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Introduction

Let g be a complex classical simple Lie algebra and let U(g) be its universal
enveloping algebra. If M is a simple U(g)-module and 7 = Ann(M) is the

annihilator of M in U(g), then I is called a primitive ideal. In the case where g is of
type A", the classification of primitive ideals is due to Joseph, [5, 6]. To each
element w E W of the Weyl group there can be attached a primitive ideal 1w (of
fixed infinitesimal character, see below for more detail). The classification has
been reduced by Duflo [2] to the problem of determining when I., = Iw, for w,
w’ E W. In this case we have W = Sn+1 the symmetric group on n + 1 letters.
Joseph answered this question using the Robinson-Schensted algorithm and
obtained a complete invariant of Iw, the Young tableau produced by the
Robinson-Schensted algorithm, which we may call T(w), i.e. Iw~Iw, if and only if
T(w) ~ T(w’). In [10], Vogan introduced the notion of the generalized T-

invariant of a primitive ideal, and showed that in case An it was a complete
invariant (see also Jantzen, [4]). The aim of this paper, of which these six sections
constitute Part I, is to prove analogous results to those of [5, 6] and [10] about
the classification of primitive ideals for g of types Bn, Cn, and Dn, and about the
generalized 03C4-invariant of a primitive ideal.
The two main results of Part 1 are the following. We will prove the existence of

an algorithm A for Weyl groups of types Bn, Cn, and Dn, with properties that
make it the appropriate generalization of the Robinson-Schensted algorithm
used by Joseph in [5, 6]. To an element w ~ W, A associates a pair of standard
domino tableaux (cf. 1.1.9i) A(w) = (L(w), R(w)). We will define another algorithm
S which, given any standard domino tableau T, produces one, S(T), of special
shape (i.e. the corresponding representation of the Weyl group is special in the
sense of Lusztig, [8]).
Although this will not be discussed in Part I, these algorithms yield the same

* Partially supported by N.S.F. Grant DMS 8503781.
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parameters as used by Barbasch-Vogan in [1] to classify the primitive ideals for

types Bn, Cn, and Dn, the domino tableaux of special shape. Let b be a Cartan
subalgebra of g. Known results imply that it suffices to classify the primitive ideals
with infinitesimal character 03BB E b* for 03BB anti-dominant, regular and integral. Let
p be half the sum of the positive roots for some choice of positive system of the
roots of  in g. Let Iw be the annihilator of the irreducible highest weight module
of highest weight w03BB - p. Duflo [2] has shown that every primitive ideal with
infinitesimal character 03BB is of the form Iw for some w E W. In [1], Barbasch-Vogan
construct (L(w), R(w)) by a quite different method from that of this paper. They
embed W in the symmetric group 5’2n, apply the (ordinary) Robinson-Schensted
algorithm which produces two Young tableaux (T(w), T(w-1)) and then use
a shuffling procedure to produce the domino tableaux (L(w), R(w)) from these.
Now L(w) does not depend only on Iw. Barbasch-Vogan showed that for every
w E W there exists a unique standard domino tableau U with special shape such
that there exists v E W with U = L(v) and Iv = Iw.

Using the results of Part 1 of this paper, in Part II we will prove Vogan’s
conjecture [10] in cases Bn and Cn, that the generalized r-invariant (together with
the infinitesimal character) is a complete invariant. We will show that for
w, w’ E W, Iw = 1 w. if and only if S(L(w)) = S(L(w’ )), thus giving a new proof of the
classification in cases Bn and Cn, the first part of which is essentially the same as in
[1], and the second part of which replaces their use of asymptotic support and
induction from and restriction to Weyl subgroups of smaller rank with the use of
the generalized r-invariant. It will follow from this that, given, w, v E W as above,
we have U = L(v) = S(L(w)). We show in Part 1 that S and A can be run in reverse,
so there is a determinate procedure, given w, to find {w’ ~ W: IW- = Iw}. Vogan’s
conjecture is false when g is of type Dn, n  6. In a projected Part III of this paper
we intend to give the definition of a generalization of the generalized 03C4-invariant,
the generalized generalized i-invariant, prove a modification of Vogan’s
conjecture, and deal with the classification of primitive ideals in that case.

This paper arose out of the project of using the classification of [1] for the
problem of determining the annihilators of irreducible admissible Harish-

Chandra modules of real Lie groups of classical type, generalizing the results for
U(p, q) and GL(n, R) of [3], which used the results of Joseph [5,6] and Vogan
[10] in the case of type An. The properties we prove of the generalized s-invariant,
as well as the better formulation of the algorithm A, and even more, the supplying
of the algorithm S are crucial to the determination of the annihilators of
irreducible admissible Harish-Chandra modules. This has already been ac-
complished in certain cases, and we intend to discuss this in a separate paper.

Furthermore, Part 1 of this paper is written in such a way that it will apply, as
will be shown in Part II, to the theory of cells in classical Weyl groups [7], [8]. Shi
[9] has generalized the Robinson-Schensted algorithm to the affine Weyl groups
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of type Ãn, and one can expect that the results of Part 1 of this paper can be used in
the same way for work on the affine Weyl groups of types Bn, C,,, and J5,,.

In more detail, this paper (that is, Part I) is organized as follows: there are six
sections. In Section 1 we define various parameter sets which will be in constant
use. We define domino tableaux in 1.1.8. Then we introduce some preliminaries
for the definition of the domino analogue of the Robinson-Schensted algorithm
(and its inverse). In Section 2 we define this algorithm as a map A defined on the
parameter set J(M1, M2) (which is isomorphic to the Weyl group when
M1 = M2 = {1,..., n}). We give two definitions of A, (1.2.1) and (1.2.7). The first
definition is useful in showing the relation between L and R: L(w) = R(w -1 )
(1.2.3). The second definition is defined by means of an important map a (1.2.5).
This definition will be used in all later proofs, and is most convenient for

describing A as an algorithm, as will be illustrated in Sections 3 and 4. In (1.2.8) we
prove the two definitions are equivalent. We show that A has an inverse B, and so
is a bijection between W and a set of pairs of domino tableaux. In the third section
we prove certain properties of the maps a and p which are useful for computing
A and B. In Section 4 we illustrate these properties with examples which show in
practice how to calculate A and B. The second definition of the algorithm A can
be thought of as building up domino tableaux from the parameter of w starting
from scratch and adjoining dominoes one by one. As in the (ordinary)
Robinson-Schensted algorithm, the adjoining of each new domino is accom-
panied by an alteration in the positions of some of the preceding dominoes. This
combined step is called oc. It is repeated until standard domino tableaux of the
right order are obtained.

In Section 5 we recall (a reformulation of) Lusztig’s notion of special: we define
the notion of a domino tableau’s having special shape. We then give the algorithm
S, which transforms a domino tableau T to a domino tableau with special shape.
In order to do this, we define the concept of a cycle of a domino tableau. Then T is
transformed into S(T) by means of operations which we call "moving T through
a cycle." Note that this is a quite different sort than the operations which define
A (or B). The last, sixth, section illustrates S by examples.

Please note that the symbol B denotes set-theoretic difference.

Section 1

In this section we introduce the definitions of the parameter sets we will be using,
preliminaries for the definition of the algorithm A (defined as a map on W) and its
inverse, B.

(1.1.1) NOTATION. Let Wn be the Weyl group of a complex simple Lie algebra
g of type Cn. Let b be a Cartan subalgebra of g, and let {e1, ..., en} be a basis off)*
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such that if a = 2e1, ai = ei - ei - 1 for 2  i  n then 03C0={03B11,..., 03B1n} are the
simple roots for a choice of positive roots 0394+(g, b). With respect to this basis an
element we Wn satisfies w(ei) = 03B5ie03C3(i) for some o-e Sn, 03B5i~ f ± 1}.

Let W’n ~ Wn be defined as follows: if we Wn, w(ei) = Biea(i) then we W’n ~
|{i|03B5i| = -1}|is even. Wn is the Weyl group of a complex simple Lie algebra of
type D,.

(1.1.2) DEFINITION. Let Mi, M2 c N* be finite subsets with |M1| = lM 21. We
define J(M1, M2) as follows: let ql, q2 be the projections of Ml x M2 x (± 1}
onto the first and second factors. Then J(M1, M2) is the set of all w c

Mi x M2  {±1} such that q1|w and Q21w are bijections onto Mi and M2,
respectively. If n E N* we write Y(n, n) for J({1,... n},{1,..., ni).
EXAMPLE. Let Mi = {1,3,5}, M2 = {2, 3, 71. Let w = {(1, 3, -1),(3,7,1),
(5,2,-1)}. Then w E J(M1, M 2)’

(1.1.3) DEFINITION. Let N = {1,..., nl. We define 03B4: Wn ~ //(n, n) by 03B4(w) =
{(k, 03C3(k), gk)l where w(ek) = Bkea(k)’ Then 03B4 is a bijection.

(1.1.4) DEFINITION. For w~J(M1,M2), m = IM, 1, let e = sup M1, u =

sup M2. Then {(e, f, 03B5e)} E w and {(v, u, 03B5v)} E w for some f E M2, V E M1, ’6e, gv E
{±1}. We define mw = wB{(e,f,03B5e)} and wn = wB(v, u, 03B5v)}. We will write, for
example, Wm,m-l,m-2 for ((wm)m-1)m-2.

EXAMPLE. Let w be as in the example in (1.1.2). Then 3w = {(1, 3, -1),
(3,7,1)}, W3 = {(1, 3, -1),(5,2,-1)}, W3,2 = {(5,2, -1)}, and 2(W3) = 2W3 =

{(1.3,-1)}.

