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Let w = (wo,..., wn) be a set of integer positive weights and denote by S the
polynomial ring C[xo,..., xn] graded by the conditions deg(xi) = wi. For any
graded object M we denote by Mk the homogeneous component of M of degree k.
Let f E SN be a weighted homogeneous polynomial of degree N.
The Milnor fibration of f is the locally trivial fibration f : Cn+1Bf-1(0) ~

CB{0}, with typical fiber F=f-1(1) and geometric monodromy h : F ~ F,
h(x) = (two~0, ... , twnxn) for t = exp(203C0i/N). Since hN = 1, it follows that the

(complex) monodromy operator h* : H8(F) -+ H8(F) is diagonalizable and has
eigenvalues in the group G = {ta; a = 0,..., N - 1} of the N-roots of unity.
We denote by H8(F)a the eigenspace corresponding to the eigenvalue t-a, for

a = 0,..., N - 1.
When f has an isolated singularity at the origin, the only nontrivial

cohomology group Hk(F) is for k = n and the dimensions dim H"(F)a are known
by the work of Brieskorn [2]. But as soon as f has a nonisolated singularity,
it seems that even the Betti numbers bk(F) are known only in some special cases,
see for instance [9], [14], [17], [22], [25].
The first main result of our paper is an explicit formula for the cohomology

groups Hk(F) and for the eigenspaces Hk(F)a. Let Q8 be the complex of
global algebraic differential forms on Cn+1, graded by the convention

deg(u dxil A ... A dxik) = p + wil + ... + wik for u E Sp. We introduce a new
differential on Q8, namely Df(03C9)=d03C9-(|03C9|/N) df Aro, for m E Q) with lrol=p
the degree of co and d the usual exterior differential, similar to Dolgachev [8],
p. 61.

For a = 0, ... , N - 1 we denote by 03A9(a) the subcomplex in Q8 given by
~s003A9-a+sN.
To a D f-closed form co E 03A9k+1 we can associate the element b(ro) = [i* A(ro)] in

the de Rham cohomology group Hk(F), where A is the contraction with the Euler
vector field (as in [12], p. 467 in the homogeneous case and [8], p. 43 in the
weighted homogeneous case) and i : F ~ Cn+1 denotes the inclusion.

THEOREM A. The maps 03B4:Hk+1(03A9,Df)~k(F) and 03B4 : Hk+1(03A9(a), Df) ~
Hk(F)a are isomorphisms for any k  0, a = 0,..., N - 1, with fi denoting
reduced cohomology.
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The proof of this Theorem depends on a comparison between spectral
sequences naturally associated to the two sides of these equalities see (1.8).
Our second main theme is that these spectral sequences can be used to perform

explicit computations and to derive interesting numerical formulas, in spite of the
fact that the E 1-term has infinitely many nonzero entries and that degeneration at
the E2-term happens only in special cases (see (3.10) and (3.11) below).
The eigenspaces H*(F), are particularly interesting. If P = P(w) denotes the

weighted projective space Proj(S), V the hypersurface f = 0 in P and U = PB V the
complement, then there is a natural identification H*(F)o = H’(U). We con-
jecture an inclusion between the filtration on H*(F)o induced by the spectral
sequence mentioned above and the (mixed) Hodge filtration on H8(U), having a
substantial consequence for explicit computations and extending to the singular
case an important result of Griffiths [12], see (2.7.ii) below.
To prove the analogous result for these filtrations on the whole H*(F), we

establish first some subtle properties of the Poincaré residue operator
R : H(Cn+1 )F) - H-1(F) (see (1.6), (1.20), (1.21) and (2.6)) which may be useful

in their own.

Note that the Betti numbers bk(V) are completely determined by bk(U) and
hence one can get by our method at least upper bounds for all bk(V) as well as the
exact value of the top interesting one (i.e. bn+m-1 (V) where m = dimf-1(0)sing) in
a finite number of steps see (2.8).
Then we specialize to the case when f has a one-dimensional singular locus,

a situation already studied (without the weighted homogeneity assumption) by
N. Yomdin and, more recently and more completely, by D. Siersma, R. Pellikaan,
D. van Straten, T. de Jong. We relate the spectral sequence (Er( f )o dr) to some
new spectral sequences associated to the transversal singularities of f, these being
the intersections off - 1(0) with transversals to each irreducible component of
f-1(0)sing. We hope that these intricate local spectral sequences will play
a fundamental role in understanding better even the isolated hypersurface
singularities (see for instance the nice characterization (3.10’) of weighted
homogeneous singularities). Concerning the numerical invariants in this case, we
get interesting and effective formulas for the Euler characteristics ~(V) and x(F)
extending in highly nontrivial way the known formulas for the homogeneous case
(we conjecture them to hold in general and check them under certain assumptions
on the transversal singularities of f, see (3.19.ii)).
The last section is devoted to explicit computations with our spectral sequence.

The first two of them are just simple illustrations of our technique, while the third
offers a more subtle example, for which we know no other method to get even the
Betti numbers for V. It is interesting to remark that if one wants to compute the
Euler characteristic x(v) in this case using Theorem (3.1) in Szafraniec [26], then
one is led to compute bases of Milnor algebras (and signatures of bilinear forms
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defined on them) of a huge dimension (~67) and this is an impossible task even
for a computer!
A more theoretical application (improving a result of Scherk [20]) is given in

the end, the key point in the proof being again an explicit computation with the
spectral sequence.
A basic open problem is to decide whether the spectral sequence (Er(f), d,) or its

local analog (Er(g, 0), dr) degenerates always in a finite number of steps and, in the
affirmative case, to determine a bound for this number in terms of other

invariants of f or g.

1. Some spectral sequences

In this section we shall use many notations and results from Dolgachev [8]
without explicit reference.

Let 0394:03A9k ~ 03A9k-1 denote the contraction with the Euler vector field

03A3wixi~/~xi. For k  1 we put ak = ker(A: 03A9k ~ çlk - 1) = im(A: Çlk 11 - gk) and
let 03A9kp décote the associated sheaf on P. One has also the twisted sheaves S2p(s), for
any s E Z.

Let i: U ~ P denote the inclusion and put Ok u (S) = i*03A9kP(s).
The Milnor fiber F is an affine smooth variety and according to Grothendieck

[13] one has H’(F) = H’(r(F, 03A9F)). Let p: F ~ U denote the canonical projection
and note that

If we let Aa = r(U,Qü( -a» and A8 = ~N-1a=0 Aa, then we clearly have

There is a natural increasing filtration FS on Aa, related to the order of the pole
a form in Aa has along V, namely

But for obvious technical reasons it is more convenient to consider the

decreasing filtration.
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The filtration Fs is compatible with d, exhaustive (i.e. Aa = FsAa) and bounded
above (Fn+1A = 0). Here d denotes the differential of the complex Aa which is
induced by the exterior differential d in 03A9F via (1.1) and which is given explicitly
by the formula

By the general theory of spectral sequences e.g. [16], p. 44 we get the next
geometric spectral sequence.

