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Introduction

In this work we study rings of the form A1(K) Q9K S, where K is a commutative
field of characteristic zero, A1(K) the Weyl algebra in one variable and S a K-
algebra satisfying the so called Auslander-Gorenstein condition. The K-algebra
A,(K) is generated by two elements x and ô such that ôx - x8 = 1. We get a
graded ring structure on R = Al (K) Q9 K S where elements of S are homog-
eneous of degree zero, while x, respectively ô is homogeneous of degree - 1,
respectively + 1.

Then, for a finitely generated and graded left(or right) R-module M = EB Mv
we are going to establish that the grade number of the R-module M is obtained
via the grade numbers of the homogeneous components each of which is a
finitely generated module over the polynomial ring in one variable over S.
Our main result occurs in Theorem 1.3 and we refer to §4 for some

applications to modules over rings of differential operators.
Concerning examples of Auslander-Gorenstein rings we mention that if S is a

commutative noetherian ring with finite injective dimension then S is

Auslander-Gorenstein. Moreover, if S is a positively filtered ring (or more
general a zariskian filtered ring) such that the associated graded ring is

Auslander-Gorenstein then S is Auslander-Gorenstein. For details we refer to

[Bj:21.

1. Announcements of the main results

Before we announce Theorem 1.3 and 1.4 below we need some preliminaries:
We consider the Weyl algebra A 1 (K) in one variable over a commutative field

of characteristic zero. Recall that the K-algebra A1(K) is generated by two
elements x and 8 such that ôx - xô = 1.

Denote by vo the K-subalgebra of A1(K) generated by x and xô. If k  1 we
set
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It is easily seen that {Vk}k~Z is a filtration, i.e. vk vm c Vk+m, ~ Vk = {0} and
~Vk = A1(K).
The associated graded ring ~Vk/Vk-1 is denoted by gr(Al). Let x, re-

spectively 0 denote the image of x in V-1/V-2, respectively a in VIV,. It is
obvious that the K-algebra gr(A1) is generated by x and ~. Moreover

ôx - x3 = 1 in the ring gr(A1). It follows that the K-algebras gr(A1) and A1(K)
are isomorphic. By definition gr(A1) is a graded ring. If k is an integer we set
grk(A1) = Vk/Vk-1. Observe that gro(A 1 ) = K[x~], i.e. gro(A 1 ) is the polynomial
ring in one variable over K.

In this paper we study tensor product rings of the form gr(A 1 ) 0K S, where S
is a K-algebra. Set R = gr(A 1 ) ~KS. The graded structure of gr(A1) induces a
graded structure of R such that

We will assume that the ring S satisfies certain homological conditions and
recall first:

Auslander-Gorenstein rings

Let A be a left and a right noetherian ring. We say that A has a finite injective
dimension if there exists an integer n such that ExtvA(M, A) = 0 for every v &#x3E; n

and any left or right A-module M. We refer to the article [Za] for facts about
noncommutative noetherian rings with finite injective dimension. Following
[Bj:2, Definition 1.2] we give

1.1. DEFINITION. A ring A is called an Auslander-Gorenstein ring if A is a
left and a right noetherian ring with finite injective dimension and moreover: for
every integer v, every finitely generated left or right A-module M and every
submodule N of Extv(M, A) it follows that Ext’(N, A) = 0 for every i  v.

Assume A is Auslander-Gorenstein. If M is a nonzero and finitely generated
left or right A-module, then there exists a unique smallest integer k such that
ExtkA(M, A) is nonzero. We set k = jA(M) and we call jA(M) the grade number of
M. If M is the zero module we define jA (M) = 00.

1.2. REMARK. Let A be an Auslander-Gorenstein ring. It follows from the

Auslander condition that if 0 ~ M’ ~ M - M" ~ 0 is an exact sequence of

finitely generated A-modules then
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For a proof see [Bj:2, Proposition 1.8].

REMARK. Let K be a commutative field and let S be an Auslander-Gorenstein

K-algebra. Then every skew polynomial ring over S is Auslander-Gorenstein.
For the proof we refer to [Ek; Theorem 4.2]. In particular, this gives that if S is
an Auslander-Gorenstein ring, then so is R = A1(K) 0, S since R may be
regarded as a skew polynomial ring in two variables over S. Moreover, Ro is a
polynomial ring in one variable over S and hence an Auslander-Gorenstein ring.