(1.1.5) DEFINITION. For w~J(M1,M2), w = {(li,ri,03B5i)}, we define w-1 E
J(M2,M1) by w = {(ri,li,03B5i)}. Note that y~Wn,03B4(y-1) = 03B4(y)-1.

(1.1.6) REMARK. Let si be the simple reflection corresponding to the simple
root ai. Let we Wn, d(w) = {(i, U(i), 03B5i)}1in· Then

(a) b(ws 1) (resp. 03B4(s1 w)) is obtained from 03B4(w) by multiplying 03B51 (resp. ek where
k=03C3-1(1)) by -1.

(b) For i  2, 03B4(wsi) (resp. 03B4(siw)) is obtained from 03B4(w) by interchanging i and
i - 1 in the first (resp. second) position of the triples.

(c) Let wo be the long element of Wn. Then 03B4(ww0) = 03B4(w0w) = ((i,03C3(1), -03B5i)}.

EXAMPLE. Consider 03B4:W3~J(3,3). (Let e~W3 be the identity element.)
Then

and
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(1.1.7) DEFINITION. (1) Let F = {Sij}i1,j1, where the Si j are symbols and
Sij = Skl p i = k and j = 1. Similarly let F0 = {Sij}i0,j0; note that 3v ~ F0.
The elements of F (but not of F0BF) are called squares.

(2) Let J c-- 9. We say J satisfies condition Y if J is a finite subset and if for

every Sij~F such that Sij ~ J we have Si,j+1 ~ J and Si+1,j~ J.
(3) If J ~ F satisfies condition Y let pi(J) = 0 if Si1 ~ J, otherwise 03C1i(J) =

sup{j| Sij~ J}; similarly, let Kj(J) = 0 if Sljrt J, otherwise Kj(J) = sup{i| Sij ~ JI.

(1.1.8) DEFINITION. Let M c N* be a finite subset. We define two sets, 9-(M)
and J0(M), whose elements are called domino tableaux, as follows: let pl and P2
be the projections from N  F onto the first and second factors.

Y(M) is the set of all T c M  F satisfying:
(1) p2|T is injective and p2(T) satisfies condition Y.
(2) p 1 ( T is two to one.

(3) If k E M then for some Si j E F we have either (k, Sij) E T and (k, Si,j + 1 ) E T or
(k, Sij) ~ T and (k, Si+1,j) ~ T.

(4) Suppose (k, Sij) E T. If (kl, Si,j+ 1) E T (resp. (k2, Si+ l,j) E T) then ki a k
(resp. k2  k).
J0(M) is the set of all T ~ (M u {0}) x 97 satisfying (1), (3), (4) as above, and

(2’) (0, S11) ~ T, (0, Sij)e T’ if Sij ~ S 11, and p1 T~(M F) iS two to one.

EXAMPLE. See (1.4.1).

(1.1.9). NOTATION (a) For T a domino tableau let Shape(T) = p2(T).
(b) For T a domino tableau, set pi(T) = p;(Shape(T)), ki(T) = xi(Shape(T)).
(c) For T a domino tableau and S E F we say S is filled in T if S E Shape(T),

otherwise S is empty in T.

(d) For T a domino tableau define X(T) c N * by %(T) = M ~ T E J(M) or
J0(M).

(e) For T ~ J(M), or TE J0(M), k ~ M, let D(k, T) = T n ({k}  F).
(f) For T E J(M) or Te J0(M), k E M, let P(k, T) = {Sij|(k, Sij) ~ T}.
(g) Let T be a domino tableau. Define NT : F0 ~ N ~ {~} by

(h) For M1, M2 c N* finite subsets with IM1 = |M2| let J(M1, M2) =
{(T1, T2 ) j Ti E J(Mi) for i = 1, 2 and Shape(T1) = Shape(T2)}. Similarly define
J°(M1, M2).

(i) A domino tableau T is called standard, of order n, if N(T)={1,..., nl.
(j) If n E N * we write J(n) for J({1,...,n}); similarly J0(n),J(n, n), and

J0(n, n).
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(1.1.10) PROPOSITION. Let T E J(M) (resp. T E J0(M)), and let e = sup M.
Then TBD(e, T) E J(MB{e}) (resp. T BD(e, T) E J0(MB{e})), and Shape(TBD(e,
T)) = Shape(T)BP(e, T).

We now introduce some preliminaries for the definition of A.

(1.1.11) DEFINITION. Let J c 9’ satisfy condition Y. Let P = {Sij,Si,j+1}
(resp. {Sij, Si+1,j}). We say P is an extremal position in J if pi(J) = j + 1 and
Pi + 1 (J)  j - 1 (resp. Kj(J) = i + 1 and Kj + 1 (J)  i - 1). If T is a domino tableau
we say P is an extremal position in T if P is an extremal position in Shape(T).

REMARK. If T E J(M) or T E J0(M) and e = sup M then P(e, T) is an extremal
position in T. Note, however, that P an extremal position in T does not imply that
P = P(k, T) for some k E M. For example, if T is as in (1.4.1) then {S31, S32} is an
extremal position in T.

(1.1.12) DEFINITION. Let T ~ J(M) or T ~ J0(M), e ~ N, and P = {Sij,
Si,j + 1} or P = {Sij, Si+ 1,j} for some (i,j). We say the pair (e, P) is adjoinable to
T whenever the following hold:
(1) e &#x3E; sup M
(2) Shape(T) n P 0 and Shape(T) u P satisfies condition Y.
Then P is an extremal position in Shape(T)~ P.

(1.1.13) DEFINITION. Let T’ be a domino tableau and suppose (e, P) is

adjoinable to T’. Then let Adj(T’, P, e) = T’~ {(e, Sij)| 1 SijE P}.

(1.1.14) PROPOSITION. Let T’, e, P be as in Definition (1.1.13). Then

Adj(T’, P, e) is a domino tableau with Shape(T) = Shape(T’) u P.

REMARK. (1) If T = Adj(T’, P, e) then TBD(e, T) = T’ and P = P(e, T).
(2) If T ~ J(M) or J0(M) with e = sup M then (e, P(e, T)) is adjoinable to

TBD(e, T) and Adj(TBD(e, T), P(e, T), e) = T.

(1.1.15) DEFINITION. Let J c 57 satisfy condition Y, and let P 1, P2 ~ F. We
say (P1, P2) is an adjoinable pair to J if for i = 1, 2, Pi n J = ~, Pi ~ J satisfies
condition Y, and Pi is an extremal position in Pi u J.

(1.1.16) PROPOSITION. Let (P1, P2) be an adjoinable pair to J. Then either
(i) P 1 n P2 = ~,

(ii) P1 n P2 = {Sij} where j = pi(J) + 1, i = Kj(J) + 1, or
(iii) P 1 = P2 .

(1.1.17) DEFINITION. Let (P1, P2) be an adjoinable pair to J. We define

P 1’(J, Pl, P2) and PA2(J, P1, P2) according to the three cases of Proposition
(1.1.16), as follows.

In case (i), let PA1(J, P1, P2) = P1, PA2(J, P1, P2) = P2.
In case (ii) let PAk(J, P1, P2) = (P, u {Si+j+1})B{Sij} for k = 1, 2.
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In case (iii), suppose Pi = P2 = {Sij, Si,j+1} (resp. {Sij,Si+1,j}.) Then let

where

We then define

all unions being disjoint.

REMARK. Suppose (P, Q) is an adjoinable pair to J. Then (Q, P) is an

adjoinable pair to J and PA1(J, Q, P) = P1(J, P, Q).
EXAMPLE. Let T, T’ be as in (1.4.2). Let r  3. Let J = Shape(T(r)) (see 1.3.1),
let Pi = P(r + 1, T’), and let P2 = Shape(r(r))BShape(T’(r)). Then (P 1, P2) is an
adjoinable pair to J. We have p1(J, P 1, P2) = P(r + 1, T),

and

(1.1.18) DEFINITION. Let J c f7 satisfy condition Y, and let P1, P2 ~ F. We
say (P1, P2 ) is a removable pair for J if P1 and P2 are extremal positions in J. If
P1 = P2 = {S1r,S1,r+1} or if P1 = P2 = {Sr1, Sr+1,1} for some r we say (P1, P2)
is a minimal removable pair for J; otherwise (P1, P2 ) is a standard removable pair
for J.

(1.1.19) PROPOSITION. Let (P1,P2) be a removable pair for J. Then either
(i) P1 ~ P2 = ~,

(ii) P1 n P2 = {Sij} where i  2, j  2, and i = Kj(J),j = Pi(J), or
(iii) Pi = P2.

(1.1.20) DEFINITION. Let (P1, P2 ) be a standard removable pair for J. We define
PR1(J, P1, P2) and PR2(J, P1, P2) according to the three cases of Proposition
(1.1.19) as follows.

In case (i), let Pl’(J, P1, P2 ) = P 1, PR2(J, P1, P2) = P2 .
In case (ii), let P’(J, Pl, P2) (Pk ~ {Si-1,j-1})B{Sij} for k = 1, 2.
In case (iii) suppose P1 = P2 = {Sij,Si,j+1} (resp. {Sij,Si+1,j}). Then let
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where

We then define

Here the unions are disjoint and

(1.1.21) PROPOSITION. (a) Let (Ql, Q2) be an adjoinable pair to 1. Let

Then (P1, P2 ) is a standard removable pair for J and

(b) Let (Q1, Q2) be a standard removable pair for I. Let

Then (P1, P2 ) is an adjoinable pair to J and

(1.1.22) PROPOSITION. Let (Q1, Q2) be an adjoinable pair to I, and let

Pi = PAi(I, Q1, Q2), i = 1, 2, and J = JA(I, Q1, Q2). Suppose further that we have

T ~ J(M) or T~J0(M), e~N* with e = sup M, and Shape(T)=I~Q1
(resp. Shape(T) = 1 U Q2). Then (e, P2) (resp. (e, P1)) is adjoinable to T and

Shape(Adj(T, P2, e)) = J (resp. Shape(Adj(T, P1, e)) = J).

