullet}\right)$. The morphism $\bar{\delta}_{1}$ corresponds to $\widetilde{\Delta}^{*}: H^{\cdot}\left(K^{\bullet}\right) \rightarrow H^{\cdot}\left(\widetilde{K}^{\cdot-1}\right)$ and a well-defined inverse for $\widetilde{\Delta}^{*}$ is given by the map

$$
\begin{equation*}
\nabla: H^{\cdot}\left(\tilde{K}^{\cdot-1}\right) \rightarrow H^{\cdot}\left(K^{\bullet}\right), \nabla[\Delta(\omega)]=[\mathrm{d} f \wedge \Delta(\omega) /(N f)] \tag{1.10}
\end{equation*}
$$

To check this, use that $\mathrm{d} f \wedge \omega=0$ implies $0=\Delta(\mathrm{d} f \wedge \omega)=N f \omega-\mathrm{d} f \wedge \Delta(\omega)$.
(1.11) EXAMPLE. Assume that f has an isolated singularity at the origin. Then f_{0}, \ldots, f_{n} form a regular sequence in S and we get ${ }^{\prime} E_{1}^{s, t}(f)_{a}=0$ for $s+t \neq n$ and

$$
{ }^{\prime} E_{1}^{n-t, t}(f)_{a} \simeq H^{n+1}\left(K^{\prime}\right)_{t N-a} \simeq Q(f)_{t N-a-w}
$$

where $Q(f)=S /\left(f_{0}, \ldots, f_{n}\right), w=w_{0}+\cdots+w_{n}$. Moreover, the Poincare series for $Q(f)$ (see for instance [7], p. 109) implies that $Q(f)_{k}=0$ for $k>(n+1) N-2 w$. Hence in this case all our spectral sequences are finite and degenerate at the E^{1}-term (the degeneracy of the component $a=0$ being equivalent to Griffiths' Theorem 4.3 in [12]). Note that one can have ${ }^{\prime} E_{1}^{-1, n+1}(f)_{a} \neq 0$. In general, one has the next result about the size of the spectral sequence ${ }^{\prime} E_{r}(f)$.
(1.12) Proposition. ${ }^{\prime} E_{r}^{s, t}(f)=0$ for any $r \geqslant 1$ and $s+t<n-m$, where $m=\operatorname{dim} f^{-1}(0)_{\text {sing }}$.

Proof. The result follows using the description of ${ }^{\prime} E_{1}^{s, t}(f)$ in terms of the Koszul complex and Greuel generalized version of the de Rham-Lemma, see [11], (1.7).
(1.13) Corollary. $\tilde{H}^{k}(F)=0$ for $k<n-m$.

This result is implied also by [15], but (1.12) will be used below in (2.8) in a crucial way.

Now we show that our complexes can be used to describe very explicitly the Poincaré residue isomorphism $R: H^{k+1}\left(\mathbb{C}^{n+1} \backslash F\right) \rightarrow \tilde{H}^{k}(F)$ and the SebastianiThom isomorphism.

When X is a smooth complex manifold and D is a smooth closed hypersurface in X there is a Gysin exact sequence

$$
\begin{equation*}
\cdots \rightarrow H^{k+1}(X) \xrightarrow{i^{*}} H^{k+1}(X \backslash D) \xrightarrow{R} \tilde{H}^{k}(D) \rightarrow \cdots \tag{1.14}
\end{equation*}
$$

where i^{*} is induced by the inclusion $i: X \backslash D \rightarrow X$ and R is the Poincaré residue, see for instance [24], Section 8.

Let C_{f}^{\cdot} denote the complex Ω^{\cdot} with the differential D_{f} introduced above (up to a shift $C_{f}^{*}=B^{\cdot}!$) and note that

$$
\begin{align*}
& \alpha: C_{f}^{\cdot} \rightarrow \Gamma\left(\mathbb{C}^{n+1} \backslash F, \Omega_{\mathbb{C}^{n+1} \backslash F}^{\cdot}\right) \tag{1.15}\\
& \alpha(\omega)=\omega-(\mathrm{d} f \wedge \Delta(\omega)) / N(f-1)
\end{align*}
$$

is a morphism of differential graded algebras (i.e. $\mathrm{d} \alpha(\omega)=\alpha D_{f}(\omega)$ and $\left.\alpha\left(\omega_{1} \wedge \omega_{2}\right)=\alpha\left(\omega_{1}\right) \wedge \alpha\left(\omega_{2}\right)\right)$.

Using the definition of the Poincaré residue as in [12], p. 290 it follows that

$$
\begin{equation*}
R \alpha(\omega)=(-1)^{k} / N \delta(\omega) \tag{1.16}
\end{equation*}
$$

Since R is an isomorphism by using (1.14) in the case $X=\mathbb{C}^{n+1}, D=F$ and δ is an isomorphism by Theorem A, it follows that $\alpha: H^{\cdot}\left(C_{f}\right) \rightarrow H^{\cdot}\left(\mathbb{C}^{n+1} \backslash F\right)$ is an isomorphism too.

To discuss the Sebastiani-Thom isomorphism (see for instance [17]), we introduce a new complex associated to f, namely \bar{C}_{f} which is the complex Ω^{\cdot} with the differential $\bar{D}_{f} \omega=\mathrm{d} \omega-\mathrm{d} f \wedge \omega$.

Define $\theta: \bar{C}_{f} \rightarrow C_{f}$ to be the \mathbb{C}-linear map which on a homogeneous form ω with $k=|\omega|$ acts by the formula $\theta(\omega)=\lambda(k) \cdot \omega$, where $\lambda(k)=1$ for $k \leqslant N$ and $\lambda(k)=(k-N) \cdots(k-t N) \cdot N^{-t}$ for $t N<k \leqslant(t+1) N, t \geqslant 1$.

Then it is obvious that θ induces a complex isomorphism between the
corresponding reduced complexes. In particular we get isomorphisms $\theta: H^{t}\left(\bar{C}_{f}\right) \rightarrow H^{t}\left(C_{f}\right)$ for any $t \geqslant 1$.

Let $\mathbf{w}^{\prime}=\left(w_{0}^{\prime}, \ldots, w_{n^{\prime}}^{\prime}\right)$ be a new set of weights and $f^{\prime} \in \mathbb{C}\left[y_{0}, \ldots, y_{n^{\prime}}\right]$ be a homogeneous polynomial of degree N with respect to these weights. Then it is easy to check that

$$
\begin{equation*}
\bar{C}_{f+f^{\prime}} \simeq \bar{C}_{f} \otimes \bar{C}_{f^{\prime}} \tag{1.17}
\end{equation*}
$$

and that there is no such result for $C_{f+f^{\prime}}$.
Using the isomorphisms θ and Theorem A we get the Sebastiani-Thom isomorphism

$$
\begin{equation*}
\tilde{H}^{k}\left(F^{\prime \prime}\right)=\bigoplus_{s+t=k-1} \tilde{H}^{s}(F) \otimes \tilde{H}^{t}\left(F^{\prime}\right) \tag{1.18}
\end{equation*}
$$

where $F^{\prime}, F^{\prime \prime}$ denote the Milnor fibers of f^{\prime} and $f+f^{\prime}$ respectively.
Keeping trace of the homogeneous components in (1.17) we get

$$
\tilde{H} \cdot\left(F^{\prime \prime}\right)_{o}=\underset{c}{\oplus} \tilde{H} \cdot(F)_{c} \otimes \tilde{H} \cdot\left(F^{\prime}\right)_{N-c}
$$

with $c=0, \ldots, N-1$ and $\tilde{H}^{\cdot}\left(F^{\prime}\right)_{N}=\tilde{H}^{\cdot}\left(F^{\prime}\right)_{0}$. When $f^{\prime}=y_{0}^{N}$, Example (1.11) shows that $\tilde{H}^{\cdot}\left(F^{\prime}\right)_{0}=0$ and $\tilde{H}^{\cdot}\left(F^{\prime}\right)_{c}=\left\langle\delta\left(y_{0}^{N-c-1} \mathrm{~d} y_{0}\right)\right\rangle$, a onedimensional vector space for $c=1, \ldots, N-1$. It follows that $\operatorname{dim} \tilde{H}^{k}\left(F^{\prime \prime}\right)_{0}=$ $\operatorname{dim} \tilde{H}^{k-1}(F)_{\neq 0}$ where $\tilde{H}^{s}(F)_{\neq 0}=\oplus_{c=1, N-1} H^{s}(F)_{c}$

This equality of dimensions is related to the next geometric setting. Let $H: y_{0}=0$ denote the hyperplane at infinity in the compactification $\mathbf{P}(\mathbf{w}, 1)$ of \mathbb{C}^{n+1}, let $V^{\prime \prime} \subset \mathbf{P}(\mathbf{w}, 1)$ be the hypersurface given by $f(x)-y_{0}^{N}=0$ and set $U^{\prime \prime}=\mathbf{P}(\mathbf{w}, 1) \backslash V^{\prime \prime}$. Since $H \cap U^{\prime \prime}=U, U^{\prime \prime} \backslash H=\mathbb{C}^{n+1} \backslash F$, the Gysin sequence (1.14) applied to $X=U^{\prime \prime}, D=H \cap U^{\prime \prime}$ gives

$$
\rightarrow H^{k}\left(U^{\prime \prime}\right) \xrightarrow{i^{*}} H^{k}\left(\mathbb{C}^{n+1} \backslash F\right) \xrightarrow{R} \tilde{H}^{k-1}(U) \rightarrow
$$

(As a matter of fact $U^{\prime \prime}$ may be singular and then to apply (1.14) one has to do as follows. Let $q: \mathbf{P}^{n+1} \rightarrow \mathbf{P}(\mathbf{w}, 1)$ be the covering map induced by

$$
\left(x_{0}: \cdots: x_{n}: y\right) \mapsto\left(x_{0}^{w_{0}}: \cdots: x_{n}^{w_{n}}: y\right)
$$

and let \tilde{G} be the corresponding group of covering transformations.
If we set $\tilde{U}=q^{-1}\left(U^{\prime \prime}\right), \tilde{H}=q^{-1}(H)$, then there is a Gysin sequence associated to $X=\tilde{U}, D=\tilde{H} \cap \tilde{U}$. And the \tilde{G}-invariant part of this exact sequence is precisely the exact sequence which we have written above).

Note that

$$
\begin{aligned}
& \operatorname{dim} H^{k}\left(\mathbb{C}^{n+1} \backslash F\right)=\operatorname{dim} \tilde{H}^{k-1}(F)=\operatorname{dim} \widetilde{H}^{k-1}(F)_{\neq 0}+\operatorname{dim} \widetilde{H}^{k-1}(F)_{0} \\
& \quad=\operatorname{dim} H^{k}\left(U^{\prime \prime}\right)+\operatorname{dim} \tilde{H}^{k-}(U)
\end{aligned}
$$

It follows that the first and the last map in the above exact sequence are trivial. Note also that the geometric monodromy h acts on $\mathbb{C}^{n+1} \backslash F$ and hence it makes sense to define $H^{s}\left(\mathbb{C}^{n+1} \backslash F\right)_{\neq 0}$ as above.

