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Let Q, Z, N, and P be the rational number field, the rational integer ring, the set of
positive integers, and that of prime numbers, respectively. For each peP, let Q,
denote the p-adic number field and Z , the p-adic integer ring. We denote by Z the
direct product of all Z,, pe P:

2=z,

peP

Let N’ denote the set of at most countable cardinal numbers. Writing oo for the
countable cardinal number, we then understand that N' = N U {0, «o}. The
additive group of each topological ring R will be denoted by the same letter R; for
any veN’, we let IT"R and @"R denote respectively the direct product and the
direct sum of v copies of R. Now, let C be the complex number field, j the complex
conjugation of C, and J the Galois group of C over the real number field;
J ={1,j}. For any (multiplicative) abelian group M acted on by J, we put

M ={teM|t/ =171},

Then, viewing 9 as a module over the group ring Z[J ], we have (M ~)*> < M* ~/
< M~ . We shall suppose, throughout the following, all algebraic number fields
to be contained in C. For each algebraic number field F, let Cr denote the ideal
class group of F, F the maximal unramified abelian extension over F, and F* the
maximal real subfield of F. In general, C is isomorphic to a subgroup of
@ *(Q/Z) while the Galois group G(F/F) of F/F is isomorphic to a topological
quotient group of (the additive group of) I1® Z; hereafter G( ) will denote the
Galois group of the Galois extension in the parenthesis. When F is a CM-field,
J acts on Cy and on G(F/F) in the usual manner. We denote by [ the maximal
CM-field, so that [ is nothing but the maximal totally real algebraic number
field. We put

{, =e*™M" for each neN.
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As is well known, the maximal abelian extension over Q, which we denote by Q,y,
is generated by all {,, neN, over Q:

Qab = @(Cn | neN).

In this paper, introducing first the notion of “wild extension”, we shall
generalize some results of Uchida [9] on unramified solvable extensions of
algebraic number fields. We shall next show that for any CM-field K containing
CDaba

G(K/K) = ﬁ Z=1] (ﬁ z,,) and G(K/K)™ ~ ﬁ 2.

On the other hand, we shall deduce from the above generalization that, given any
map f:P — N, there exist infinitely many CM-fields K 2 Q,, such that

JS(p)
CK = CE = @ (@(QP/ZP)>'

peP

Moreover some related results, such as the following, will be added: Cx = Cx =
{1} (cf. [6]) while

cex D@2, Crr=ci'=d @

for every CM-field K 2 Q,, which is contained in a nilpotent extension over
some finite algebraic number field in K* (cf. [1]). In the last part of the paper, we
shall unite our results on wild extensions with classical results of Iwasawa [3] on
solvable extensions.

We conclude this introduction by giving additional notations and remarks. Let
F be any algebraic number field and let I denote the ideal group of F. An ideal of
F,ie., anelement of I is considered to be an ideal of any algebraic number field F’
containing F via the natural imbedding of I into the ideal group of F'. For each
algebraic number « # 0 (in C), the principal ideal of Q(«) generated by « is
a principal ideal of any algebraic number field containing «, in the above sense,
and will be denoted by («). We shall write F* for the multiplicative group of F.
Throughout the paper, we shall often use basic facts in [8] on Galois
cohomology, without mentioning this bibliography.



CM-fields with all roots of unity 3
Acknowledgement

The author would like to express his sincere gratitude to Professor Yuji Kida for
helpful conversations and for kindly teaching the author his unpublished results.

1. Let k be any algebraic number field. An algebraic extension K over k is
called wild when K/k is a Galois extension, every infinite prime of k is unramified
in K, and for each finite prime B of K, the inertia group of B for K/k coincides
with the ramification group of B for K/k. As easily seen from this definition, the
following lemma holds.

LEMMA 1. With k as above, let s be a set of finite primes of k and & a family of
algebraic extensions over k. If all fields in & are wild extensions over k unramified
outside s, then the composite of fields in & is also a wild extension over k unramified
outside s.

Thus, given a set s of finite primes of an algebraic number field k, there exists
the maximal wild extension over k unramified outside s. We then denote by ki,
the intersection of this field and the maximal solvable extension over k: kj, is
nothing but the maximal wild solvable extension over k unramified outside s.