Section 2

In this section we will give two definitions of A and show they are equivalent. The
first definition, (1.2.1), is useful for showing the symmetry between left and right,
(1.2.3). The second Definition, (1.2.7), is more useful for computations. We will
show in (1.2.9) that A has an inverse, B.

(1.2.1) DEFINITION. For each M1,M2~ N* with |M1|=|M2|  ~ we

define a map A = A(M1, M2), A:
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we write A(w) = (L(w), R(w) ). If |M1| = 0 we define A(M1, M2 ) to be the unique
map between the one-element sets J(~, ~) = {~} and 
For |M1|  1, to define A(M 1, M2 ) we assume by induction that A(M1, M’2) is
defined whenever |M’1|  |M1|, and that we have available Proposition (1.2.2)
when 1 K ) |M’1|  |M1|. Let m = |M1|, e = sup M 1, u = sup M2 . There are two
cases.

Case 1. wm = mw. Let 8 E {± 1} be such that wBwm = {(e, u, 03B5)}. Then we define
L(w) = Adj(L(m w), P, e) and R(w) = Adj(R(wm), P, u), where P = {S1r,S1,r+1}
with r = 03C11(L(mw)) + 1 when E = 1 and P = {Sr1,Sr+1,1} with r =k1(R(wm)) +
1 when 8 = -1.

Case 2. Wm i=- mw. Let w = m-1(wm) = w),, Note that since mw ~ wm we
have L(wm)~J(M1B{f}) for some f  e and R(mw) ~ J(M2B{v}) for some v  u.

Let Q, = P(e, L(wm)), Q2 = P(u, R(mw)). Let I = Shape(L(w)) = Shape(R(w)). By
Proposition (1.2.2) applied to wm and to m w, (Q1, Q2) is an adjoinable pair to I. We
now define L(w) = Adj(L(mw), PA1(I, Q1,Q2), e) and R(w) = Adj(R(wm), PA2(I, Q 1,
Q2), u). (By Proposition (1.1.22) this is possible, and Shape(L(w)) = Shape(R(w)) =
JA(I, Q1,Q2) so (L(w), R(w))e 9-(M 1, M 2).)

(1.2.2) PROPOSITION. Let w~J(M1,M2), m = |M1|  1, e = sup M 1, u =

sup M 2 . Then L(m w) = L(w)BD(e, L(w)) and R(wm ) = R(w) B D(u, R(w)).
Proof. This is clear from the definition. Fi

We now prove the relation between L and R.

(1.2.3) PROPOSITION. Let w ~J(M1, M2). Then A(w-1) = (R(w), L(w)).
Proof. We assume by induction that the proposition is true for y E Y(M’, M’2)

whenever |M’1|  |M1|, the case |M1| = 0 being obvious. Let m = lM 11, e =

sup M 1, u = sup M2 .
Note that (wn)-1 = m(w-1) and (mw)-1 = (w-1)m. It follows that w-1 satisfies

the hypothesis of case 1 of Definition (1.2.1) if and only if w satisfies the hypothesis
of case 1 of Definition (1.2.1).
Assume first that w. = mw, that is, w and w-1 satisfy the hypothesis of case 1 of

Definition (1.2.1). Let wBwm = {(e,u,03B5)}. Then w-1B(w-1)m = {(u,e,03B5)} and the
proposition is clearly true in this case.
Assume now that Wm =1= m w, that is w and w -1 satisfy the hypothesis of case 2 of

Definition (1.2.1). Let

Then w-1 = (w)-1. By induction we have
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and

Let

and let

Then I = I’, 6i = Qz, Q2 = Q’1. By Remark (1.1.17) p1(J’, Qi, 62) = PA2(I,Q1. Q2).
Thus

and similarly R(w -1 ) = L(w). 0

We now introduce some preliminaries for the second definition of the

algorithm A. This definition makes use of the map a, defined in (1.2.5), mentioned
in the introduction.

(1.2.4) DEFINITION. Let M c N*, |M|  oo.

(a) Let L(M)={(T,v,03B5)|v ~ M, T~J(MB{v}), 03B5~{±1}}.
(b) Let D(M) = {(T,P)| T~J(M) and P is an extremal position in T}.

(1.2.5) DEFINITION. Let M c N*, |M|  oo. We define a map a = ot(M),
a(M) : L(M) ~ D(M). To define ce, if |M|  2 we assume by induction that a(M’) is
defined for all M’ with 1  1 M’l  1 MI and that we have available Proposition
(1.2.6) for this situation (for |M| = 1 we are in case 1 of this definition, and this
case does not require induction.) Let e = sup M and suppose (T’, v, e) E W(M).
There are two cases.

Case 1. v = e. If 03B5 = 1 let P = {S1,r,S1,r+1} where r = 03C11(T’) + 1, if 03B5 = -1 let
P = {Sr,1,Sr+1,1} where r = k1( T’) + 1. Let T = Adj ( T’, P, e). Then we define
03B1((T’,v,03B5))=(T,P).

Case 2. v =1= e. Let (T", P’) = a((T’BD(e, T’), v, 8»). Let Q1 = P(e, T’), Q2 = P’,
I = Shape(T’BD(e, T’)). Then by Proposition (1.2.6) (Q I , Q2) is an adjoinable pair
for I, so let Pl = PA1(I, Q1, Q2), P2 = PA2(I, Q1, Q2), J = JA(I, Q1, Q2). By Pro-
position (1.2.6) Shape(T") = Shape(T’BD(e, T’)) ~ P’ = lu Q2. Then by Proposi-
tion (1.1.22) (e, Pl) is adjoinable to T". Let T = Adj(T",P1,e), and let P = P2 .
Then we define a((T’, v, 8)) = (T, P). (By Proposition (1.1.22) Shape(T) = J, so by
Proposition (1.1.21) P = P2 is an extremal position in T, so (T, P) E D(M).)
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(1.2.6) PROPOSITION. Let d(T’,v,03B5)~L(M) and let (T, P) = 03B1((T’,v,03B5)). Then
Shape( T’) n P = 0, Shape(T) = Shape(T’) u P, and P is an extremal position in
T.

Proof. If (T’, v, 8) is in case 1 of Definition (1.2.5) this is clear.In case 2 we have
Shape(T) = J = lu Q 1 U P2, these unions being disjoint. Now Shape(T’) =
l u Q 1 and P = P2, which gives the first two statements of the proposition. The
third statement follows from Proposition (1.1.21(a)).

We now make a second definition of the algorithm, provisionally called A’
instead of A until shown to be equivalent to (1.2.1), in (1.2.8). The map a is the
basic building block. The map A’ is obtained by repeated applications of a,
analogously to the Robinson-Schensted algorithm, as mentioned in the introduc-
tion.

(1.2.7) DEFINITION. For each Ml,M2 c N* with |M1|=|M2|  ~ we
define a map A’ = A’(M 1, M2), A’ : J(M1, M2) ~ J(M1, M2). To define A’ we
assume by induction that we have defined A’(M’1, M’2) whenever |M’1|  M1I
(for |M1| = 0 A’ is the unique map from J(~, ~) to J(~, ~), that is

A’(~) = (0, 0).) Let m = |M1|. For w~J(M1, M2) let {(v,u,03B5)} = wBwm (so
u=sup M2), let (T’1,T’2) = A’(wm)~K and let (T1, P) =
03B1((T’1, v, 03B5)).
Now by Proposition (1.2.6) P is an extremal position in Shape( Tl ) = Shape(T’1) u

P, this union being disjoint. Since Shape(T2) = Shape(Ti), and u &#x3E; sup(M2B{u}),
(u, P) is adjoinable to T’2. Let T2 = Adj(T’2, P, u). We define A’(w) = (Ti , T2).

(1.2.8) PROPOSITION. Let M1,M2~N* with |M1|=|M2|~. Then

A(M1, M2) = A’(M1, M2).

LEMMA. Let w ~ J(M1, M2), m = |M1|, and let {(v,u,03B5)} =wBwm.Let(T, P) =
a((L(wm), v, 8». Then T = L(w).

Proof. Let e = sup M 1. Now e = v if and only if wm = mw so (L(wm), v, 8)
satisfies the hypothesis of case 1 of Definition (1.2.5) if and only if w satisfies the
hypothesis of case 1 of Definition (1.2.1). In this case (that is e = v, case 1 of both
definitions) the lemma is clear from the definitions.
Assume then e ~ v. We will assume by induction that the lemma holds for any

y ~ J(M’1, M’2) with |M’1 || IMll (when |M1| = 1 any w~J(M1, M2) satisfies
the hypothesis of case 1 of Definition (1.2.5), and we have already proved the
lemma in this case). Let w = m-1(wm) = (mw)m-1. Recall from Definition (1.2.5)
that T is obtained as follows: let

then T = Adj(T", P1, e). On the other hand, recall from Definition (1.2.1) that we
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obtain L(w) as follows: let

then L(w) = Adj(L(mw), Pi, e). Then to show that L(w) = T it suffices to show that

By Proposition (1.2.2), L(wm)BD(e, L(wm)) = L(m-1(wm)) = L(w), which gives
(ii). By induction we can apply the lemma to L(m w), to obtain

where P" = Shape(L(mw))BShape(L(w)).This gives (i) and also P" = P’ = 62.
Now (iii) is by definition, so there remains only (iv), that is, we have to show that
P’ = P(u, R(mw)). Now P’ = P" = Shape(L(mw))BShape(L(w)) = Shape(R(mw))B
Shape(R(w)) = P(u, R(mw)), the last equality since R(w) = R(mw)BD(u, R(mw)) by
Proposition (1.2.2). This completes the proof of the lemma.