It will be clear from what follows that the image of i^{*} is precisely $H^{k}\left(\mathbb{C}^{n+1} \backslash F\right)_{\neq 0}$ and hence we can write the next diagram of isomorphisms:

Here ψ is defined in a natural way: if $\omega \in H^{k}\left(\bar{C}_{f}\right)_{c}$ (i.e. ω is a sum $\omega_{1}+\cdots+\omega_{p}$ of homogeneous forms such that $\left|\omega_{i}\right| \equiv-c$ modulo N) then $\psi(\omega)=\omega \wedge y_{0}^{c-1} \mathrm{~d} y_{0}$

The formula (1.16) tells us that the triangle in the diagram (1.19) is commutative up to a constant. The big rectangle in the diagram is commutative in a similar way by the next result.
(1.20) LEMMA. $R i^{*} \delta \theta \psi=-1 / N \delta \theta$.

Proof. We have to show that both sides of this equality yield the same result when applied to an element $\omega=\omega_{1}+\cdots+\omega_{p} \in H^{k}\left(\bar{C}_{f}\right)_{c}$ as above. Since these computations are rather tedious, we treat here only the case $p=2$ and let the reader check that the general case is completely similar.

So let $\omega=\omega_{1}+\omega_{2}$ with $q=t N-c=\left|\omega_{1}\right|$ and $q+N=\left|\omega_{2}\right|$ (when $\left|\omega_{2}\right|-\left|\omega_{1}\right|>N$ the forms ω_{1} and ω_{2} are themselves cycles in $H^{k}\left(\bar{C}_{f}\right)_{c}$ and the proof is easier!).

The condition $\bar{D}_{f} \omega=0$ is equaivalent to
(i) $\mathrm{d} f \wedge \omega_{2}=0$
(ii) $\mathrm{d} f \wedge \omega_{1}=\mathrm{d} \omega_{2}$
(iii) $0=\mathrm{d} \omega_{1}$.

It is easy to see that

$$
i^{*} \delta \theta \psi(\omega)=(-1)^{k} t!\left[\omega_{1} / t(f-1)^{t}+\omega_{2} /(f-1)^{t+1}\right] .
$$

To compute the residue of this element we proceed as follows. First we apply Δ to the equality (i) and get

$$
\text { (iv) } \omega_{2} /(f-1)+\omega_{2}=\mathrm{d} f \wedge \Delta\left(\omega_{2}\right) /(N(f-1))
$$

Next we can divide this equality by $(f-1)^{s}$ and get

$$
\text { (v) } \omega_{2} /(f-1)^{s+1}+\omega_{2} /(f-1)^{s}=-\mathrm{d}\left(\Delta\left(\omega_{2}\right) / N s(f-1)^{s}\right)+\mathrm{d} \Delta\left(\omega_{2}\right) / N s(f-)^{s}
$$

If we apply Δ to (ii), we get

$$
\mathrm{d} \Delta\left(\omega_{2}\right)=(q+N) \omega_{2}+\mathrm{d} f \wedge \Delta\left(\omega_{1}\right)-N f \omega_{1} .
$$

This should be put in (v), one should apply once more this trick getting a term containing $\mathrm{d} \Delta\left(\omega_{1}\right)$ and then replace this by $q \omega_{1}$ as follows by applying Δ to (iii).

Let $A_{s}=\omega_{1} / s(f-1)^{s}+\omega_{2} /(f-1)^{s+1}$ and note that A_{s} is a closed form on $\mathbb{C}^{n+1} \backslash F$ for any $s \geqslant 1$. The above computation implies that the associated cohomology classes satisfy $\left[A_{s}\right]=((q-N(s-1)) / N s)\left[A_{s-1}\right]$ and hence

$$
R\left[A_{t}\right]=(\lambda(q) / t!) R\left[A_{1}\right]=\left((-1)^{k-1} \lambda(q) / N t!\right)\left[q / N \delta\left(\omega_{2}\right)+\delta\left(\omega_{1}\right)\right] .
$$

This ends the proof of (1.20) in this case.
(1.21) REMARK. There is a nice geometric consequence of the existence of the diagram (1.19). One can think of the weighted projective space $\mathbf{P}(\mathbf{w}, 1)$ as a compactification of $\mathbb{C}^{n+1} \backslash F$ such that the complement $\mathbf{P}(\mathbf{w}, 1) \backslash\left(\mathbb{C}^{n+1} \backslash F\right)$ consists of two irreducible components, namely $V^{\prime \prime}$ and H. Using the isomorphism α, it follows that any cohomology class in $H^{\cdot}\left(\mathbb{C}^{n+1} \backslash F\right)$ can be represented by a closed differential form on $\mathbb{C}^{n+1} \backslash F$ having a pole of order 1 along $V^{\prime \prime}$ and a pole (possibly of a higher order) along H.

On the other hand, the isomorphism $i^{*} \delta \theta \psi$ shows that any class in $H^{\cdot}\left(\mathbb{C}^{n+1} \backslash F\right)_{\neq 0}$ can be represented by a closed differential form on $\mathbb{C}^{n+1} \backslash F$ having a pole on $V^{\prime \prime}$ and no poles at all along H. It can be shown similarly that any class in $H^{\cdot}\left(\mathbb{C}^{n+1} \backslash F\right)_{0}$ can be represented by a form having a pole of order 1 along H and a pole along $V^{\prime \prime}$. It would be nice to have a more geometric understanding of this phenomenon.

In conclusion, the natural isomorphism $H^{k}(F)=H^{k}(F)_{0} \oplus H^{k}(F)_{\neq 0}=$ $H^{k}(U) \oplus H^{k+1}\left(U^{\prime \prime}\right)$ shows that it is enough to concentrate on the cohomology groups $H^{\cdot}(U)$ and this is what we do in the next two sections.

2. The relation with the Hodge filtration

Let us consider the decreasing filtration F^{s} on $H^{*}(U)$ defined by the filtration F^{s} on A_{0}, namely

$$
\begin{equation*}
F^{s} H^{\bullet}(U)=\operatorname{im}\left\{H^{\bullet}\left(F^{s} A_{0}^{\cdot}\right)=H^{\bullet}(U)\right\} . \tag{2.1}
\end{equation*}
$$

On the other hand there is on $H^{*}(U)$ the decreasing Hodge filtration F_{H}^{s} introduced by Deligne [5].
(2.2) THEOREM. One has $F^{s} H^{*}(U) \supset F_{H}^{s+1} H^{*}(U)$ for any s and $F^{0} H^{*}(U)=F_{H}^{1} H^{\bullet}(U) F_{H}^{0} H^{*}(U)=H^{*}(U)$.

Proof. Let $p: \mathbf{P}^{n} \rightarrow \mathbf{P}$ be the projection presenting \mathbf{P} as the quotient of \mathbf{P}^{n} under the group $G(\mathbf{w})$, the product of cyclic groups of orders w_{i}.

Then $\hat{f}=p^{*}(f)=f\left(x_{0}^{w_{0}}, \ldots, x_{n}^{w_{n}}\right)$ is a homogeneous polynomial of degree N and let \widetilde{U} be the complement of the hypersurface $\widetilde{f}=0$ in \mathbf{P}^{n}.

Since $H^{\cdot}(U)$ can be identified to the fixed part in $H^{\cdot}(\tilde{U})$ under the group $G(\mathbf{w})$ and since the monomorphism $p^{*}: H^{\bullet}(U) \rightarrow H^{\cdot}(\tilde{U})$ is clearly compatible with the filtrations F^{s} and F_{H}^{s}, it is enough to prove (2.2) for \tilde{U}.

To simplify the notation, we assume that $\mathbf{w}=(1, \ldots, 1)$ from the beginning. Then U is smooth and it is easier to describe the construction of the Hodge filtration [24].

Let $p: X \rightarrow \mathbf{P}^{n}$ be a proper modification with X smooth, $D=p^{-1}(V)$ a divisor with normal crossings in X and $\bar{U}=X \backslash D$ isomorphic to U via p.

From this point on it is more suitable to work with holomorphic differential forms on our algebraic varieties. If Ω_{U} is this holomorphic sheaves complex, ${ }^{a} \Omega_{U}$ the algebraic version of it and $i: U \rightarrow \mathbf{P}^{n}$ is the inclusion, then one has inclusions $i_{*}\left({ }^{a} \Omega_{U}^{*}\right) \subset \Omega_{\mathbf{p}}(* V) \subset i_{*} \Omega_{U}^{*}$, where $\Omega_{\mathrm{p} n}^{*}(* V)$ denotes the sheaves of meromorphic differential forms on $\mathbf{P}^{\boldsymbol{n}}$ with polar singularities along V. By Grothendieck [13], the inclusion $i_{*}\left({ }^{a} \Omega_{U}^{*}\right) \subset \Omega_{\mathbf{p}}(* V)$ induces isomorphisms at the hypercohomology groups. And the same is true for the inclusions $\Omega_{X}^{*}(\log D) \subset \Omega_{X}(* D) \subset j_{*} \Omega_{\dot{O}}^{\dot{~}}$ where $j: \bar{U} \rightarrow X$ is the inclusion, $\Omega_{X}^{*}(* D)$ is defined similarly to $\Omega_{\mathbf{p}^{n}}(* V)$ and $\Omega_{X}^{*}(\log D)$ is the complex of holomorphic differential forms with logarithmic poles along $D[24]$.

Recall that there is a trivial filtration σ_{\geqslant}on any complex K^{*}, by defining $\sigma_{\geqslant s} K^{*}$ to be the subcomplex of K° obtained by replacing the first s terms in K^{*} by 0 . The Hodge filtration is given by

$$
\begin{equation*}
F_{H}^{s} H^{j}(U)=\operatorname{im}\left\{\mathbf{H}^{j}\left(\sigma_{\geqslant s} \Omega_{X}^{\dot{x}}(\log D)\right) \rightarrow \mathbf{H}^{j}\left(\Omega_{X}^{\dot{x}}(\log D)\right)\right\} \tag{2.3}
\end{equation*}
$$

via the identifications

$$
\mathbf{H}^{\cdot}\left(\Omega_{\bar{X}}^{*}(\log D)\right)=\mathbf{H}^{(}\left(j_{*} \Omega_{\bar{U}}^{*}\right)=\mathbf{H}^{\cdot}\left(\Omega_{\bar{U}}^{*}\right)=H^{\cdot}(\bar{U})=H^{\bullet}(U)
$$

The filtration F^{s} on the complex A_{0}^{0} is related to a filtration F^{s} on the complex $\Omega_{\mathbf{p}^{n}}^{*}(* V)$ defined in the following way: $F^{s} \Omega_{\mathbf{p}^{n}}^{j}(* V)$ is the sheaf of meromorphic j-forms on \mathbf{P}^{n} having poles of order at most $j-s$ along V for $j \geqslant s$ and $F^{s} \Omega_{p^{n}}^{j}(* V)=0$ for $j<s$.

Note that $F^{s} \Omega_{\mathbf{p} \mathbf{n}}^{j}(* V) \simeq \Omega_{\mathbf{p} \mathbf{n}}^{j}((j-s) N)$ for $j \geqslant s$. We get next a filtration on the complex $\Omega_{X}(* D) \simeq p^{*}\left(\Omega_{\mathbf{p} n}(* V)\right)$ by defining $F^{s} \Omega_{X}^{*}(* D)=p^{*}\left(F^{s} \Omega_{\mathrm{p} n}(* V)\right)$.