(1.6) PROPOSITION. There is an E1-spectral sequence (Er(f)a, dr) with

and converging to the cohomology eigenspace H(F)a.

Moreover one can sum thèse spectral sequences for a = 0, ... , N - 1 and get
a spectral sequence (Er(f), dr) converging to H(F). And (Er( f )o, dr) and (Er(f), dr)
are in fact spectral sequences of algebras converging to their limits as algebras.
Note that H(F)0 ~ H’(U), either using the fact that U = F/G, G acting on F via
the geometric monodromy or the fact that Qu is a resolution of C [24].
We pass now to the construction of some purely algebraic spectral sequences.

Let (Ba, d’, d" ) be the double complex Bs,ta = 03A9s+t+1tN-a, d’ = d and d"(03C9)=
2013|03C9|/Ndf 039B 03C9 for a homogeneous differential form w. Note that the associated
total complex Ba, with Bka = ~s+t=kBs,ta, D = d’ + d" is precisely the complex
(03A9-1a, Df).

Similarly B8 = ~ Ba = (03A9-1, Df).
Consider the decreasing filtration FP on Ba given by FpBka = ~spBs,k-sa and

similarly on B8. Using the contraction operator A, we define the next complex
morphisms, compatible with the filtrations:

Note that B8 and A8 are in fact differential graded algebras, but 5 is not
compatible with the products.

(1.7) PROPOSITION. There is an E1-spectral sequence (’Er(f)a,dr) with

and converging to the cohomology H(Ba). The operator 5 induces a morphism
br: (’Er(f)a, dr) - (Er(f)a .dr) of spectral sequences.
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Moreover one can sum these spectral sequences Er(f)a and get a spectral
sequence (’Er(f), dr) converging to H8(B8) and a morphism (’Er(f), dr) - (Er(f),
d,). The proof of these facts is standard e.g. [16], p. 49. Let r(f)0 (resp. r(f))
denote the reduced spectral sequence associated to Er(f)0 (resp. Er(f)) which is
obtained by replacing the term at the origin EO,O = E0,0~ = C by zero. For a ~ 0,
we put r(f)a = Er(f)a.
We clearly have natural morphisms r : ’Er(f)a ~ Er(f)a, r: ’Er(f) ~ f(f)

induced by br. We can state now a basic result.

(1.8) THEOREM. The morphisms br are isomorphisms for r  1 and they induce
isomorphisms H(Ba) ~ (F)a and H(B) ~ (F).

Proof. Since Fn+1B = Fn+ 1 A8 = 0, the filtrations F are strongly convergent
[16], p. 50 and hence it is enough to show that 91 is an isomorphism. The vertical
columns in ’E1(f) correspond to certain homogeneous components in the Koszul
complex K8.

of the partial derivatives fi = (~f)/(~xi), i = 0, ... , n in S. To describe the vertical
columns in 1(f) is more subtle. Note that f K’ is a subcomplex in K8 and let K’
denote the quotient complex K*IfK*. There is a map A : K ~ K-1 induced by
A which is a complex morphism and hence  = ker 0 is a subcomplex in .

Let À denote the composition K8 -+ K -1.
Then the vertical lines in 1(f) correspond to certain homogeneous com-

ponents in the cohomology groups H(). The morphism 1 corresponds to
À* : H(K) ~ H(-1) and a well-defined inverse for À* is given by the map

To check this, use that df 039B 03C9 = 0 implies 0 = A(df A cv) = Nfw - df A 0394(03C9).

(1.11) EXAMPLE. Assume that f has an isolated singularity at the origin. Then
fo, ... , fn form a regular sequence in S and we get ’Es,t1(f)a = 0 for s + t ~ n and

where Q(f) = S/(f0, ... , fn), w = w0 + ··· + wn. Moreover, the Poincaré

series for Q( f ) (see for instance [7], p. 109) implies that Q(f)k = 0 for

k &#x3E; (n + 1)N - 2w. Hence in this case all our spectral sequences are finite

and degenerate at the E 1-term (the degeneracy of the component a = 0

being equivalent to Griffiths’ Theorem 4.3 in [12]). Note that one can have
’E-1,n+11(f)a ~ 0. In general, one has the next result about the size of the spectral
sequence ’Er(f).



24

(1.12) Proposition. ’E’,’(f) = 0 for any r  1 and s + t  n - m, where

m = dimf-1(O)sing.
Proof. The result follows using the description of ’Es,t1(f) in terms of the Koszul

complex and Greuel generalized version of the de Rham-Lemma, see [11], (1.7).

(1.13) Corollary. k(F) = 0 for k  n - m.
This result is implied also by [15], but (1.12) will be used below in (2.8) in

a crucial way.
Now we show that our complexes can be used to describe very explicitly the

Poincaré residue isomorphism R: Hk+1(Cn+1/F) ~ k(F) and the Sebastiani-
Thom isomorphism.
When X is a smooth complex manifold and D is a smooth closed hypersurface

in X there is a Gysin exact sequence

where i* is induced by the inclusion i : XBD -+ X and R is the Poincaré residue, see
for instance [24], Section 8.

Let Cf denote the complex Ít with the differential D f introduced above (up to
a shift Cf = B8!) and note that

is a morphism of differential graded algebras (i.e. d03B1(03C9) = 03B1Df(03C9) and

03B1(03C91 A (02) = 03B1(03C91) A 03B1(03C92)).
Using the definition of the Poincaré residue as in [12], p. 290 it follows that

Since R is an isomorphism by using (1.14) in the case X = Cn+1, D = F and Ô is an
isomorphism by Theorem A, it follows that 03B1: H(Cf) ~ H(Cn+1BF) is an

isomorphism too.
To discuss the Sebastiani-Thom isomorphism (see for instance [17]), we

introduce a new complex associated to f, namely C f which is the complex Ít with
the differential Df03C9 = dco - df A co.

Define 0 : Cf ~ Cf to be the C-linear map which on a homogeneous form
ce with k = |03C9| acts by the formula 0(co) = Â(k) 8 úJ, where 03BB(k) = 1 for k  N and
03BB(k) = (k - N) ... (k - tN) 8 N-t for tN  k  (t + 1)N, t  1.

Then it is obvious that 0 induces a complex isomorphism between the
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corresponding reduced complexes. In particular we get isomorphisms
0: Rt(Cf) ~ Ht(Cf) for any t  1.

