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1. Introduction

Given a Riemannian manifold M, we denote by KM, dM and VM, its sectional
curvature, diameter and volume, respectively. Let f Mi; i = 1,2,3,...} be a
sequence of connected closed n-dimensional Riemannian manifolds satisfying the
following conditions:

for each i.

Then, M. Gromov’s convergence theorem ([7], [10], [6], [14]) asserts that
there is a subsequence {j} c {i} such that Mj converges to an n-dimensional
differentiable manifold M~ with a metric g~ of C1+03B1 Hôlder class in Lipschitz
distance.

The purpose of this paper is to generalize this result to several classes of
Riemannian manifolds M with non-empty boundary DM. We establish various
convergence theorems of the Gromov’s type under some additional assumption
on the boundary DM.

Let 03BBi(p), i = 1, 2,..., n - 1, be the principal curvatures at p E DM with respect
to the inwardly pointed unit normal vector Np at p. The following simple
examples (1), (2) illustrate the necessary condition on the principal curvatures to
establish a reasonable convergence theorem.

Let Dr(a, b) be a disk of radius r centered at (a, b) in the Euclidean two-plane R2.
Here r, a, b E R.

EXAMPLE. (1) Let A03B5 be a convex hull of D1(0, 0) ~ De(2, 0). Let 8 tend to 0.
Then a corner appears at (2, 0). It can be ruled out by an upper bound on ki.

(2) Put B. = D1(0,0)/D03B5(0,0). Let 8 tent to 0. Then the boundary of De(O,O)
tends to a point. It can be ruled out by a lower bound on Â,.

(3) Put Ce = D1(0,0)/D1/2(1 2 - 8,0). Let e tend to 0. Then two boudaries
contact at (1, 0).
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The phenomenon occurring in example (3) can not be ruled out by bounds on
the principal curvatures.

In this paper, we will show that if we give some additional conditions on the
boundary then a convergence theorem holds for Riemannian manifolds with
boundary whose principal curvatures are bounded. (Theorems B and B’. See
Section 2).
Throughout this paper, all manifolds and their boundaries are assumed to be

compact and smoothly differentiable.

1. Notations and definitions

Let M be a compact Riemannian manifold with nonempty boundary ôM.
(1) We denote by dM the distance function of M, by daM the distance from the

boundary ôM and by BM(p, r) the metric ball of radius r around p ~ M. We put, for
0  tt’  +oo,

(2) We denote by Np (N, resp.) the inwardly pointed unit normal vector at
p E DM (vector field on DM, resp.), by TpôM (TôM, resp.) the tangent space of DM
at p (the tangent bundle o DM, resp.) and by v+p(v+, resp.) the half space of the
normal space vp at p ~ DM (the normal bundle v of DM, resp.) which consists of
inwardly pointed vectors. The second fundamental form S at p E DM is defined by
S(X) = - VXN for X ~ TpôM, where V is the Riemannian connection of M. The
principal curvatures 03BBi(p), i = 1, 2, ... , n - 1, at p are eigenvalues of S. For
example, the principal curvature of unit n-sphere as a boundary of unit
(n + 1 )-disk is equal to 1.

(3) We define positive iint, i~ and im by iint = sup{r &#x3E; 0| For any p ~ M, any
normal geodesic y(t), 0  t  ty, from p is distance minimizing up to the distance
min (ty, r). 1,

and

respectively, where v+ (r) = {r ~ v+ I | v Il  rl.
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2. Statement of results

First we consider the following class of Riemannian manifolds.

DEFINITION 2.1. Let M0(n, , 03BB+, 03BB-, i0) be the class of n-dimensional

compact Riemannian manifolds M with nonempty boundary DM with the
sectional curvature |KM|  A, the second fundamental form 03BB-  S  03BB+ and
iM  i0. Our condition on the second fundamental form is equivalent to the fact
that any principal curvature Âi(p) at p E DM satisfies 03BB-  03BBi(p)  03BB+.

Because of the bounds 03BB+,03BB- on the principal curvature, we can avoid the
phenomena occurring in example (1) and (2), and by the lower bound io on iM, we
can avoid the phenomenon occurring in example (3).

In fact, we have the following main theorem.