At stalks level, a germ $\omega \in \Omega_{X}^{j}(* D)_{x}$ belongs to $F^{s} \Omega_{X}^{j}(* D)_{x}$ if and only if $p^{*}(u)^{j-s} \cdot \omega \in \Omega_{X, x}^{j}$, where $u=0$ is a local equation for V around the point $y p(x)$.If v_{1}, \ldots, v_{n} are local coordinates on X around x such that $v_{1} \ldots v_{k}=0$ is a local equation for D. then $p^{*}(u)$ vanishes on D and hence $p^{*}(u)=v_{1}^{a_{1}} \ldots v_{k}^{a_{k}} w$ for some germ $w \in \mathcal{O}_{X, x}$ and integers $a_{i} \geqslant 1$.

Using the definitiions, it follows that $\Omega_{X}^{j}(\log D) \subset F^{s} \Omega_{X}^{j}(* D)$ for $j>s$ and $j>0$. And $\Omega_{X}^{0}(\log D)=\Omega_{X}^{0} \subset F^{s} \Omega_{X}^{0}(* D)$ for $s \leqslant 0$. We can state this as follows.
(2.4) LEMMA. (i) $\sigma_{\geqslant s+1} \Omega_{X}^{\circ}\left(\log D \subset F^{s} \Omega_{X}^{\prime}(* D)\right.$ for $s>0$;
(ii) $\Omega_{X}(\log D) \subset F^{0} \Omega_{X}^{*}(* D)$.

We can hence write the next commutative diagram

Now $\mathbf{H}^{\cdot}\left(\Omega_{\mathbf{p} \mathbf{n}}(* V)\right)=\mathbf{H}^{\cdot}\left({ }^{a} \Omega_{U}^{*}\right)=H^{\cdot}\left(A_{0}^{\dot{0}}\right)=H^{\bullet}(U)$. To compute $\mathbf{H}^{\cdot}\left(F^{s} \Omega_{\mathbf{p}_{n}}(* V)\right)$ we use the E_{2}-spectral sequence $E_{2}^{p, q}=H^{p}\left(H^{q}\left(\mathbf{P}^{n}, K^{\bullet}\right)\right)$ converging to $\mathbf{H}^{\cdot}\left(K^{*}\right)$, where $K=F^{s} \Omega_{\mathrm{p} n}^{*}(* V)$ and Bott's vanishing theorem [8].

It follows that $E_{2}^{p, 0}=H^{p}\left(F^{s} A_{0}^{\cdot}\right), E_{2}^{s, s}=H^{s}\left(\mathbf{P}^{n}, \Omega_{\mathbf{P}^{n}}^{s}\right)$ and $E_{2}^{p, q}=0$ in the other cases. The spectral sequence degenerates at E_{2} since one can represent the generator of $E_{2}^{s, s}$ by a $\bar{\partial}$-harmonic form γ and hence $\bar{d} \gamma=0$. On the other hand $\beta(\gamma)=0$, since γ belongs to the kernel of the map $H^{2 s}\left(\mathbf{P}^{n}\right) \xrightarrow{i^{*}} H^{2 s}(U)$. In fact this map is zero for $s>0$. To see this, it is enough to show that $i^{*}(c)=0$, where $c=c_{1}(\mathcal{O}(1))$ is the first Chern class of the line bundle $\mathcal{O}(1)$ (in cohomology with complex coefficients!). But $N i^{*}(c)=0$, since it corresponds to the Chern class of $\left.\mathcal{O}(N)\right|_{U}$ and this line bundle has a section (induced by f) without any zeros.

It follows that $\operatorname{im}(\beta)=F^{s} H^{*}(\mathrm{U})$ and this gives the first part in (2.2).
The similar diagram associated to the inclusion (2.4. ii) gives $F^{0} H^{\cdot}(U)=$ $F_{H}^{0} H^{*}(U)=H^{*}(U)$.

To see that $F_{H}^{0}=F_{H}^{1}$ we relate the mixed Hodge structure on $H^{\circ}(U)$ to the mixed Hodge structure on $H^{*}(V)$ Consider the exact sequence in cohomology with compact supports of the pair $\left(\mathbf{P}^{n}, V\right)$

$$
\begin{equation*}
\cdots \rightarrow H_{c}^{k}(U) \rightarrow H^{k}\left(\mathbf{P}^{n}\right) \rightarrow H^{k}(V) \rightarrow H_{c}^{k+1}(U) \rightarrow \cdots \tag{2.5}
\end{equation*}
$$

This is an exact sequence of MHS (mixed Hodge structures) and it gives an isomorphism of MHS $H_{c}^{k+1}(U) \simeq H_{0}^{k}(V)$, the primitive cohomology of V [10]. Poincaré duality gives a natural identification (U is a \mathbf{Q}-homology manifold):

$$
H^{s}(U)=\operatorname{Hom}\left(H_{c}^{2 n-s}(U), H_{c}^{2 n}(U)\right)
$$

Since $H_{c}^{2 n}(U) \simeq H^{2 n}\left(\mathbf{P}^{n}\right) \simeq \mathbb{C}(-n)$, we get the following relations among mixed Hodge numbers

$$
h^{p, q}\left(H^{s}(U)\right)=h^{n-p, n-q}\left(H_{0}^{2 n-s-1}(V)\right) .
$$

This gives $h^{0, q}\left(H^{s}(U)\right)=0$ for any q and s, which shows that $F_{H}^{0} H^{\cdot}(U)=F_{H}^{1} H^{\cdot}(U)$, ending the proof of (2.5).
(2.6) REMARK. In spite of the fact that $F^{s} H^{\cdot}(U)=F_{H}^{s+1} H^{\cdot}(\mathrm{U})$ for any s in many cases (e.g. when V is a quasi-smooth hypersurface or when V is a nodal curve in \mathbf{P}^{2}), this equality does not hold in general. A simple example is the next: take $V: x\left[x y(x+y)+z^{3}\right]=0$ the union of a smooth cubic curve in \mathbf{P}^{2} with an inflexional tangent. Then it is easy to show that in this case $\operatorname{dim} F^{1} H^{2}(U)=$ $2>\operatorname{dim} F_{H}^{2} H^{2}(U)=1$.

There is a similar inclusion $F^{s} H^{\cdot}(F) \supset F_{H}^{s+1} H^{\cdot}(F)$ among the analogous filtrations on the cohomology of the Milnor fiber F. The proof of this fact can be reduced to (2.2) as follows. The geometric monodromy h is analgebraic map and hence h^{*} preserves both filtrations F^{s} and F_{H}^{s} on $H^{\cdot}(F)$. If we define $F^{s} H^{\cdot}(F)_{a}=$ $F^{s} H^{\cdot}(F) \cap H^{\cdot}(F)_{a}$ it follows that $F^{s} H^{\cdot}(F)=\oplus_{a} F^{s} H^{\cdot}(F)_{a}$. And one has a similar result for the Hodge filtration F_{H}^{s}. In particular, it is enough to prove
(i) $F^{s} H^{\cdot}(F)_{0} \supset F_{H}^{s+1} H^{\cdot}(F)_{0}$, and
(ii) $F^{s} H^{\bullet}(F)_{\neq 0} \supset F_{H}^{s+1} H^{\bullet}(F)_{\neq 0}$
where $F^{s} H^{\cdot}(F)_{\neq 0}=F^{s} H^{\cdot}(F) \cap H^{\cdot}(F)_{\neq 0}=\bigoplus_{a \neq 0} F^{s} H^{\cdot}(F)_{a}$ and similarly for F_{H}.
Now (i) is clearly implied by (2.2), since the isomorphism $H^{(}(U) \xrightarrow[\sim]{P^{*}} H^{\cdot}(F)_{0} \subset$ $H^{*}(F)$ is clearly compatible with both filtrations.

To get (ii) from (2.2) we use the diagram (1.19) and the next two facts.
The Poincaré residue map R is a morphism of MHS of type $(-1,-1)$ and hence

$$
\operatorname{Ri}^{*}\left(F_{H}^{s+1} H^{\cdot}\left(U^{\prime \prime}\right)\right)=F_{H}^{s} H^{\cdot}(F)_{\neq 0}
$$

Using the definition of the filtrations F^{s} and (1.20) it follows that

$$
R i^{*}\left(F^{s} H^{\cdot}\left(U^{\prime \prime}\right)\right)=F^{s-1} H^{\cdot}(F)_{\neq 0}
$$

Note also that the filtration F^{s} on $H^{\bullet}(F)$ is very close to the filtrations considered by Scherk and Steenbrink in the isolated singularity case in [21].
(2.7) COROLLARY. (i) $E_{\infty}^{s, t}(f)_{0}=$ for $s<0$ and $E_{\infty}^{s, t}(f)_{a}=0$ for $s<-1$ and $a=1 \ldots, N-1$.
(ii) Any element in $H^{k}(U)$ can be represented by a differential k-form with a pole along V of order at most k.

We note that (ii) can be regarded as an extension of Griffith's Theorem 4.2 in [12]. On the side of numerical computations of Betti numbers we get the following important consequence. Recall that $m=\operatorname{dim} f^{-1}(0)_{\text {sing }}$.
(2.8) THEOREM. Let $b_{j}^{0}(V)=\operatorname{dim} H_{0}^{j}(V)$ denote the primitive Betti numbers of V. Then
(i) $b_{j}^{0}(V)=0$ for $j<n-1$ or $j>n-1+m$;
(ii) For $k \in[0, m]$ and $r>1$ one has

$$
b_{n-1+k}^{0}(V)=b_{n-k}(U) \leqslant \sum_{s=0}^{n-k-1} \operatorname{dim} E_{r}^{s, n-k-s}(f)_{0}
$$

When $k=m$ and $r \geqslant n-m$ the above inequality is an equality.
Proof. Use (1.6), (1.7), (1.8), (1.12) and (2.7).
There is also an analog of (2.8) for $\operatorname{dim} H^{j}(F)_{a}$ but we leave the details for the reader.

3. The case of a one-dimensional singular locus

We assume in this section that f has a one-dimensional singular locus, namely

$$
f^{-1}(0)_{\text {sing }}=\left\{z \in \mathbb{C}^{n+1} ; \mathrm{d} f(x)=0\right\}=\{0\} \cup \bigcup_{i=1, p} \mathbb{C}^{*} a_{i}
$$

for some points $a_{i} \in \mathbb{C}^{n+1}$, one in each irreducible component of $f^{-1}(0)_{\text {sing }}$.
If H_{i} is a small transversal to the orbit $\mathbb{C}^{*} a_{i}$ at the point a_{i}, then the isolated hypersurface singularity $\left(Y_{i}, a_{i}\right)=\left(H_{i} \cap f^{-1}(0), a_{i}\right)$ is called the transversal singularity of f along the brach $\mathbb{C}^{*} a_{i}$ of the singular locus.

The weighted homogeneity of f easily implies that the isomorphism class (\mathscr{K}-equivalence) of the singularity $\left(Y_{i}, a_{i}\right)$ does not depend on the choice of a_{i} (in the orbit $\mathbb{C}^{*} a_{i}$) or of H_{i}.

In this section we get a better understanding of the sequence $\left(E_{r}(f)_{0}, d_{r}\right)$ by relating it to some spectral sequences associated to the transversal singularities $\left(Y_{i}, a_{i}\right)$ for $i=1, \ldots, p$.

First we describe the construction of these new (local) spectral sequences.
Let $g:\left(\mathbb{C}^{n,} 0\right) \rightarrow(\mathbb{C}, 0)$ be an analytic function germ and let $(Y, 0)=\left(g^{-1}(0), 0\right)$ be the hypersurface singularity defined by g. Let $\Omega_{g, 0}^{\cdot}$ denote the localization of the stalk at the origin of the holomorphic de Rham complex $\Omega_{\mathbb{C}^{n}}$ with respect to the multiplicative system $\left\{g^{s} ; s \geqslant 0\right\}$.