Let w’ = (w’0, ... , w’n.) be a new set of weights and f ’ ~ C[y0, ... , Yn’] be
a homogeneous polynomial of degree N with respect to these weights. Then it is
easy to check that

and that there is no such result for Cf+f’.
Using the isomorphisms 9 and Theorem A we get the Sebastiani-Thom

isomorphism

where F’, F" denote the Milnor fibers of f ’ and f + f ’ respectively.
Keeping trace of the homogeneous components in (1.17) we get

with c = 0,..., N - 1 and R8(F’)N = R8(F’)o’ When f’ = yN0, Example
(1.11) shows that (F’)0 = 0 and (F’)c = 03B4(yN-c-10dy0)&#x3E;, a one-

dimensional vector space for c = 1,..., N - 1. It follows that dim Rk(F")o =
dim k-1(F)~0 where s(F)~0 = ~c=1, N - 1Hs(F)c

This equality of dimensions is related to the next geometric setting. Let
H: yo = 0 denote the hyperplane at infinity in the compactification P(w, 1) of
Cn+1, let V" c P(w, 1) be the hypersurface given by f(x) - yN0 = 0 and set

U" = P(w,1)BV". Since H n U" = U, U"BH = Cn+1BF, the Gysin sequence
(1.14) applied to X = U", D = H n U" gives

(As a matter of fact U" may be singular and then to apply (1.14) one has to do as
follows. Let q : pn+ 1 ~ P(w, 1) be the covering map induced by

and let G be the corresponding group of covering transformations.
If we set U = q-1(U"), = q-1(H), then there is a Gysin sequence associated

to X = Û, D = H n Û. And the G-invariant part of this exact sequence is

precisely the exact sequence which we have written above).
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Note that

It follows that the first and the last map in the above exact sequence are trivial.

Note also that the geometric monodromy h acts on cn+ 1 BF and hence it makes
sense to define Hs(n+1BF)~0 as above.

It will be clear from what follows that the image of i* is precisely Hk(cn+ 1 BF) , o
and hence we can write the next diagram of isomorphisms:

Here y5 is defined in a natural way: if 03C9 ~ Hk(Cf)C (i.e. 03C9 is a sum col 1 + ... + cvp of

homogeneous forms such that IWil ~ -c modulo N) then 03C8(03C9) = m A yc-10 dyo
The formula (1.16) tells us that the triangle in the diagram (1.19) is commutative

up to a constant. The big rectangle in the diagram is commutative in a similar way
by the next result.

(1.20) LEMMA. Ri*03B403B803C8 = -1/N03B403B8.
Proof. We have to show that both sides of this equality yield the same result

when applied to an element co = col + ··· + (op E Hk( Cf)c as above. Since these
computations are rather tedious, we treat here only the case p = 2 and let the
reader check that the general case is completely similar.

So let m = mi 1 + W2 with q = tN - c = |03C91| and q + N = /w21 (when
|03C92| - |03C91| &#x3E; N the forms col and W2 are themselves cycles in Hk(Cf)c and the
proof is easier!).
The condition Df03C9 = 0 is equaivalent to

(i) df 039B 03C92 = 0
(ii) df A 03C91 = dcv2

(iii) 0 = d03C91.
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It is easy to see that

To compute the residue of this element we proceed as follows. First we apply A to
the equality (i) and get

If we apply A to (ii), we get

This should be put in (v), one should apply once more this trick getting a term
containing d0394(03C91) and then replace this by q03C91 as follows by applying A to (iii).

Let AS = 03C91/s( f - 1)s + w2/(f - I)s" 1 and note that As is a closed form on
Cn+1/F for any s  1. The above computation implies that the associated
cohomology classes satisfy [As] = ((q - N(s - 1»/Ns)[As-1] and hence

This ends the proof of (1.20) in this case.

(1.21) REMARK. There is a nice geometric consequence of the existence of the
diagram (1.19). One can think of the weighted projective space P(w,1) as
a compactification of Cn+1BF such that the complement P(w,1)B(Cn+1BF)
consists of two irreducible components, namely V" and H. Using the iso-
morphism a, it follows that any cohomology class in H(Cn+1BF) can be
represented by a closed differential form on Cn+1BF having a pole of order
1 along V" and a pole (possibly of a higher order) along H.
On the other hand, the isomorphism 8*03B403B803C8 shows that any class in

H(Cn+1BF)~0 can be represented by a closed differential form on Cnl 1 BF having
a pole on V" and no poles at all along H. It can be shown similarly that any class
in H(Cn+1BF)0 can be represented by a form having a pole of order 1 along H and
a pole along V". It would be nice to have a more geometric understanding of this
phenomenon.

In conclusion, the natural isomorphism Hk(F) = Hk(F)0 ~ Hk(F)~0 =
Hk( U) E9 Hk+1(U") shows that it is enough to concentrate on the cohomology
groups H(U) and this is what we do in the next two sections.
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2. The relation with the Hodge filtration

Let us consider the decreasing filtration FS on H’(U) defined by the filtration FS on
A0, namely

FSH8(U) = im{H(FsA0) = H(U)}. (2.1)

On the other hand there is on H’(U) the decreasing Hodge filtration
FH introduced by Deligne [5].

(2.2) THEOREM. One has FsH*(U) ~ Fs+1HH(U) for any s and

FOH8(U) = F1HH(U)F0HH(U) = H8(U).
Proof. Let p : pn -+ P be the projection presenting P as the quotient of Pn under

the group G(w), the product of cyclic groups of orders wi.
Then f = p*(f) = f(xwo0, ... , xwnn) is a homogeneous polynomial of degree

N and let Û be the complement of the hypersurface l = 0 in P".
Since H’(U) can be identified to the fixed part in H*(Û) under the group G(w)

and since the monomorphism p*: H.(U) -+ H*(Û) is clearly compatible with the
filtrations FS and FH, it is enough to prove (2.2) for Ù.
To simplify the notation, we assume that w = (1,..., 1) from the beginning.

Then U is smooth and it is easier to describe the construction of the Hodge
filtration [24].

Let p : X - pn be a proper modification with X smooth, D = p-1(V) a divisor
with normal crossings in X and U = XBD isomorphic to U via p.
From this point on it is more suitable to work with holomorphic differential

forms on our algebraic varieties. If Qi is this holomorphic sheaves complex, a03A9U
the algebraic version of it and i : U -+ P" is the inclusion, then one has inclusions
i*(aS2v) C 03A9pn(*V) ~ i*03A9U, where 03A9Pn(V) denotes the sheaves of meromorphic
differential forms on P" with polar singularities along V. By Grothendieck [13],
the inclusion i*(aQir) c 03A9Pn(*V) induces isomorphisms at the hypercohomology
groups. And the same is true for the inclusions 03A9X(log D) c 03A9X(*D) ~ j*03A9U
where j : Ù - X is the inclusion, 03A9X(*D) is defined similarly to WPn(*V) and
Qx(1og D) is the complex of holomorphic differential forms with logarithmic poles
along D[24].