Next, for any positive integer m, we take the abelian extension

€ =Q¢,lqeP, =1 (mod m))

over @, and denote by Q™ the minimal intermediate field of G/Q such that
GG/Q™)™ = {1}:

Q™ = {ae ®|a° = a for all 6e G(®/Q) with ¢™ = 1}.

Let us now prove

THEOREM 1. Let F be an algebraic number field containing Q™ for someme N
and let S be a set of finite primes of F. Then the cohomological dimension of the
Galois group of Fe, over F is at most equal to 1:

cd G(FE,/F) < 1.

Proof. Let p be any prime number, S the set of prime numbers obtained by
restricting the primes in S on @, and K an intermediate field of Fg,/F such that
G(FE,/K) is a Sylow p-subgroup of G(FE,/F). It suffices to show that

cd G(FS,/K) < 1. )

However, in the case p ¢S, this follows immediately from Theorem 1 of [9].
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Indeed F<, is then the maximal unramified p-extension over K and K contains
Q™ by the assumption.

Assume now that peS. In this case, we can prove (1) by modifying the proof of
Theorem 1 of [9], as follows. Let L be any finite Galois extension over K in FS,.
For simplicity, we put

® = G(L/K).

Let W, denote the group of pth roots of unity in C: W, = {{,)> = Z/pZ. Let us
identify G(L({,)/K({,)) with ® so that ® acts on L({,)* and, trivially, on W,.
Assuming that

HX(G,W,) # {1}, ie, 6 # {1},

we take any 2-cocycle 8: ® x & — W, whose cohomology class in H*(®, W) is
not trivial. Let

{1}—>Wp—>811*(5—>{1}

be the group extension of & by W, corresponding to , with the natural projection
V: & — G. For the proof of (1), it is now sufficient to find a Galois extension L’
over K containing L such that there exists a ®-isomorphism 1: G(L'/K) = § for
which G(L'/L)) = W, and the composite y - 1 coincides with the restriction map
G(L'/K) - 6.

Since K({,) 2 F 2 Q™, Lemma 1 of [9] implies that the local degree of
K({,)/Q at each finite prime of K({,) is divisible by p*. Furthermore all infinite
primes of K({,) are unramified in L({,). Hence, as in the proof of Lemma 5 of [11],
we obtain

H*(6, L(,)*) = {1}.

In particular, ¢ is considered to be a 2-coboundary & x & — L({,)*, namely,
there exists a homomorphism B: ® — L({,)* such that

8(a, 1) = B(r)’ (o)~ B(o), o,1€6.

Here, since each d(c, 7) is in W, and, as is well known, H' (6, L((,)*) = {1}, there
also exists an element n of L({,)* such that

Be) =n°~1 for all 6.
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Letn = [L({,): L], let p be a generator of the cyclic group G(L({,)/L), and choose
an integer r satisfying

(=10, r"=1(modp), r"#1(modp).

The group ring Z[G(L({,)/L)] acts on L({,)* in the obvious manner. By Lemma
2 of [9], we may assume that

n =’ for suitable w, £€L((,)",

where 6 is the element of Z[G(L({,)/L)] defined by

Let m, denote the product of distinct prime divisors of m different from p. As
K contains Q™ , there exists a Galois extension L, /K, of finite algebraic number
fields with the following properties:
() LonK =Ko LoK=L, [Lo((,):Lol=n,
(i) L, isunramified over K, outside p; further, all prime ideals of K, dividing m,
are completely decomposed in L,
(iii) #, w, &, and all (), 6€®, lie in Ly({,).

By (ii) above, the approximation theorem guarantees the existence of an
element a of K ({,)* such that, for each prime ideal v of K({,,) dividing m,, w/a is
a pth power in the v-adic completion of K(¢,) and w(w/a) > 0 for every real
archimedian valuation w of L ({,). Then the same discussion as in page 314 of [9]
shows that the principal ideal (na~°) is expressed in the form

(na=% = na”b.

