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0. Introduction and results

0.1 The present paper is a continuation of the study in Yu [20] and [21], where
a brief history of the theory of linear forms in p-adic logarithms was given, and
precise results subject to a Kummer condition were proved. In this paper we
shall remove the Kummer condition, thereby establishing the p-adic analogue of
a celebrated theorem of Baker on linear forms in logarithms of algebraic
numbers (i.e. Theorem 2 of Baker [2]) and the p-adic analogue of Baker’s well-
known Sharpening II (i.e. Baker [1]).

Let 03B11,..., an be n(, 2) non-zero algebraic numbers and let K be the field of
degree d generated by ai , ... , an over the rationals Q. We denote by p a prime
number and by p any prime ideal of the ring of integers in K, lying above p.
We shall establish estimates for

where b1, ... , bn are non-zero rational integers and ord denotes the exponent
to which p divides the principal fractional ideal generated by the expression
(assumed non-zero) in parentheses. Our result will be in terms of real numbers
h1,...,hn satisfying h1  ...  hn and

where log 03B1j has its imaginary part in the interval (- n, n] and h(03B1) denotes the

*Forschungsinstitut für Mathematik, ETH Zentrum, CH-8092 Zürich, Switzerland.
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logarithmic absolute height of a. This is defined by

where m is the degree of a, a is the leading coefficient of the minimal polynomial
of a over the rational integers 7L, and 03B1(1), ... , OE(m) are the conjugates of oc. Then
as a simple consequence of our main result (see Section 0.2), we have

where B is the maximum of the 1 bj (1  j  n) and

with d’ = max(d, 2) and h’ = max(h",1). When ordp bn = min ordp bj, h’ can be
replaced by max(hn-1, 1). This is the p-adic analogue of Baker’s [2] Theorem 2.
As a second corollary, analogous with Baker’s [1] Sharpening II, we suppose
that the above condition on ordp bn is satisfied and h’ is modified accordingly;
then for any £5 with 0  03B4  1, we have

Thus we have overcome all the difficulties associated with the work of [14] - see
the discussion in our earlier papers [20], [21] - and except for the minor
replacement of p by p2 in the case d = 1, we have established and strengthened
all the main assertions (Theorems 1, 3 and 4) given there.

In order to overcome the essential probem in applying the Kummer theory to
the final descent in the p-adic case, we introduce a new ingredient into the
analytic part of our proof. It is an irreducibility criterion for the polynomial
xrk - a, where r is a prime number (see Lemma 1.8), and it is obtained as

a consequence of the Vahlen-Capelli Theorem (see Capelli [6] and Rédei [15]).
This enables us to construct a new auxiliary function (see the proof of Lemma 2.1),
and both the extrapolation and the passage from the Jth step to the (J + l)th
step in the proof of the main inductive argument depend strongly on this
criterion (see the proof of Lemmas 2.3, 2.4 and 2.5).
The research of this paper was partly done at the Max-Planck-Institut für

Mathematik Bonn and at the ETH Zürich. The author would like to express
his gratitude to the Alexander von Humboldt-Stiftung, the Max-Planck-

Institut für Mathematik Bonn, the Forschungsinstitut für Mathematik and the
Mathematikdepartement of the ETH Zürich for their support. The author is
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also very grateful to Professors A. Baker, R. Tijdeman, M. Waldschmidt and
G. Wüstholz for valuable discussions. Finally, the author expresses his gratitude
to his wife, Dehua Liu, for her assistance in many respects during the course
of the work.

0.2 Detailed statements of the main results. Let 03B11, a,, be n( 2) non-zero
algebraic numbers and

Let p be a prime number. Set

Let K be an algebraic number field of degree D over Q such that

Denote by  a prime ideal of the ring of integers in K, lying above p. For
03B1~KB{0}, write ord , a for the exponent of p in the prime factorization of the
fractional ideal (a); define ordfi 0 = oo. Denote by e the ramification index of
and bye the residue class degree of p. Write K for the completion of K with

respect to the (additive) valuation ord; and the completion of ord will be
denoted again by ord. Now let 1 be an algebraic closure of Qp. Write Cp for
the completion of E with respect to the valuation of 03A3, which is the unique
extension of the valuation ||p of Qu. Denote by ordp the additive form of the
valuation on Cp. According to Hasse [9], pp. 298-302, we can embed K into Cp:
there exists a Q-isomorphism t/J from K into 03A3 such that K is value-isomorphic
to Qp(03C8(K)), whence we can identify K with Qp(03C8(K)). Obviously