Recall that there is a trivial filtration 03C3  on any complex K8, by defining 03C3s K
to be the subcomplex of K8 obtained by replacing the first s terms in K8 by 0. The
Hodge filtration is given by

via the identifications
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The filtration FS on the complex AÕ is related to a filtration FS on the complex
Opn( * V) defined in the following way: Fs03A9jPn(*V) is the sheaf of meromorphic
j-forms on pn having poles of order at most j - s along V for j  s and
Fs03A9jPn(*V) = 0 for j  s.
Note that Fs03A9jPn(*V) ~ Otn«j - s)N) for j  s. We get next a filtration on the

complex 03A9X(*D) ~ p*(Qpn( * V» by defining Fs03A9X(*D) = p*(F03C303A9Pn(*V)).
At stalks level, a germ 03C9 ~ ~jX(*D)x belongs to Fs03A9jX(*D)x if and only if

p*(u)’ - S m E 03A9jX,x, where u = 0 is a local equation for V around the point y p(x).If
v1,.... Vn are local coordinates on X around x such that v1 ... vk = 0 is a local

equation for D. then p*(u) vanishes on D and hence p*(u) = va11 ... vakkw for some
germ w ~ (9x,x and integers ai  1.

Using the definitions, it follows that 03A9jX(log D) c Fs03A9jX(*D) for j &#x3E; s and j &#x3E; 0.

And 03A90X(log D) = 03A90X c Fs03A90X(*D) for s  0. We can state this as follows.

(2.4) LEMMA. (i) 03C3s+1 03A9X(log D ~ FSSZX (*D) for s &#x3E; 0;
(ii) 03A9X(log D) ~ F003A9X(*D).
We can hence write the next commutative diagram

Now H(03A9Pn(*V)) = H8(aQÜ) = H8(Aô) = H8(U). To compute H(Fs03A9Pn(*V)) we
use the E2-spectral sequence E2’q = HP(H q(P", K8» converging to H8(K8), where
K = Fs03A9Pn(*V) and Bott’s vanishing theorem [8].

It follows that Ep,02 = Hp(FsA0), Es,s2 = H’(P", S2Pn) and E2’q = 0 in the other
cases. The spectral sequence degenerates at E2 since one can represent the
generator of Es,s2 by a 7-harmonic form y and hence dy = 0. On the other hand
03B2(03B3) = 0, since y belongs to the kernel of the map H2s(pn) .4 H2S( U). In fact this
map is zero for s &#x3E; 0. To see this, it is enough to show that i*(c) = 0, where
c = c (O(1)) is the first Chern class of the line bundle O(1) (in cohomology with
complex coefficients,!). But Ni*(c) = 0, since it corresponds to the Chern class of
O(N)|U and this line bundle has a section (induced by f ) without any zeros.

It follows that im(3) = FsH(U) and this gives the first part in (2.2).
The similar diagram associated to the inclusion (2.4. ii) gives pO H8(U) =

F0HH(U) = H8(U).
To see that FH = F’ we relate the mixed Hodge structure on H’(U) to the

mixed Hodge structure on H*(V) Consider the exact sequence in cohomology
with compact supports of the pair (P", V)
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This is an exact sequence of MHS (mixed Hodge structures) and it gives an
isomorphism of MHS Hk+1c(U) ~ Hk0(V), the primitive cohomology of V [10].
Poincaré duality gives a natural identification ( U is a Q-homology manifold):

Since H2nc(U) ~ H2n(Pn) ~ C( - n), we get the following relations among mixed
Hodge numbers

This gives hO,q(HS(U» = 0 for any q and s, which shows that F0HH(U) = F1HH(U),
ending the proof of (2.5).

(2.6) REMARK. In spite of the fact that FSH’(U) = Fs+1HH(U) for any s in many
cases (e.g. when V is a quasi-smooth hypersurface or when V is a nodal curve in
p2), this equality does not hold in general. A simple example is the next: take
V : x[xy(x + y) + z3] = 0 the union of a smooth cubic curve in p2 with an
inflexional tangent. Then it is easy to show that in this case dim F’H 2(U)
2 &#x3E; dim FHH2(U) = 1.

There is a similar inclusion FsH(F) ~ Fs+1HH(F) among the analogous
filtrations on the cohomology of the Milnor fiber F. The proof of this fact can be
reduced to (2.2) as follows. The geometric monodromy h is analgebraic map and
hence h* preserves both filtrations F’ and FH on H*(F). If we define FSH’(F)a =

FSH8(F) n H’(F)a it follows that FSH8(F) = fBaFSH8(F)a. And one has a similar
result for the Hodge filtration FÎI. In particular, it is enough to prove

where FsH(F)~0 = FSH8(F) n H(F)~0 = ~Da~0FsH(F)a and similarly for FH.
Now (i) is clearly implied by (2.2), since the isomorphism H8(U) -f+H8(F)o ~

H*(F) is clearly compatible with both filtrations.
To get (ii) from (2.2) we use the diagram (1.19) and the next two facts.
The Poincaré residue map R is a morphism of MHS of type ( -1, -1) and

hence

Using the definition of the filtrations FS and (1.20) it follows that
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Note also that the filtration FS on H’(F) is very close to the filtrations

considered by Scherk and Steenbrink in the isolated singularity case in [21].

(2.7) COROLLARY. (i) Es,t~(f)0 = for s  0 and Es,t~(f)a = 0 for s  -1 and
a= 1...,N- 1.

(ii) Any element in Hk(U) can be represented by a differential k-form with a pole
along V of order at most k.

We note that (ii) can be regarded as an extension of Griffith’s Theorem 4.2 in
[12]. On the side of numerical computations of Betti numbers we get the
following important consequence. Recall that m = dim f-1(0)sing.

(2.8) THEOREM. Let bo(V) = dim Hb(V) denote the primitive Betti numbers of
V. Then

When k = m and r  n - m the above inequality is an equality.
Proof. Use (1.6), (1.7), (1.8), (1.12) and (2.7).
There is also an analog of (2.8) for dim Hj(F). but we leave the details for the

reader.

3. The case of a one-dimensional singular locus

We assume in this section that f has a one-dimensional singular locus, namely

for some points ai E Cn+1, one in each irreducible component of f-1(0)sing.
If Hi is a small transversal to the orbit C*ai at the point ai, then the isolated

hypersurface singularity (Y, ai) = (Hi n f-1(0), ai) is called the transversal

singularity of f along the brach C*ai of the singular locus.
The weighted homogeneity of f easily implies that the isomorphism class

(5i-equivalence) of the singularity (Yi, ai ) does not depend on the choice of ai (in
the orbit Ci) or of Hi.