Here nis an ideal of Ky({,,) prime to mp, a anideal of L,({,) prime to p, and b that
of Ly({,) whose numerator and denominator are products of prime ideals of
Ly(¢,) dividing p. With ¢ the order of the Frobenius automorphism

(KO(C,.,,,)/KO(C,,)>

n

let K, be an extension of degree t over K, contained in K. By the Tschebotareff
density theorem, there exists a prime ideal q of K, ({,) unramified for K, ({,)/Q, of
degree 1 over @, and belonging to the class of n in the ray class group of K, ({,)
modulo (mp)r,, where 1., is the product of all real infinite primes of K,({,). It
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follows that qn™! = (b) for some beK({,) with b = 1 (mod (mp)r,,). The field

L(¢p, F/na™b) = L, &/(wa™'b)P) is then an abelian extension of degree np
over L. Furthermore the cyclic extension of degree p over L in that field becoms
a Galois extension over K, which can be taken as the before-mentioned field L'.
To prove this final assertion, one may only check the last part of the proof of
Theorem 1 in [9]; so we omit the detail.

For any algebraic number field k, let k,; denote the maximal nilpotent
extension over k. The proof of Theorem 2 in [9], together with the above theorem,
yields the following result.

THEOREM 2. Let F be an algebraic number field such that
Q™ < F < ky;

for some positive integer m and some finite algebraic number field k in F. Let S be
a set of finite primes of F. Then G(F$ /F) is isomorphic to the solvable completion of
a free group with countable free generators.

Finally we add a result which follows immediately from the definition of a wild
extension.

LEMMA 2. Let k be an algebraic number field and s a set of finite primes of k. Then:
(i) for any intermediate field F of k/k,

S __ s
Fws_kws

where S is the set of all primes of F lying above primes in s,
(ii) if k is totally real, then so is ki.

2. For any multiplicative abelian group M on which J acts, we let
M = {teM| =1},

sothat(M*)2 c M c M*, M+ =~ IM/IM ™~ and M 7 =~ M/M* . The purpose
of this section is to prove the following.

THEOREM 3. Let K be any CM-field containing Q,y,. Then, as profinite groups,
GK/K)y" =[]2, GK/K)=]]zZ
Furthermore

Gﬁmr;ﬁz
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if K is contained in k,; for some finite algebraic number field k in K*.
For the proof of the above, we need

LEMMA 3. Let L be a CM-field. Then

(i) GIL/L)y” 2 G(L/LnK) =2 GI/L)' 7,

(ii) for any CM-field L' = L, G(L/L)* 7/ is contained in the image of G(IT/L)"
under the restriction map G(E?L’) - G(L/L).

Proof. Let F be any CM-field in L of finite degree. Since Cr contains the kernel
of the norm me}E Cr — Cp+, it follows from class field theory that G(F/F)~
contains G(F/FF*), the kernel of the restriction map G(F/F) - G(F F /F™*). Thus
we have G(L/L)” 2 G(L/LL*) which implies G(L/L)~ 2 G(L/L n K) by LY
< Ln K. Furthermore, since L N K is a CM-field and an abelian extension over
L, it is also an abelian extension over L* so that G(IL/Ln K) 2 G(L/L)* ~/. This
completes the proof of (i). We obtain (ii) from (1) notmg that the restriction max in
(ii) induces a surjective homomorphism G(L’/L' N K) - GIL/LNK).

Proof of Theorem 3. Let A be any non-trivial finite abelian group. We can then
take a cyclotomic field F such that G(F/F)' =/ has a subgroup isomorphic to
A (see, e.g., [2]). Hence it follows from Lemma 3 that there exists a group
homomorphism of G(K/K)~ onto A. On the other hand, G(K/K)" is torsion-free
since so is G(K/K) by Theorem 1 of [9]. Consequently

G(K/K)™ =~ ﬁ 2, G(R/K)=x ﬁ 2.

As K* includes Q® and G(K*/K*)? is the image of G(K/K)'*/ under the
restriction map G(K/K) - G(K*/K*), the last assertion of Theorem 3 is now an
immediate consequence of Theorem 2 in [9].