Let us now consider an Auslander-Gorenstein K-algebra S and set

R = gr(A 1 ) 0, S. Let M = E9 M, be a graded and finitely generated R-module.
It follows easily that every homogeneous component Mv is a finitely generated
Ro-module. So the grade numbers jRo(M") are defined for every v e Z. Now we
have:

1.3. THEOREM. Let S be an Auslander-Gorenstein K-algebra and set

R = gr(A1)~KS. Let M = M, be a graded and finitely generated R-module.
Then

Before Theorem 1.4 below is announced we recall that if A is an Auslander-

Gorenstein ring then a finitely generated A-module M is pure if and only if

jA(N) = jA(M) for every nonzero submodule N of M.

1.4. THEOREM. Let S be an Auslander-Gorenstein K-algebra and M a finitely
generated and graded R-module. Then the R-module M is pure if and only if each
nonzero M v is a pure Ro-module such that

1.5. An application of Theorem 1.3

We are going to use Theorem 1.3 in order to compute projective dimensions of
graded R-modules in the case R = gr(A 1 ) ~KD1, where D1 1 is the K-algebra
given by the skew field extension of A1(K).

First we recall some general facts from [Na-Oy]. In general, let R = ~v~ZRv
be a Z-graded ring. Assume that R is left and right noetherian with a finite global
homological dimension. Denote by Gf(R) the family of graded and finitely
generated left R-modules.

1.6. DEFINITION. The graded left global homological dimension of R is the
smallest integer w such that proj.dim.R(M)  w for every M in G f(R), where
proj.dim.R denotes the usual projective dimension in the category of R-modules.
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1.7. REMARK. Denote the graded left global homological dimension by
l.gr.gl.(R). Replacing left by right we also obtain the graded right global
homological dimension given by the smallest integer w’ such that

proj.dim.R(N)  w’ for every finitely generated and graded right R-module N.
By the results in chapter 1 of [Na-Oy] we have the equality

Let us only remark that (1.8) is a consequence of the fact that both l.gr.gl(R) and
r.gr.gl(R) are equal to the so-called weak graded global dimension, which is the
smallest integer w" such that TorR(N, M) = 0 when v &#x3E; w", N is a graded right
and M is a graded left R-module.
Using (1.8) we simply put l.gr.gl(R) = gr.gl(R) and refer to gr.gl(R) as the

graded global homological dimension. By Theorem Il.8.2 in [Na-Oy] we have

Now we are going to prove

1.10. THEOREM. Let S be the skew field extension of A,(K). Then, with
R = gr(A1) Q9KS we have

gl.dim.(R) = 2 and gr.gl(R) = 1.

So Theorem 1.10 gives an example when the strict inequality gr.gl(R)
 gl.dim.(R) holds.
Proof of Theorem 1.10. The equality gl.dim.(R) = 2 is proved by Hart in [H].

By (1.9) we get 1  gr.gl(R)  2. So there remains to prove that gr.gl(R)  1, i.e.
we must show that proj.dim.(M)  1 for every finitely generated and graded R-
module. To prove this we argue by a contradiction, i.e. assume that there exists a
finitely generated and graded R-module M such that proj.dim.(M) &#x3E; 1. Notice

that we then obtain proj.dim.(M) = 2 since gl.dim.(R) = 2. Then, standard
homological algebra implies that ExtR(M, R) is non-zero. Set N = ExtR(M, R)
and notice that N is a graded right R-module. Auslander’s condition implies that
jR(N)  2 and since gl.dim.(R) = 2 we must have jR(N) = 2. Now N = E9 Nv
and Theorem 1.3 gives

At this stage we get the contradiction since Ro is the polynomial ring in one
variable over the skew field D1. Thus, gl.dim.(Ro) = 1 so jR0(Nv)  1 when
Nv ~ 0 and (i) cannot hold.
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2. Preliminary results

In this section we collect various results about Auslander-Gorenstein rings.
In general, let S be a ring and T one element of S such that T is neither a left

nor a right zero-divisor. Moreover, we assume that ST= TS and the twosided
ideal generated by T is denoted by (T).