In this section we get a better understanding of the sequence (Er(f)0, dr) by
relating it to some spectral sequences associated to the transversal singularities
( Yi, ai ) for i = 1, ... , p.
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First we describe the construction of these new (local) spectral sequences.
Let g : (cn, 0) - (C, 0) be an analytic function germ and let ( Y, 0) = (g-1(0), 0) be

the hypersurface singularity defined by g. Let 03A9g,0 denote the localization of the
stalk at the origin of the holomorphic de Rham complex 03A9Cn with respect to the
multiplicative system {gs; s  0}.
Choose s &#x3E; 0 small enough such that Y has a conic structure in the closed ball

Be = {y ~ Cn; ) |y|  03B5} [4]. Let S03B5 = ôBE and K = SE n Y be the link of the
singularity ( Y, 0). Then Thm. 2 in [13] implies the following.

(3.1) PROPOSITION. H(S03B5BK) ~ H(03A9g,0).
One can construct a filtration FS on 03A9g,0 in analogy to (1.4), namely

Fs03A9jg,0 = {03C9/03B3j-s;03C9 ~ 03A9jCn,0{ for j  s and Fs03A9jg,0 = 0 for j  s.

(3.2) PROPOSITION. There is an E1-spectral sequence of algebras (Er(g, 0), dr)
with

and converging to H8(SeBK) as an algebra.

Assume from now on that (Y, 0) is an isolated singularity and let L8 = (03A9Cn,0 dg)
denote the Koszul complex of the partial derivatives of g. In our case these
derivatives form a regular sequence and hence Hj(L) = 0 for j  n and
Hn(L8) = M(g), the Milnor algebra of the singularity (Y, 0), see for instance [7],
p. 90. Let I* denote the quotient complex L/gL If g: M(g)-M(g) denotes
the multiplication by g, it follows that Hj(I) = 0 for j  n - 1,Hn-1(I) =
ker(g) and Hn(J8) = coker(g) = T(g), the Tjurina algebra of (Y, 0), see [7], p. 90.

There is the next analog of (1.8), computing El (g, 0) in terms of H8(I8).

(3.3) LEMMA. The nonzero terms in E1(g,0) are the following.

(iii) En-t-1,t1(g, 0) = ker(g), En-t,t1(g, 0) = T(g) for t  2.

Proof To get the more subtle point (ii), one uses the well-defined maps

and note that im(v) c ker(g) for s = n - 2.



33

(3.4) COROLLARY. The only (possibly) nonzero terms in E 2(g, 0) are E"’ 2 =
E0,12 = C and E2-1-t,t, E2-t°t for t  1.

Proof. Use the exactness of the de Rham complexes [11]:

We can also describe the differentials

An (n - 1) form a induces an element in ker(g) if dg A a = g03B2 and then

(3.6) EXAMPLE. Assume that (Y, 0) is a weighted homogeneous singularity of
type (w1 , ... , wn; N), i.e. (Y, 0) is defined in suitable coordinates by a weighted
homogenous polynomial g of degree N with respect to the weights w.
Then M(g) = T(g) = ker(g) and they are all graded C-algebras.
Let a = 03A3i=1,n(-1)i+1wixidx1 A... A di A ... A dx,, and note that

dg A a = N. gwn, with Wn = dxi 039B ... A dxn. It follows that the class of

a generates ker(g) For a monomial x" = xil ... xann of degree |xa| = a,wl + ...

+ anwn one has by (3.5)

with w = W1 + ... + Wn.
It follows that ker dt1 ~ coker dt1 ~ M(g)tN-w. Hence the E 2 -term E2(g,0) has

finitely many nonzero entries and the spectral sequence E,(g, 0) degenerates at E2
(compare to (1.11)).
The next result gives a large class of singularities having the E3-term of the

spectral sequence E,(g, 0) with finitely many nonzero entries. The reader should
have no difficulty in checking that this class contains in particular the next more
familiar classes of singularities:

(i) all the non weighted homogeneous R-unimodal singularities, see for instance
[0], p. 184 for a complete list;

(ii) all the semi weighted homogenous singularities (see [7], p. 115 for
a definition) of the form g = go + g’ with go weighted homogeneous of type
(wl, ... , wn; N), g’ weighted homogeneous of type (wl, ... , wn; N’) and such that
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To state the result, note that there is a linear map d? : ker(g) - T(g) defined by
taking t = 0 in the formula (3.5).

(3.7) PROPOSITION. Assume that the singularity Y: g = 0 satisfies the condi-
tion :

Then E’2 - 1 - t,t = ker dt1 = (g) for t » 0 (resp. dim ker dt1 = 1 for t » 0 and the lines
ker dt1 in ker(g) converge to the line C-g when t - oo) and the E3 - term E3(g, 0) has
finitely many nonzero en tries.

Proof. (i) Let K c M(g) be a vector subspace which is a complement of the
ideal Ker (g) c M(g).
Then multiplication by g induces a vector space isomorphism K  gK = (g).

For t large enough, it is clear using (3.5) that ker dt1 = (g) and that the canonical
projection M(g) ~ T(g) induces an isomorphism K ~ coker dt1.

Via thèse isomorphisms we may regard d2 as an endomorphism of K for t » 0.
Next dt1(ag) = 0 implies that we may write ag2co" = dg 1B a and the (n-1)-form

a satisfies da = dg /B f3 + Àgwn for some (n - 1)-form 03B2 and function germ À. But
then we have

This shows that the endomorphism d2 has a matrix of the form - t·Id + A +
B(t - 1)-1 for A, B some constant matrices. It follows that for t » 0 this matrix is
invertible and this clearly ends the proof. The proof in case (ii) is similar.
Now we come back to our global setting and assume first that we are in the

homogenous case, i.e wo = ... = w. = 1. Let Z denote the singular locus of V.
Consider the restriction morphism

and the associated morphisms

A moment thought shows that Gt1-P is a quasi-isomorphism for s  0. A
computation using an E2-spectral sequence shows that

Assume from now on that Z is a finite set, namely Z = {a1,..., ap}. Note that
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the singularity (V, ai) is precisely the transversal singularity of f along the line
C* - ai as defined in the beginning of this section.
Choose the coordinates on P" such that H: xo = 0 is transversal to V and

Z c PnBH ~ C". We denote again by ai the corresponding points in C" and let
g(y) = f(1, Y).
Then 03A9Pn(* V) z = ~j= 1,p 03A9g,aj, this identification being compatible with the

F filtrations. Thus we get

We can restate these considerations in the next form.

