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Let Q, Z, N, and P be the rational number field, the rational integer ring, the set of
positive integers, and that of prime numbers, respectively. For each p e P, let Qp
denote the p-adic number field and Zp the p-adic integer ring. We denote by 2 the
direct product of all Zp, p E P:

Let N’ denote the set of at most countable cardinal numbers. Writing 00 for the
countable cardinal number, we then understand that N’ = N u {0, ~}. The
additive group of each topological ring R will be denoted by the same letter R; for
any v c- N, we let nv Rand E9 v R denote respectively the direct product and the
direct sum of v copies of R. Now, let C be the complex number field, j the complex
conjugation of C, and J the Galois group of C over the real number field;
J = {1,j}. For any (multiplicative) abelian group 9K acted on by J, we put

Then, viewing 9M as a module over the group ring 7L[J], we have (m-)2 ~m1-j
ç; 9J1- . We shall suppose, throughout the following, all algebraic number fields
to be contained in C. For each algebraic number field F, let CF denote the ideal
class group of F, F the maximal unramified abelian extension over F, and F+ the
maximal real subfield of F. In general, CF is isomorphic to a subgroup of
~~(Q/Z) while the Galois group G(PIF) of F/F is isomorphic to a topological
quotient group of (the additive group of) 03A0~; hereafter G( ) will denote the
Galois group of the Galois extension in the parenthesis. When F is a CM-field,
J acts on CF and on G(PIF) in the usual manner. We denote by K the maximal
CM-field, so that K+ is nothing but the maximal totally real algebraic number
field. We put
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As is well known, the maximal abelian extension over , which we denote by Gab,
is generated by all ’n’ n ~N, over 0:

In this paper, introducing first the notion of "wild extension", we shall
generalize some results of Uchida [9] on unramified solvable extensions of
algebraic number fields. We shall next show that for any CM-field K containing
Oab.

On the other hand, we shall deduce from the above generalization that, given any
map f : P ~ N’, there exist infinitely many CM-fields K ;2 O.b such that

Moreover some related results, such as the following, will be added: CK = C-K =
{1} (cf. [6]) while

for every CM-field K ~ ab which is contained in a nilpotent extension over
some finite algebraic number field in K + (cf. [1]). In the last part of the paper, we
shall unite our results on wild extensions with classical results of Iwasawa [3] on
solvable extensions.

We conclude this introduction by giving additional notations and remarks. Let
F be any algebraic number field and let IF denote the ideal group of F. An ideal of
F, i.e., an element of 1F is considered to be an ideal of any algebraic number field F’
containing F via the natural imbedding of IF into the ideal group of F’. For each
algebraic number rx =1= 0 (in C), the principal ideal of Q(a) generated by a is
a principal ideal of any algebraic number field containing a, in the above sense,
and will be denoted by (a). We shall write F  for the multiplicative group of F.
Throughout the paper, we shall often use basic facts in [8] on Galois

cohomology, without mentioning this bibliography.



3

Acknowledgement 

The author would like to express his sincere gratitude to Professor Yuji Kida for
helpful conversations and for kindly teaching the author his unpublished results.

1. Let k be any algebraic number field. An algebraic extension K over k is
called wild when Klk is a Galois extension, every infinite prime of k is unramified
in K, and for each finite prime S of K, the inertia group of 0 for Klk coincides
with the ramification group of 0 for K/k. As easily seen from this definition, the
following lemma holds.

LEMMA 1. With k as above, let s be a set of finite primes of k and 97 a family of
algebraic extensions over k. If all fcelds in ff are wild extensions over k unramified
outside s, then the composite of fields in ff is also a wild extension over k unramified
outside s.

Thus, given a set e of finite primes of an algebraic number field k, there exists
the maximal wild extension over k unramified outside s. We then denote by k’ ,
the intersection of this field and the maximal solvable extension over k : ksws is

nothing but the maximal wild solvable extension over k unramified outside s.
Next, for any positive integer m, we take the abelian extension

over Q, and denote by Q(m) the minimal intermediate field of such that

G(/(m))m = {1}:

Let us now prove

THEOREM 1. Let F be an algebraic number field containing (m) for some m~N
and let 6 be a set of finite primes of F. Then the cohomological dimension of the
Galois group of F:s over F is at most equal to 1:

Proof. Let p be any prime number, S the set of prime numbers obtained by
restricting the primes in  on Q, and K an intermediate field of FWS/F such that
G(FWS/K) is a Sylow p-subgroup of G(F:s/F). It sufhces to show that