THEOREM A. In M0(n, , 03BB+, 03BB-, i0), the Hausdorff and Lipschitz topology
coincide. More precisely, given p &#x3E; 0, there exists a «n, A, 03BB+, 03BB-, i0) &#x3E; 0 such that

dH(M, M)  ( implies dL(M, M)  p for all M, M E Mo (n, A, 03BB +, 03BB-, i0).

The proof of Theorem A will be given in Section 3. Here, we recall the
definitions of the Hausdorff and Lipschitz distances.

DEFINITION 2.2. (1) Let X, Y be metric spaces and f:X ~ Y a Lipschitz map.
The dil f := supx~x’d(f(x),f(x),/d(x, x’) is called dilatation of f. dL (X, Y) :=
inf( )In dil/| + Iln dil f-1| f is an arbitrary bi-Lipschitz homeomorphism} is the
Lipschitz distance between X and Y, if bi-Lipschitz homeomorphisms exist.
Otherwise dL(X, Y) = oo .

(2) Let Z be a metric space and A, B be subspaces of Z. Let U e(A) := {z ~
Z d(z, A)  03B5} and let dZH(A, B) := inf{e &#x3E; 0 U,(A) c B and Ue(B) ~ A}. Now,
for arbitrary two metric spaces X and Y, we define the Hausdorff distance

dH(X, Y) by inf{dZH(f(X), H g(Y))}, where the inf is taken over all metric spaces
Z and all isometries f : X ~ Z, g : Y - Z.

But our condition on iM is too strong and not natural. Next, we consider the

following classes of Riemannian manifolds.

DEFINITION 2.3. (1) Let M(n, 039B 03BB-, 03BB+, d, V ) be the class of n-dimensional
compact Riemannian manifolds M with nonempty boundary DM with the
sectional curvature |KM|  A, the second fundamental form 03BB-  S  03BB+, the
diameter dM  d and the volume VM  V.

(2) We put Mc(n, 039B, 03BB+, d, V) = M(n, 039B, 0, 03BB+, d, V). This is the class of
Riemannian manifolds with convex boundary.

(3) Let Ma(n, A, 03BB-, 03BB+, d, V : d~) be a class of elements M E M(n, A, 03BB-, 03BB+, d, V)
satisfying that the sum d~M of the intrinsic diameters of all components of DM
is not greater than do .
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The conditions on the sectional curvature, diameter and the volume are

natural. But the phenomenon occurring in example (3) can not be ruled out by
only a bound on the principal curvatures. Therefore the class M(n, A, A -, A +, d, V)
is not adequate to establish a reasonable convergence theorem. But in smaller
classes, we have the following.

PROPOSITION 2.4. There exist Ao  0 and io &#x3E; 0 depending on n, A, A +, d, V
and de such that the classes M,(n, A, Â’, d, V) and Mô(n, A, Â 0, 03BB+, d, Y: do) are
contained in Mo (n, A, A +, A -, i0).

PROPOSITION 2.5. The classes M,(n, A, 03BB+, d, V) and Mô(n, A, Âo, Â+, d, Y: de)
are precompact with respect to the Hausdorff topology.

The proof of Proposition 2.4 will be given in Section 6 in more explicit
form. The proof of Proposition 2.5 will be given in Section 7.
Now, Theorem A, Proposition 2.4 and Proposition 2.5 imply the following

convergence theorems.

THEOREM B. Any sequence in M,(n, A, 03BB+, d, V) contains a subsequence
converging with respect to the Lipschitz topology to an n-dimensional differential
manifold M with metric g of CO class.

THEOREM B’. There exists Ao = Ao (n, A, 03BB+, d, V; dô)  0 such that if Ao 
03BB-  0 then any sequence in Mô(n, A, 03BB-, A +, d, V: dô) contains a subsequence
converging with respect to the Lipschitz topology to an n-dimensional differential
manifold M with metric g of CO class.

As consequences of Theorem B and B’, we have the following finiteness
theorems.

THEOREM C. M,(n, A, 03BB+, d, V) contains only a finite number of diffeomorphism
classes. In particular, the number of the connected components of the boundary
DM of any M E M,(n, A, A +, d, V) is uniformly bounded from above.

In fact, these numbers can be estimated explicitly in terms of n, A, Â’, d and V.