(3.9) THEOREM. The restriction map p induces a morphism pr : Er(f)0 ~
Et) j = 1,p E,(g, aj) of spectral sequences such that at the El -level pit is an isomorphism
for s  0.

(3.10) COROLLARY. For a projective hypersurface V: f = 0 with isolated

singularities the next statements are equivalent

(i) all the singularities of V are weighted homogeneous;
(ii) Es,tt(f)0 = 0 for s  0;
iii) Es,t2(f)0 ~ 0 for finitely many pairs (s, t).

Proof. Using (3.6) and (3.9) we get (i) ~ (ii). The implication (ii) ~ (iii) is

obvious. To prove (iii) ~ (i) we compute the Euler Poincaré characteristic ~(U) in
two ways. First we use the fact that U = PnB V and the well-known formula for
X(V) given in (3.12) below and get

where Uo is the complement of a smooth hypersurface Vo in P".
Next using (1.8) and a standard property of spectral sequences we get

where the sum is finite by our assumption. Choose m &#x3E; n such that Es,t2(f)0 = 0
for t &#x3E; m. Then
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with

By (3.3.iii) and (3.9) it follows that

where 03C4(V, ai) = dim T(g, ai) = dim ker(g, ai) are the corresponding Tjurina
numbers. On the other hand, using the connection of E1(f) with the Koszul
complex, it is easy to see that the sum ç does not depend on f Since one can
compute x(Uo) in the same way, it follows that

Comparing the two formulas for x(U) we get p(V, ai) = 03C4(V, ai) for any i = 1,..., p
and hence by K. Saito’s Theorem (see for instance [7], p. 119 for a discussion) all
the singularities (V, ai) are weighted homogeneous.

Since for any isolated hypersurface singularity (Y, 0) there is a projective
hypersurface V havingjust one singular point a 1 and such that (V, a1) ~ (Y, 0), see
for instance [2], we get the next result using (3.6), (3.9) and (3.10).

(3.10’) COROLLARY. For an isolated hypersurface singularity (Y, 0) defined by
g = 0 in (cn, 0), the next statements are equivalent:

(i’) (Y,0) is a weighted homogeneous singularity;
(ii’) the spectral sequence Er(g, 0) degenerates at E2;

(iii’) Es,t2(g, 0) ~ 0 for finitely many pairs (s, t).

We conjecture in analogy with (3.10’) that the statements in (3.10) are

equivalent to the next stronger version of (ii):

(iv) the spectral sequence Er(f)0 degenerates at E2.

(3.11) REMARK. Let f be a homogenous polynomial such that V has an
isolated singularity of the type considered in (3.7). Then Er( f )o surely does not
degenerate at E2. Note that f : (Cn+1, 0) ~ (C, 0) is concentrated in the terminology
of [25], p. 206 and our spectral sequence Er( f )o is a subobject in the huge spectral
sequence considered in [25], p. 209. Hence in this case that spectral sequence does
not degenerate at E2 and this gives a negative answer to the question at the top of
p. 209 in [25].
By Theorem (2.8) the interesting Betti numbers for V in the isolated

singularities case are just bn-1(V),bn(V) and we can get bn(V) from En-1(f)0.
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But one has a simple formula for the Euler-Poincaré characteristic in this case
[6]:

where Yo denotes a smooth hypersurface in P" of degree N and p(V, a;) =
dim M(g, ai) are the corresponding Milnor numbers.

In this way we get bn-l (V) knowing bn(V). We remark that there is a formula
for x(F) similarto (3.12) and which appears in the special case n = 2 as Theorem 6.
A in [9].

Proof. If F denotes the closure of F in Pn+1, one has x(F) = X(F)BX(V). One
then use (3.12) and the remark that the singularities of F are just the N-fold
suspensions of the singularities of V and hence

(3.14) REMARK. An important invariant of the singularity f is the zeta function
Z(h) of the monodromy operator h. Explicitly one has

where 039B(hk) denotes the Lefschetz number of the map hl. Using the second
expression above for Z(h) it follows that for any homogeneous polynomial f one
has

When V has only isolated singularities, this formula may be used to compute
dim Hn(F)a for a = 1,..., N - 1 assuming that we know dim Hn-1(F)a via
computations with the spectral sequence Er(f) as in the remark after (2.8).
Next we describe briefly the additional facts necessary in order to treat the case

when f has arbitrary weights w = (wo, ... , wn).
First we have to include a group action in the local setting. Let G c U(n) be

a finite group and consider the induced action on en. Then the ball Be and the
sphere Se are G-invariant subsets. Assume that Y: g = 0 is a reduced hypesurface
singularity which is also G-invariant (i.e. y E Y, y E G =&#x3E; y(y) E Y for a representa-
tive Y of (Y, 0) in Be).
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There is an associated action of G on 03A9Cn,0 given by y 8 Q) = (g-1)* m And there
is character ~Y : G ~ C* such that y 8 g = Xy(y)g for any y E G. In this situation we
call (Y, 0) a G-singularity. Note that this setting is larger than in Wall [27] where
one takes Xy = 1, but coincides (in the case of G cyclic) to the hyperquotient
singularity notion of M. Reid [19].

Let (n*’, d) be the subcomplex in (0;,°’ d) consisting of the fixed elements
under the obvious action of G. If K8 is any complex of C-vector spaces with
G-actions compatible with the differentials, then there is a natural isomorphism
H*(K*G) = H’(K’)G which says that taking cohomology commutes with taking
the fixed parts under G. Moreover in Proposition (3.1) both cohomology groups
have natural G-actions and the isomorphism considered there is compatible with
these actions. It follows that

Next, using again the above commutativity, we get an E 1-spectral sequence
(E,(g, 0)G, dr) consisting of the fixed parts of the spectral sequence described in
(3.2) and converging to H8«SeBK)/G).
Assume now that (Y,0) is an isolated singularity and note that G acts on the

complex L8 considered above. Since the G-action commutes with the differentials
in L8 up-to multiplicative constants, it follows that there is an induced action on
the cohomology H’(L:). And one has exactly as in Wall [27] an isomorphism of
G-vector spaces

with ccy + 1 = dxo A - - - A dxn. Let xo be the character of the action of G on
C03C9n+1. If W is any G-vector space and x : G - C* is a character we set

With this notation, note that

Combining these remarks we get the next analog of (3.3.iii):



39

for all t  2, where ker(g) and T(g) have the obviously induced G-actions.
We consider now the global setting. Let a E Cn+1B{0} be a point in the singular

locus f-1 (0)sing. Let G,, be the isotropy subgroup of a with respect to the C* -action
on Cnll given by

Then Ga is the finite cyclic group of the unity roots of order

ka = g.c.d. {wj; the component aj of a is nonzerol.