If M is a left S-module such that TM = 0, then we get a left S/(T)-module
structure on M. Conversely, if N is a left S/(T)-module we see that N has a left S-
module structure such that TN = 0. Let J1 be the functor from the category of

finitely generated left S/(T)-modules to the category of finitely generated left S-
modules. Similarly we have a functor from the category of finitely generated
right S/(T)-modules to the category of finitely generated right S-modules.

2.1. PROPOSITION. Let M be a finitely generated S/(T)-module. Then

Extv+1S(03BC(M), S) = 03BC(ExtvS/(T)(M, S/(T))) for ever y v  0.
Proof. For the case T is a central element of S, this is Theorem 9.37 of [Rot].

When T is not central the same methods can still be applied to prove the
proposition.

REMARK. Concerning the inequality

we mention that equality holds if S is commutative. But in the noncommutative
case we can have a strict inequality. For example consider the Weyl algebra
An(K) where K is a commutative field of characteristic zero. Using the positive
Bernstein filtration we construct the associated Rees ring denoted by S. If T is the
central element in S which corresponds to the identity in An(K) put in degree one
of the graded ring S, then S/(1 - T) is isomorphic with A,,(K). Moreover, An(K)
is a ring with a finite global homological dimension which is equal to its injective
dimension. Hence we have that

On the other hand since gr(An(K)) has global homological dimension 2n, it

follows that

Finally, the inequality
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is proved in [Ek] and hence we get inj.dims(S) = 2n + 1. So we get the strict
inequality n = inj.dim T)) « inj.dims (S) = 2n + 1 for every

positive integer n.

2.2. PROPOSITION. Let M be a finitely generated S/(T)-module. Then

is (/À(m» = jS/(T)(M) + 1.
Proof. This follows immediately from Proposition 2.1.

2.3. THEOREM. Let S be an Auslander-Gorenstein ring containing an element T
as above. Then S/(T) is an Auslander-Gorenstein ring.
Proof. First we observe that the ring S/(T) is left and right noetherian since S

is.

Next it follows from Proposition 2.1 that

inj.dims/T&#x3E;(S/(T)) 5 inj.dims(S) - 1.

Now, let M be a finitely generated S/{T)-module and N a submodule of

ExtvS/(T)(M, S/(T)) for some v &#x3E; 0. Then by Proposition 2.1 03BC(N) is an S-

submodule of Extv+1S(03BC(M), S) so the Auslander condition of the ring S gives that
js(03BC(N))  v + 1. Finally Proposition 2.2 gives that jS/(T)(N)=jS(03BC(N))
- 1  v + 1 - 1 = v and the theorem is proved.

Let us consider a ring A and let p: A - A be a ring automorphism.

2.4. DEFINITION. Let M be a left A-module and v c- Z. Then ~v(M) is the left A-
module whose additive group is M and if a E A and m E ~v(M) then a * m is equal to
p’(a)m in the left A-module ~v(M).

It is obvious that M - ~(M) is an exact functor on the category of left A-
modules and we leave out the detailed verification of the following:

2.5. LEMMA. Let M be a finitely generated A-module. Then jA(M) = jA(~(M)).

Next, the automorphism p enables us to construct the skew polynomial ring

B = A[x, p]

where xa = p(a)x for every a in A.
The ring B is graded with Bv = Ax" for every v  0 while Bv = 0 if v  0.
From now on we assume that A is Auslander-Gorenstein. By [Ek, Theorem

4.2] B is also an Auslander-Gorenstein ring.
Let us now consider a finitely generated and positively graded B-module

M = ~v0Mv.
We note that every M" is a finitely generated A-module.
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2.6. LEMMA. There exists an integer w such that x: M, -+ Mv+ 1 is bijective for
every v  w.

Proof. Set K = {m~M:xm = 01 and N = M/xM. We note that both K and
N are graded and finitely generated B-modules such that xK = xN = 0. So we
find an integer v  w such that v  w yields K, = N" = 0 and Lemma 2.6
follows.