THEOREM C’. Mô(n, A, 03BB-0, 03BB+, d, V: da) contains only a finite number of diffeo-
morphism classes. I n particular, the number of the connected components of the
boundary ôM of any M E Mô(n, A, 03BB-0, 03BB+. d, V: da) is uniformly bounded from
above.

In fact, these numbers can be estimated explicitly in terms of n, A, 03BB+, d, V
and dô.

REMARK 2.6. As a consequence of Theorem B, we can derive Gromov’s con-
vergence theorem as follows. Let m(n, A, d, V) be a class of closed Riemannian



175

manifolds of dimension n with the sectional curvature |KM|  A, diameter
dM  d and the volume VM  V. For M E m(n, A, d, V), M x [0, 1] is an element
of M,(n + 1, 039B, 03BB+, d2+1, V). Let m(n, A, d, V ) x [0,1] be a class of such
M x [0, 1]’s. Then m(n, A, d, V ) x [0, 1] c M,(n + 1, A, 03BB+, Jd2+1, V) and
the convergence theorem for the class m(n, A, d, V ) follows from that of
M,(n + 1, A, 03BB+, d2+1, V). We can also derive Cheeger’s finiteness theorem
([1]) from Theorem C.

3. Comparison lemmas

In the first part of this section, we give comparison lemmas (Lemmas 3.1 and 3.2)
and, in the second part, two simple consequences (Lemmas 3.3 and 3.4) which
will be used in later sections.

Let M be a compact n-dimensional Riemannian manifolds with boundary DM
satisfying |KM|  A, 03BB+  S = - ~N  03BB- and - 03BB+  03BB-  0. Let c(t), 0  t,
be a geodesic of M with the initial point c(0)E ôM and the initial vector
è(O) = Nc(o). Let M(t) be the fiber of the normal bundle of the geodesic c at c(t).
The Jacobi tensor J(t): Tc(o)aM --+ M(t) satisfies the Jacobi equation

where R(t) 0 J(t)(X) = R(J(t)X, c(t))c(t) and I(X) = X, for X E Tc(o)oM. Here
we identify TC(O)DM with M(t) by the parallel transformation. Here and hereafter,
for two operators P and P’, the inequality P &#x3E; P’ (P  P’, resp.) means that
P - P’ is positive definite (nonnegative semidefinite, resp.).

Put

Then they are the solutions of
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respectively. The first zero point of a(t) appears at to = 1/039B arctan 039B/03BB+.
Let U(t) = J’(t)/J(t). Then U(t) satisfies the Riccati equation

U(t) is symmetric with respect to the Riemannian inner product and coincides
with the second fundamental form of M(t) (cf. [5]). A(t) = a’(t)/a(t) and
B(t) = b’(t)lb(t) are the solutions of

respectively. A(t) is strictly decreasing and has a pole at to. B(t) is monotonous
and tends to fi at infinity. Our condition that -03BB+  03BB-  0 implies that
B(t)  - A(t) for 0  t  to.

In this paper, we use the following version of comparison lemma. Our proof
is based on that of J.H. Eschenburg [4, Lemma 3.4].

LEMMA 3.1. For 0  t  to,

The first inequalities are valid for to  t. Hence the forcal distance along c is not
less than to.

Proof. Without loss of generality, we can assume A &#x3E; R(t) &#x3E; - A and
Â-  S  À +. First, we prove that B(t) &#x3E; U(t) for 0  t. Since

and so,

Suppose t 1 &#x3E; 0 is the first zero point of (B - U)x, x&#x3E; where x ~ Tc(0)8M. Since
B - U is symmetric, we can assume that x is the eigenvector of (B - U)(tl ).
Then we have
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This implies that ti cannot be the first zero point of (B - U)x, x). Therefore
B - U is positive definite for t  0.
Next we prove that U(t) &#x3E; A(t) for 0  t  to. Since

and so,

Since U + A  U - B  0 and U ± A are symmetric, ( U - A)’ is positive
definite as long as U - A is positive definite. Therefore U - A is positive definite
for 0  t  t0.

Finally we prove (3.1). Put X(t) = J(t)la(t) - 1. Then we have

for 0  t  to. Thus X(t) &#x3E; 0 for 0  t  to. And then J(t) &#x3E; a(t) for 0  t  to.