Proof of Proposition (1.2.8). We will assume by induction that A(M’1, M’2) =
A’(M’1, M’2) whenever |M’1||M1| (when !Mi!=0 both A(Ml,M2) and
A’(M i , M2) are the unique map from J(Ø,Ø to J(Ø,Ø)). For w e J(M1, M2)
let (Ti , T2) = A’(w). We have to show Ti = L(w) and T2 = R(w).

Let (T’1, Tl) = A’(wm ) and let {(v,u,03B5)} = wBwm . By induction (T’1, T’2) =
(L( = 03B1((T’1, v,03B5)) = 03B1((L(wm),v,03B5)) = L(w).
Now T2 = Adj(r2,P,M) and R(w) = Adj(R(wm), P’, u), for some P, P’. Thus to
show T2 = R(w) it suflices to show P = P’. We have

proving the proposition.

REMARK. In light of Proposition (1.2.8) we will use the notationA(M1, M2)
indifferently for A(M1,M2) or A’(M1, M2).

We now begin to define an inverse to A. We first introduce fi, the inverse to
a (1.2.5).
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(1.2.9) DEFINITION. Let M c N*, |M|  oo. We define a map f3 = 03B2(M),
03B2(M) : D(M) ~ W(M). To define f3, if |M|  2 we assume by induction that f3(M’) is
defined for all M’ with 1 5 )M’ )  |M| and that we have available Proposition
(1.2.10) for this situation (for 1 M = 1 we are in case 1 of this definition, and this
case does not require induction.) Let e = sup M. Suppose (T, P) E f0(M). Let Q 1 =
P(e, T), Q2 = P and let 7 = Shape(T). Then (Q1, Q2) is a removable pair for I.
There are two cases.

Case 1. If (Q1, Q2 ) is a minimal removable pair for I and 61 1 = Q2 = {S1,p,
S1,p+1} (resp. {Sp,1,Sp+1,1}) for some p we define 03B2((T,P)) = (TBD(e, T), e, 1)
(resp. f3((T, P)) = (TBD(e, T), e, -1»).

Case 2. If (Q1, Q2) is a standard removable pair for I let P1 = PR1(I, Q1, Q2),
P2 = PR2(I, Q1, Q2), J = JR(1, Q1, Q2). Then Shape(TBD(e, T)) = IBQ1 = J u P2
so by Proposition (1.1.21(b))(TBD(e, T), P2)~D(MB{e}). Let (T", v, e) = 03B2((TBD(e,
T), P2)). Then by Proposition (1.2.10)

Shape(T") = Shape(TBD(e, T))BP2 = (JBQl)BP2 = I.

Thus (e, Pi) is adjoinable to T". Let T’ = Adj ( T", P 1, e). We define 03B2((T, P)) =
(T’, v, e).

(1.2.10) PROPOSITION. Let (T, P)Ef0(M) and let (T’, v, B) = 03B2((T, P)). Then
Shape(T)BP = Shape(T’).

Proof. If ( T, P) satisfies case 1 of Definition (1.2.9) this is clear; if it satisfies case
2 we have, in the notation of case 2, Shape(T) = I, P = Q2 and Shape(T’) =

Shape(T") u Pi = J u Pi = IBQ2, which proves the proposition. D

We now define what will be shown to be an inverse to A.

(1.2.11) DEFINITION. For each M1, M2 c N* with |M1| = |M2|  ~ we
define a map B = B(M 1, M2 ), B(M 1, M2) : J(M1, M2) ~ J(M1, M2). To define
B we assume by induction that we have defined B(M’1,M’2) whenever 1 M’ 
1 M (for 1 M = 0, B is the unique map from J(Ø,Ø) to J(Ø, 0». Let
u = sup M2. For (Ti, T2) ~ J(M1, M2) let P = P(u, T2), let (T’1, v, E) = 03B2((T1, P)),
and let T’ = T2BD(u, T2). Then we define B((Tl, T2)) = B((T’l, T’2))~{(v, u, e)
The following proposition is the main point needed to show that B is an

inverse to A.

(1.2.12) PROPOSITION. Let M c N*, |M|  oo. T hen 03B1(M) is a bijection from
L(M) to f0(M) with inverse 03B2(M).

Proof. We show first that 03B2o a is the identity on W(M). Suppose (T’, v, 8) E L(M)
and let (T, P) = 03B1((T’, v, e». Assume first (T’, v, e) satisfies the hypothesis of case
1 of Definition (1.2.5). Then it is clear that (T, P) satisfies case 1 of Definition (1.2.9)
and that f3(T, P)) = (T’, v, e).
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So assume (T’, v, e) satisfies the hypothesis of case 2 of Definition (1.2.5). Then
(T, P) is obtained as follows: let e = sup M, (T", P’) = oc«T’BD(e, T’), v, 03B5)),
Q1 = P(e, T’), Q2 = P’, I = Shape(T’BD(e, T’)), Pi = PA1(I, Q1, Q2), I’2 =
PA2(I, Q1, Q2 ), J = JA(1, Q1, Q2), then T = Adj(T", P1, e) and P = P2 . Proposition
(1.2.21(a)) says that (T, P) satisfies case 2 of Definition (1.2.9), so 03B2((T, P)) is

obtained as follows: we have Pi = P(e, T), P2 = P, and J = Shape(T), so let
Let (T"’, V, 9)

03B2((TBD(e, T), 62)) and let ’ = Adj(T"’, Ql, e). Then 03B2((T, P» = (T’, v, 9).
We need to show (T’, v, 9) = (T’, v, e). We will assume by induction that the

03B2(M’) o a(M’) is the identity on W(M’) whenever 1 MI |  1 M | (when 1 M | = 1, any
element of L(M) satisfies the hypothesis of case 1 of Definition (1.2.5), and we have
already proved that 03B2o03B1 is the identity on W(M) in this case.) By Proposition
(1.1.21(a)) 61 = Q1, 2 = Q2 and 1 = I. We have by induction

It remains to show that T’ - T. We have

This completes the proof that 03B2o03B1 is the identity on L(M).
We show next that a 0 f3 is the identity on D(M). Suppose (T, P) E D(M). Assume

first (T, P) satisfies the hypothesis of case 1 of Definition (1.2.9). Then it is clear
that 03B2((T, P)) satisfies case 1 of Definition (1.2.5) and that 03B103B2((T, P))) = (T, P).
So assume (T, P) satisfies the hypothesis of case 2 of Definition (1.2.9). Then

03B2((T, P)) is obtained as follows: let

and

Then 03B2((T, P)) = (T’, v, 8). We next compute a((T’, v, 8»). Since V i=- e, (T’, v, 8)
satisfies case 2 of Definition (1.2.5), so 03B1((T’, v, 03B5)) is obtained as follows. Note that
T" = T’B D(e, T’), P1 = P(e, T’), and J = Shape(T").
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Let

Then a((T’, v, 8» = (T, ).
We need to show (T, P) = (T, P). We will assume by induction that a(M’) 0 03B2(M’)

is the identity on 2fi(M’) whenever |M’|  1 M (when 1 M = 1 any element of D(M)
satisfies case 1 of Definition (1.2.9), and we have already proved that 03B1o03B2 is the
identity on D(M) in this case.) We have by induction

that is T’" = TBD(e, T) and P2 = P’ = P2. Then by Proposition (1.1.21(b))
1=Q1, 2=Q2,  = I.

This completes the proof that 03B1o03B2 is the identity on D(M).

(1.2.13) THEOREM. Let M1, M2 c N* with |M1| = |M2|  ~. Then

A(M 1, M2) is a bijection from J(M1, M2) to J(M1, M2 ) with inverse B(M1, M2).
Proof. The proof is by induction, that is we assume the theorem holds for

A(M’1, M’2) whenever |M’1|  |M1|. (When |M1| = 0, A(M 1, M2 ) and B(M 1, M2)
are the unique maps between the one-element sets in question.) In light of
Proposition (1.2.8) we will use Definition (1.2.7) for A(M 1, M2 ). Let m = |M1| and
let u = sup M2.
We show first that BoA is the identity on J(M1, M2). Given we J(M1, M2)

we compute B(A(w)). Let

Then A(w) = (Tl’ T2). To compute B((Tl , T2)), note that P = P(u, T2 ) and
T’i = T2 BD(u, T2). Let (’1, v, 9) = P((Tl’ P»). Then B((Tl, T2)) = B«’T’, Tl») U
{ (v, u, ê) 1.
We need to show that w = B«’T’, T’2)) ~{(, u, 9) 1. We will show that
(i) B((T’1, T’2)) = wm and
(ii) {(, u, )} = {(v, u, e) 1 which is wBwm.
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Proposition (1.2.12) says that (’1, V, ) = 03B2((T1, P)) = 03B2(03B1(T’1, v, 03B5))) =
(Ti, v, 03B5). So we have (ii) and also ’1 = T’1. By induction we have B((T’l, T’2)) =
B((T’1, T’2)) = B(A(wm)) = w.. This completes the proof that BoA is the identity
on J(M 1, M2).
We show next that A 0 B is the identity on J(M1, Ml). Given (Tl, T2)~

J(M1, M2) we compute A(B((Tl, T2))). Let P = P(u, T2), (T’1, v, e) = 03B2((T1, P))
and T’ = T2BD(u, T2). Then B((Tl, T2)) = B((T’l, T’2)) ~ {(v, u, e) Let w =
B((Tl, T2)). To compute A(w), note that since u = sup M2, WB Wm = {(v, u, 03B5)}.
Then wm = B«T’, T’2)) so by induction A(wm) = A(B«T’, T’2))) = (T’1, T’). Let
(1B, P) = 03B1((T’1, v, 03B5)) and T2 = Adj(T2, P, u). Then A(w) = (Tl’ T2).
We need to show (Tl, 2) = (Tl, T2). We have (Tl, P) = a((T’l, v, 03B5)) =

(03B103B2(T1, P))) = (Tl, P) (the last equality by Proposition (1.2.12)), so Tl = Tl and
P = P. Finally T2 = Adj(’2, ,u) = Adj(T’2, P, u) = Adj(T2 BD(u, T2), P(u, T2),
u) = T2. This completes the proof of the theorem. 