2.7. COROLLARY. Let M be a graded and finitely generated B-module. Then
there exists an integer w such that v  w yields jA (Mv) = jA(Mw)’

Proof. Lemma 2.6 and the construction of the skew polynomial ring B show
that if v  w then the A-modules M, and ~(Mv+1) are isomorphic. Then Lemma
2.5 gives Corollary 2.7.
Using Corollary 2.7 we get

2.8. DEFINITION. Let M = (9 M" be a graded and finitely generated B-
module. Then limv~~jA(Mv) exists and is denoted by j~(M).

2.9. PROPOSITION. Let M be a finitely generated and graded B-module. Then

jB(M) = infv~Z{j~(M), 1 + jA(Mv)}.
Proof. Choose w so that x: Mv~Mv+1 is bijective for all v  w. Set

N = ~vw Mv. It follows that the graded B-submodule N of M is isomorphic
with the graded B-module B ~A Mv-

Moreover jA(Mw)=j~(M).
We have the exact sequence 0 - N - M - M/N ~ 0 and the Auslander

condition gives:

The equality jB(N) = jA(Mw) follows by standard homological algebra.
Finally, M/N is a graded B-module such that xw+k(MjN) = 0 for some integer

k. Then standard homological algebra gives:

The A-module M/N is isomorphic with ~vwMv and hence jA(MjN) =
infvw{jA(Mv)}. Now we get Proposition 2.9.

3. Proof of the main results

In this section we set R = gr(A1) ~KS. Here S is an Auslander-Gorenstein K-
algebra. Let M = ~ M, be a finitely generated and graded R-module.
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3.1. LEMMA. Every homogeneous component Mv is a finitely generated Ro-
module.

Proof. We notice that if k  1 then Rk = Rock and R-k = Roxk. Now Lemma
3.1 follows since M is a graded quotient of a free R-module of finite rank.

Next, Ro = gr0(A1) Q9KS and gr0(A1) is the polynomial ring KV] with
V = x~. Hence Ro = S[V], i.e. the polynomial ring in one variable over S.
The next result is a crucial step towards the proof of Theorem 1.3.

3.2. LEMMA. For every v E 7L and n  1 we have

Proof. Let v~Z and n  1. Set

Kv,n = {m~Mv: ~nm = 01 and Tv,n = {m~Mv: x"m = 01.

We notice that Kv,n and Tv,n both are S[V]-submodules of Mv. Now we have:

SUBLEMMA. Kv,n n Tv,n = 0.
Proof of Sublemma. Assume the contrary and take 0 ~ m E K"," n Tv,n’ Since

gr(A1) is a K-subalgebra of R we get the cyclic gr(A 1 )-module generated by m. By
assumption x"m = ~nm = 0 and this gives dimK(gr(A1)m)  oo. This gives a
contradiction since gr(A1) is isomorphic to A 1 (K) and by the result from [G-R]
there does not exist any non-zero A 1 (K)-module whose underlying K-space is
finite dimensional.

Proof continued. We have the exact sequence:

Next, consider the injective map ~n: Mv/Kv,n ~ Mv+n. In the ring R we have
~n~ = (V + n)ô". Let p be the automorphism on the ring S[V] defined by p(s) = s
for every SES and 03C1(~) = ~ + 1. Using the notation from 2.4 we have

that ~-n(Mv/Kv,n) is isomorphic to a S[V]-submodule of Mv+n. Since

js[v] (MvjKv,n) it follows from remark 1.2 that

JS[VI (M,, + n)-

Next the sublemma implies that K",n is isomorphic with an S[V]-submodule
of Mv/Tv,n. By similar methods as above we have
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Now we get

and then Remark 1.2 gives Lemma 3.2.

3.3. The 03C4-filtration on R

If v  0 we set 03C4v(R) = ~|k|v Rk. We see that {03C4v(R)}v0 is a positive filtration
on the ring R. Let grt (R) = ~ 03C4v(R)/03C4-1(R) be the associated graded ring. The
image of x in il(R)/io(R) is denoted by X. Similarly, Y is the image of 3 in
03C41(R)/-03C40(R).