However, in the case p~S, this follows immediately from Theorem 1 of [9].
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Indeed FWS is then the maximal unramified p-extension over K and K contains
(m) by the assumption.
Assume now that pESo In this case, we can prove (1) by modifying the proof of

Theorem 1 of [9], as follows. Let L be any finite Galois extension over K in F:s.
For simplicity, we put

Let W p denote the group of pth roots of unity in C: Wp = 03B6p&#x3E; ~ Z/pZ. Let us
identify G(L«(p)/K«(p)) with (5 so that OE acts on L(03B6p)  and, trivially, on Wp.
Assuming that

we take any 2-cocycle £5: (5 x  ~ Wp whose cohomology class in H2(6), Wp) is
not trivial. Let

be the group extension of  by Wp corresponding to £5, with the natural projection
03C8: ~ . For the proof of (1), it is now sufficient to find a Galois extension L’
over K containing L such that there exists a (5-isomorphism t: G(L’/K)  F for
which t(G(L’ /L)) = Wp and the composite tf¡ 0 t coincides with the restriction map
G(L’/K) ~ .

Since K«(p) ;2 F ~ (m), Lemma 1 of [9] implies that the local degree of

K(03B6p)/ at each finite prime of K(03B6p) is divisible by p~. Furthermore all infinite
primes of K(03B6p) are unramified in L(03B6p) . Hence, as in the proof of Lemma 5 of [11],
we obtain

In particular, à is considered to be a 2-coboundary 6) x (fj ~ L(03B6p) , namely,
there exists a homomorphism 03B2: 6) ~ L«(p) X such that

Here, since each b«(1, t) is in Wp and, as is well known, H1(, L(03B6p) ) ={1}, there
also exists an element q of L(03B6p)  such that
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Let n = [L(03B6p): L], let p be a generator of the cyclic group G(L«(p)/L), and choose
an integer r satisfying

The group ring 7L[G(L«(p)/L)] acts on L«(p) X in the obvious manner. By Lemma
2 of [9], we may assume that

where 0 is the element of 7L[G(L«(p)/L)] defined by

Let mo denote the product of distinct prime divisors of m different from p. As
K contains (m), there exists a Galois extension Lo/Ko of finite algebraic number
fields with the following properties:

(i) Lo n K = Ko, Lo K = L, [Lo«(p): L0] = n,
(ii) Lo is unramified over Ko outside p; further, all prime ideals of Ko dividing mo

are completely decomposed in Lo,
(iii) ~, 03C9, 03BE, and all 03B2(03C3), 03C3~, lie in L0(03B6p).
By (ii) above, the approximation theorem guarantees the existence of an

element a of K0(03B6p)  such that, for each prime ideal v of K0(03B6p) dividing m0, 03C9/a is
a pth power in the n-adic completion of K0(03BEp) and w(mla) &#x3E; 0 for every real

archimedian valuation w of Lo«(p). Then the same discussion as in page 314 of [9]
shows that the principal ideal (~a-03B8) is expressed in the form

Here n is an ideal of Ko«(p) prime to mp, a an ideal of L0(03B6p) prime to p, and b that
of Lo«(p) whose numerator and denominator are products of prime ideals of
L0(03B6p) dividing p. With t the order of the Frobenius automorphism

let K be an extension of degree t over Ko contained in K. By the Tschebotareff
density theorem, there exists a prime ideal q of K1(03B6p) unramified for K1 (03B6p)/, of
degree 1 over Q, and belonging to the class of n in the ray class group of K1(03B6p)
modulo (mp)r~ where r~ is the product of all real infinite primes of K1(03B6p). It
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follows that qn-1 = (b) for some bEK1«(p) with b = 1 (mod (mp)roo). The field

L(03B6p,p~a-03B8b03B8) = L(03B6p, p(03C9a-1b)03B8) is then an abelian extension of degree np
over L. Furthermore the cyclic extension of degree p over L in that field becoms
a Galois extension over K, which can be taken as the before-mentioned field L’ .
To prove this final assertion, one may only check the last part of the proof of
Theorem 1 in [9]; so we omit the detail.
For any algebraic number field k, let kni, denote the maximal nilpotent

extension over k. The proof of Theorem 2 in [9], together with the above theorem,
yields the following result.

THEOREM 2. Let F be an algebraic number field such that

for some positive integer m and some finite algebraic number field k in F. Let 6 be
a set of finite primes of F. Then G(Fws/F) is isomorphic to the solvable completion of
a free group with countable free generators.

Finally we add a result which follows immediately from the definition of a wild
extension.

LEMMA 2. Let k be an algebraic number field and 5 a set offinite primes ofk. Then:
(i) for any intermediate field F of ksws/k,

where 6 is the set of all primes of F lying above primes in s,
(ii) if k is totally real, then so is kws. 