Take H to be a transversal to the orbit C * . a at the point a which is Ga-invariant.
For instance, we may assume that ao =1= 0 and then take H : xo - ao = 0. We

identify the germs (Cn, 0) and (H, a) via the isomorphism 9 given by (y1, ... , y n) H

(a0,y1.... , ,Yn). Then the transversal singularity (Y, a) = (H ~ f-1(0), a) is in an
obvious way a Ga-singularity and moreover

under the identification of the (multiplicative) group of the characters of Ga with
the (additive) group Z/ka Z (the character t H tm corresponds to the class of
m modulo kaZ, denoted again by m!).

Note that the germ (P, a) (resp. (V, a)) can be identified to (H/Ga, a) (resp.
(Y/Ga, a)) and hence the latter is a hyperquotient singularity in the sense of Reid
[19]. It follows that 03A9P,a ~ n", and 03A9P(*V)a ~ Çl*’ where ga(y) = f(a0,
y1, ..., 1 Yn) is a local equation for (Y, a), compare with [24], Section 5.

Let Z c V be the finite set corresponding to the singular locus f-1(0)sing Then
we have, (with exactly the same proof) the next analog of Theorem (3.9):

(3.17) THEOREM. The restriction map 03C1:03A9P(*V) ~ 03A9P(*V) Iz induces a

morphism pr : Er(f)0 ~ ~a~ZEr(ga, a)Ga of spectral sequences such that at the
E1-level 03C1s,t1 is an isomorphism for s  0.

As an application we derive now new formulas for the Euler characteristics X(V)
and x(F) similar to (3.12), (3.13). Our result should be compared to the more
explicit formulas of Siersma [22] (obtained in the very special case when
f-1(0)sing is a complete intersection and all the transversal singularities are of
type A 1 ) and, on the other hand, to the very general formulas of Yomdin [28]
(which involve some numerical invariants defined topologically and hence
difficult to compute in general concrete cases).

Consider the Poincaré series
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associated to the weighted homogenity type (w, N). Define next the virtual Euler
characteristics of order m of V and F by the formulas:

where w = wo + ... + wn.
Note that if there is a weighted homogeneous polynomial of type (w, N) having

an isolated singularity at the origin and if V’(resp. F’) denotes the corresponding
hypesurface in P (resp. Milnor fiber) then

(resp. Xm(F(w, N)) = Y(F’) for m  n + 1). To see this you may find useful to read
first the proof of (3.19. ii) below!

(3.19) PROPOSITION. (i) Assume that a polynomial f’ as above exists. Then

(ii) Assume that any transversal singularity ga = 0 for a E Z is either weighted
homogeneous or satisfies the assumptions in (3.7). Then

for all m large enough. When all the singularities ga are weighted homogeneous, it is
enough to take m  n + 1.

Proof. On a formal level, note that the formulas in (i) are a special case of the
formulas in (ii), obtained by taking m divisible by all ka = 1 Gai, a E Z. The proof of
(i) is purely topological and independent of our previous results. Let a, H, ... , be
as above. We may take f’ close enough to f such that for all a E Z the intersection
Fa = B03B5 n ( f’ o ~)-1 (0) can be identified to the Milnor fiber of the singularity
(Y, a). Note also that Fa is Ga-invariant. Let B’(a) be the image of the small ball B,
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under the natural projection (C", 0) - (P, a). Then there is a homeomorphism
VIÀ’ = V’BB’ where B’ = Uaez B’(a). Moreover B’(a) n V is contractible, while
B’(a) n V’ can be identified to Fa/Ga and hence has middle Betti number

as in [27]. Then a Mayer-Vietories argument gives the result for X(V). The result
for x(F) then follows from that for x(V) as in the proof of (3.13).
To prove (ii) we use basically the same argument as in the proof of (3.10) (if

necessary starting the computations with the E3-term of the spectral sequence
Er(f)0) together with (3.17) and (3.16). First we express the sum ç from the proof
of (3.10) in terms of the Poincaré series P(t). Following Siersma [22], we define
a new grading on 08 by setting for a homogeneous p-form OJ E OP:

where 1 úJ denote the degree of m as defined in our introduction. Then

multiplication by d f becomes a map of degree 0 and one has

where P(03A9k) is the Poincaré series of 03A9k with respect to this new grading [22].
Then it is obvious that

To treat the case of transversal singularities covered by (3.7) one has to use the
next isomorphisms of vector spaces, which are clear by the proof of (3.7):

The case of singularities in (3.7.ii) can be treated similarly.

(3.20) EXAMPLE. The polynomial f = XÕ65 + x0x111 + xox2 + x2x43 has

degree N = 265 with respect to the weights w = (1, 24, 33, 58). The singular set
Z consists of one point, namely a = (0, -1,1, 0) with transversal singularity ga of
type A3 . The corresponding isotropy group Ga is Z/3Z and acts on M(ga) such
that dim M(ga)i = 1 for any i. It is konwn that the Poincaré series P(t) is

a polynomial in this case, in spite of the fact that there is no isolated singularity f’
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of this homogeneity type (w, N), see [0], p. 201. It follows that

Using a computer to determine the coefficients of P(t), one gets V(V) = 254.

(3.21) REMARKS. (i) We conjecture that the formulas (3.19.ii) hold for any
transversal singularities.

(ii) If all the transversal singularities (Y, a) for a E Z have links which are
Q-homology spheres, then the hypersurface V is a Q-homology manifold and
hence satisfies the Poincaré duality over Q. In this case bn(Y) = bn(Pn -1 ) and the
remaining interesting Betti number bn-1(V) can be determined from x( V) once
this Euler characteristic is known.

For concrete computations it is useful to use the following general remark.
Assume that fl, ... , fn is a regular sequence in S(this can be always achieved by
a linear change of coordinates in the homogeneous case!). Then the Koszul
complex K’ (1.9) is quasi-isomorphic to the complex

where Q1(f) = 8/(f1’ ..., fn) and fo denotes multiplication by fo. An indication
of the dimensions of Hn+1(K)k ~ Q(f)k-n-1 and Hn(K)k ~ ker(f0)k-n can be
obtained from the exact sequence

since the Poincaré series of Q1(f) is known.

4. Explicit computations

(4.1) EXAMPLE (Computation of H1(U)).
Let f = fla 1... fkak be the decomposition of f in distinct irreducible factors.

Then it is known that b1(U) = b02n-2(V) = k - 1 and it is easy to check that the
closed forms

where Ni = deg(fi), i = 1, ... , k generate H1(U) with only one relation:

Eaicoi = 0 Compare to (2.7.ii).
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(4.2) EXAMPLE (with isolated singularities for V).