In order to describe the ring gr,(R) we also notice that if we set

03C4(v) = 03C4v(R)/03C4v-1(R) then T(O) = To(R) = Ro and hence the Ro-element V is

identified with an element in T(O), i.e. V is homogeneous of degree zero in the
graded ring gr03C4(R). Moreover, since x·x·~-x·~·x=-x holds in R, it follows
that

holds in gr03C4(R). Similarly, we obtain

Let us now consider the ring S[V]. Denote by pi the automorphism on S[V]
defined by 03C11(s) = s for every s E S and 03C11(~) = V + 1, then Xa = p,(a)X holds
in gr03C4(R) for every a~S[~] = ï(0). Similarly, if p. is the S[V]-automorphism
defined by 03C12(s) = s and 03C12(~) = ~ - 1, then Ya = p2(a)Y holds in gr,(R) for
every a E S[V]. Now we notice that the automorphisms pi and 03C12 commute and
hence we can construct the skew polynomial ring S[~][z1, z2; pl, P2]. Denote by
(z 1 z2) the two-sided ideal generated by z1z2. With these notations we have:

3.6. LEMMA. The ring gr03C4(R) is isomorphic with

Proof. We notice that (3.4) and (3.5) yield a surjective K-algebra morphism:
9: S[VI[Zl, Z2; Pl, 03C12] ~ gr03C4(R) which is the identity on S[V] while z, is mapped
into X and Z2 into Y Next, in the ring R we have x3 in Ro and then X Y belongs
to io(R) so the image of X Y in 03C42(R)/03C41(R) is zero. Thus XY= 0 in gr,(R).
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Similarly YX = 0 in gr03C4(R). So the map 9 induces a surjective K-algebra
morphism 03C8 from the quotient ring S[~][z1, z,; 03C11, 03C12]/(z1z2) into gr,(R). There
remains only to see that 03C8 is injective. To prove the injectivity, we notice that if
v  1 then we have a direct sum decomposition

Moreover, Rv = ôWRo and R-v = xVRo for v &#x3E; 0. Then it easily follows that 03C8 is
injective.

3.7. COROLLARY. The ring gr03C4(R) is Auslander-Gorenstein.
Proof. By the remark after Remark 1.2 the skew polynomial ring S[~][z1, z2;

p i, P2] is Auslander-Gorenstein. With T = z1z2 we apply Theorem 2.3 and then
Lemma 3.6 gives Corollary 3.7.

Let us now consider a finitely generated and graded R-module M = (B Mv.
Set

We notice that 03C4j(R)0393v c 0393j+v and hence {0393v} is a filtration on M when R is
equipped with the positive 03C4-filtration. Set 0393(v) = 0393v/0393v-1 and then we notice
that

3.10. LEMMA. 0 0393v/0393v-1 is a finitely generated grt(R)-module.
Proof. From Lemma 3.1 it follows that r(v) is a finitely generated Ro-module

for every v. Moreover, since M is a graded and finitely generated R-module it
follows that there exists a non-negative integer w such that v  w yields
Mv+1 = ~Mv and M-v-1 = -XM -,. Then Lemma 3.10 follows easily.
At this stage we are going to use some results concerned with filtered rings.

First, the i-filtration on the Auslander-Gorenstein ring R is positive, i.e. Tv = 0 if
v  0. Then the material in [Bj:2] yields

where grr(M) = ~ rvjrv-l is the finitely generated and graded gr03C4(R)-module
from Lemma 3.10.

Hence Theorem 1.3 will follow if we have proved:
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3.12. PROPOSITION. We have that

Proof. By (3.9) we have

where r(v) = Mv ~ M-v if v i 1 and r(O) = Mo.
Put N + = ~v 1 MU - We have that the gr03C4(R)-elements X and Y from (3.4)

and (3.5) which are images of x respectively ~. Since xM" c Mv-1 hold for every
v  1, it follows that XN + = 0. Also, since ~Mv c Mv + 1 we obtain YN + c N +
and conclude that N + is a graded gr03C4(R)-submodule of gr0393(M) annihilated by X.