Choose $\varepsilon>0$ small enough such that Y has a conic structure in the closed ball $B_{\varepsilon}=\left\{y \in \mathbb{C}^{n} ;|y| \leqslant \varepsilon\right\}$ [4]. Let $S_{\varepsilon}=\partial B_{\varepsilon}$ and $K=S_{\varepsilon} \cap Y$ be the link of the singularity $(Y, 0)$. Then Thm. 2 in [13] implies the following.
(3.1) PROPOSITION. $H^{*}\left(S_{\varepsilon} \backslash K\right) \simeq H^{*}\left(\Omega_{g, 0}^{*}\right)$.

One can construct a filtration F^{s} on $\Omega_{g, 0}$ in analogy to (1.4), namely

$$
F^{s} \Omega_{g, 0}^{j}=\left\{\omega / g^{j-s} ; \omega \in \Omega_{\mathbb{C}^{n}, 0}^{j}\right\} \text { for } j \geqslant s \text { and } F^{s} \Omega_{g, 0}^{j}=0 \text { for } j<s .
$$

(3.2) PROPOSITION. There is an E_{1}-spectral sequence of algebras $\left(E_{r}(g, 0), d_{r}\right)$ with

$$
E_{1}^{s, t}=H^{s+t}\left(G r_{F}^{s} \Omega_{g, 0}\right)
$$

and converging to $H^{\cdot}\left(S_{\varepsilon} \backslash K\right)$ as an algebra.
Assume from now on that $(Y, 0)$ is an isolated singularity and let $L^{*}=\left(\Omega_{\mathbb{C}^{n}, 0} \mathrm{~d} g\right)$ denote the Koszul complex of the partial derivatives of g. In our case these derivatives form a regular sequence and hence $H^{j}\left(L^{*}\right)=0$ for $j<n$ and $H^{n}\left(L^{*}\right)=M(g)$, the Milnor algebra of the singularity $(Y, 0)$, see for instance [7], p. 90. Let I^{\bullet} denote the quotient complex $L^{\bullet} / g L^{\bullet}$ If $g: M(g) \rightarrow M(g)$ denotes the multiplication by g, it follows that $H^{j}\left(I^{*}\right)=0$ for $j<n-1, H^{n-1}\left(I^{*}\right)=$ $\operatorname{ker}(g)$ and $H^{n}\left(I^{*}\right)=\operatorname{coker}(g)=T(g)$, the Tjurina algebra of $(Y, 0)$, see [7], p. 90.

There is the next analog of (1.8), computing $E_{1}(g, 0)$ in terms of $H^{\circ}\left(I^{\circ}\right)$.
(3.3) LEMMA. The nonzero terms in $E_{1}(g, 0)$ are the following.
(i) $E_{1}^{s, 0}(g, 0)=\Omega_{\mathbb{C}^{n}, 0}^{s}$ for $s \in[0, n]$
(ii) $E_{1}^{s, 1}(g, 0)=\Omega_{Y}^{s}$ for $s \in[0, n-3]$, there is an exact sequence $0 \rightarrow \Omega_{Y}^{n-2} \xrightarrow{u}$ $E_{1}^{n-2,1}(g, 0) \xrightarrow{v} \operatorname{ker}(g) \rightarrow 0$ and $E_{1}^{n-1,1}(g, 0)=\Omega_{\mathbb{C}^{n}, 0}^{n} / g \Omega_{\mathbb{C}^{n}, 0}^{n}$, where

$$
\Omega_{Y}=\left(\Omega_{\mathbb{C}^{n}, 0}\right) /\left(g \Omega_{\mathbb{C}^{n}, 0}+\mathrm{d} g \wedge \Omega_{\mathbb{C}^{n}, 0}^{*}\right)
$$

(iii) $E_{1}^{n-t-1, t}(g, 0)=\operatorname{ker}(g), E_{1}^{n-t, t}(g, 0)=T(g)$ for $t \geqslant 2$.

Proof. To get the more subtle point (ii), one uses the well-defined maps

$$
\begin{aligned}
& u: \Omega_{Y}^{s} \rightarrow E_{1}^{s, 1}(g, 0), u(\alpha)=[(\mathrm{d} g \wedge \alpha) / g] \\
& v: E_{1}^{s, 1}(g, 0) \rightarrow H^{s+2}(L), v[\beta / g]=[(\mathrm{d} g \wedge \beta) / g]
\end{aligned}
$$

and note that $\operatorname{im}(v) \subset \operatorname{ker}(g)$ for $s=n-2$.
(3.4) COROLLARY. The only (possibly) nonzero terms in $E_{2}(g, 0)$ are $E_{2}^{0,0}=$ $E_{2}^{0,1}=\mathbb{C}$ and $E_{2}^{n-1-t, t}, E_{2}^{n-t, t}$ for $t \geqslant 1$.

Proof. Use the exactness of the de Rham complexes [11]:
$0 \rightarrow \mathbb{C} \rightarrow \Omega_{\mathbb{C}^{n}, 0}^{0} \rightarrow \cdots \rightarrow \Omega_{\mathbb{C}^{n}, 0}^{n} \rightarrow 0$
$0 \rightarrow \mathbb{C} \rightarrow \Omega_{Y}^{0} \rightarrow \cdots \rightarrow \Omega_{Y}^{n-1}$.
We can also describe the differentials

$$
d_{1}^{t}: \operatorname{ker}(g)=E_{1}^{n-1-t, t} \xrightarrow{d_{1}} E_{1}^{n-t, t}=T(g) .
$$

An $(n-1)$ form α induces an element in $\operatorname{ker}(g)$ if $\mathrm{d} g \wedge \alpha=g \beta$ and then

$$
\begin{equation*}
d_{1}^{t}[\alpha]=[d \alpha-t \beta] \tag{3.5}
\end{equation*}
$$

(3.6) EXAMPLE. Assume that $(Y, 0)$ is a weighted homogeneous singularity of type $\left(w_{1}, \ldots, w_{n} ; N\right)$, i.e. $(Y, 0)$ is defined in suitable coordinates by a weighted homogenous polynomial g of degree N with respect to the weights \mathbf{w}.

Then $M(g)=T(g)=\operatorname{ker}(g)$ and they are all graded \mathbb{C}-algebras.
Let $\alpha=\sum_{i=1, n}(-1)^{i+1} w_{i} x_{i} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} \hat{x}_{i} \wedge \cdots \wedge \mathrm{~d} x_{n}$ and note that $\mathrm{d} g \wedge \alpha=N \cdot g \omega_{n}$, with $\omega_{n}=\mathrm{d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n}$. It follows that the class of α generates $\operatorname{ker}(g)$ For a monomial $x^{a}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ of degree $\left|x^{a}\right|=a_{1} w_{1}+\cdots$ $+a_{n} w_{n}$ one has by (3.5)

$$
d_{1}^{t}\left(x^{a} \alpha\right)=\left[\left(w+\left|x^{a}\right|-t N\right) x^{a} \omega_{n}\right]
$$

with $w=w_{1}+\cdots+w_{n}$.
It follows that ker $d_{1}^{t} \simeq \operatorname{coker} d_{1}^{t} \simeq M(g)_{t N-w}$. Hence the E_{2}-term $E_{2}(g, 0)$ has finitely many nonzero entries and the spectral sequence $E_{r}(g, 0)$ degenerates at E_{2} (compare to (1.11)).

The next result gives a large class of singularities having the E_{3}-term of the spectral sequence $E_{r}(g, 0)$ with finitely many nonzero entries. The reader should have no difficulty in checking that this class contains in particular the next more familiar classes of singularities:
(i) all the non weighted homogeneous \mathbb{R}-unimodal singularities, see for instance [0], p. 184 for a complete list;
(ii) all the semi weighted homogenous singularities (see [7], p. 115 for a definition) of the form $g=g_{0}+g^{\prime}$ with g_{0} weighted homogeneous of type $\left(w_{1}, \ldots, w_{n} ; N\right), g^{\prime}$ weighted homogeneous of type $\left(w_{1}, \ldots, w_{n} ; N^{\prime}\right)$ and such that

$$
N^{\prime} \geqslant(n+1) N / 2-w_{1}-\cdots-w_{n}
$$

To state the result, note that there is a linear map $d_{1}^{0}: \operatorname{ker}(g) \rightarrow T(g)$ defined by taking $t=0$ in the formula (3.5).
(3.7) PROPOSITION. Assume that the singularity $Y: g=0$ satisfies the condition:
(i) $g^{2}=0$ in $M(g)$ and $d_{1}^{0} \mid(g)=0($ resp. (ii) $\mu(g)-\tau(g)=1)$.

Then $E_{2}^{n-1-t, t}=\operatorname{ker} d_{1}^{t}=(g)$ for $t \gg 0\left(\right.$ resp. $\operatorname{dim} \operatorname{ker} \mathrm{d}_{1}^{t}=1$ for $t \gg 0$ and the lines $\operatorname{ker} d_{1}^{t}$ in $\operatorname{ker}(g)$ converge to the line \mathbb{C} - g when $\left.t \rightarrow \infty\right)$ and the E_{3}-term $E_{3}(g, 0)$ has finitely many nonzero entries.

Proof. (i) Let $K \subset M(g)$ be a vector subspace which is a complement of the ideal $\operatorname{Ker}(g) \subset M(g)$.

Then multiplication by g induces a vector space isomorphism $K \sim g K=(g)$. For t large enough, it is clear using (3.5) that $\operatorname{ker} d_{1}^{t}=(g)$ and that the canonical projection $M(g) \rightarrow T(g)$ induces an isomorphism $K \simeq \operatorname{coker} d_{1}^{t}$.

Via these isomorphisms we may regard d_{2}^{t} as an endomorphism of K for $t \gg 0$.
Next $\mathrm{d}_{1}^{t}(a g)=0$ implies that we may write $a g^{2} \omega_{n}=\mathrm{d} g \wedge \alpha$ and the $(n-1)$-form α satisfies $\mathrm{d} \alpha=\mathrm{d} g \wedge \beta+\lambda g \omega_{n}$ for some $(n-1)$-form β and function germ λ. But then we have

$$
\left.\mathrm{d}\left(\alpha / g^{t}\right)=(\lambda-t \cdot a) \omega_{n} /\left(g^{t-1}\right)+\mathrm{d}\left(\beta /(t-1) g^{t-1}\right)-(\mathrm{d} \beta) /\left((t-1) g^{t-1}\right)\right)
$$

This shows that the endomorphism d_{2}^{t} has a matrix of the form $-t \cdot \mathrm{I} d+A+$ $B(t-1)^{-1}$ for A, B some constant matrices. It follows that for $t \gg 0$ this matrix is invertible and this clearly ends the proof. The proof in case (ii) is similar.

Now we come back to our global setting and assume first that we are in the homogenous case, i.e $w_{0}=\cdots=w_{n}=1$. Let Z denote the singular locus of V.