(1.2.14) REMARK. All the definitions in this section can be made for tableaux in
J0(M) as well. That is, we can define A° = AO(Ml,M2) where A’(Ml, M2):
J(M1,M2)~J0(M1,M2). This definition is identical to Definition (1.2.1),
except that for |M1| = 0 we have A0(Ø)=({(0,S11)},{(0,S11)})~J0(Ø,Ø).
Similarly we define W°(M), !0°(M), a°(M), (Ao)’(Ml, M2), 03B20(M), and B°(M 1, M2).
The analogues of Propositions (1.2.2), (1.2.3), (1.2.6), (1.2.8), (1.2.10), and (1.2.12),
and of Theorem (1.2.13) hold in this situation as well.

Section 3

In this section we prove some propositions about the maps A and B which are
useful for applications. We will, in Section 4, illustrate how they are used in
computations. We accomplish this by giving useful characterizations of a and 03B2.

(1.3.1) DEFINITION. Let T~J(M) or J0(M). Let M = {e1,...,em} with
e  e2  ...  em. Define

(1.3.2) DEFINITION. Let J, P ~ F be such that J satisfies condition Y and
p = {Sij,Si,j+1} (resp. {Sij,Si+1,j}) for some (i, j). We define pA(J,p) in any
one of the following situations:

(i) If j = 03C1i(J) + 1 (resp. i = 03BAj(J) + 1) we define P’(J, P) = P.
(ii) If P n J = Sij and pi + 1 (J) = j - 1 (resp. kj + 1 (J) = i - 1) define PA(J, P) =

(PB{Sij}) ~ {Si+1,j+1}.
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(iii) If j + 1 = pi(J) (resp. i + 1 = kj(J)) we define P’(J, P) = {Si+1,r,Si+1,r+1}
(resp. {Sr,j+1,Sr+1}) where r = 03C1i+1(J) + 1 (resp.r = kj+1(J) + 1).

EXAMPLE. See (1.4.2). Each of the five tableaux with a domino above it yields
an example: that is, J is the shape of the tableau, P is the position occupied by the
domino above it, the shaded area in the domino is P n J, (which is empty in case
(i) of the definition) and P’(J, P) is the position in the next tableau occupied by the
domino with the same number.

(1.3.3) PROPOSITION. Suppose (Ql, Q2) is an adjoinable pair to I. Then

pA(I u Q2, Q1) (resp. PA(I ~ Q1, Q2)) is defined and PA(I ~ Q2, Q1) = PA1(I, Q1, Q2)
(resp. PA(I ~ Ql, Q2) = PA2(I, Q1, Q2)).
The following proposition is designed to give a better grasp of oc.

(1.3.4) PROPOSITION. Let M c N*, IMI  oo. Let m = IMI and let M =

{e1,...,em} with e1  ···  em. Suppose (T’, v, e) E W(M), and let (T, P) =
03B1((T’, v, e)). Let 1  k  m be such that v = ek. Then the following statements hold
and characterize T uniquely.

( 1 ) For j  k we have T(j) = T’( j), that is P(ej, T’) = P(ej, T).
(2) If 03B5 = 1 then P(ek, T) = {S1,r, S1,r+1} where r=Pl(T(k-1)+I; if

8 = -1 then P(ek, T) = {Sr1, Sr+1, } where r = xl(T(k - 1)) + 1.
(3) For j &#x3E; k we have P(eb T) = pA (T(j - 1), P(ej, T’)).
Proof. It is clear that statements (1)----(3) determine P(ej, T) for all 1  j  m,

and thus determine T. To see that they hold, suppose first that k = m, that is, that
(T’, v, e) satisfies the hypothesis of case 1 of Definition (1.2.5). In this case it is clear
that statements (1) and (2) are true and that (3) does not apply.

Suppose then that k ~ m, that is (T’, v, e) satisfies the hypothesis of case 2 of
Definition (1.2.5). We assume by induction that the proposition is true for

elements of any L(M’) with 1 5 IM’I  |M| (when IMI = 1 we must have
k = m = 1, and this case is proved already.) Let T" ~ L(MB{em}) be such that
(T", P) = 03B1((T’BD(em, T’), v, 03B5)). Then by Definition (1.2.5) T" = T(m - 1), so
T"( j) = T( j) for 1  j  m - 1. Since also P(ej, T’BD(em, T’)) = P(ej, T’) for

1  j  tn - 1, we have by induction that statements (1) and (2) hold, and (3) holds
for k  j  m - 1. For j = m, statement (3) follows from the definition of a and
from Proposition (1.3.3).

REMARK. The proposition (we conserve all its notation) says that we can form
T by the following procedure: first write down the tableau formed with the
numbers e1,...,ek-1, in the same position as they appear in T’. (This is the
tableau called T(k - 1).) Then add v = ek to this tableau as a horizontal domino
at the end of the first row if e = 1 or as a vertical domino at the end of the first

column if 03B5 = - 1. (We now have T(k).) Finally, add successively the ej, j &#x3E; k, in

increasing order as follows: to add ej to the tableau that we have obtained from
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the ei, i  j, (this tableau is called T( j - 1)) we look at the intersection of this
tableau with the position occupied by ej in T’ (that is, T( j - 1) n P(ej, T’).) We
then add ej to the tableau in the position described in Definition (1.3.2), which
depends on the position of ej in T’ and the intersection of this position with
T(j - 1) (that is, we add ej to T( j - 1) in the position PA(T( j - 1), P(ej, T’)) of
Definition (1.3.2): the result is T(j)). This procedure is illustrated in Example
(1.4.2).
Note that P = Shape(T)BShape(T’) and is thus determined once T is known.
Now we begin to develop a better characterization of fi.

(1.3.5) DEFINITION. Let I r-- 57 satisfy condition Y, and let Q1, Q2 ~ F with
Q and Q2 n 1 extremal positions in I. If (Q1, Q2 n I) is a standard removable pair
for I, we define PR1(I, Q1, Q2) = PR1(I, 61. Q2 n I).

(1.3.6) PROPOSITION. Let M c N*, IMI  oo, let m = IMI and let M =

{e1,...,em} with el  ...  em. Suppose (T, P) E D(M), and let (T’, v, 03B5) = P((T, P)).
Let

Let 1  k  m be such that v = ek. Then the following statements hold and
characterize (T’, v, e) uniquely. (In particular they determine k.)

(1) For k  j  m Pf(Shape(T(j», P(ej, T), Dj((T, P))) is defined and is equal to
P(ej, T’).

(2) Let 1  j  m. Then (a) j = k and 03B5 = 1 if and only f P(ej, T) n Dj((T, P)) =
{S1r, S1,r+1} for some r, and (b) j = k and e = -1 if and only if
P(ej, T) n Dj((T, P)) = {Sr1, Sr+ 1,1} for some r.

(3) For 1  j  k we have P(eb T’) = P(eb T).
Proof. To see that if true statements (lH3) determine (T’, v, 8) we need to show

that for each 1  j  m statements (lH3) first determine whether j = k, and if
j = k that they determine e, and if j =1= k that they determine P(ej, T’). It is clear
that for j = m statements (1) and (2) do this. Now let 1  j  m. By induction we
can assume that for j + 1  1  m statements (lH3) have determined whether
1 = k, and if 1 =1= k that they have determined P(el, T’). Then if j + 1  1  m

statement (3) determines P(ej, T’), and if not by induction P(el, T’) is determined
for j + 1  1  m, thus so is Dj((T, P)). Then it is clear that statements (1) and (2)
determine whether j = k, and if so that they determine e and if not they determine
P(ei, T’).
To see that statements (lH3) hold, note first that if k = m (case 1 of Definition

(1.2.9)) then statement (1) is irrelevant and statements (2) and (3) follow directly
from Definition (1.2.9). So assume k * m. We assume by induction that the
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proposition is true for fi(M’) when 1  |M’|  1 M (the case 1 M = 1 also satisfies
k = |M| = 1, which is treated above). We note that Dm((T, P)) = P, thus

statements (1) and (2) hold when j = m (and statement (3) cannot apply when
j = m) by the definition of 03B2. Let Q = P(em, T), Q2 = P, I = Shape(T), Pi =

Pf(I, Q1,Q2) = P(m, n. P2 = pR(j@ Q1,Q2), and let (T", v, 8) = 03B2((T’BD(em, T),
P 2) ).