2. For any multiplicative abelian group M on which J acts, we let

so that (m+)2 ~ m1+j ~ m+, m1+j ~ m/m- and m1-j ~ m/m+. The purpose
of this section is to prove the following.

THEOREM 3. Let K be any CM-field containing Ob. Then, as profinite groups,

Furthermore
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if K is contained in knil for some finite algebraic number field k in K + .

For the proof of the above, we need

LEMMA 3. Let L be a CM-field. Then
(i) G(LIL) - -2 G(LIL n K) ;2 G(LIL)’ - i, 

_

(ii) for any CM-field L’ ;2 L, G(LIL)’-i is contained in the image of G(/L’)-
under the restriction map G(/L’) ~ G(/L).

Proof. Let F be any CM-field in L of finite degree. Since CF contains the kernel
of the norm map CF ~ CF+, it follows from class field theory that G(F/F) -
contains G(/F), the kernel of the restriction map G(/F) ~ G(/F+). Thus
we have G(/L)- ~ G(/L), which implies G(/L)- ~ G(L/L n K) by L
g in K. Furthermore, since L n K is a CM-field and an abelian extension over

L, it is also an abelian extension over L + so that G(L/Ln K) ~ G(/L)1-j. This
completes the proof of (i) . We obtain (ii) from (i), noting that the restriction max in
(ii) induces a surjective homomorphism G(/ n K) ~ G(L/L n K).

Proof of Theorem 3. Let A be any non-trivial finite abelian group. We can then
take a cyclotomic field F such that G(/F)1-j has a subgroup isomorphic to
A (see, e.g., [2]). Hence it follows from Lemma 3 that there exists a group

homomorphism of G(K/K)- onto A. On the other hand, G(K/K)- is torsion-free
since so is G(K/K) by Theorem 1 of [9]. Consequently

As K+ includes Q(2) and G(K+ jK+)2 is the image of G(/K)1+j under the
restriction map G(/K) ~ G(/K+), the last assertion of Theorem 3 is now an
immediate consequence of Theorem 2 in [9].

3. The main result of the present section is as follows.

THEOREM 4. For any given map f: P ~ N’, there exist infinitely many CM-fields
K containing Qab such that

To prove this, we prepare some notations and show two lemmas.
Let F be any algebraic number field. We then denote by Fws the maximal wild

solvable extension over F, namely, put

where U is the set of all finite primes of F. We denote by MF the maximal abelian
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extension over F in F,,. For each p e P, let CF (p) and MF,p denote respectively the
p-primary component of CF and the maximal p-extension over F in MF, i.e., the
maximal abelian p-extension over F unramified outside p; so that if F is

a CM-field, CF(p) and G(MF,,IF), as well as G(MFIF), naturally become
J-modules. Here, by a J-module, we mean of course an abelian group on which
J acts. For any profinite group H, we let Hab denote the maximal abelian quotient
of H, i.e., the quotient group of H modulo the topological commutator subgroup
of H. When H itself is a profinite abelian group, we let H* denote the Pontryagin
dual of H.

LEMMA 4. Let p be any prime number. Let K be a CM-field containing 0(’)for
some m ~N and (03B6pn) for all n ~N. Then CK(p) is a divisible group and, as discrete
groups,

Proof. It is obvious that G(MK,pjK) is isomorphic to the Sylow p-subgroup of
G(Kws/K)ab. However, since K ;2 Q(m) with mEN, Theorem 1 implies that
cd G(Kws/K)  1. Therefore G(MK,,IK) becomes a torsion-free 7Lp-module.
Similarly, noticing K+ ~ (2m), we can see again from Theorem 1 that

G(MK+,pjK+) is a torsion-free Zp-module.
The rest of the proof is devoted to essentially known discussions on the

Kummer extension MK,p over K (cf. [5]). We let R denote the quotient of the
subgroup

of M K,p modulo K ", which becomes a J-module in the obvious manner. Let L be
the maximal abelian extension over K+ in MK, p, namely, the intermediate field of
MK,p/K such that G(MK,p/L) = G(MK,p/K)1-j. Then the natural isomorphism
R  G(MK,pjK)* in Kummer theory induces

Here R is a divisible group; indeed we have shown that G(MK,,IK) is

a torsion-free Zp-module. Hence

Now let z be any class in R. We take an element a of z, so that 03B1pr E K " for some
integer r a 0. Since all (03B1pr, (pn), n~N, are subfields of K, there exists an
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intermediate field k of K/(03B1pr, (pr) with finite degree such that k(a) is unramified
over k outside p and that each prime ideal of (03B1pr) dividing p is a pr th power in
the ideal group 1k of k. Therefore

We then denote by Cz the ideal class in CK(p) containing a, which actually does not
depend on the choice of a, a.