Similarly we can verify b(t) &#x3E; J(t) for 0  t. q.e.d.

We define the norm of J(t) as J(t)) = sup{|J(t)x|¦x ~ Tc(0)~M, 1 x = 1}). By
Lemma 3.1, we have the following comparison lemmas for IJ(t)1 and |J(t)/J(t’)|.
The proofs are easy and hence omitted. Here, we note that our comparison
lemmas are included in more general comparison theorem due to T. Yamaguchi
[19, Theorem 1]. The author is grateful to Professor T. Yamaguchi and
N. Innami who kindly pointed out this fact to the author.

LEMMA 3.2. For 0  t  t’  t0,

LEMMA 3.3. For fixed t 1 « to) and any t, t’ ~ [0, t1], we have
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Let c(s), 0  s  si , be a normal geodesic in M[0, t2l, for fixed t2  min(to, iM).
Put e(s) = d(ôM, c(s)).

LEMMA 3.4. For 0  s  si, we have

Assume ~(0) = r and e’(0) = 0. Then

Furthermore assume c(s1)~~M. Then

Proof. Let ê be a curve on oM such that d((s), c(s)) = d(~M, c(s)) = e(s). We
define a variation a: [0, si] x [0,1] ~ M by a(s, t) = exp(s)t~(s)N and variation
fields T = da(ô/ôt), V = da(ô/ôs). By the first and the second variation formula,
we have

where V~ = V - V, T&#x3E; T and N = grad daM . Let J(t) be the Jacobi tensor along
expê(,)tN with J(O) = I and J’(0) = - S.
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Then V~(s, t) = J(~(s)t)(s), and so, we find

Then, by (3.2), we have (3.7) which implies (3.8) and (3.9). q.e.d.

4. Proof of Theorem A

In this section, we prove the following theorem which implies Theorem A.
(cf. [7], Proposition 3.5) From now on, without loss of generality, we always
assume - 03BB+  03BB-  0.

THEOREM A’. Given b &#x3E; 0. There exists Bo(b) = eo(n, A, 03BB+, Â-, io ; b) &#x3E; 0 such

that if B  eo(b) and M, M’ E Mo(n, A, 03BB+, À -, io) have e-dense and Bj 10-discrete
nets {zi}n03B5i=1 ~ M, {z’i}n03B5i=1 c M’ which satisfy

for 0  d (zi, zj)  1 2 min(i0, 03C0039B, t0), then there exists a diffeomorphism
 : M ~ M’ such that

Here we recall the definition of net. A subset {zi}i~I in a metric space Z is
called an 8-dense net if Uiel U03B5(zi) = Z and called be e-discrete if d(zi, zj) &#x3E; 8

for any i ~ j. Throughout this section, Ci(03B5i(03B4), ri(b), resp.), i = 1, 2, 3,..., is a
constant depending only on n, A, 03BB+, 03BB- and io (n, A, 03BB+, 03BB-, io and ô, resp.).
When M and M’ are closed manifolds, such a diffeomorphism has been con-

structed by M. Gromov [7], A. Katsuda [10], S. Peters [14] and R. Green, H. Wu
[6]. Their constructions are applicable to our case. In fact, according to
[10, section 8], we have the following.

FACT 4.1. Given 1 &#x3E; ô &#x3E; 0. There exist positive c 1 (ô), r 1 (ô) such that if 03B5  03B51(03B4)
and M, M’E Mo (n, A, 03BB+, À -, io ) have e-dense and e/10-discrete nets {zi}n03B5i=1 ~ M,
{z’i}n03B5i=1 c M which satisfy (*) then there exists an embedding F = F(03B4):
M[03B4, + ~) ~ M’ with the following properties:

(1) 1 - 03B4  |dF|  1 + 03B4,
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(2) |dM(zi,z)|-dM’(z’i, F(z)) |  C103B5, i=1,2,..., where z ~ M[03B4 , + ~).
(3) Choose zij, j = 1, 2,..., n, such that

where Uij = exp-1zzij/|exp-z 1zij|. (Such a choice of zij, j = 1, 2 , ... , n, is possible
when 03B51(03B4) tends to zero.) Let {ej}nj=1 be an orthonormal base of Tz M obtained
from {uij}nj=1 by Schmidt orthogonalization. Similarly we obtain an ortho-
normal base {e’j}nj=1 of TF(z)M’ from u’ij = exp-1F(z)zij/exp-1F(z)zij|, j = 1, 2 , ... , n .
Then the isometry 1: TzM ~ TF(z)M’ given by I(ej) = ej, j = 1, 2,..., n,

satisfies

Furthermore, by choosing sufHciently small 03B51(03B4), we can assume

We extend the vector field N (N’, resp.) on DM (DM’, resp.) to a unit normal
vector field on M[0, io ] (M’[0, io ] , resp.) by

where dam = d(ôM, * ) (dam, = d(ôM’, *), resp.).
From Fact 4.1, we can derive the following.

FACT 4.1’. There exists 03B52(03B4) &#x3E; 0 such that if 8  92(b) then the embedding
F : M[r1(03B4), + ~) - M’ given in Fact 4.1 satisfies the following:

Fact 4.1’(2’) is a direct consequence of Fact 4.1(2) and the following lemma
which will be proved in the next section.
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LEMMA 4.2. There exists 83 &#x3E; 0 such that if s  03B53 then, for any t E [0, R] and
zi~M[t - 03B5, t + 03B5], z’i~M’[t - C60, t + C603B5].

Let 03A6: M[0, i0] ~ ôM x [0, i0] be a diffeomorphism defined by 03A6(y) = (x, t)
for y = expx tN, x~~M. Then we define two diffeomorphisms:

03A6tt’:M(t)~M(t’):(x,t’),

03A6t,t’: M[t, t’] ~ M(t) x [t, t’] : (x, s) ~ ((x, t), s),

for t  s  t’. Since d03A6tt’ = J(t’)/J(t), Lemma 3.3 implies the following.

LEMMA 4.3. For 0  t  t’  R,

Here we assume that M(t) x [t, t’] is equipped with the product metric.

Now, we verify Fact 4.1’(3’).
Proof of Fact 4.1’(3’). For z E M(t), r1(03B4)  t  R, choose zi in the 8-neigh-

borhood of y = expz( - (rl /2)N), and put

Then by Fact 4.1(1), (3), (4.1) and Rauch comparison theorem, we have

Here dilr  sinh 039Br/039Br is the dilatation of expz: TzM ~ B(z, r).
Next, we estimate IÑ’ - N’I. Put t’ = d(8M’, F(z)) and t" = d(8M’,zi). Then,

by Fact 4.1’(2’) and Lemma 4.2, we have

and so,

On the other hand, by Fact 4.1(2), we find
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Put y’ = expF(z) - (t’ - t")N’. By Rauch comparison theorem, we obtain

Consider 03A6’t",t’: M’[t", t’] ~ M’(t") x [t", t’] and apply Lemma 4.3. Then we
find

and so,

Combining (4.3) with (4.1) and (4.4), we get

By (4.2) and (4.5), we get Fact 4.l’(3’). q.e.d.

Proof of Theorem A’. For z = (x, t)~~M x [rl, R/21, we put z’ = F(z) =
(x’, t’) E DM’ x [rl - C403B5, R/2 + C403B5]. Here we identify M[r, r’] (M’[r, r’],
resp.) with DM x [r, r’] (DM’ x [r, r’], resp.), for 0  r  r’, through 03A6.

Step 1. We define a map G: F(M[r1, R/2]) ~ M’[rl, R/2 + C403B5] by

Here 03C8: [r1, R/2] ~ [0, 1] is a strictly increasing smooth function such that
03C8(r1) = 0, 03C8(R/2) = 1 and 03C8’(t)  4/R, for r1  t  R/2. Then we have:

ASSERTION 4.4. GoF:M[rl,R/2] --+M’[rl,R/2 + C403B5] satisfies

Prooj. Let X E TzM be a unit vector orthogonal to N. We have an orthogonal
decomposition of dF(N), dF(X ) at TF(z)M’:
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respectively. By Fact 4.1’, a direct computation yields

In order to compute d(G 0 F), we introduce the following two maps:

Then we have G o F = G’ o F’. Since

and dt’ = (1 + 03C8’(t)s) dt + 03C8(t) ds, it follows that

Combining (4.9) with (4.8) and the fact 1 t’ - t  C403B5, we obtain

From (4.10), Assertion 4.4 follows immediately. q.e.d.