It remains to show that statements (1)-(3) hold for 1  j  m - 1. By induction
we can assume that they hold true for 03B2((TBD(em, T), P2)). Using this and the facts
that for 1  j  m - 1 we have P(ej, T) = P(ej, TBD(em, T)) (that is T(j) =
(TBD(em, T)) (j)) and by the definition of fi, P(eb T’) = P(ej, T") for j * k,
1  i  m - 1, statements (lH3) follow from the following claim:

Claim. For k  j  m - 1 we have Dj((T, P)) n T(j) = Dj((TBD(em, T),
P 2» n T(j).

Proof of the claim.

and

So it succès to show that (P u P(em, T’)) n T( j) = P2 n T(j). But by the

definition of P’ and PR2, P ~ P(em, T’) = P2 u P(em, T), so this is clear.

Section 4

In this section we illustrate the preceding with some examples, showing how
a, 03B2, A, and B operate as algorithms. Thus we use the descriptions of a and 03B2 given
in Section 3. The similarity to the Robinson-Schensted algorithm will be visible.

(1.4.1) REMARK. We think of the Sij as squares in an array. If T is a domino
tableau an element of T corresponds to the assignment of a number to a square.



154

We picture the number as occupying the square. For example, the tableau
T = {(1,S11),(1,S12),(2,S21),(2,S31),()3, S22), (3, S32), (4, S13), (4, S14)} looks like

Usually, however, we display T as a tableau made of dominos, as

(1.4.2) EXAMPLE. Let T’ be the domino tableau displayed as:

Let (T, P) = a((T’, 3,1)). We show how to find T. We use Proposition (1.3.4) and
its notation; see especially the remark after this proposition. (Since M = { 1, 2, ..., 8}
we have ej = j~1  j  8.) Then k = 3 so T(2) = T’(2). We start with this and
display successively T(2), T(3),..., T(8) = T. Above each tableau T( j - 1), j  4,
we display D( j, T’). The set T(j - 1) n P( j, T’) is indicated by the shaded area.
This is used, by Proposition (1.3.4), statement (3), to find P( j, T).
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(1.4.3) EXAMPLE. Let T be the domino tableau displayed as

and let P = {S23, S24 1. Let (T’, v, e) = P((T, P)). We show how to find (T’, v, e). We
use Proposition (1.3.6), and its notation. We display, on the top row, T(5), T(4),...,
T(k - 1). (It develops that k = 3.) The shaded area for each T( j) is D( j). On the
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next row we display the information obtained about (T’, v, c) at each stage, using
statements (1)-(3) of Proposition (1.3.6).

statement (1) statement (1) statement (2) statement (3)
gives P(5, Tf) gives P(4, T’) gives v = 3, 03B5 = 1 gives the

remaining
information
about T’.

(1.4.4) EXAMPLE. Let W E Y( {l, 2,3,4, 5}, {l, 2,3,4, 5}), W = {(4, 1, 1), (5,2, -1),
(1, 3, 1), (3, 4, -1), (2, 5, - 1)}. We show the steps in finding A(w), using Definition
(1.2.7).

Definition (1.2.7) says that for k = 1, 2,..., 5, we obtain (L(w5,.... k+1),
R(w5,...,k+1)) from (L(w5,...,k), R(w5,..,k)) using the fact that (L(w5,...,k+1),
P(k, R(w5,...,k+1) = 03B1((L(w5,...,k),v,03B5)) where (v, k, e) E w, and that R(w5,...,k+1) =
Adj(R(w5,...,k), P(k, R(w5,....,k + 1 ) ), k). We display here the result of each step.
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(1.4.5) EXAMPLE. Let (Ti, T2)~J({1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}),

We show how to find w = B((Tl, T2)). Note that w = 5k=1(w5,...k+1Bw5,..,k).
Definition (1.2.5) says that for k = 5,..., 1 we obtain w5,...,k+1Bw5,...,k using the
fact that 03B2((L(w5,...k+1), P(k, T2))) = (L(W 5,..., k), v, 03B5) where w5,...k+1Bw5,....k =

(v, k, e).
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(We are using here Theorem (1.2.13) to identify (T1, T2 ) with (L(w), R(w)) and to

identify the various subtableaux which occur in computing B((Tl, T2)).) We

display each step. For each k the area shaded in the tableau on the same row is

P(k, T2). Thus if T is a tableau in the second column and P the area shaded in it
and (T’, v, e) = 03B2((T, P)) then v and e are the first and third entries, respectively, in
the triple in the same row as T, and T’ is the tableau directly below T.

Section 5

In this section we introduce the second algorithm mentioned in the introduction,
S, which given any domino tableau (in the applications, L(w)) produces a domino
tableau with special shape.
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We first introduce the notion of special shape, (1.5.6), and its preliminaries. The
notion of special representation of a Weyl group was introduced by Lusztig in [8]
(in case An, every representation is special). Then the symbol of such a representa-
tion is also called special, and was explicitly characterized by Lusztig in [8]. In
[1], Barbasch-Vogan use shapes of domino tableaux to parametrize representa-
tions of the Weyl groups of types B", Cn and Dn. One can easily show that the
following definitions leading up to Definition (1.5.6) characterize the shapes of
domino tableaux which parametrize the special representations (and so we call
such shapes, special shapes).

(1.5.1) DEFINITION. A grid is a map ~ from F into a four-element set denoted
{X, Y, Z, W}, satisfying

In particular we note that 0 is determined by ~(S11 ).

(1.5.2) DEFINITION. We define the grids ~B, ~C, ~D, and ~’D by ~B(S11) =

W, ~C(S11) = X, ~D(S11) = Y, ~’D(S11) = Z.

REMARK. We think of a grid as placing 57 (or any subset thereof) in an array of
2 x 2 boxes (see (1.5.7)). The squares within any 2 x 2 box are labelled X, Y, Z, or
W as follows:

Thus each square of 3?7 (or a subset thereof) is labelled by an element of the set
{X, Y, Z, W}. For example, the grid CPB places f in an array of 2 x 2 boxes as
pictured below:

Thus, for example, ~B(S45) = Y.
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(1.5.3) DEFINITION. (1) A tableau with grid is a pair (T, çl) where 0 is a grid
and T is contained in either 1(M) or 1°(M) for some M.

(2) We are interested in three types of tableaux with grid, corresponding to
g of type Bn, Cn, and Dn. Let JB(M)={T,~B}| |T~J0(M)}, let JC(M) =
{(T, Oc) T ~ J(M)}, and let JD(M)={(T, OD) | T ~ J(M)}. For n E N * we write
9-B(n) for JB({1,..., n}); similarly KC(n), JD(n).

EXAMPLE. See (1.6.2)(i), (1.6.3)(i), and (1.6.4)(i).

(1.5.4) DEFINITION. Let 0 be a grid. A square Sij ~ F is called 0-fixed if

cp(Sij) ~ {Y, Z}, otherwise it is called 0-variable. (If 0 is understood, Sij is called
simply fixed or variable.)

(1.5.5) DEFINITION. Let F ~ F satisfy condition Y, and let 0 be a grid.
(1) A square Sij E F is called a corner of F with respect to 0 (or a 0-corner of F,

or a corner of F, if 0 is understood) if ~(Sij) = X, (Si,j-1, Si-1,j} ~ F ~
(F0BF), and {Si,j+1,Si+1,j} ~ F = Ø.

(2) A square Sij~ F is called a hole of F with respect to 0 if ~(Sij) = W,
{Si,j-1,Si-1,j} ~ F u (F0BF), and {Si,j+ 1, Si+ 1,j} ~ F = 0. .

Note that a corner or hole of F need not be contained in F. If ( T, ql) is a tableau
with grid we say Sij ~ F is a corner or hole of (T, ql) if it is a corner or hole of
Shape(T) with respect to 0.

EXAMPLES. If T is as in (1.6.2) then S42 is an (empty) corner of T and S33 and
S51 are (filled) holes of T. If T is as in (1.6.3) then S33 is a (filled) corner of T, S51 is
an (empty) corner of T and S42 is an (empty) hole of T.
We now give the definition of the notion of a domino tableau’s having special

shape.

(1.5.6) DEFINITION. Let F ~ F satisfy condition Y, and let 0 be a grid. F is
called special with respect to 0 (or 0-spécial) if F has no filled 0-corners or empty
0-holes. A tableau T is called special with respect to 0 if Shape(T) is special with
respect to 0. A tableau with grid (T, ql) is called special if T is special with respect
to 0.

We now introduce some preliminaries for the definition of the algorithm S,
which will be given in (1.5.34).

(1.5.7) DEFINITION. Let 0 be a grid. A set B ~ F0 is called a box for 0 (or
a 0-box) if B = {Sij, Si,j+1, Si+1,j Si+1,j+1} for some Sij with ~(Sij) = X. (We
extend 0 to F0 in the obvious way.) Let P ce 3E P is called boxed (with respect to
0) if P is contained in some 0-box B, otherwise P is unboxed.

REMARK. It is easy to see that a set F c-- 5satisfying condition Y is special with
respect to a grid 0 if and only if for every 0-box B, the set (F u (W°)F)) n B
consists of 0, 2, or 4 elements.
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One of the main ingredients for the definition of S is the following.