Next, put B = S[V][zi, z,; 03C11, P2] and recall from Lemma 3.6 that

grt(R) = B/(z1, Z2). So we can consider N + as a left B-module and since

XN + = 0 we obtain z1N+ = 0.
Now Proposition 2.2 gives

Next, BI(z,) is isomorphic with S[~][z2; P2] which implies that N + also is a

graded S[~][z2; p2]-module. Now Proposition 2.9 gives

where joo(N +) = limv - + 00 js[~](Mv).
Let us also consider the element z 1 z 2 in the ring B. Another application of

Proposition 2.9 gives

Let us now consider the quotient module gr0393(M)/N+ and denote it by N_.
We notice that N - is a graded griR)-module with N_ = ~v0N_(v) where the
S[~]-module N-(v) is equal to M-v for every v 1 0. Since ôM -v c M - v , 1 for
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every u  0 we easily get YN_ = 0. Repeating the steps (a), (b) and (c) reversing
the roles between X and T we obtain.

where j oo(N -) = limv- + ~js[~](M-v).
At this stage we are going to use Lemma 3.2 to finish the proof of Proposition

3.12. Namely, Lemma 3.2 yields

Then (d), (e) and (f) yield

Finally, Remark 1.2 and the exact sequence

yield

So the equality in (g) gives Proposition 3.12.
We have now finished the proof of Theorem 1.3. Let us now consider a finitely

generated left Ro-module N. We obtain a graded left R-module X = R OR. N,
where we remark that if k is some integer then the homogeneous component Rk
in the ring R is an R-module and thus Rk 0 Ro N is a left Ro-module which is
equal to the k-th homogeneous component of the graded R-module X. Now
Theorem 1.3 gives

Concerning the right hand side in (3.13) we have the following:

3.14. LEMMA. infv~Z{jR0(Nv)} =jR0(N).
Proof. Recall that Ro = S[V] and let p be the ring-automorphism on S[V]

defined by p(s) = s for every SES and p(V) = V + 1. Next, if v  1 then

Rv = ô"Ro and using the q-functor from Definition 2.4 we find that the R-
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module N, is isomorphic to ri - "(N) and hence jR0(Nv)=jR0(N). Next, we have
R-v = x"Ro and find that the Ro-modules N-v and il’(N) are isomorphic. So
again jRo(N -v) = jRo(N) and Lemma 3.14 follows.

3.15. Proof of Theorem 1.4. Let M = Ef) Mv be a finitely generated and graded
R-module. Assume first that every non-zero mv is a pure Ro-module with

iR0(Mv) = jR(M). Then we show that the R-module M is pure. To prove this we
apply the theory in [Ek:§3] which implies that M is a pure R-module if

jR (N) = jR (M) for every non-zero and graded submodule N of M. If N = ~ Nv is
a graded R-submodule then the hypothesis yields jR0(Nv) = jR (M) when Nv i=- 0.
Now we see that Theorem 1.3 gives jR (N) = jR (M).

Conversely, assume that M is a pure R-module. Then, if some non-zero

homogeneous component M, fails to be a pure Ro-module with jR0(Mv) = jR (M),
it follows that there exists an integer v and a non-zero Ro-submodule N of Mv
such that jRo(N) &#x3E; jR(M). Using N, we construct the graded left R-module

%=R(8)RoN

where %k = Rk-v ~R0Nv for every k. Lemma 3.14 givesjR(%) = jRo(N). Next,
we notice that there exists an R-linear map ~: N ~ M such that qJ(%) is the
graded R-submodule of M generated by N. The purity of M gives
jR(~(N)) = jR (M). On the other hand we have jR(N))  jR(N) &#x3E;jR(M) which
is a contradiction.

4. Applications

Let R = gr(A1) (8) K S where S is an Auslander-Gorenstein K-algebra and let
M = (B Mv be a finitely generated and graded R-module. In Proposition 3.1 we
noticed that every homogeneous component Mv is a finitely generated gro(R)-
module where gro(R) is the polynomial ring S[V].

In the special case when every M" is a finitely generated S-module we say that
the graded R-module M is strongly finitely generated.
We shall give examples of strongly finitely generated R-modules in 4.5. But

first we establish the following:

4.1. THEOREM. Let M = (B Mv be a graded and strongly finitely generated R-
module. Then jR(M) = 1 + infv~Z{jS(Mv)}.

Proof. In general, if N is an S[V]-module such that its underlying S-module is
finitely generated then

Js(N) = js[VI (N) - 1

by Proposition 2.2. Now we see that Theorem 1.3 gives Theorem 4.1.
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4.2. V-filtrations on rings of differential operators