ASSERTION 4.5. GoF is one to one.

Proof. Let Zl = (x1, t1), z2 = (x2, t2) be two distinct points in M[r1, R/2]. If
t 1 = t2, then z’i~F(M(t1)), i = 1, 2, and so, x’1 ~ x’2, z"1 ~ z"2. Next we assume
that Xi = x 2 and t 1  t2. Then, since F(M[t1, + ~)) ~ F(M[t2’ + oo )), we find
t i  t2 . Put c(t’) = (xi, t’), for t?  t’  t’2 and put co = F-l(c), cl = G(c). By ’
fact 4.1(1), we see 1 - 203B4  1 éo  1 + 2b . Hence, by Fact 4. l’, 1 - C1803B4  1 é, =
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|GoF(c0)|  1 + C1803B4. Therefore t" = d(~M’,c1(t’)) is monotonous and so
t"1t"2, z"1 ~ z"2. q.e.d.

Step 2. We define a diffeomorphism H : M[0, + ~) ~ M[ri, + ~) by H(z) =
(x, ~(t)) for z = (x, t). Here ~: [0, + ~) ~ [ri , + ~) is a strictly increasing
smooth function such that

Similarly we define H’: M’[0, + ~) ~ M’[r1, + ~). Then we have:

ASSERTION 4.6. ||dH|-1|  Cl9b.

Proof. By (4.11), we find

and so, |~(t) - tl  r1/R.Since dH = 03A6t~(t) ~ ~’(t), by Lemma 4.3 and (4.11), we
get

Then put C19 = C3 R min(C7, 1 q.e.d.
Step 3. Define Go F : M[r1, + ~) ~ M’[r1, + ~) by

and put

Then, Fact 4.1’, Assertions 4.4, 4.5 and 4.6 imply that F(b): M ~ M’ is a Lipschitz
diffeomorphism satisfying
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Put F = (03B4/C20): M - M’. Then F satisfies the condition of Theorem A’.
q.e.d.

5. Proof of Lemma 4.2

Let M, M’ be an element of Mo (n, A, 03BB +, 03BB -, i0) with e-dense net {zi} n03B5i=1,{z’i} 7:: l,
respectively, which satisfies

for 0  d(zi, zj)  t 1  1 2min(i0, t0), where to = 1/039B arctan 039B/03BB+.
Then we have the following lemma which implies Lemma 4.2.

LEMMA 5.1. There exists e’ = 03B5’(n, 039B, 03BB+, 03BB-, i0) &#x3E; 0 such that if 03B5  e’ then,

for any t~[0,3 4t1] and zi ~ M[t-03B5,t+03B5], we have z’i~M’[t-C03B5,t+C03B5].
Here C=C(n, 039B, 03BB+,03BB-, i0).

Proof. Let zi~M[0, t1] and put r = d(~M, zi). First, we prove lemma for
small r.

Let 03B3(t) be a geodesic such that 03B3(0)~~M,03B3(0) = N and 03B3(r) = Zi. Put

For x E B°(zi, R), define x~~M by d(x,x) = d(ôM, x). Put

If r is sufHciently small then Lemma 3.4 implies that 
(a) B0(zi, R), B+(zi, R) and D are well defined for R = 2/A(t1)r
(b) d(x, x)  1 2{A(t1) + max(.A, - 03BB-)}R2:= e(R) for any x E B°(zi, R),
(c) B(zi, R’) c Du B + (zi, R’), where R’ = R - I(R).
Choose zil in the e-neighborhood of expz,(R’ - 3e)ÿ(r). Then, by Rauch com-

parison theorem, any y E B(zi, R’) satisfies

where dilR  sinh039BR/039BR is the dilatation of expzi: TziM ~ B(zi, R).
Assume z’i~M’[R, ~) and r is sufhciently small. Since (R’ - 4e)(I- e) 
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d(z’i, z’i1)  (R’ - 2e)(1 + e), we can take zi2 E B(zi, R’) in the e-neighborhood of
expz’i(-expz’iz’i1). Then we have

Since d(z’i,z’i2)  (R’ - 2e)(l + e) + e, we find zi2~B(zi, R’) and, by (5.1) and
(5.2),

Now, let r tend to zero. Then R tends to zero and, in (5.3), we find

the left side ~ 2R + O(R2),
the right side ~ 2R + O(R2).