Thus, letting each class z’ in R correspond to cz,, we obtain a J-module

homomorphism R -+ CK (P). Let E denote the unit group of K and define
a J-module OE by

As easily seen, the above homomorphism induces the following exact sequence of
J-modules:

In particular, it follows that CK(p) is a divisible group, whence

We also have

because the group of roots of unity in K is p-divisible. Therefore, in the case p &#x3E; 2,
the last assertion CK( p)1-j ~ G(MK+,p/K+)* follows from (2), (3), (5), and the fact
L+ = MK+,p.

In the case p = 2, L is the maximal abelian 2-extension over K + unramified
outside the primes of K + which are infinite or lie above 2. Hence L + is an abelian
extension over MK+,2 such that G(L+/MK+,2)2 = {1}. We can therefore view
G(MK+,2/K+)* as a subgroup of G(L+/K+)* containing (G(L+/K+ )*)2. However
G(MK + , 2 /K + )* is a divisible group and, by (2), so is (G(L+/K+)*)2. Consequently
we have G(MK+,2/K+)* = (G(L+/K+)*)2. This together with (2), (3), (4), and (5)
completes the proof of Lemma 4 for the case p = 2.
The following lemma is an immediate consequence of Lemma 4.

LEMMA 5. For any CM-field K ;2 0,,b, CK is divisible and
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Proof of Theorem 4. Let F be any totally real finite Galois extension over

(O.b)’ such that G(F/(ab)+) is isomorphic to a non-abelian simple group; for
example, we may take as F a composite field of (ab)+ and a finite real Galois
extension over 0 with Galois group a symmetric group of degree  5. Since
(2) ~ F ~ (03B1)nil for any primitive element a of F/(ab)+, Theorem 2 implies
that G(Fws/F) is isomorphic to a free pro-solvable group with countable free
generators.

Next, let p be any prime number and T an inertia group for F ws/F of a prime of
FWS lying above p. As every Sylow p-subgroup of G(F ws/ F) is free, T is a free
pro-p-group. With n being any positive integer, let q be a prime number ~ 1 (mod
pn ) such that p is not a pth power (mod q ); the existence of q is guaranteed by
Tschebotareff’s density theorem. Let N be the cyclic extension of degree p over
Q with conductor q. We note that p remains prime in N. Let N~ denote the basic

Zp-extension over N. It then follows from [4] that the unique prime of N~ above
p is fully ramified in MN~,p. Furthermore, by [10], G(MN~,p/N) is isomorphic to
03A0r 7 p where 

ordp denoting the p-adic exponential valuation. Hence T has at least r free
generators, while n is an arbitrary positive integer. Thus T must be a free
pro-p-group with countable free generators.
Now, let f be any map P - N’. By the above discussion, we can take for each

pEIP, an intermediate field Fp of FWS/F such that G(Fws/Fp) is contained in an
inertia group, for Fws/F, of a prime of FWS above p and has exactly f(p) free
generators as a free pro-p-group. Let K be the composite of Qab and the
intersection of all Fp, pep. It is clear that

However, as  ~ Fp for all p~P, we have  = K+. Therefore we see easily
from the principal ideal theorem that

On the other hand, it follows from the choices of Fp, p ~ P, that
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Since (K+)ws = FWS by Lemma 2, we also have G(MK+/K+) ~ G(Fws/K+)ab.
Hence, by Lemma 5 and (6),

Furthermore, for any finite Galois extension F’ over (Qab) + in K+ with

G(F’/(ab)+) a non-abelian simple group, the composite F’wsab contains K if and
only if F’ = F. Theorem 4 is therefore proved.
Of course, for CM-fields containing Qab but not "so large", we can get a result

analogous to that of Brumer [1].

PROPOSITION 1. Let K be a CM-field containing ab such that K ~ knilfor
some finite algebraic number field k in K+. Then (Ci)2 = Ci- j is isomorphic to the
direct sum of countably infinite copies of Q/Z.

Proof. This follows immediately from Theorem 2 and Lemma 5.

REMARK. Under the hypothesis of Proposition 1, we also have

Moreover it might be remarkable that ct = CF+ = {1} holds for every CM-field
F ;2 Qab if the so-called Greenberg conjecture in Iwasawa theory is generally
true.

We next consider when the ideal class group of a CM-field ;2 Ob vanishes.