Consider the restriction morphism

$$
\begin{equation*}
\rho:\left.\Omega_{\mathbf{p} n}^{*}(* V) \rightarrow \Omega_{\mathbf{p} n}^{*}(* V)\right|_{Z} \tag{3.8}
\end{equation*}
$$

and the associated morphisms

$$
G r_{F}^{s} \rho: G r_{F}^{s}\left(\Omega_{\mathbf{p} n}(* V)\right) \rightarrow G r_{F}^{s}\left(\left.\Omega_{\mathbf{p} n}(* V)\right|_{Z}\right)
$$

A moment thought shows that $G r_{F}^{s} \rho$ is a quasi-isomorphism for $s<0$. A computation using an E_{2}-spectral sequence shows that

$$
\mathbf{H}^{\cdot}\left(G r_{F}^{s}\left(\Omega_{\mathbf{p} n}(* V)\right)\right)=H^{\cdot}\left(G r_{F}^{s} A_{0}^{*}\right)
$$

Assume from now on that Z is a finite set, namely $Z=\left\{a_{1}, \ldots, a_{p}\right\}$. Note that
the singularity $\left(V, a_{i}\right)$ is precisely the transversal singularity of f along the line $\mathbb{C}^{*} \cdot a_{i}$ as defined in the beginning of this section.

Choose the coordinates on \mathbf{P}^{n} such that $H: x_{0}=0$ is transversal to V and $Z \subset \mathbf{P}^{n} \backslash H \simeq \mathbb{C}^{n}$. We denote again by a_{i} the corresponding points in \mathbb{C}^{n} and let $g(y)=f(1, \mathrm{y})$.

Then $\left.\Omega_{\mathbf{p} n}^{\cdot}(* V)\right|_{z}=\oplus_{j=1, p} \Omega_{g, a_{j}}^{\cdot}$, this identification being compatible with the F filtrations. Thus we get

$$
\mathbf{H}^{\cdot}\left(G r_{F}^{s}\left(\left.\Omega_{\mathbf{p} n}^{*}(* V)\right|_{Z}\right)\right)=\bigoplus_{j=1, p} H^{\cdot}\left(G r_{F}^{s}\left(\Omega_{g, a_{j}}^{\cdot}\right)\right)
$$

We can restate these considerations in the next form.
(3.9) THEOREM. The restriction map ρ induces a morphism $\rho_{r}: E_{r}(f)_{0} \rightarrow$ $\oplus_{j=1, p} E_{r}\left(g, a_{j}\right)$ of spectral sequences such that at the E_{1}-level $\rho_{1}^{s, t}$ is an isomorphism for $s<0$.
(3.10) COROLLARY. For a projective hypersurface $V: f=0$ with isolated singularities the next statements are equivalent
(i) all the singularities of V are weighted homogeneous;
(ii) $E_{2}^{s, t}(f)_{0}=0$ for $s<0$;
(iii) $E_{2}^{s, t}(f)_{0} \neq 0$ for finitely many pairs (s, t).

Proof. Using (3.6) and (3.9) we get (i) \Rightarrow (ii). The implication (ii) \Rightarrow (iii) is obvious. To prove (iii) \Rightarrow (i) we compute the Euler Poincaré characteristic $\chi(U)$ in two ways. First we use the fact that $U=\mathbf{P}^{n} \backslash V$ and the well-known formula for $\chi(V)$ given in (3.12) below and get

$$
\chi(U)=\chi\left(U_{0}\right)+(-1)^{n-1} \sum_{i=1, p} \mu\left(V, a_{i}\right)
$$

where U_{0} is the complement of a smooth hypersurface V_{0} in \mathbf{P}^{n}.
Next using (1.8) and a standard property of spectral sequences we get

$$
\chi(U)=1+\sum(-1)^{s+t} \operatorname{dim} E_{2}^{s, t}(f)_{0}
$$

where the sum is finite by our assumption. Choose $m>n$ such that $E_{2}^{s, t}(f)_{0}=0$ for $t>m$. Then

$$
\begin{aligned}
\chi(U)-1 & =(-1)^{n-1} \sum_{t=1, m}\left(\operatorname{dim} E_{2}^{n-1-t, t}(f)_{0}-\operatorname{dim} E_{2}^{n-t, t}(f)_{0}\right) \\
& =(-1)^{n-1} \sum_{t=1, m}\left(\operatorname{dim} E_{1}^{n-1-t, t}(f)_{0}-\operatorname{dim} E_{1}^{n-t, t}(f)_{0}\right) \\
& =(-1)^{n-1}\left[\operatorname{dim} E_{1}^{n-1-m, m}(f)_{0}+\varphi\right]
\end{aligned}
$$

with

$$
\left.\varphi=\sum_{t=1, m} \operatorname{dim} E_{1}^{n-t, t-1}(f)_{0}-\operatorname{dim} E_{1}^{n-t, t}(f)_{0}\right)
$$

By (3.3.iii) and (3.9) it follows that

$$
\operatorname{dim} E_{1}^{n-1-m, m}(f)_{0}=\sum_{i=1, p} \tau\left(V, a_{i}\right)
$$

where $\tau\left(V, a_{i}\right)=\operatorname{dim} T\left(g, a_{i}\right)=\operatorname{dim} \operatorname{ker}\left(g, a_{i}\right)$ are the corresponding Tjurina numbers. On the other hand, using the connection of $E_{1}(f)$ with the Koszul complex, it is easy to see that the sum φ does not depend on f. Since one can compute $\chi\left(U_{0}\right)$ in the same way, it follows that

$$
\chi(U)=\chi\left(U_{0}\right)+(-1)^{n-1} \sum_{i=1, p} \tau\left(V, a_{i}\right) .
$$

Comparing the two formulas for $\chi(U)$ we get $\mu\left(V, a_{i}\right)=\tau\left(V, a_{i}\right)$ for any $i=1, \ldots, p$ and hence by K. Saito's Theorem (see for instance [7], p. 119 for a discussion) all the singularities $\left(V, a_{i}\right)$ are weighted homogeneous.

Since for any isolated hypersurface singularity $(Y, 0)$ there is a projective hypersurface V having just one singular point a_{1} and such that $\left(V, a_{1}\right) \simeq(Y, 0)$, see for instance [2], we get the next result using (3.6), (3.9) and (3.10).
(3.10') COROLLARY. For an isolated hypersurface singularity $(Y, 0)$ defined by $g=0$ in $\left(\mathbb{C}^{n}, 0\right)$, the next statements are equivalent:
(i^{\prime}) $(Y, 0)$ is a weighted homogeneous singularity;
(ii') the spectral sequence $E_{r}(g, 0)$ degenerates at E_{2};
(iii') $E_{2}^{s, t}(g, 0) \neq 0$ for finitely many pairs (s, t).
We conjecture in analogy with (3.10') that the statements in (3.10) are equivalent to the next stronger version of (ii):
(iv) the spectral sequence $E_{r}(f)_{0}$ degenerates at E_{2}.
(3.11) REMARK. Let f be a homogenous polynomial such that V has an isolated singularity of the type considered in (3.7). Then $E_{r}(f)_{0}$ surely does not degenerate at E_{2}. Note that $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ is concentrated in the terminology of [25], p. 206 and our spectral sequence $E_{r}(f)_{0}$ is a subobject in the huge spectral sequence considered in [25], p. 209. Hence in this case that spectral sequence does not degenerate at E_{2} and this gives a negative answer to the question at the top of p. 209 in [25].

By Theorem (2.8) the interesting Betti numbers for V in the isolated singularities case are just $b_{n-1}(V), b_{n}(V)$ and we can get $b_{n}(V)$ from $E_{n-1}(f)_{0}$.

But one has a simple formula for the Euler-Poincaré characteristic in this case [6]:

$$
\begin{equation*}
\chi(V)=\chi\left(V_{0}\right)+(-1)^{n} \sum_{i=1, p} \mu\left(V, a_{i}\right) \tag{3.12}
\end{equation*}
$$

where V_{0} denotes a smooth hypersurface in \mathbf{P}^{n} of degree N and $\mu\left(V, a_{i}\right)=$ $\operatorname{dim} M\left(g, a_{i}\right)$ are the corresponding Milnor numbers.

In this way we get $b_{n-1}(V)$ knowing $b_{n}(V)$. We remark that there is a formula for $\chi(F)$ similarto (3.12) and which appears in the special case $n=2$ as Theorem 6 . A in [9].

$$
\begin{equation*}
\text { PROPOSITION. } \chi(F)=1+(-1)^{n}\left[(N-1)^{n+1}-N \sum_{i=1, p} \mu\left(V, a_{i}\right)\right] \tag{3.13}
\end{equation*}
$$

Proof. If \bar{F} denotes the closure of F in \mathbf{P}^{n+1}, one has $\chi(F)=\chi(\bar{F}) \backslash \chi(V)$. One then use (3.12) and the remark that the singularities of \bar{F} are just the N-fold suspensions of the singularities of V and hence

$$
\mu\left(\bar{F},\left(a_{i}: 0\right)\right)=(N-1) \mu\left(V, a_{i}\right) .
$$

(3.14) REMARK. An important invariant of the singularity f is the zetafunction $Z(h)$ of the monodromy operator h. Explicitly one has

$$
Z(h)=\prod_{i \geqslant 0} \operatorname{det}\left(1-t h^{*} \mid H^{i}(F)\right)^{(-1)^{i+1}}=\exp \sum_{k \geqslant 1} \wedge\left(h^{k}\right) t^{k} / k
$$

where $\wedge\left(h^{k}\right)$ denotes the Lefschetz number of the map h^{k}. Using the second expression above for $Z(h)$ it follows that for any homogeneous polynomial f one has

$$
Z(h)=\left(1-t^{N}\right)^{-\chi(F) / N}
$$

When V has only isolated singularities, this formula may be used to compute $\operatorname{dim} H^{n}(F)_{a}$ for $a=1, \ldots, N-1$ assuming that we know $\operatorname{dim} H^{n-1}(F)_{a}$ via computations with the spectral sequence $E_{r}(f)$ as in the remark after (2.8).

Next we describe briefly the additional facts necessary in order to treat the case when f has arbitrary weights $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right)$.

First we have to include a group action in the local setting. Let $G \subset U(n)$ be a finite group and consider the induced action on \mathbb{C}^{n}. Then the ball B_{ε} and the sphere S_{ε} are G-invariant subsets. Assume that $Y: g=0$ is a reduced hypesurface singularity which is also G-invariant (i.e. $y \in Y, \gamma \in G \Rightarrow \gamma(y) \in Y$ for a representative Y of $(Y, 0)$ in $\left.B_{\varepsilon}\right)$.

There is an associated action of G on $\Omega_{\mathbb{C}^{n}, 0}$ given by $\gamma \cdot \omega=\left(\gamma^{-1}\right)^{*} \omega$ And there is character $\chi_{Y}: G \rightarrow \mathbb{C}^{*}$ such that $\gamma \cdot g=\chi_{Y}(\gamma) g$ for any $\gamma \in G$. In this situation we call $(Y, 0)$ a G-singularity. Note that this setting is larger than in Wall [27] where one takes $\chi_{Y}=1$, but coincides (in the case of G cyclic) to the hyperquotient singularity notion of M. Reid [19].