(1.5.8) DEFINITION. Let T = (T, ~) be a tableau with grid, M = X(T). Let
k E M. We define P’(k, T) as follows: if P(k, T) = {Si,j-1, sij 1 or {Sij, Si+1,j} with
Sij a fixed square, set r = NT(Si-1,j+1). If r &#x3E; k let P’(k, T) = {Si-1,j, Sij}; if r  k
let P’(k, T) = {Sij, Si,j,+1}. If instead P(k, T) = {Sij, Si,j+1} or {Si-1,j, Sij} with
Sij a fixed square, let r = NT(Si+ 1,j-1). If r &#x3E; k let P’(k, T) = {Si,j-1, Sij}; if r  k

let P’(k, T) = {Sij,Si+1,j}.

EXAMPLE. Let T be as in (1.6.2). Then P’(1, T) = {S11, S21}, P’(2, T) =-
{S12,S13}, P’(3, T) = {S22,S23}, P’(4, T) = {S31, S41}, and P’(5, T) = {S32,S42}.

(1.5.9) REMARK. Let T = (T, ql) be a tableau with grid, M = N(T). Let k E M.
Then P(k, T) contains one 0-fixed and one 0-variable square, as does P’(k, T), and
P(k, T) n P’(k, T) = {Sij} where Sij is the 0-fixed square in P(k, T). Furthermore,
P’(k, T) is boxed ~ P(k, T) is unboxed.

The following proposition will be used later, after the definition of S, in order to
show that S(T) is a domino tableau, provided T is.

(1.5.10) PROPOSITION. Let T = (T, ~) be a tableau with grid, M = %(T), k E M,
and let SijE P’(k, T) be 0-variable. Then k  NT(Si-1,j), k  NT(Si,j-1), k 
NT(Si,j+1), k  NT(’Si+ l, j).

Proof. We have to check separately the four cases in the definition of P’(k, T),
but in each case each of the four statements of the proposition follow from either
the definition of P’(k, T) or of domino tableaux.
The following definition is needed in order to define the process of moving

a tableau, T, through a cycle, c, which will be denoted E(T, c) and defined in
(1.5.26) (and "cycle" will be defined in (1.5.18)).

(1.5.11) DEFINITION. Let 0 be a grid. Define ~*:F ~ {X, Y, Z, W} by

Then ~ is a grid, in particular ~*B = 4Jc, ~*C = 4JB, ~*D = ~’D, and (~’D)* = 4JD.

(1.5.12) PROPOSITION. Let T be a domino tableau and let M = N(T). Let 0 be
a grid. Let k E M.

(1) P(k, T) is boxed with respect to 4J ~ P(k, T) is unboxed with respect to 4J*.
(2) P’(k, (T, 4J» = P’(k, (T, 4J*».
(3) Let S E F. S is a corner of T for 4J ~ S is a hole of T for ~*.
Proof. (1) and (3) are clear. (2) follows from Definition (1.5.8) and the fact that if

S E F then S is 0-fixed ~ S is ~*-fixed.
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We will define the algorithm S with the following underlying notations and
assumptions.
For the remainder of section 1.5 T = (T, 0) will be a tableau with grid

contained in either,9-B(M), 9-c(M), or 9-D(M), for some M ~ Ø. Variable, boxed,
etc., will be with respect to ~, except where specified otherwise. Propositions
(1.5.13), (1.5.15), and (1.5.17) are the basis of what follows. The proofs of
Propositions (1.5.13), (1.5.15), and (1.5.17) are similar; we prove (1.5.17Hl) as
a sample thereof.

(1.5.13) PROPOSITION. Let k E M and let S be the variable square in P’(k, T).
Then exactly one of the following situations hold.

(i) There is a k’ E M with S E P(k’, T). P(k’, T) is boxed ~ P(k, T) is boxed.
(ii) P(k, T) is unboxed and S is an empty hole of T.

(iii) P(k, T) is boxed and S is an empty corner of T.
(iv) T E Y-B(M), P(k, T) is boxed and S = S11-

(1.5.14) DEFINITION. Let k ~ M. Define N f(k, T) according to the four
situations of Proposition (1.5.13): if k satisfies (i) let N f(k, T) = k’; if k satisfies (ii)
or (iii) let N f(k, T) = oo; if k satisfies (iv) let N f(k, T) = 0.

EXAMPLE. With T as in (1.6.2) we have N f(1, T) = 0, N f(2, T) = 3, N f(3, T) =
2, N f(4, T) = 1, and N f(5, T) = oo.

(1.5.15) PROPOSITION. Let k E M and let S be the variable square in P(k, T).
Then exactly one of the following situations hold:

(i) There is a unique k’ E M with S E P’(k’, T). P(k’, T) is boxed ~ P(k, T) is
boxed.

(ii) P(k, T) is unboxed and S is a filled corner of T.
(iii) P(k, T) is boxed and S is a filled hole of T.
(iv) T E 9-c(M), P(k, T) is boxed, and S = 81l’

(1.5.16) DEFINITION. Let k ~ M. Define Nb(k, T) according to the four

situations of Proposition (1.5.15): if k satisfies (i) let Nb(k, T) = k’; if k satisfies (ii)
or (iii) let Nb(k, T) = 00; if k satisfies (iv) let Nb(k, T) = 0.

(1.5.16a) REMARK. Let k E M be such that Nb(k, T) ~ {0, ~} (resp. Nf(k, T) ~
{0, ~}.) Then N f(Nb(k, T), T) = k (resp. Nb(N f(k, T), T) = k.)

(1.5.17) PROPOSITION. (1) Let S be an empty hole in T. Then there is a unique
k E M such that S E P’(k, T). P(k, T) is unboxed.

(2) Let S be an empty corner in T, or let Te 9-B (M) and S = S11. Then there is
a unique k E M such that S E P’(k, T). P(k, T) is boxed.
Proof of (1.5.17Hl). Let Sij ~ F be an empty hole in T. Let k = NT(Si-1,j)

and let k’ = NT(Si,j-1}. Since neither Si,j+ 1 nor Si+ 1, j are contained in Shape( T),
if Sij E P’(k", T) then either k" = k or k" = k’. Suppose first Si -1,; -1 E P(k, T). We
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note first that the variable square in P’(k, T)iseither Si -2,j or Si-1,j+1 and not Sij.
Furthermore, we have k’ &#x3E; k so P’(k’, T) = {Si,j-i, Sij}. Since Si-1,j-1 ~ P(k, T),
P(k, T) is unboxed. A similar argument holds if Si-1,j-1 E P(k’, T). Suppose then
that either k = 0 or k’ = 0 or Si-1,j-1 ~ P(k, T) Then we have
Su E P’(k, T) « k &#x3E; k’ and Su E P’(k, T) a k’ &#x3E; k. In either case the relevant subset

of F is unboxed.

We now define the concept of a cycle of a domino tableau.

(1.5.18) DEFINITION. We define an equivalence relation (call it -) on M,
relative to T, by setting ~ to be the equivalence relation generated by
k ~ N f(k, T) when Nf(k, T) ~ {0, ~) and k - Nb (k, T) when Nb (k, T) e {0, ~}.
The equivalence classes of - are called cycles in T. For k E M the equivalence
class containing k is denoted c(k, T).

EXAMPLES. See (1.6.2)(iii), (1.6.3)(iii), and (1.6.4)(iii).

(1.5.19) DEFINITION. Let c be a cycle in T. We say c is closed if ~r~ c,

Nb(r, T) 0 10, oo) and Nf(r, T) e {0, ~}, otherwise c is called open. We write OC(T)
for the set of open cycles in T.

(1.5.20) PROPOSITION. (1) If c is a closed cycle in T then c = {r1,..., rn} where
Nf(ri,T) = ri+1 for 1  i  n - 1 and Nf(rn,T) = ri.

(2) If c is an open cycle in T then c = {r1, ... , rn} where N f(ri, T) = ri+1 for
1  i  n - 1, Nf (r,,, T)E {0, ~} and Nb(rl, T) E {0, ~}.

Proof. This follows from Propositions (1.5.13) and (1.5.15).

(1.5.21) DEFINITION. Let c be an open cycle in T. Let r1, rn be as in Proposition
(1.5.20)-(2). We define Sf(c) = Sf(c, T) to be the variable square in P’(rn, T) and
Sb(C) = Sb (c, T) to be the variable square in P(r1, T).

EXAMPLE. Let T be as in (1.6.3). If c = {2, 4, 5} then S f(c) = S42 and
Sb(C) = S33. If c = {1,3} then Sf(c) = S51 and Sb(C) = Sll-

(1.5.21a) PROPOSITION. Let S~F. If S is either an empty hole or an empty
corner in T then there exists a unique c~ OC(T) with S f(c) = S.

Proof. This follows from Proposition (1.5.17).

NOTATION. Let S be as in Proposition (1.5.21a). We write c(S, T), the cycle
through S in T, for the c of that proposition.

(1.5.22) PROPOSITION. Let c be a cycle in T; let k, k’ E c. Then P(k, T) is boxed
~ P(k’, T) is boxed.

Proof. This follows from Propositions (1.5.13) and (1.5.20).

(1.5.23) DEFINITION. Let c be a cycle in T. If ~k~c, P(k, T) is boxed we say c is
boxed; otherwise c is unboxed.
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The following proposition describes the different types of open cycles. In the
process of making T have special shape, however, only case (i) ever occurs.

(1.5.24) PROPOSITION. Let c be an open cycle in T. Then one of the following
four situations obtains:

(i) c is unboxed, Sb(C) is a filled corner in T, and S f(c) is an empty hole of T.
(ii) c is boxed, Sb(C) is a filled hole in T, and S f(c) is an empty corner of T.

(iii) Te JB(M), c is boxed, Sb(C) is a filled hole in T, and S f(c) = S11.
(iv) TE ffc(M), c is boxed, Sb(C) = S11, and S f(c) is an empty corner in T.
Proof. This follows from Propositions (1.5.13), (1.5.15), and (1.5.20).