Hence there exists 0  03B51 ~ 1 such that if r  03B51 then (5.3) does not hold.
Therefore for r  e  el we have z’i~M’[0, R] c M[0,

Nextly, we prove lemma for r ~ [t - E, t + E], 0  t  3 4t1. Choose ZjE M[O, e],
z’k~M’[0,03B5] such that

Then we have

and

where C = 2/A(t1) + 6 + io. q.e.d.

6. Estimâtes on iM

In this section, we prove the following two propositions which imply Proposi-
tion 2.4.
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PROPOSITION 6.1. For any M~Mc(n, 039B, 03BB+, d, V),

Here cvn is the volume of the unit n sphere Sn.

PROPOSITION 6.2. There exist Âü  0, io &#x3E; 0 depending on n, A, 03BB+, d, V and
da such that for any Àü  Â 0 and M E Ma (n, A, Â 0, À +, d, V: da), it holds that

iM  io.

Following two lemmas are slight extension of [2, Lemma 5.6, Lemma 5.7].

LEMMA 6.3. If ia is not the forcal radius of aM, then ia is half the length of a
geodesic orthogonally intersects aM at the end points.

Proof. Let p be a cut point of a normal geodesic yi from pi E ôM such that
yl(ia) = p. If p is not a forcal point of DM, then there exists another geodesic y2
from p2 E ôM to p. Let hi, i = 1, 2, be the distance function from DM restricted
near 03B3i, i = 1, 2, respectively. Locally hi, i = 1, 2, can be naturally extended
beyond p = yi(ia), i = 1, 2, respectively. Then 03B3i(i~) = grad hi( p), i = 1, 2, and
H = (h 1 - h2)-1(0) is a smooth hypersurface near p. If we assume grad(h1 + h2)
(p) :0 0 then grad(hi + h2)(p) be a tangent vector of S at p. Since

grad hl, grad(hl + h2)&#x3E;p &#x3E; 0,

in the direction of - grad(h 1 + h2 ), there is a point p’ E S such that h1(p’) =

h2(P’)  ia. Then p’ is a cut point of DM and d(~M, p’)  i~. This is a contradic-
tion and hence

and so 1’1 1 U ( - Y2) is a smooth geodesic and lemma holds. q.e.d.

LEMMA 6.4. If iint is not the conjugate radius then it is the half of the length
of a simple closed geodesic of M.

Proof. Let q be a cut point of p E M along two normal geodesics yi(t),
0  t  iint, i = 1, 2, satisfying yi(O) = p and Yi(iint) = q. If q e DM then, by the
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same argument in the proof of Lemma 6.4, we have 03B31(iint) = - 03B32(iint). Assume
q~~M and 03B31(iint) i=- - 03B32(iint). Then, since

in the direction of - (03B31(iint) + 03B32(iint)) there exists a cut point q’ of p so that
d(p, q’)  i;nt and this is a contradiction. Thus 03B31(iint) = -03B32(iint). Similarly
03B31(0) = - 03B32(0) and so y 1 U (- 03B32) is a simple closed geodesic. q.e.d.

We have already known that, for any M~M(n, 039B, 03BB-, 03BB+, d, V), the conjugate
radius at any p E M, forcal radius of DM is not less than nj JA, 1/JÀ
arctan fA/Â respectively. Therefore we can assume that i;nt, ia is attained
by the half of a geodesic given in Lemma 6.3, Lemma 6.4, respectively.
Proof of Proposition 6.1. Let y be the geodesic of length ~ given in Lemma 6.3.

By the convexity of DM, exp03B3: 03BC ~ M is surjective, where y is the normal bundle
of y. By Heintz-Karcher’s comparison theorem [8], we get

and so,

Similarly we have

Proof of Proposition 6.2. Let y be the geodesic of length e given in Lemma 6.3.
Put My = exp03B3(03BC), where y is the normal bundle of y. Then, by Heintze-Karcher’s
comparison theorem [8], we have

Let q be a point in M/My and r =’rl Ur2 be the distance minimizing path from
y to q, where 03C42(s), 0  s  s1, be a normal geodesic of M such that 03C42(0) =
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q’~~M and i2(sl ) = q. Put e(s) = d(DM, !2(S». Then, by Lemma 3.4, we have

whenever ~(s)  to . On the other hand, we have

and ~"(0)  B(0) = - 03BB-. Therefore e’(s) is less than or equal to the solution

of

u"(s) = Au(s), u(O) = 0, u’(0) = - 03BB-.