Let $\left(\Omega_{g, 0}^{\cdot G}, d\right)$ be the subcomplex in $\left(\Omega_{g, 0}^{\cdot}, d\right)$ consisting of the fixed elements under the obvious action of G. If K^{*} is any complex of \mathbb{C}-vector spaces with G-actions compatible with the differentials, then there is a natural isomorphism $H^{\cdot}\left(K^{\cdot G}\right)=H^{\cdot}\left(K^{\cdot}\right)^{G}$ which says that taking cohomology commutes with taking the fixed parts under G. Moreover in Proposition (3.1) both cohomology groups have natural G-actions and the isomorphism considered there is compatible with these actions. It follows that

$$
\begin{equation*}
H^{\bullet}\left(\Omega_{g, 0}^{\cdot G}\right)=H^{\cdot}\left(\Omega_{g, 0}^{\cdot}\right)^{G}=H^{\cdot}\left(S_{\varepsilon} \backslash K\right)^{G}=H^{\bullet}\left(\left(S_{\varepsilon} \backslash K\right) / G\right) \tag{3.15}
\end{equation*}
$$

Next, using again the above commutativity, we get an E_{1}-spectral sequence $\left(E_{r}(g, 0)^{G}, d_{r}\right)$ consisting of the fixed parts of the spectral sequence described in (3.2) and converging to $H^{*}\left(\left(S_{\varepsilon} \backslash K\right) / G\right)$.

Assume now that $(Y, 0)$ is an isolated singularity and note that G acts on the complex L^{\cdot} considered above. Since the G-action commutes with the differentials in L° up-to multiplicative constants, it follows that there is an induced action on the cohomology $H^{\cdot}\left(L^{*}\right)$. And one has exactly as in Wall [27] an isomorphism of G-vector spaces

$$
H^{n}\left(L^{*}\right)=M(g) \otimes \mathbb{C} \omega_{n+1}
$$

with $\omega_{n+1}=\mathrm{d} x_{0} \wedge \cdots \wedge \mathrm{~d} x_{n}$. Let χ_{0} be the character of the action of G on $\mathbb{C} \omega_{n+1}$. If W is any G-vector space and $\chi: G \rightarrow \mathbb{C}^{*}$ is a character we set

$$
W^{\chi}=\{w \in W ; \gamma \cdot w=\chi(\gamma) w \text { for all } \gamma \in G\} .
$$

With this notation, note that

$$
\omega / g^{t} \in \Omega_{g, 0}^{\cdot G} \text { if and only if } \omega \in \Omega_{\mathbb{C}^{n}, 0}^{\cdot \chi_{r}^{t}}
$$

Combining these remarks we get the next analog of (3.3.iii):

$$
\begin{align*}
& E_{1}^{n-t-1, t}(g, 0)^{G} \simeq \operatorname{ker}(g)^{x_{\mathrm{Y}}^{t} x_{0}^{-1}} \\
& E_{1}^{n-t, t}(g, 0)^{G} \simeq T(g)^{\chi_{Y}^{t} x_{0}^{-1}} \tag{3.16}
\end{align*}
$$

for all $t \geqslant 2$, where $\operatorname{ker}(g)$ and $T(g)$ have the obviously induced G-actions.
We consider now the global setting. Let $a \in \mathbb{C}^{n+1} \backslash\{0\}$ be a point in the singular locus $f^{-1}(0)_{\text {sing }}$. Let G_{a} be the isotropy subgroup of a with respect to the \mathbb{C}^{*}-action on \mathbb{C}^{n+1} given by

$$
t \cdot x=\left(t^{-w_{0}} x_{0}, \ldots, t^{-w_{n}} x_{n}\right)
$$

Then G_{a} is the finite cyclic group of the unity roots of order

$$
k_{a}=\text { g.c.d. }\left\{w_{j} ; \text { the component } a_{j} \text { of a is nonzero }\right\} .
$$

Take H to be a transversal to the orbit $\mathbb{C}^{*} . a$ at the point a which is G_{a}-invariant. For instance, we may assume that $a_{0} \neq 0$ and then take $H: x_{0}-a_{0}=0$. We identify the germs $\left(\mathbb{C}^{n}, 0\right)$ and (H, a) via the isomorphism φ given by $\left(y_{1}, \ldots, y_{n}\right) \mapsto$ $\left(a_{0}, y_{1}, \ldots, y_{n}\right)$. Then the transversal singularity $(Y, a)=\left(H \cap f^{-1}(0), a\right)$ is in an obvious way a G_{a}-singularity and moreover

$$
\chi_{Y}=N, \quad \chi_{0}=w_{0}+\cdots+w_{n}=w
$$

under the identification of the (multiplicative) group of the characters of G_{a} with the (additive) group $\mathbb{Z} / k_{a} \mathbb{Z}$ (the character $t \mapsto t^{m}$ corresponds to the class of m modulo $k_{a} \mathbb{Z}$, denoted again by m !).

Note that the germ (\mathbf{P}, a) (resp. $(V, a))$ can be identified to $\left(H / G_{a}, a\right)$ (resp. $\left.\left(Y / G_{a}, a\right)\right)$ and hence the latter is a hyperquotient singularity in the sense of Reid [19]. It follows that $\Omega_{\mathbf{p}, a} \simeq \Omega_{\mathbb{C}_{n, 0}}^{\cdot G_{a}}$ and $\Omega_{\mathbf{p}}^{\cdot}(* V)_{a} \simeq \Omega_{g_{a}, 0}^{G_{a}}$ where $g_{a}(y)=f\left(a_{0}\right.$, y_{1}, \ldots, y_{n}) is a local equation for ($\left.Y, a\right)$, compare with [24], Section 5.

Let $Z \subset V$ be the finite set corresponding to the singular locus $f^{-1}(0)_{\text {sing }}$. Then we have, (with exactly the same proof) the next analog of Theorem (3.9):
(3.17) THEOREM. The restriction map $\rho:\left.\mathbf{\Omega}_{\mathbf{p}}^{\mathbf{(}}(* V) \rightarrow \mathbf{\Omega}_{\mathbf{p}}^{*}(* V)\right|_{Z}$ induces a morphism $\rho_{r}: E_{r}(f)_{0} \rightarrow \oplus_{a \in Z} E_{r}\left(g_{a}, a\right)^{G_{a}}$ of spectral sequences such that at the E_{1}-level $\rho_{1}^{s, t}$ is an isomorphism for $s<0$.

As an application we derive now new formulas for the Euler characteristics $\chi(V)$ and $\chi(F)$ similar to (3.12), (3.13). Our result should be compared to the more explicit formulas of Siersma [22] (obtained in the very special case when $f^{-1}(0)_{\text {sing }}$ is a complete intersection and all the transversal singularities are of type A_{1}) and, on the other hand, to the very general formulas of Yomdin [28] (which involve some numerical invariants defined topologically and hence difficult to compute in general concrete cases).

Consider the Poincaré series

$$
P(t)=\left(\left(1-t^{N-w_{0}}\right) \cdots\left(1-t^{N-w_{n}}\right)\right) /\left(\left(1-t^{w_{0}}\right) \cdots\left(1-t^{w_{n}}\right)\right)=\sum_{k \geqslant 0} c_{k}(\mathbf{w}, N) t^{k}
$$

associated to the weighted homogenity type (w, N). Define next the virtual Euler characteristics of order m of V and F by the formulas:

$$
\begin{align*}
& \chi_{m}(V(\mathbf{w}, N))=n+(-1)^{n-1} \sum_{s=1, m} c_{s N-w}(\mathbf{w}, N) \\
& \chi_{m}(F(\mathbf{w}, N))=1+(-1)^{n} \sum_{s=1, m N-w} c_{s}(\mathbf{w}, N) \tag{3.18}
\end{align*}
$$

where $w=w_{0}+\cdots+w_{n}$.
Note that if there is a weighted homogeneous polynomial of type (\mathbf{w}, N) having an isolated singularity at the origin and if V^{\prime} (resp. F^{\prime}) denotes the corresponding hypesurface in \mathbf{P} (resp. Milnor fiber) then

$$
\chi_{m}(V(\mathbf{w}, N))=\chi\left(V^{\prime}\right) \text { for } m \geqslant n
$$

(resp. $\chi_{m}(F(\mathbf{w}, N))=\chi\left(F^{\prime}\right)$ for $\left.m \geqslant n+1\right)$. To see this you may find useful to read first the proof of (3.19. ii) below!
(3.19) PROPOSITION. (i) Assume that a polynomial f^{\prime} as above exists. Then

$$
\begin{aligned}
& \chi(V)=\chi\left(V^{\prime}\right)+(-1)^{n} \sum_{a \in Z} \operatorname{dim} M\left(g_{a}\right)^{-w} \\
& \chi(F)=\chi\left(F^{\prime}\right)+(-1)^{n+1} \sum_{a \in Z} \sum_{j=1, N} \operatorname{dim} M\left(g_{a}\right)^{-N-w+j} .
\end{aligned}
$$

(ii) Assume that any transversal singularity $g_{a}=0$ for $a \in Z$ is either weighted homogeneous or satisfies the assumptions in (3.7). Then

$$
\begin{aligned}
& \chi(V)=\chi_{m}(V(\mathbf{w}, N))+(-1)^{n} \sum_{a \in Z} \operatorname{dim} M\left(g_{a}\right)^{m N-w} \\
& \chi(F)=\chi_{m}(F(\mathbf{w}, N))+(-1)^{n+1} \sum_{a \in Z} \sum_{j=1, N} \operatorname{dim} M\left(g_{a}\right)^{(m-1) N-w+j}
\end{aligned}
$$

for all m large enough. When all the singularities g_{a} are weighted homogeneous, it is enough to take $m \geqslant n+1$.

Proof. On a formal level, note that the formulas in (i) are a special case of the formulas in (ii), obtained by taking m divisible by all $k_{a}=\left|G_{a}\right|, a \in Z$. The proof of (i) is purely topological and independent of our previous results. Let a, H, \ldots, be as above. We may take f^{\prime} close enough to f such that for all $a \in Z$ the intersection $F_{a}=B_{\varepsilon} \cap\left(f^{\prime} \circ \varphi\right)^{-1}(0)$ can be identified to the Milnor fiber of the singularity (Y, a). Note also that F_{a} is G_{a}-invariant. Let $B^{\prime}(a)$ be the image of the small ball B_{ε}
under the natural projection $\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbf{P}, a)$. Then there is a homeomorphism $V B^{\prime} \simeq V^{\prime} \backslash B^{\prime}$ where $B^{\prime}=\bigcup_{a \in Z} B^{\prime}(a)$. Moreover $B^{\prime}(a) \cap V$ is contractible, while $B^{\prime}(a) \cap V^{\prime}$ can be identified to F_{a} / G_{a} and hence has middle Betti number

$$
b_{n-1}\left(F_{a} / G_{a}\right)=\operatorname{dim} H^{n-1}\left(F_{a}\right)^{G}=\operatorname{dim} M\left(g_{a}\right)^{-w}
$$

as in [27]. Then a Mayer-Vietories argument gives the result for $\chi(V)$. The result for $\chi(F)$ then follows from that for $\chi(V)$ as in the proof of (3.13).