Let be the set of non-negative rational integers and define
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Set LK:= {l~|el E K}. For 1 E ft7K define

where h(a) denotes the logarithmic absolute height of an algebraic number a (see,
for example, Lang [10], Chapter IV). Let Vl , ... , Vn be real numbers satisfying

and

where and in the sequel log 03B1j = log|03B1j| + i arg 03B1j with - TC  arg 03B1j  n

(1  j  n). Let b 1, ... , bn E Z, not all zero, and let B, B 1, ... , Bn be positive
numbers such that

Set

Define

THEOREM 1. Suppose that

and
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Then we have

where

COROLLARY 1. Suppose that (0.13) and (0.14) hold. Then

where

THEOREM 2. Suppose that (0.13), (0.14) hold and

Let

with
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Let Z = 03C903A6/ V with

Then for any j with 1  j  n and any ô with 0  03B4  Zf(log p)/D, we have

When 03B11,...,03B1n are n ( 2) non-zero rational numbers, the hypothesis (0.13)
in Theorems 1, 2 and Corollary 1 may be omitted. For example, Theorem 1 has
the following

COROLLARY 2. Suppose that (0.14) holds and

Let A1, ... , An be real numbers such that A1  ···  An and

Set A = An-1 if ordp bn = min1jn ord, bj or log 03B1n is linearly dependent on
ni, log a 1, ... , log 03B1n- 1, and set A = An otherwise. Let

Then we have

In the general case, the hypothesis (0.13) can also be removed. The following
Theorems l’and 2’ are the version in terms of the additive valuation on

Ko = Q(03B11,..., 03B1n) and without assuming (0.13). Denote by po any prime ideal
of the ring of integers in Ko, lying above p. Let ord,*o, eo, fo be defined with
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respect to the field Ko. Set

Let Va,..., V" be real numbers satisfying V1  ···  Vn and

and let B, B 1, ... , Bn and V be defined by (0.10) and (0.11 ).

THEOREM l’. Suppose that (0.14) holds. Then we have

where

and

THEOREM 2’. Suppose that (0.14) and (0.15) hold. Let

with 03C1’ = 1.0752 if p &#x3E; 2 and 03C1’ = 1.1114 if p = 2. Let

Then for any j with 1  j  n and any 03B4 with 0  03B4  1 403C903A6/(D0 Vj), we have

where co is given by (0.17).
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1. Preliminaries

For the basic facts about p-adic exponential and logarithmic functions in Cp,
we refer to Hasse [9], pp. 262-274, or Section 1.1 of Yu [21]. We assume that
the variable z takes values from Cp. If ordp z  0, we say that z is integral. The
following concepts of normal series and functions are due to Mahler [13].
A p-adic power series

where zo E Cp is integral, is called a normal series, if

A p-adic function, which is definable by a normal series in a neighborhood of an
integral point in Cp, is called a normal function. For the fundamental properties
of normal functions, we refer to Mahler [13].

LEMMA 1.1. Let KE7L be defined by

and set

then

Proof. This is Lemma 1.2 of Yu [21].
For later references, note that by (1.1) and (1.2) we have
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and

LEMMA 1.2. Suppose that 0 &#x3E; 0 is a rational number, q is a prime number with
q =1= p, and M &#x3E; 0, R &#x3E; 0 are rational integers with q 1 R. Suppose further that F(z)
is a p-adic normal function and

Then for all rational integers k, we have

REMARK. Here log R and log p denote the usual logarithms for positive
numbers.

Proof. This is Lemma 1.4 of Yu [21].
Let E be an algebraic number field, ’ be a prime ideal of the ring of integers

in E, lying above the prime number p. Let ordji’, e’, f/t’ be defined in the same
way as in Section 0.2. For a polynomial P, denote by L(P) its length, i.e. the sum
of the absolute values of its coefficients.

LEMMA 1.3. Suppose that P(x1,..., xm) E 7L [x 1 , ... , xm] satisfies

if 03B2m E E and P(03B21,..., Pm) =1= 0, then

Proof. This is Lemma 2.1 of Yu [21].

LEMMA 1.4. Suppose that rx =1= 0 is an algebraic number in K and b E ZB{0}.
If rxb =1= 1, then
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REMARK. Note that here K may be chosen to be any algebraic number field
containing a.