LEMMA 6. Let p and K be the same as in Lemma 4. Then the three conditions

CK(p) = {1}, CK(p)- = {1}, and MK + , p = K+ are equivalent.
Proof. By Lemma 4, the condition MK+,p = K+ is a necessary one for

CK(p)- = {1}. So it suffices to prove that MK+,p = K + implies CK(P) = {1}. The
principal ideal theorem shows, however, that CK+ (p) = {1} holds if K + coincides
with the maximal unramified abelian p-extention over K + . Hence, in the case

MK+,p = K+, we certainly have CK+(p) = {1} so that CK(p) = CK(p)-. We have
further, by Lemma 4, CK( p)2 = CK( p) and (CK(p)-)2 = {1}. Then CK( p)
vanishes as desired.

We thus obtain

PROPOSITION 2. For any CM-field K ;2 0,,b, the following conditions are
equivalent.

(i) Cx = {1},
(ii) CIC = {1},

(iii) MK+ = K+,
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(iv) (K+)ws = K+,
(v) K+ = kws for some subfield k of K+.
In particular, CK = {1} (cf. [6]).

4. In this final section, we generalize some results of the preceding sections.
Let F be any algebraic number field, 1 a set of finite primes of F, and 6 a subset

of I. We take the family G of all Galois extensions F’ over F unramified outside
1 such that for each prime 93 of F’ whose restriction on F lies in 6, the first
ramification field of B for F’/F coincides with the inertia field of B for F’/F. Let
03A9G,IF denote the composite of all fields in G. Then, as easily seen, Q,IF also belongs
to G, i.e., Q,IF is the maximal field in G. We dénote by F,Isol the intersection of
03A9,IF and the maximal solvable extension over F. Note that Fsol = F:s. The
discussions of [9] and section 1 now lead us to the following result, which implies
Theorems 6, 7 of [3] as well as our Theorems 1, 2.

THEOREM 5. If F ;2 Q(m) for some m~N, then

If, furthermore, F g knil for some finite algebraic number field k in F, then
G(Fsol/F) is isomorphic to a free pro-solvable group with countable free generators.
To weaken lastly the hypothesis of Proposition 1, we start with proving

PROPOSITION 3. Let F be an algebraic number field containing 0(’) for some
mEN. Then CF is a divisible group.
Proof (cf. [1]). Let n be any positive integer and c any ideal class in CF . It

sufhces to show that

We write u for the order of c. Now there exists an element a of Q(03B6mn) satisfying
F(a) = F«(mn) n F. There also exists an intermediate field k of F/F n Q«(mn) with
finite degree such that c contains an ideal a of k whose uth power is principal in
k and that a lies in k whence k(a) = k n k«(mn). Let q be a prime number ~ 1 (mod
mu) not dividing the discriminant of k. Let k’ be the composite of k and the cyclic
extension of degree u over Q with conductor q. Note that F contains k’.

Obviously the norm of a for k’/k is a", a principal ideal of k. Hence, by class field
theory, we have

Since k’ n k’(03B6mn) = k’(03B1) = k’(~ k(03B6mn)) ~ k’k, Tschebotareff’s density theorem
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shows that there exists a prime idéal 3 of k’ unramified for k’/Q, of degree 1 over
Q, belonging to the ideal class of a in Ck’, and completely decomposed in k’(03B6mn).
Let 1 be the prime number divisible by 3, so that 1 m 1 (mod mn). Let k" be the

composite of k’ and the cyclic extension of degree n over Q with conductor 1. As k"
is an intermediate field of F/k’ of degree n over k’ in which 3 is fully ramified, we
can then take, as x of (7), the ideal class in CF that contains the prime ideal of k"
dividing 3.

THEOREM 6. Let K be a CM-field such that

with a subfield k of K + of finite degree. Then

Proof. Let L be the composite of the maximal unramified Kummer extensions

of exponents 2p over K for all p E P. Let E denote the unit group of K and E’ the
subgroup of L" generated by the 2pth roots in L" of elements of E for all p E P. As
J acts on G(L/K) and on the quotient group E’/E in the obvious manner, we
obtain from Kummer theory the following exact sequence of J-modules:

(see the proof of Lemma 3 in [1] or of Lemma 4). This induces an exact sequence

where Lo denotes the maximal abelian extension over K+ in L+. However,
((E’/E)-)2 ~ (E’/E)1-j ~ W E/E with W the group of roots of unity in L while
Lo contains all unramified abelian extensions of degrees 2p, peP, over the
intermediate field K+ of knil/Q(2). Hence, by Theorem 2 of [9], CK has
a subgroup isomorphic to

Thus Proposition 3 completes the proof of Theorem 6.
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