3. The main result of the present section is as follows.

THEOREM 4. For any givenmap f: P — N, there exist infinitely many CM-fields
K containing Q,, such that

S(p)
Ck=Cr =@ <€B (@,,/Z,,)>.
peP

To prove this, we prepare some notations and show two lemmas.
Let F be any algebraic number field. We then denote by F, the maximal wild
solvable extension over F, namely, put

FWS=FBIS

where U is the set of all finite primes of F. We denote by M the maximal abelian
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extension over F in F. For each peP, let Cr(p) and M , denote respectively the
p-primary component of C and the maximal p-extension over F in M, i.e., the
maximal abelian p-extension over F unramified outside p; so that if F is
a CM-field, Cr(p) and G(M, ,/F), as well as G(M/F), naturally become
J-modules. Here, by a J-module, we mean of course an abelian group on which
J acts. For any profinite group H, we let H*® denote the maximal abelian quotient
of H, i.e., the quotient group of H modulo the topological commutator subgroup
of H. When H itself is a profinite abelian group, we let H* denote the Pontryagin
dual of H.

LEMMA 4. Let p be any prime number. Let K be a CM-field containing Q™ for
some m €N and Q({,~) for allneN. Then Ck(p) is a divisible group and, as discrete
groups,

(Ck(p)™)* = Cx(p)' 7 = G(Mg+,,/KT)*.

Proof. It is obvious that G(M ,/K) is isomorphic to the Sylow p-subgroup of
G(K,s/K)*™. However, since K 2 Q™ with meN, Theorem 1 implies that
cd G(Kws/K) < 1. Therefore G(Mg ,/K) becomes a torsion-free Z,-module.
Similarly, noticing K* 2 Q®™, we can see again from Theorem 1 that
G(Mk-+ ,/K*) is a torsion-free Z,-module.

The rest of the proof is devoted to essentially known discussions on the
Kummer extension My , over K (cf. [5]). We let & denote the quotient of the
subgroup

{aeMg ,|aP"eK* for some integer n > 0}
of Mg , modulo K>, which becomes a J-module in the obvious manner. Let L be

the maximal abelian extension over K * in M ,, namely, the intermediate field of
My ,/K such that G(Mg ,/L) = G(Mg ,/K)' ~/. Then the natural isomorphism

! » G(Mk ,/K)* in Kummer theory induces

K™ = (G(Mk,,/K)/G(M,,/K)' ¥ = G(L* /K™ )*.

Here & is a divisible group; indeed we have shown that G(Mg ,/K) is
a torsion-free Z,-module. Hence

K171 = (]7) 2 (G(L*/K*)*)% )]

Now let z be any class in & We take an element « of z, so that «”” € K* for some
integer r > 0. Since all Q(«*,{ ~)» neN, are subfields of K, there exists an
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intermediate field k of K/Q(a”", () with finite degree such that k(a) is unramified
over k outside p and that each prime ideal of Q(«”") dividing p is a p"th power in
the ideal group I, of k. Therefore

(«P") = a?" for some a€ I.

We then denote by c, the ideal class in C(p) containing a, which actually does not
depend on the choice of a, a.

Thus, letting each class z’ in & correspond to c,,, we obtain a J-module
homomorphism ! — Cg(p). Let E denote the unit group of K and define
a J-module € by

€ = {ae Mg ,|a”" € E for some ne Z, > 0}/E.

As easily seen, the above homomorphism induces the following exact sequence of
J-modules:

{1} > €> & Cxlp)— {1} )
In particular, it follows that Cy(p) is a divisible group, whence

(Cx(p)™)* = Cxlp) . 4
We also have

€y =€"={1}, &)

because the group of roots of unity in K is p-divisible. Therefore, in the case p > 2,
thelast assertion Cg(p)' ™/ = G(Mg+ ,/K*)* follows from (2), (3), (5), and the fact
L* = Mg+,

In the case p = 2, L is the maximal abelian 2-extension over K* unramified
outside the primes of K* which are infinite or lie above 2. Hence L* is an abelian
extension over Mg+ , such that G(L* /Mg+ ,)* = {1}. We can therefore view
G(Mg+ ,/K*)* as a subgroup of G(L* /K" )* containing (G(L* /K *)*)2. However
G(Mg+ ,/K*)*is adivisible group and, by (2), so is (G(L* /K *)*)?. Consequently
we have G(Mg + ,/K*)* = (G(L* /K*)*)?. This together with (2), (3), (4), and (5)
completes the proof of Lemma 4 for the case p = 2.

The following lemma is an immediate consequence of Lemma 4.