To prove (ii) we use basically the same argument as in the proof of (3.10) (if necessary starting the computations with the E_{3}-term of the spectral sequence $\left.E_{r}(f)_{0}\right)$ together with (3.17) and (3.16). First we express the sum φ from the proof of (3.10) in terms of the Poincaré series $P(t)$. Following Siersma [22], we define a new grading on Ω^{\cdot} by setting for a homogeneous p-form $\omega \in \Omega^{p}$:

$$
\operatorname{deg} \omega=(n-p+1) N-w+|\omega|
$$

where $|\omega|$ denote the degree of ω as defined in our introduction. Then multiplication by $\mathrm{d} f$ becomes a map of degree 0 and one has

$$
P(t)=\sum_{k=0, n+1}(-1)^{n+1-k} P\left(\Omega^{k}\right)(t)
$$

where $P\left(\Omega^{k}\right)$ is the Poincare series of Ω^{k} with respect to this new grading [22]. Then it is obvious that

$$
\varphi=-\sum_{s=1, m} c_{s N-w}(\mathbf{w}, N) .
$$

To treat the case of transversal singularities covered by (3.7) one has to use the next isomorphisms of vector spaces, which are clear by the proof of (3.7):

$$
\begin{gathered}
E_{1}^{n-1-m, m}(g, 0)^{G}+E_{2}^{n-2-m, m+1}(g, 0)^{G}=\operatorname{ker}(g)^{m N-w}+(g)^{(m+1) N-w} \\
\quad=\operatorname{ker}(g)^{m N-w}+K^{m N-w}=(\operatorname{ker}(g)+K)^{m N-w}=M(g)^{m N-w} .
\end{gathered}
$$

The case of singularities in (3.7.ii) can be treated similarly.
(3.20) EXAMPLE. The polynomial $f=x_{0}^{265}+x_{0} x_{1}^{11}+x_{0} x_{2}^{8}+x_{2} x_{3}^{4}$ has degree $N=265$ with respect to the weights $\mathbf{w}=(1,24,33,58)$. The singular set Z consists of one point, namely $a=(0,-1,1,0)$ with transversal singularity g_{a} of type A_{3}. The corresponding isotropy group G_{a} is $\mathbb{Z} / 3 \mathbb{Z}$ and acts on $M\left(g_{a}\right)$ such that $\operatorname{dim} M\left(g_{a}\right)^{i}=1$ for any i. It is konwn that the Poincare series $P(t)$ is a polynomial in this case, in spite of the fact that there is no isolated singularity f^{\prime}
of this homogeneity type (w, N), see [0], p. 201. It follows that

$$
\begin{aligned}
& \chi_{m}(F(\mathbf{w}, N))=1-P(1)=-66515 \text { for } m \gg 0 \text { and } \\
& \chi(F)=\chi_{m}(F(\mathbf{w}, N))+265=-66250 .
\end{aligned}
$$

Using a computer to determine the coefficients of $P(t)$, one gets $\chi(V)=254$.
(3.21) REMARKS. (i) We conjecture that the formulas (3.19.ii) hold for any transversal singularities.
(ii) If all the transversal singularities (Y, a) for $a \in Z$ have links which are \mathbb{Q}-homology spheres, then the hypersurface V is a \mathbb{Q}-homology manifold and hence satisfies the Poincaré duality over \mathbb{Q}. In this case $b_{n}(V)=b_{n}\left(\mathbf{P}^{n-1}\right)$ and the remaining interesting Betti number $b_{n-1}(V)$ can be determined from $\chi(V)$ once this Euler characteristic is known.

For concrete computations it is useful to use the following general remark. Assume that f_{1}, \ldots, f_{n} is a regular sequence in S (this can be always achieved by a linear change of coordinates in the homogeneous case!). Then the Koszul complex $K^{\cdot}(1.9)$ is quasi-isomorphic to the complex

$$
\begin{equation*}
0 \rightarrow Q_{1}(f) \xrightarrow{f_{0}} Q_{1}(f) \rightarrow 0 \tag{3.22}
\end{equation*}
$$

where $Q_{1}(f)=S /\left(f_{1}, \ldots, f_{n}\right)$ and f_{0} denotes multiplication by f_{0}. An indication of the dimensions of $H^{n+1}\left(K^{*}\right)_{k} \simeq Q(f)_{k-n-1}$ and $H^{n}\left(K^{*}\right)_{k} \simeq \operatorname{ker}\left(f_{0}\right)_{k-n}$ can be obtained from the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{ker}\left(f_{0}\right)_{k} \rightarrow Q_{1}(f)_{k} \xrightarrow{f_{0}} Q_{1}(f)_{k+N-1} \rightarrow Q(f)_{k+N-1} \rightarrow 0 \tag{3.23}
\end{equation*}
$$

since the Poincaré series of $Q_{1}(f)$ is known.

4. Explicit computations

(4.1) EXAMPLE (Computation of $\left.H^{1}(U)\right)$.

Let $f=f_{1}^{a_{1}} \ldots f_{k}^{a_{k}}$ be the decomposition of f in distinct irreducible factors. Then it is known that $b_{1}(U)=b_{2 n-2}^{0}(V)=k-1$ and it is easy to check that the closed forms

$$
\omega_{i}=\left(\mathrm{d} f_{i}\right) /\left(f_{i}\right)-\left(N_{i} / N(\mathrm{~d} f) /(f)\right.
$$

where $N_{i}=\operatorname{deg}\left(f_{i}\right), i=1, \ldots, k$ generate $H^{1}(U)$ with only one relation: $\Sigma a_{i} \omega_{i}=0$ Compare to (2.7ii).
(4.2) EXAMPLE (with isolated singularities for V).

Let $f=x y z(x+y+z), n=2$. Then V consists of 4 lines in general position in \mathbf{P}^{2} and its topology is simple to describe. However, the dimensions of the eigenspaces $H^{\cdot}(F)_{a}$ are more subtle invariants.

First we compute explicit bases for the homogeneous components of $Q(f)$:

$$
\begin{aligned}
& Q(f)_{0}=\langle 1\rangle, Q(f)_{1}=\langle x, y, z\rangle, Q(f)_{2}=\left\langle x^{2}, y^{2}, z^{2}, x y, y z, z x\right\rangle \\
& Q(f)_{3}=\left\langle x^{3}, y^{3}, z^{3}, x^{2} y, y^{2} z, z^{2} x, x y z\right\rangle \text { and } \\
& Q(f)_{k}=\left\langle x^{k}, y^{k}, z^{k}, x^{k-1} y, y^{k-1} z, z^{k-1} x\right\rangle \text { for } k \geqslant 4 .
\end{aligned}
$$

Then we look for the elements in $H^{2}\left(K^{*}\right)$ and define:

$$
\omega_{x y}=x(x+2 y+z) \mathrm{d} y \wedge \mathrm{~d} z+y(2 x+y+z) \mathrm{d} x \wedge \mathrm{~d} z
$$

and $\omega_{y z}, \omega_{z x}$ by cyclic symmetry.
Then $\mathrm{d} f \wedge \omega_{x y}=\mathrm{d} f \wedge \omega_{y z}=\mathrm{d} f \wedge \omega_{z x}=0$ and these three forms give a basis for $H^{2}\left(K^{\circ}\right)_{4}$.

The six forms $x \omega_{x y}, y \omega_{x y}, y \omega_{y z}, z \omega_{y z}, z \omega_{z x}, x \omega_{z x}$ generate $H^{2}\left(K^{*}\right)_{5}$ with one relation among them (their sum is trivial).

And the six forms $x^{k} \omega_{x y}, y^{k} \omega_{x y}, \ldots$, form a basis for $H^{2}\left(K^{\bullet}\right)_{k+4}$ for any $k \geqslant 2$.
It is now easy to compute $d_{k}^{1}: H^{2}\left(K^{*}\right)_{k} \rightarrow H^{3}\left(K^{*}\right)_{k}$ and the nontrivial kernels and cokernels are listed below together with $E_{2}^{0,0}(f)_{0}$:

$$
\begin{aligned}
& E_{2}^{0,0}(f)_{0}=E_{2}^{0,2}(f)_{2}=E_{2}^{0,2}(f)_{3}=E_{2}^{1,1}(f)_{1}=\mathbb{C} \\
& E_{2}^{0,1}(f)_{0}=E_{2}^{1,1}(f)_{0}=\mathbb{C}^{3}
\end{aligned}
$$

The computations also show that the spectral sequence degenerates at E_{2} and hence we get the complete results. One can restate them by saying that the monodromy operator h^{*} acts trivially on $H^{0}(F)=\mathbb{C}, H^{1}(F)=\mathbb{C}^{3}$ and its action on $H^{2}(F)=\mathbb{C}^{6}$ has characteristic polynomial $(t-1)^{3}(t+1)\left(t^{2}+1\right)$.
(4.3) EXAMPLE (with nonisolated singularities for V).

An irreducible cubic surface in \mathbf{P}^{3} with nonisolated singularities is projectively equivalent to one of the next normal forms [3]
(i) a cone on the nodal cubic curve;
(ii) a cone on the cuspidal cubic curve;
(iii) $S^{\prime}: x^{2} z+y^{2} t=0$;
(iv) $S: x^{2} z+y^{3}+x y t=0$.

The topology of the surfaces (i)-(iii) can be described easier e.g. using [18], so
that we concentrate on the last case: $f=x^{2} z+y^{3}+x y t$. The homogeneous components of $Q(f)$ are given by

$$
Q(f)_{0}=\langle 1\rangle \quad \text { and } \quad Q(f)_{k}=\langle z, t\rangle_{k}+\left\langle z^{k-1} x, z^{k-1} y, z^{k-2} y^{2}\right\rangle \quad \text { for } k \geqslant 1
$$

where $\langle z, t\rangle_{k}$ denotes the vector space of all homogeneous polynomials in z, t of degree k. Hence $\operatorname{dim} Q(f)_{k}=k+4$ for $k \geqslant 2$. Consider now the differential forms:

$$
\begin{aligned}
& \omega_{1}=x \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} t \\
& \omega_{2}=x \mathrm{~d} x \wedge \mathrm{~d} z \wedge \mathrm{~d} t+t \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} t-3 y \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \\
& \omega_{3}=t \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z-2 z \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} t+x \mathrm{~d} y \wedge \mathrm{~d} z \wedge \mathrm{~d} t
\end{aligned}
$$

Then some tedious computations show that:

$$
\begin{aligned}
& H^{3}\left(K^{\cdot}\right)_{4}=\left\langle\omega_{1}, \omega_{2}, \omega_{3}\right\rangle \\
& H^{3}\left(K^{\cdot}\right)_{5}=\langle z, t\rangle_{1} \omega_{2}+\langle z, t\rangle_{1} \omega_{3}+\left\langle x \omega_{2}, y \omega_{2}, y \omega_{3}\right\rangle \\
& H^{3}\left(K^{\cdot}\right)_{k+4}=\langle z, t\rangle_{k} \omega_{2}+\langle z, t\rangle_{k} \omega_{3}+\left\langle z^{k-1} x, z^{k-1} y, z^{k-2} y^{2}\right\rangle \omega_{3}
\end{aligned}
$$

for $k \geqslant 2$. This last vector space has dimension $2 k+5$. And similarly one gets

$$
\begin{aligned}
& H^{2}\left(K^{\bullet}\right)_{k+4}=\langle z, t\rangle_{k} \omega \quad \text { with } \\
& \omega=\left(6 y z-t^{2}\right) \mathrm{d} x \wedge \mathrm{~d} y-x t \mathrm{~d} x \wedge \mathrm{~d} z-y t \mathrm{~d} x \wedge \mathrm{~d} t-3 x y \mathrm{~d} y \wedge \mathrm{~d} z-3 y^{2} \mathrm{~d} y \wedge \mathrm{~d} t
\end{aligned}
$$

After these complicated formulas it comes as a surprise that the spectral sequence $E_{r}(f)$ degenerates at E_{2} and the only nonzero terms are $E_{\infty}^{0,0}(f)_{0}=$ $E_{\infty}^{0,2}(f)_{1}=E_{\infty}^{0,2}(f)_{2}=\mathbb{C}$.