Hence we obtain

and so,

By the equation of Gauss [3, Chapter 2], the intrinsic sectional curvature KaM
of DM satisfies

|K~M|  039B + max(03BB+2, 03BB-2)t=,

and so,

By (6.1), (6.2) and (6.3), we obtain
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If |03BB-| is sufhciently small then the right-hand side of (6.4) is positive and hence
io = l12 has a positive lower bound which depends on n, 03BB-, 03BB+, d, V and da .
Similarly we have a positive lower bound on iint. q.e.d.

7. Precompactness

In this section, we prove Proposition 2.5. Firstly, Proposition 5.2 of [7] implies
the following.

LEMMA 7.1. Let M(n, a(e), V, d) be the class of compact n-dimensional Riemannian
manifolds M such that the volume of M is not less than V, the volume of any
metric ball B( p, e), p E M, of radius e is not less than a(e), and the diameter of M is
not larger than d. Then M(n, a(e), V, d) is precompact with respect to the Hausdorff
topology.

Then, by Lemma 7.1 and Proposition 2.4, following two Lemmas 7.2 and 7.3
imply Proposition 2.5.

LEMMA 7.2. For any M E Mo(n, A, À -, 03BB+, io) and p E M, the volume vol(B(p, 03B5))
of metric ball B( p, e) of radius e satisfies

Here Sn-103C0/4 is the spherical cup of sn-lof radius n/4.
Proof. Let c(s), 0  s  03B5, be a geodesic emanating from p = c(0) E ôM. Put

I(s) = d(~M, c(s)). By Lemma 3.4, we have

~(s)  s cos ~ + (s2/2)A(t1),

where cos ~ = 1’(0) = (é(0), N) and ti = min(to, io)/2. Hence if 0  B 

min {-1/A(t1), t1} and 0  03C4~  n/4, then

~(s) &#x3E; (cos ~ - 1 2)s  0 for 0  s  03B5,

and so c(s), 0  s  03B5, does not hit ôM. Then, volume comparison theorem
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implies (7.1) for p E ôM . Similarly we can verify that (7.1) holds for any p E M.

q.e.d.

LEMMA 7.3. Let VM, VM, be the volume of element M E M,(n, A, 03BB+, d, V),
M’ ~ Ma(n, A, Â -, Â +, d, V: da), respectively. Then

Here À:= A + max(Â+’2, 03BB-2).
Proof. Since the boundary of M is convex, expp: TpM --+ M is surjective and

so the volume comparison theorem implies (7.2). Similarly, (6.3) and Heintze-
Karcher’s comparison theorem [8] implies (7.3). q.e.d.

8. Remarks

(1) When the sectional curvature KM of M is positive and the boundary DM is
p-convex (1  p  n), the topology of M is completely classified by the works of
J-P. Sha [16, 17], H-B. Lawson [11], H-B. Lawson and M-L. Michelsohn [12],
H. Wu [18] and J. D. Moore and T. Schulte [13].

(2) Recently, author is able to refine the argument in section 4 and find the
regularity of the metric g 00 of the limit manifold M 00. He is also able to obtain an
universal upper bound on the volume YM for any M E M(n, A, 03BB-, 03BB+, io, d). Here
M(n, A, 03BB-, 03BB+, io, d) = f M E Mo(n, A, 03BB-, 03BB+, i0) ¦dM  d}. Then, by Lemma 7.1
and 7.2, M(n, 039B, 03BB-, 03BB+, i0, d) is precompact in Hausdorff distance, and, by
Theorem A and the regularity of the metric g~ of M 00’ we find that any sequence
{Mi} contains a subsequence {j} c {i} such that Mj converges in Lipschitz
distance to a n-dimensional Riemannian manifold M 00 with metric g~ which is
C1 +03B1, 0  a  1, Hôlder continuous in the interior of M 00.
The proof of this fact will appear elsewhere.
(3) It is likely that the restriction da in Theorem B could be removed.
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