LEMMA 5. For any CM-field K 2 Q,,, Ck is divisible and

(Cx)* = Ck/ = G(Mg+/K™)*.
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Proof of Theorem 4. Let F be any totally real finite Galois extension over
(@,)" such that G(F/(Q,,)") is isomorphic to a non-abelian simple group; for
example, we may take as F a composite field of (Q,,)* and a finite real Galois
extension over @ with Galois group a symmetric group of degree > 5. Since
Q@ < F < Q(a),; for any primitive element a of F/(Q,,)*, Theorem 2 implies
that G(F,/F) is isomorphic to a free pro-solvable group with countable free
generators.

Next, let p be any prime number and T an inertia group for F/F of a prime of
F,, lying above p. As every Sylow p-subgroup of G(F,/F) is free, T is a free
pro-p-group. With n being any positive integer, let g be a prime number = 1 (mod
p") such that p is not a pth power (mod q); the existence of q is guaranteed by
Tschebotareff’s density theorem. Let N be the cyclic extension of degree p over
Q with conductor gq. We note that p remains prime in N. Let N denote the basic
Z ,-extension over N. It then follows from [4] that the unique prime of N, above
p is fully ramified in M N, b Furthermore, by [10], G(M N_.p /N) is isomorphic to
IT" Z, where

q2(p— D_1

r=(p—1)<ord,,———4———-—2>>(p—l)(n—3),

ord, denoting the p-adic exponential valuation. Hence T has at least r free
generators, while n is an arbitrary positive integer. Thus T must be a free
pro-p-group with countable free generators.

Now, let f be any map P — N'. By the above discussion, we can take for each
peP, an intermediate field F, of F,/F such that G(F,/F,) is contained in an
inertia group, for F,,/F, of a prime of F,, above p and has exactly f(p) free
generators as a free pro-p-group. Let K be the composite of Q,, and the
intersection of all F,, peP. It is clear that

KckK, K*=(\F,

peP

However, as K*cF , for all peP, we have K* = K*. Therefore we see easily
from the principal ideal theorem that

Cx+ = {1} whence Cig=Cg. (6)

On the other hand, it follows from the choices of F »» D€ P, that

f(p)
G(F./K*y* =] (n z,).

peP
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Since (K*)ws = Fys by Lemma 2, we also have G(Mg+/K*) 2 G(F,s/K*)®.
Hence, by Lemma 5 and (6),

f(p)
Cx = (Ck)* = (G(Fuo/K* *)* = D <€9 (@p/Zp))

peP

Furthermore, for any finite Galois extension F' over (Q,,)* in K* with
G(F'/(@,,)" ) anon-abelian simple group, the composite F/,;Q,, contains K if and
only if F' = F. Theorem 4 is therefore proved.

Of course, for CM-fields containing Q,, but not “so large”, we can get a result
analogous to that of Brumer [1].

PROPOSITION 1. Let K be a CM-field containing Q,, such that K < k; for
some finite algebraic number field k in K* . Then (Cx )*> = Cx ™/ is isomorphic to the
direct sum of countably infinite copies of Q/Z.

Proof. This follows immediately from Theorem 2 and Lemma 5.

REMARK. Under the hypothesis of Proposition 1, we also have
Cx = D (Q/2).

Moreover it might be remarkable that Ci = Cp+ = {1} holds for every CM-field
F 2 Q,, if the so-called Greenberg conjecture in Iwasawa theory is generally
true.

We next consider when the ideal class group of a CM-field = Q,, vanishes.

LEMMA 6. Let p and K be the same as in Lemma 4. Then the three conditions
Ck(p) = {1}, Cx(p)~ = {1}, and Mg+ , = K™ are equivalent.

Proof. By Lemma 4, the condition Mg+ ,= K* is a necessary one for
Ck(p)~ = {1}.Soit suffices to prove that Mg+ , = K* implies Cx(p) = {1}. The
principal ideal theorem shows, however, that Cx+(p) = {1} holdsif K* coincides
with the maximal unramified abelian p-extention over K*. Hence, in the case
Mg+ , = K*,wecertainly have Cg +(p) = {1} so that Cx(p) = Cx(p)~. We have
further, by Lemma 4, Cg(p)* = Cx(p) and (Ck(p)~)*> = {1}. Then Ck(p)
vanishes as desired.