Proof. If ord03B1 ~ 0, then it is easily seen that ord(03B1b - 1)  0; and when a is
a root of unity, we have, by Lemma 1.3,

Thus we may assume that ord a = 0 and a is not a root of unity. Let s be the least
positive integer such that

Then

By an argument similar to that in the proof of Lemma 1.1 (see Yu [20], p. 418)
we see that if PECp satisfies ordp(03B2 - 1)  1/e, then

where 03BA ~ Z is defined by the inequality pk-1(p - 1) % e p  pk(p-1), whence

On applying (1.7) to as, we get

Note that 03B1sp03BA ~ 1, since a is not a root of unity. By the basic properties of the
p-adic exponential and logarithmic functions (see, for example, Yu[21], §1.1)
and by Lemma 1.3, (1.6), (1.8), we obtain
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On noting the inequality ef D, the lemma follows at once.

LEMMA 1.5. Let (03B21,...,03B2r~K. Suppose that

(not all zero) satisfy

Write

and

If n &#x3E; mD, then there exist y,, ... , Yn E 7L with

such that

Proof. This is Lemma 2.2 of Yu [21].

Define for z e C

and for l, m~N

For every positive integer k, let v(k) be the least common multiple of l, 2, ... , k.
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LEMMA 1.6. For any z~C and any integers k  1, 1  1, m  0, we have

Let q be a positive integer, and let x be a rational number such that qx is a positive
integer. Then

and we have

Finally, for any positive integers k, R and L with k  R, the polynomials
(0(z + r; k))l(r = 0, 1,..., R - 1; 1 = 1,..., L) are linearly independent.

Proof. (1.11) is a slight improvement of Lemma 2.4 of Waldschmidt [18]
and Lemma 2.3 of Yu [21], and will be proved below. (1.12) is just Lemma Tl
of Tijdeman [17]. For a proof of (1.13), see the proof of Lemma 2.3 of Yu [21].
The last assertion of the lemma is just Lemma 4 of Cijsouw and Waldschmidt [7].
To prove (1.11), we may assume m  kl. Thus

where the summation is over all selections j1,...,jm of m integers from the set
1,..., k repeated 1 times. Now (1.14) implies that

Hence it sufHces to show that

(1.15) is obviously true for k = 1, and we may assume k  2. Write

It is easy to see that the polynomial f(x) - g(x) has non-negative coeffi-
cients, whence so does the polynomial ( f(x))1 - (g(x))l, because of f 1 - gl =
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By this observation we get

Thus to prove (1.15) it sufHces to show that

For x  0, we have

From this and the inequality k ! &#x3E; (203C0k)1/2kke-k (see Yu [21], Lemma 2.7) we
obtain, for x  0 and k  2,

This is just (1.16), whence the proof of (1.11) is complete.
Let B’, Bn be positive numbers, T, L 1, ... , Ln (n  2) be positive integers. Set

L’ = max1jnLj.
LEMMA 1.7. Suppose that b1,..., bn,03BB1,...,03BBn,03C41,...,03C4n-1 are rational

integers satisfying

Then

Proof. This is Lemma 2.4 of Yu [21], which is a slight improvement of a
Lemma in Loxton, Mignotte, van der Poorten and Waldschmidt [12].

For a field E and a positive integer h, write Eh = {ah|a~E}.
LEMMA 1.8. Let r be a prime number, k a positive integer, and E a field. When
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r = 2, we suppose further that -1 E E2. If a~E and af/Er, then the polynomial

is irreducible in E[x].
Proof. This is a simple consequence of the following

VAHLEN-CAPELLI THEOREM: Over a field F a polynomial

is reducible if, and only if,

or

( For a proof see Capelli [6] (when F is a number field) and Rédei [15], pp. 675-
679 for the general case.)

LEMMA 1.9. Let 03B11,..., 03B1n be non-zero elements of an algebraic number , field
K and let 03B11/p1,...,03B11/pn denote fixed pth roots for some prime p. Further let
K’ = K(03B11/p1,.. ,03B11/pn-1). Then either K’ (03B11/pn) is an extension of K’ of degree p
or we have

for some y in K and some integers j1,..., jn-1 with 0  j,  p.

Proof. This is a lemma of Baker and Stark [4].