Let f = xyz(x + y + z), n = 2. Then V consists of 4 lines in general position in
p2 and its topology is simple to describe. However, the dimensions of the
eigenspaces H’(F)a are more subtle invariants.

First we compute explicit bases for the homogeneous components of Q(f):

Then we look for the elements in H2(K8) and define:

and 03C9yz, 03C9zx by cyclic symmetry.
Then df A 03C9xy = df A 03C9yz = df A COzx = 0 and these three forms give a basis

for H2 (K’)4.
The six forms x03C9xy,y03C9xy,y03C9yz,z03C9zx,x03C9zx generate H2(K)5 with one

relation among them (their sum is trivial).
And the six forms xk03C9xy, yk03C9xy,..., form a basis for H2(K)k+4 for any k  2.
It is now easy to compute dl : H2(K)k ~ H3(K)k and the nontrivial kernels

and cokernels are listed below together with E0,02(f)0 :

The computations also show that the spectral sequence degenerates at E2 and
hence we get the complete results. One can restate them by saying that the
monodromy operator h* acts trivially on H’(F) = C, H1(F) = C3 and its action
on H2(F) = (:6 has characteristic polynomial (t - 1)3(t + 1)(t2 + 1).

(4.3) EXAMPLE (with nonisolated singularities for V).

An irreducible cubic surface in p3 with nonisolated singularities is projectively
equivalent to one of the next normal forms [3]

(i) a cone on the nodal cubic curve;
(ii) a cone on the cuspidal cubic curve;

(iii) S’: x2 z + y2 t = 0;
(iv) S : x2z + y3 + xyt = 0.

The topology of the surfaces (i)-(iii) can be described easier e.g. using [18], so
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that we concentrate on the last case: f = x2z + y3 + xyt. The homogeneous
components of Q(f) are given by

where ~z, t~k denotes the vector space of all homogeneous polynomials in z, t of
degree k. Hence dim Q(f)k = k + 4 for k  2. Consider now the differential
forms:

Then some tedious computations show that:

for k  2. This last vector space has dimension 2k + 5. And similarly one gets

After these complicated formulas it comes as a surprise that the spectral
sequence Er(f) degenerates at E2 and the only nonzero terms are E0,0~(f)0 =
E0,2~(f)1 = E0,2~(f)2 = C.

It follows that H(S) ~ H’(P2) and hence S has the same rational homotopy type
as P2, according to Berceanu [1], who has proved that a projective complete
intersection (with arbitrary singularities) is an intrinsically formal space.

Concerning the Milnor fiber one has H°(F) = C with trivial action of

h*, H2 (F) = C2 with the characteristic polynomial of h* equal to t2 + t + 1 and
H1(F) = H3(F) = 0.
Our next result is an improvement of Corollary (3.11) in Scherk [20] (to see

the connexion between these two results have a look at the exact sequences (1.3)
in [20]!).

Let (Y, 0) be an isolated hypersurface singularity given by g = 0 in en. We
define the y-constant determinacy order of ( Y, 0) (denote by Il- det( Y, 0)) to be the
smallest integer s &#x3E; 0 such that the family gt = g + th (t E [0, 1]) is Il-constant for
any h ~ (y1 , ... , yn)s with small enough coefficients. Note that 03BC-det(Y,0) can be
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easily computed for large classes of singularities (e.g. weighted homogeneous or
Newton nondegenerate singularities) and is always less or equal to the strongly
aT-determinancy order O(g) see [7], p. 75. In Scherk’s notation, one has.

(4.4) PROPOSITION. Let V c P" be a hypersurface having just one singular
point a and such that N = deg(V) &#x3E; jl-det(V, a).

Then bn-1(V) = bn-1(V0) - 03BC(V,a) and bn(V) = bn(V0), where Vo is a smooth
hypersurface in pn with deg(Vo) = N.

Proof. Choose the coordinates on P" such that a = (1:0: ···: 0) and H : xo = 0 is
transversal to V. If f = 0 is an equation for V, then we set g(y) = f(1, y 1, ... , yn) =
g2(y) + ··· + 9N(Y), with gk a homogeneous polynomial of degree k. Using the
assumptions, we can find a continuous family

with the properties:

(ii) For any t &#x3E; 0, the hypersurfaces in Pn-1

are smooth and intersect transversally;
(iii) gt is a y-constant family;
(iv) The projective hypersurfaces Vt with the affine equations gt = 0 have no

singularities except a.
According to [6], the cohomology of Yt is determined by a lattice morphism

where Li (resp. L!) is the Milnor lattice of the singularity gt - 0 (resp. g’ = 0).
When t varies, these Milnor lattices are constant and hence the morphism qJt has
to be constant too.

Hence H(V) = H(V1) and so we can assume from the beginning that gN-1, 9N
satisfy the condition (ii).

Let ~: L 1  L ~ L be the lattice morphism in this case. We have to show that
i(L1) n Rad L = 0, where i is the embedding of Milnor lattices arising from the
small deformation gr(y) = g(r y) - · r-N (r » 0) of the singularity 9N = 0, see [6],
proof of (1.2).

But we may think of gr as being a even smaller deformation (of order r - 2 ) of the
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germ g’ = gN-1 · r-1 + gN, which is a small deformation of gN. If L’ denotes the
Milnor lattice of the singularity g’ = 0, then the inclusion i above factorizes as

Li 4 L’ flL and hence it is enough to show that

(v) j(L’) n Rad L = 0.

Now j is related to the cohomology of the hypersurface Y’ c P" with the affine
equation gN-1 1 + gN = 0. Note that v’ has just one singular point too, namely a.
By a ,u-constant argument as above, we can assume that

Next (v) is equivalent to Hn0(V’) = 0 and we show this using the spectral
sequence Er(f’) for f ’ = x0gN-1(x1,..., xn) + gN(x1,..., xn). It is enough to
show that d1 is injective. And this follows easily using the fact that a base for
Hn (K) is given by the forms xa0n ... xann · 03C9 with ai  N - 2 for i = 1,..., n and
w = úJ 1 039B ··· A Wn, where the 1-forms

are the obvious solution of the equation

Compare to [22], [25], but note that here the transversal type is not A 1 for N &#x3E; 3.

Note added in proof

The proof of Theorem (2.2) above contains an error on p. 11 lines 7 and 8. It is
possible to repair this in some special cases, e.g. when all the singularities of V
are isolated and weighted homogeneous. A more general result implying
Theorem (2.2) has been proved by the author and P. Deligne (to whom 1 am very
grateful for pointing out the above mentioned error!). For details, see our
preprint "Hodge and order of the pole filtrations for singular hypersurfaces".
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