We thus obtain

PROPOSITION 2. For any CM-field K = Q,,, the following conditions are
equivalent.
(i) Cx={1},
(i) Cx = {1},
(ili) Mg+ = K™,
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(iv) (K+)ws =K",
(v) K* = k. for some subfield k of IK*.
In particular, C, = {1} (cf. [6]).

4. In this final section, we generalize some results of the preceding sections.

Let F be any algebraic number field, T a set of finite primes of F, and & a subset
of T. We take the family ¢ of all Galois extensions F’ over F unramified outside
T such that for each prime B of F’ whose restriction on F lies in S, the first
ramification field of B for F'/F coincides with the inertia field of B for F'/F. Let
Q§'* denote the composite of all fields in 4. Then, as easily seen, QF'* also belongs
to %, i.e., QFT is the maximal field in 4. We denote by FS;F the intersection of
Q$* and the maximal solvable extension over F. Note that F&® = Fg,. The
discussions of [9] and section 1 now lead us to the following result, which implies
Theorems 6, 7 of [3] as well as our Theorems 1, 2.

THEOREM 5. If F 2 Q™ for some meN, then
cd GOQEYF) <1, cd GFSH/F) < 1.

If, furthermore, F < k,;, for some finite algebraic number field k in F, then
G(FE*/F)is isomorphic to a free pro-solvable group with countable free generators.

To weaken lastly the hypothesis of Proposition 1, we start with proving

PROPOSITION 3. Let F be an algebraic number field containing Q™ for some
meN. Then Cg is a divisible group.

Proof (cf. [1]). Let n be any positive integer and ¢ any ideal class in Cp. It
suffices to show that

x"=c forsome xeCy. )

We write u for the order of c. Now there exists an element o of Q((,,,) satisfying
F(@) = F({,us) n F. There also exists an intermediate field k of F/F A Q((,,,) With
finite degree such that ¢ contains an ideal a of k whose uth power is principal in
k and that a lies in k whence k(o) = k N k({,n,). Let g be a prime number =1 (mod
mu) not dividing the discriminant of k. Let k' be the composite of k and the cyclic
extension of degree u over @ with conductor ¢q. Note that F contains k'.
Obviously the norm of a for k'/k is a*, a principal ideal of k. Hence, by class field
theory, we have

<5£i> € G(k'/K'k).

Since K N K ({nn) = k'(&) = K'(K A k(,mn)) < k'K, Tschebotareff’s density theorem
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shows that there exists a prime ideal 3 of k' unramified for k'/Q, of degree 1 over
Q, belonging to the ideal class of a in C,., and completely decomposed in k'({,.)-
Let I be the prime number divisible by 3, so that | = 1 (mod mn). Let k" be the
composite of k' and the cyclic extension of degree n over Q with conductor I. As k”
is an intermediate field of F/k’ of degree n over k' in which 3 is fully ramified, we
can then take, as x of (7), the ideal class in Cy that contains the prime ideal of k"
dividing 3.

THEOREM 6. Let K be a CM-field such that
Q(¢2,1PeP) € K S knay

with a subfield k of K* of finite degree. Then
Cky¥=Ck =~ D @2, C=D@2.

Proof. Let L be the composite of the maximal unramified Kummer extensions
of exponents 2p over K for all pe P. Let E denote the unit group of K and E’ the
subgroup of L* generated by the 2pth roots in L of elements of E for all pe P. As
J acts on G(L/K) and on the quotient group E'/E in the obvious manner, we
obtain from Kummer theory the following exact sequence of J-modules:

{1} » E/E - G(L/K)* - Cx
(see the proof of Lemma 3 in [1] or of Lemma 4). This induces an exact sequence
{1} > (E/E)” > G(Lo/K*)* - Cx,

where L, denotes the maximal abelian extension over K* in L*. However,
(E'/E)™)?> = (E'/E)* ~J = WE/E with W the group of roots of unity in L while
L, contains all unramified abelian extensions of degrees 2p, peP, over the
intermediate field K* of k,;,/Q?. Hence, by Theorem 2 of [9], Cx has
a subgroup isomorphic to

P (é (Z,,/zpzp)).

peP

Thus Proposition 3 completes the proof of Theorem 6.
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