LEMMA 1.10. Let a be a non-zero algebraic integer of degree d with conjugates
a 1 = rx,rx2,...,rxd. Set na = max1jd|03B1j|. If a is not a root of unity, then

Proof. The lemma holds for d = 1, since log03B1 log 2 &#x3E; 1. By a result of
Dobrowolski [8], which states that
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the lemma is valid for d  21, since log d  log 21 &#x3E; 3. Thus we may assume that

2  d  20 in the sequel. By Smyth [16], we see that if a is not reciprocal, then

where 03B80 = 1.324... is the real root of X3 - x - 1 = 0. For a reciprocal we see
that the lemma holds for d = 2, 4, ... ,16, in virtue of a result of Boyd [5]. It
remains to verify that the lemma holds for d = 18, 20. Obviously p = 61 is a prime
satisfying

On replacing 6 by 5 in the proof of Dobrowolski [8], we conclude that

This completes the proof of the lemma.

LEMMA 1.11. Let K be a number field of degree D over Q, and ll, ... , lm linearly
dependent (over Q) elements of 2 K. Then there exist t1,..., tm~Z, not

all zero, such that

and

where Yl , ... , Vm are positive numbers satisfying

Proof. This is a slight improvement of Lemma 4.1 of Waldschmidt [18]. By
virtue of Lemma 1.10, we may replace Co(D) = 9D2 in the proof of Lemma 4.1
in [18] by Co(D) = 2D2, and the lemma follows at once.

LEMMA 1.12. Let K and fit be defined in Section 0.2. If p = 2 or p ~ 3 (mod 4),
then f 2.
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Proof. By (0.3) we may assume

Now the conclusion of the lemma follows immediately from Lemma A in the
Appendix, where we take Ko = Q.

We record two simple inequalities for later references. For any real number
u &#x3E; 0 and integer m  2, we have

Secondly, it is easy to verify that

2. Results subject to a new Kummer condition.

Let p be a prime number, K be an algebraic number field of degree D over
such that

Denote by ft a prime ideal of the ring of integers in K, lying above p. Let
ord, e, fi, be defined as in Section 0.2. We have, by Lemma 1.12,

Let q, u, v, ao be defined as follows
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Suppose that 03B11,..., rxn e K (n  2) and Vl , ... , Vn, V*-1 are real numbers such
that

Let b1,...,bn~ Z, not all zero, B, B’, Bn, Bo, W, W * be positive numbers such that

where

In this section we shall prove the following Theorems and Corollaries.

THEOREM 2.1. Suppose that

and
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then

ord

where a, c are constants given by the following tables

REMARK. Here 03B11/q0,..., 03B11/qn are fixed qth roots in Cp. If (2.15) holds for a
choice of qth roots in Cp, then it holds for any choice of qth roots in Cp, since
K contains qth roots of unity by (2.1) and (2.3). In the proof of Theorem 2.1,
the choice of qth roots will be fixed by (2.23) and (2.25).

THEOREM 2.2. In Theorem 2.1, (2.14) may be omitted.

COROLLARY 2.3. Suppose that (2.15)-(2.18) hold. Then we have

ord

where
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COROLLARY 2.4. Let Z’, Z, £5, W’ be positive numbers satisfying

where a’, c’ are given in Corollary 2.3 and

Suppose that (2.15H2.18) hold. Then

Write

By Hasse [9], p. 220 and (2.3), (2.4), we see that

Let y be the order to which q divides G, and let Go, G1 be the integers such that

Denote by ( a fixed Gth primitive root of unity in Kit such that

and by 03BE a fixed qgth primitive root of unity in Cp such that
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By (2.21), (2.22), we can fix a qth root 03B11/q0 E C such that

By (2.16) and Lemma 1.3 of Yu [21], there exist r’1,...,r’n~Z such that

ordp(03B1j03B6r’j - 1)  1/e(1  j  n). Let rl, ... , rn~Z be such that

then, by Lemma 1.1,

where 03BA, 03B8 are defined by (1.1) and (1.2). By (2.24) and (2.3) we see that

where the logarithmic and exponential functions are p-adic functions, are well
defined. Furthermore it is easy to verify that there exist qth roots ce 11q, ..., ailq E
Cp such that

2.1. The statement of a proposition towards the proof of Theorem 2.1

We define ho,..., h8,03B51,03B52,~ by the following formulae, which will be referred
as (2.26).
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In Section 2.1-2.5, we suppose that Co, Cl, C2, C3, C4 are real numbers satisfying
the following conditions (2.27)-(2.29):
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Set

PROPOSITION 2.1. Suppose that (2.14)-(2.18) hold. Then

ordp 0398  U.