(1.5.25) DEFINITION. Let k E M. Let D’(k, T) = {(k, Sij) |Sij E P’(k, T)}.

The following defines the process of moving through a cycle. Note that the grid
of the tableau will change if cases (2) or (3) hold and we move it through the cycle
c. Case (1) of (1.5.26) corresponds to either (i), (ii) of ( 1.5.24) or c’s being closed: case
(3), to case (ii) of ( 1.5.24): and case (2), to case (iv) of ( 1.5.24). For the definition of S,
only case (1) is needed. However, we will need cases (2) and (3) for the applications
to Harish-Chandra modules. (The grid changes because we will need to work on
both sides of the character-multiplicity duality of Vogan, [11].) In fact, for the
definition of S, the subcase of case (1) which is c’s being closed, never arises either
(as remarked previously to (1.5.24)). However, this possibility must be taken into
account in Part II of this paper, in order to describe the effect of Tap (see Vogan,
[10], 3.4) on tableaux.

(1.5.26) DEFINITION. Let c be a cycle in T = (T, ~).
(1) If either c is closed or both c is open and Sb(c) ~ S11, S f(c) =1= S 11, let

(2) If Sb(c) = S11 let

(3) If Sf(c) = S11 let

EXAMPLES. See (1.6.2)(v) and (vi), (1.6.3)(v) and (vi), and (1.6.4)(iv) and (v) for
examples of the first case of the definition; see (1.6.3)(iv) for an example of the
second case; see (1.6.2)(iv) for an example of the third case.
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We now have to check that this procedure results in a domino tableau.

(1.5.27) PROPOSITION. Let c be a cycle in T.
(1) Suppose either c is closed or both c is open and Sb(C) ~ Sll, Sf(c) i=- S11. If

T ~ 5 where 5 is either 5B(M),5c(M), or 5D(M), then E(T, c) E J.
(2) Suppose Sb(C) = Sl 1 (so T E 5c(M». Then E(T, c) E JB(M).
(3) Suppose S f(c) = S11 (so TE5B(M). Then E(T, c)~JC(M).

Proof. This follows from the definitions and from Propositions (1.5.10) and
(1.5.20).

We now need to show that in moving through several cycles consecutively, the
order of these operations is irrelevant.

(1.5.28) PROPOSITION. Let c be a cycle in T = (T, ~), and let k E M.
(1) If k ~ c then P’(k, E(T, c)) = P’(k, T).
(2) If k E c then P’(k, E(T, c)) = P(k, T).

Proof. Let E(T, c) = (T’, 0’). Then either or ~’ = ~*. By Proposition
(1.5.12-2) it suffices to prove the proposition with (T’, ~) in place of E(T, c). Part
(1) of the proposition then follows from the fact that if S E F is a fixed square or if
S E F0BF then NT(S) = NT.(S) (see Remark (1.5.9)). For (2), suppose for example
P(k, T) = {Sij, Si,j+1} with Sij fixed. Then P(k, T’) = P’(k, T) is either {Si,j-1, Sij}
or {Sij, Si+ 1,jl. Thus to find P’(k, (T’, 0» we need to compare k with r =

NT’(Si-1,j+1). Since Si-1,j+1 is also fixed or in F0BF, we have r = NT(Si-1,j+1),
so k &#x3E; r and P’(k, (T’, ~)) = P(k, T). The other three cases are similar.

(1.5.29) COROLLARY. Let c be a cycle in T. Let c’ ~ M. Then c’ is a cycle in
T ~ c’ is a cycle in E(T, c).

(1.5.30) DEFINITION. Let c1,...,ck be cycles in T. For k  2, define in-
ductively,

This definition makes sense by Corollary (1.5.29).

(1.5.31) PROPOSITION. E(T, cl, ... , ck) = E(T, c,(,),..., c03C3(k)) for any 03C3 E Sk.
Proof. It suffices to show that, for c c’ cycles in T, E(T, c, c) = T and

E(T, c, c’ ) = E(T, c’, c). These follow from Proposition (1.5.28).

NOTATION. Let cl, ... , Ck be distinct cycles in T. We write E(T, {c1,..., ck}) for
E(T, c 1, ... , ck); this is well-defined by the proposition.

(1.5.32) REMARK. (1) Let c be a cycle in T satisfying the hypotheses of case 1 of
Definition (1.5.26). Then c is boxed in E(T, c) p c is unboxed in T. If c’ is a cycle in
T, c’ ~ c, then c’ is boxed in E(T, c) ~ c’ is boxed in T.

(2) Suppose c is a cycle in T where c and T satisfy the hypotheses either of case
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(2) or of case (3) of Definition (1.5.26). Then c is boxed in both T and E(T, c). If c’is
a cycle in T, c’ ~ c then c’ is boxed in E(T, c) ~ c’ is unboxed in T. (These follow
from Remark (1.5.9) and Proposition (1.5.12), recalling that OB = Oc*, OC = ~*B).
The procedure E, of moving a tableau through a cycle, affects the shape as

follows:

(1.5.33) PROPOSITION. Let c be a cycle in T and write E(T, c) = (T’, ~’).
(1) If c is a closed cycle then Shape(Tf) = Shape(T).
(2) If c is open and Sf(c) ~ S11, Sb(c) ~ Si 1 then Shape(T’) = (Shape(T)BSb(c)) ~

S f(c).
(3) If c is open and Sf(c) = S11 then Shape(T’) = Shape(T)BSb(c).
(4) If c is open and Sb(c) = S11 then Shape(T’) = Shape(T) ~ Sf(c).

Proof. These are clear from the definitions and from Proposition (1.5.20).
We now define the algorithm S, which changes a domino tableau into one of

special shape.

(1.5.34) DEFINITION. Let S1,..., Sk ~ F be the (distinct) filled corners of T.
Let ci = c(Si, T) for 1  i  k. Define S(T) = E(T, cl,.. -, Ck)’ S(T) is called the
special tableau with grid associated to T.

EXAMPLES: See (1.6.2)(vii), (1.6.3)(v), and (1.6.4)(iv).

(1.5.35) THEOREM. S(T) is special.
Proof. It is clear that if c’ is an open cycle in T then the choice of rl, ..., rn

satisfying Proposition (1.5.20)-(2) is unique. It follows from Proposition
(1.5.28)-(1) that if c is any cycle in T and c’ ~ c is an open cycle in T then the
r1,...,rn satisfying Proposition (1.5.20)-(2) for c’ in T also satisfy it for c’ in
E(c, T). In particular, Sb (c’, E(T, c)) = Sb(c’, T) and Sf(c’, E(T, c)) = Sf(c’, T).

Let ci, 1  i  k be as in Definition (1.5.34). The ci’s are in situation (i) of
Proposition (1.5.24) for T, and thus by the above, each ci, 2  i  k, is in situation
(i) of Proposition (1.5.24) for E(T, cl, ... , ci-1). Then by Proposition (1.5.33)-(2)
S(T) has no filled corners. But Proposition (1.5.21a) and Proposition (1.5.24) show
that a tableau with grid has the same number of empty holes and of filled corners.
Thus S(T) is special.

(1.5.36) REMARK. If ci is as in Definition (1.5.34) then as in the proof of Theorem
(1.5.35), each ci is in situation (i) of Proposition (1.5.24) for E(T, cl, ... , ci-1). Then
if T ~ JB(M) (resp. JC(M), JD(M)) we ha ve S(T)~JB(M) (resp. JC(M),
JD(M)).

(1.5.37) NOTATION. (a) Define S(T) by S(T) = (S(T), ~).
(b) Let JSB(M) = {T~JB(M)|S(T) = T}; similarly JSC(M), JSD(M).

(1.5.38) PROPOSITION. Let T~SR(M) where R = B, C, or D. Let H1, ... ,
Hk be the , filled holes of T. If R = C or D let U = {c(Hi, T)| 1  i  kl; if R =
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B let U = {c(Hi, T)| 1  i  k}B{c(S11, T)I. Then {T’~JR(M) |S(T’) = T) =
{E(T, V) |V ~ U}.

Proof. This follows from the fact that E(T, c, c) = T (see the proof of
Proposition (1.5.31)), Proposition (1.5.24) and Proposition (1.5.33)-(2).

Section 6

In this section we illustrate the preceding section with some examples, showing
how the result of the process of moving a tableau through a cycle, and the result of
S, may be computed.

(1.6.1) We illustrate a tableau with grid (T, çl) by superimposing the tableau on an
array of 2 x 2 boxes, in such a way that each square S which lies in the

upper-left-hand corner of a box satisfies O(S) = X, etc. Note that this agrees with
the definition of boxed (1.5.7), that is, a set P ~ F is boxed if and only if P is
contained in one of the 2 x 2 boxes.

(1.6.2) (i) Let T ~ JB ({1,2,3,4, 5}) be as displayed below:

(ii) Then P(k, T) is boxed if and only if k E {1, 4, 5}.
(iii) The cycles in T are {1,4}, {2, 3}, and {5}; the first and third are open. We

have
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(1.6.3) (i) Let Te JC({1, 2, 3, 4, 51) be as displayed below:

(ii) Then P(k, T) is boxed if and only if kE ( 1, 31.
(iii) The cycles in T are {1,3} and {2,4,5}; both are open. We have:
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(1.6.4) (i) Let Te JD({1, 2,3,4,5}) be as displayed below:

(ii) Then P(k, T) is boxed if and only if k E {4,5}.
(iii) The cycles in T are {1, 2, 3} and {4,5}; both are open. We have
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