Following example 1.5.5 in Chapter II of [Sch] we consider a non-singular
complex analytic hypersurface Y of a complex manifold X. Let 9-y be the ideal
of (9x whose sections vanish on Y, that is, the defining ideal of Y in X. If k E Z we
set

Then {FkDX} is a filtration on DX, called the V-filtration of DX along Y If
dim(X) = n + 1 and (x1, ... , xn, t) are local coordinates such that

Y = {(x, t): t = 01 then Foéox is the subring of DX generated by the zero-order
differential operators and Dx1,..., Dxn and tDt . If k  1 we have

and

Moreover, let gDX = ~FkDX/Fk-1DX be the associated graded sheaf of
rings. Then

where i: Y- X is the closed embedding and gr(A1(C)) is the graded one-
dimensional Weyl algebra where deg(t) =- -1 and deg(Dt) = 1. If (xo, 0) is a
point in Y then the stalk E0y(xo) is the ring E0n of differential operators with
coefficients in the local ring On. We see that the stalk

and recall that Dn is an Auslander-Gorenstein K-algebra whose global hom-
ological dimension is equal to n. So with S = Dn we can apply the main results to
stalks of coherent and graded G-9,-modules.
To get specific examples we first consider a coherent left -9x-module M.

Working locally if necessary we assume that uIt has a good V-filtration which by
definition consists of an increasing sequence {FkM} such that there exists locally
a finite set of generators m1, ..., ms of the DX-module M and integers k1 ··· ks
with
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for every integer k. Then GM = ~ FkM/Fk-1M is a coherent and graded GDX-
module. So for every (xo, 0) in Y we get the grade number

Theorem 1.3 shows that this grade number equals

Next, following Definition 1.6.1 in Chapter III of [Sch] we say that the
coherent DX-module M is elliptic along Y if the following holds: the -9,-module
M is generated by a coherent (9,-submodule M0 such that locally there exists
polynomials b = V" + a1(x, t)~m-1 + ··· + am (x, t) where V = tDt and a, (x,
t)~OX and bM0 c F-1(DX)M0.

Following [Sch, p. 134] we have the result below:

4.3. PROPOSITION. Let M be a coherent !!fix-module which is elliptic along the
hypersurface Y. Then for every good V-filtration {FkM} and (xo, 0) E Y, it follows
that ~FkM(x0,0)/Fk-1M(x0, 0) is a strongly finitely generated G-9x(xo, 0)-
module.

Now Theorem 4.1 can be applied and identifying the stalk -qy(xo) with the
ring !!fin we obtain

4.4. COROLLARY. Let Jt be a coherent -9x-module which is elliptic
along Y and {FkM} a good V-filtration. Then jGDX(x0,0)(GM(x0, 0)) = inf

for every (xo, 0) E Y.

4.5. REMARK. In the special case when A is a coherent and pure -9,-module,
i.e. when every stalk A(xo) is a pure DX(x0)-module where xo belongs to
Supp M, it follows by the general result in [Bj: 2, Theorem 3.8] that there locally
exists a good V-filtration {FkM} such that if GA = ~ FkM/Fk-1 M and
(xo, 0) E Supp GAI then GM(x0, 0) is a pure GDX(x0, 0)-module with

So in the special case when M is pure along Y we can use such a special good
V-filtration and applying Theorem 1.4 it follows first that if (xo, 0) E Supp GM,
then
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is equal to jDX(x0)(M(x0) for every k such that (xo, 0) belongs to

Supp(FkM/Fk-1 1
Finally, if M is both pure and elliptic then we first notice that Theorem 1.4

and the actual proof of Theorem V.1 implies that if (xo, 0) E Supp(FkM/Fk-1 M),
then the DY(x0)-module FkM(x0, 0)/Fk-1M(x0, 0) is pure with grade number

Let us remark that if M is a holonomic DX-module then vit is elliptic along every
non-singular hypersurface Y For a detailed proof of this fact we refer to the
article [L-S].

Also, any holonomic DX-module is pure and the equality in (4.6) yields

where (xo, 0)~Supp(FkM/Fk-1M). This means that FkM/Fk-1M is a

holonomic DY-module for every integer k. We remark that this conclusion is
already contained in the work [L-S] while our main results yield new facts
concerned with non-holonomic DX-modules and their associated GDX-modules
obtained by good V-filtrations.
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