2.2. Notations

The following formulae will be referred as (2.31).
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For later covenience we need the following inequalities (2.32)-(2.47).

(note that, by (2.19), (2.20), Go = (pfft - 1)/qu.)
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In (2.43)-(2.45), J, k are rational integers with 0  J  [log Ln/log q], 0 
k  n, 1 is given in (2.26).

Proof of (2.32). Similar to the proof of (3.12) of Yu [21]. Note that we use (1.3),
(1.4) and the fact ef  D to show
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Proof of (2.33)-(2.37). Similar to the proof of (3.13)-(3.17) of [21].

Proof of (2.38). Similar to the proof of (3.18) of [21J. vJe use the inequality
c3  160 (see (2.27)) to show

Proof of (2.39). From (2.31) and the definition of h4 (see (2.26)) we get

Thus to prove (2.39) it sufHces to show

since log V*n-1  ho. Now by (2.30), (2.31) we have

By (2.3), (2.2) it is easy to verify that

On combining this and (2.27), (2.10), (2.49), we obtain

Now this inequality and the following inequality



40

which can be verified similarly as in the proof of (3.19) of [21], yield (2.48) at once.

Proof of (2.40), (2.42)-(2.44), (2.46), (2.47). Similar to the proof of (3.20),
(3.22)-(3.24), (3.26), (3.27) of [21].

Proof of (2.41). Similar to the proof of (3.21) in [21]. Here we need (2.7).

Proof of (2.45). Similar to the proof of (3.25) in [21]. We need to use the
definition of 1 in (2.26), from which it follows that

So far we have established the inequalities (2.32)-(2.47). Now we introduce
some more notations. For (J, 03BB-1,...03BBn, 03C40,...,03C4n-1)~ N2n+3 set

where A(z; k) and A(z; k, l, m) are defined by (1.9) and (1.10). In the sequel, we
abbreviate (03BB-1,...,03BBn) as À, (03C40,...,03C4n-1) as T and write 1 t = 03C40 + ··· + i" -1-

Let

By (2.14) we can fix a basis of K over 0 of the shape

2.3. Construction of the rational integers p(À, do, d)

We recall that r1,..., rn are the rational integers in (2.24); G, Go, G1 are defined by
(2.19), (2.20); X is given in (2.31); Do, Dl are given in (2.51).

LEMMA 2.1. For

and A = (A - 1, ..., An) in the range
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there exist p(03BB, do, d) E 7L with

such that

for all (s, To, ..., 03C4n-1) E Nn+ 1 satisfying

where SÂ ranges over (2.54), Id,,,d ranges over (2.53).

REMARK. In the sequel s always denotes a rational integer and T always
denotes a point (03C40,..., 03C4n-1)~ Nn. The expression (s, to,... , 03C4n-1)~ N’ + 1 will
be omitted.

Proof. For t E 7L, define

Let

By (2.20) we have

Denote by b the set of Â = (03BB- 1, ... , Ân) ~ Nn+2 satisfying (2.54). Then

By (2.59), (2.58), (2.56), we see that every 03BB~l determines uniquely t =

t(03BB1,..., 03BBn)~J and k = k(03BB1,..., 03BBn)~ 7L such that
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Write h = h(Â 1, ..., Ân, do, s) for the rational integer satisfying

By (2.60), (2.21), (2.6), (2.61) we obtain

For 03BB, d0, d, s, 03C4 with 03BB~, 0  d0 D0, 1  d  D1, 1  s  S and (s,q) = 1,
and Itl  T, set

By Lemmas 1.6 and 1.7 we see that each P03BB,d0,d;s,03C4 is a monomial in xo, xl, ... , x,,
with rational integer coefhcient, the absolute value of which is at most

degxj PÂ,do,d;s,,r  P03BASLj + D (1 ~ j ~ n).

Note that (2.1), (2.3), (2.4) and (s, q) = 1 imply that

By (2.20), (2.21) we see that (GIs is a root of xq03BC-u - (03B6qu)s. Thus, in virtue of Lemma
1.8, it follows that the q03BC-u elements

are linearly independent over K. On combining (2.58), (2.59), (2.62) and the above
fact, we see that (2.55) is equivalent to that for each t~J
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For each t E J, in (2.63) there are (1 - Ilq) S(T+nn) equations and at least

unknowns p(Â, do, d). By (2.32), we can apply Lemma 1.5 to (2.63) for each t E J
(note that h(03B10) = 0), and the lemma follows at once.