It follows that $H^{*}(S) \simeq H^{*}\left(\mathbf{P}^{2}\right)$ and hence S has the same rational homotopy type as \mathbf{P}^{2}, according to Berceanu [1], who has proved that a projective complete intersection (with arbitrary singularities) is an intrinsically formal space.

Concerning the Milnor fiber one has $H^{0}(F)=\mathbb{C}$ with trivial action of $h^{*}, H^{2}(F)=\mathbb{C}^{2}$ with the characteristic polynomial of h^{*} equal to $t^{2}+t+1$ and $H^{1}(F)=H^{3}(F)=0$.

Our next result is an improvement of Corollary (3.11) in Scherk [20] (to see the connexion between these two results have a look at the exact sequences (1.3) in [20]!).

Let $(Y, 0)$ be an isolated hypersurface singularity given by $g=0$ in \mathbb{C}^{n}. We define the μ-constant determinacy order of $(Y, 0)$ (denote by $\mu-\operatorname{det}(Y, 0)$) to be the smallest integer $s>0$ such that the family $g^{t}=g+t h(t \in[0,1])$ is μ-constant for any $h \in\left(y_{1}, \ldots, y_{n}\right)^{s}$ with small enough coefficients. Note that $\mu-\operatorname{det}(Y, 0)$ can be
easily computed for large classes of singularities (e.g. weighted homogeneous or Newton nondegenerate singularities) and is always less or equal to the strongly \mathscr{K}-determinancy order $O(g)$ see [7], p. 75. In Scherk's notation, one has.

$$
S=\min \left\{j ;\left(y_{1}, \ldots, y_{n}\right)^{j+1} \subset\left(g, g_{1}, \ldots, g_{n}\right)\right\} \leqslant O(g)-2 .
$$

(4.4) PROPOSITION. Let $V \subset \mathbf{P}^{n}$ be a hypersurface having just one singular point a and such that $N=\operatorname{deg}(V)>\mu-\operatorname{det}(V, a)$.

Then $b_{n-1}(V)=b_{n-1}\left(V_{0}\right)-\mu(V, a)$ and $b_{n}(V)=b_{n}\left(V_{0}\right)$, where V_{0} is a smooth hypersurface in \mathbf{P}^{n} with $\operatorname{deg}\left(V_{0}\right)=N$.

Proof. Choose the coordinates on \mathbf{P}^{n} such that $a=(1: 0: \cdots: 0)$ and $H: x_{0}=0$ is transversal to V. If $f=0$ is an equation for V, then we set $g(y)=f\left(1, y_{1}, \ldots, y_{n}\right)=$ $g_{2}(y)+\cdots+g_{N}(y)$, with g_{k} a homogeneous polynomial of degree k. Using the assumptions, we can find a continuous family

$$
g^{t}(y)=g_{2}^{t}(y)+\cdots+g_{N}^{t}(y) \quad \text { for } t \in[0,1]
$$

with the properties:
(i) $g^{0}=g, g_{k}^{t}=g_{k}$ for $k<N-1$;
(ii) For any $t>0$, the hypersurfaces in \mathbf{P}^{n-1}

$$
W_{i}^{t}: g_{i}^{t}=0 \quad \text { for } i=N-1, N
$$

are smooth and intersect transversally;
(iii) g^{t} is a μ-constant family;
(iv) The projective hypersurfaces V^{t} with the affine equations $g^{t}=0$ have no singularities except a.

According to [6], the cohomology of V^{t} is determined by a lattice morphism

$$
\varphi^{t}: L_{1}^{t} \hookrightarrow L^{t} \rightarrow \bar{L}=L^{t} / \operatorname{Rad} L^{t}
$$

where $L_{1}^{t}\left(\right.$ resp. $\left.L^{t}\right)$ is the Milnor lattice of the singularity $g^{t}=0\left(\right.$ resp. $\left.g_{N}^{t}=0\right)$. When t varies, these Milnor lattices are constant and hence the morphism φ^{t} has to be constant too.

Hence $H^{\cdot}(V)=H^{\cdot}\left(V^{1}\right)$ and so we can assume from the beginning that g_{N-1}, g_{N} satisfy the condition (ii).

Let $\varphi: L_{1} \hookrightarrow{ }_{\leftrightarrow}^{i} L \rightarrow \bar{L}$ be the lattice morphism in this case. We have to show that $i\left(L^{1}\right) \cap \operatorname{Rad} L=0$, where i is the embedding of Milnor lattices arising from the small deformation $g^{r}(y)=g(r \cdot y) \cdot r^{-N}(r \gg 0)$ of the singularity $g_{N}=0$, see [6], proof of (1.2).

But we may think of g^{r} as being a even smaller deformation (of order r^{-2}) of the
germ $g^{\prime}=g_{N-1} \cdot r^{-1}+g_{N}$, which is a small deformation of g_{N}. If L^{\prime} denotes the Milnor lattice of the singularity $g^{\prime}=0$, then the inclusion i above factorizes as $L_{1} \hookrightarrow L^{\prime} \stackrel{j}{\longleftrightarrow} L$ and hence it is enough to show that
(v) $j\left(L^{\prime}\right) \cap \operatorname{Rad} L=0$.

Now j is related to the cohomology of the hypersurface $V^{\prime} \subset \mathbf{P}^{n}$ with the affine equation $g_{N-1}+g_{N}=0$. Note that V^{\prime} has just one singular point too, namely a. By a μ-constant argument as above, we can assume that

$$
g_{k}(y)=y_{1}^{k} \cdots+y_{n}^{k} \quad \text { for } k=N-1, N .
$$

Next (v) is equivalent to $H_{0}^{n}\left(V^{\prime}\right)=0$ and we show this using the spectral sequence $E_{r}\left(f^{\prime}\right)$ for $f^{\prime}=x_{0} g_{N-1}\left(x_{1}, \ldots, x_{n}\right)+g_{N}\left(x_{1}, \ldots, x_{n}\right)$. It is enough to show that d_{1} is injective. And this follows easily using the fact that a base for $H^{n}(K)$ is given by the forms $x_{n}^{a_{0}} \ldots x_{n}^{a_{n}} \cdot \omega$ with $a_{i}<N-2$ for $i=1, \ldots, n$ and $\omega=\omega_{1} \wedge \cdots \wedge \omega_{n}$, where the 1 -forms

$$
\omega_{k}=x_{k} \mathrm{~d} x_{0}+\left[(N-1) x_{0}+N x_{k}\right] \mathrm{d} x_{k}
$$

are the obvious solution of the equation

$$
\mathrm{d} f=\sum_{k=1, n} x_{k}^{N-2} \omega_{k}
$$

Compare to [22], [25], but note that here the transversal type is not A_{1} for $N>3$.

Note added in proof

The proof of Theorem (2.2) above contains an error on p. 11 lines 7 and 8. It is possible to repair this in some special cases, e.g. when all the singularities of V are isolated and weighted homogeneous. A more general result implying Theorem (2.2) has been proved by the author and P. Deligne (to whom I am very grateful for pointing out the above mentioned error!). For details, see our preprint "Hodge and order of the pole filtrations for singular hypersurfaces".

References

0. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differentiable Maps, vol. I, Monographs in Math. 82, Boston - Basel - Stuttgart, Birkhauser 1985.
1. B. Berceanu, Formal algebraic varieties, unpublished manuscript.
2. E. Brieskorn, Die Monodromie der Isolierten Singularitaten von Hyperflachen. Manuscr. Math. 2 (1970) 103-161.
3. J.W. Bruce and C.T.C.Wall, On the classification of cubic surfaces, J. London Math. Soc. (2) 19, (1979) 245-256.
4. D. Burghelea and A. Verona, Local homological properties of analytic sets. Manuscr. Math. 7, (1972) 55-66.
5. P. Deligne, Theorie de Hodge II, III. Publ. Math. IHES 40, 5-58 (1971) and 44, (1974) 5-77.
6. A. Dimca, On the homology and cohomology of complete intersections with isolated singularities. Compositio Math. 58, (1986) 321-339.
7. A. Dimca, Topics on Real and Complex Singularities, Braunschweig-Wiesbaden: Vieweg 1987.
8. I. Dolgachev, Weighted projective varieties. In: Carrell, J.B. (ed) Group Actions and Vector Fields, Proceedings 1981. (Lect. Notes Math., vol. 956, pp. 34-71) Berlin Heidelberg New York: Springer 1982.
9. H. Esnault, Fibre de Milnor d'un cone sur une courbe plane singuliere, Invent. Math. 68, (1982) 477-496.
10. A. Fujiki, Duality of mixed Hodge structures of algebraic varieties, Publ. RIMS Kyoto Univ. 16, (1980), 635-667.
11. G.-M. Greuel, Der Gauss-Manin-Zusammenhang isolierter Singularitaten von vollstandigen Durchschnitten. Math. Ann. 214, (1975) 235-266.
12. P. Griffiths, On the periods of certain rational integrals I, II, Ann. Math. 90, (1969) 460-541.
13. A. Grothendieck, On the de Rhan cohomology of algebraic varieties, Publ. Math. IHRES 29, (1966) 351-358.
14. H. Hamm, Ein Beispiel zur Berechnung der Picard-Lefschetz-Monodromie fur nichtisolierte Hyperflachensingularitaten Mat. Ann. 214, (1975) 221-234.
15. M. Kato, Y. Matsumoto, On the connectivity of the Milnor fiber of a holomorphic function at a critical point. In: Manifolds, Proceedings Tokyo 1973, pp. 131-136, Univ. of Tokyo Press 1975.
16. J. McClearly, User's Guide to Spectral Sequences, Publish or Perish: 1985.
17. M. Oka, On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials. Topology 12, (1973) 19-32.
18. M. Oka, On the cohomology structure of projective varieties. In: Manifolds, Proceedings Tokyo 1973, pp. 137-143, Univ. of Tokyo Press 1975.
19. M. Reid, Young person's guide to canonical singularities, Proc. AMS summer Institute Bowdoin 1985, Proc. Symp. Pure Math. 46, AMS 1987.
20. J. Scherk, On the monodromy theorem for isolated hypersurface singularities, Invent. math. 58, (1980) 289-301.
21. J. Scherk, J.H.M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fiber. Math. Ann. 271, (1985) 641-665.
22. D. Siersma, Quasihomogeneous singularities with transversal type A_{1}, Contemporary Mathematics 90, Amer. Math. Soc. (1989) 261-294.
23. J.H.M. Steenbrink, Intersection form for quasihomogeneous singularities. Compositio Math. 34, (1977) 211-223.
24. J.H.M. Steenbrink, Mixed Hodge Structures and Singularities (book to appear).
25. D. van Straten, On the Betti numbers of the Milnor fiber of a certain class of hypersurface singularities. In: Greuel, G.-M., Trautmann, G. (eds) Singularities, Representations of Algebras and Vector Bundles, Proceedings, Lambrecht 1985 (Lect. Notes Math. Vol. 1273, pp. 203-220) Berlin Heidelberg New York: Springer 1987.
26. Z. Szafraniec, On the Euler characteristic of complex algebraic varieties, Math. Ann. 280, (1988) 177-183.
27. C.T.C. Wall, A note on symmetry of singularities, Bull. London Math. Soc. 12, 169-175 (1980).
28. I.N. Yomdin, Complex varieties with 1-dimensional singular locus, Siberian Math. J. 15, (1974) 1061-1082.