2.4. The main inductive argument

For rational integers r(J), L(J)j(-1jn) and p(J)(03BB, do, d) = p(J)(03BB-1,..., Ân,
do, d), which will be constructed in the following main inductive argument, set

where EÂ is taken over the set (J) of 03BB = (03BB-1,..., 03BBn) satisfying

Note that by (2.24), the p-adic functions

are normal.

The main inductive argument. Suppose that there are algebraic numbers
03B11, oc, in K and rational integers bl,..., bn satisfying (2.14)-(2.18), such that

Then for every J E 7L with 0  J  [log Ln/log q] + 1 there exist r(i) E 7L, L(J)j~ 7L

(-1j n) with
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and

such that

The main inductive argument will be proved by an induction on J. On taking
r(0) = 0, LjO) = Lj(-1  j  n), p(0)(03BB, do, d) = p(03BB, do, d), which are constructed
in Lemma 2.1, we see, by Lemma 2.1, that the case J = 0 is true. In the rest of
Section 2.4, we suppose the main inductive argument is valid for some J with
0  J  [log Ln/log q], and we are going to prove it for J + 1. We always keep
the hypothesis (2.66). We first prove the following Lemmas 2.2, 2.3, 2.4, then
deduce from Lemma 2.4 the main inductive argument for J + 1.

Set

Write (J)t (t e Z) for the set of Â = (03BB-1,..., Ân) satisfying

and define

By (2.20),

By (2.65), (2.67), (2.68),

Define
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and for t~J(J) define

LEMMA 2.2. For every t E J(J), T = (io, ... , 03C4n-1) with |03C4|  T and y E Q with

y &#x3E; 0 and ordp y  0, we have

Proof. Similar to the proof of Lemma 3.2 of Yu [21].

LEMMA 2.3. For k = 0,1, ... , n we have

Proof. By (2.67)-(2.70), every A E (J) determines uniquely t = t(Â 1, ... , An) E
J(J) and k = k(Â 1, ... , An)t E 7L such that

Let h = h(03BB1,..., An’ do, s) be defined by (2.61). Thus by (2.75), (2.21), (2.6), (2.61),
we get

We now prove that (2.74) is equivalent to the statement that for every t E J(J) we

~Of course, t and k are not necessarily the same as that in (2.60); however we still use these notations,
because no confusion will be caused.
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have

By the identity

(2.77) implies (2.74) at once. Conversely, by (2.78), (2.76) and the fact that

are linearly independent over K, which has been established in the proof of
Lemma 2.1, we see that (2.74) implies (2.77). Thus

In the sequel, let t denote an arbitrarily fixed element of J(J). By the main
inductive hypothesis for J and by (2.79), we see that (2.77) with k = 0 is true. We
now assume (2.77) is valid for some k with 0  k  n. We shall prove it for k + 1 if
k  n and include the case k = n for later use. Thus we see, by Lemma 2.2, that

Note that by (2.24) and (2.17), the p-adic function

is normal, where 0 is given by (1.2) and can be written as 0 = 1/m with 1, m being
coprime positive integers, and p03B8:=03B2l with p E Cp being a fixed mth root of p.
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Further by (1.14) and (2.3) we see that

is a normal function, whence so is

Thus, by (2.72) we see that

are normal functions. We now apply Lemma 1.2 to each function in (2.81), taking

By an argument similar to the proof of (3.74) in Yu [21], using Lemma 2.6 of [21],
we deduce from (2.80) that

where the second inequality follows from (2.42) and (2.43).
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On the other hand, by (2.82), (2.44), (2.45), we see that

Now we see from (2.83), (2.84), (2.29) that each FJ,t(z,03C4) in (2.81) satisfies the
condition (1.5) with R, M given by (2.82). Thus by Lemma 1.2 and (2.81) we obtain

By the second inequality in (2.83), we have
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Observe that the right-hand side of the above inequality is, by (2.29), not less than
the extreme right-hand side of (2.84). Hence by Lemma 2.2 (note that

ordp(s/q)  0 by (2.3)), by the above observation and by (2.84), (2.82), we get

On combining (2.85) with (2.86), and utilizing (2.33) and (2.37), we obtain

From now on we assume 0  k  n.

On the other hand, by Lemma 1.6 and (2.50), (2.76) we see that for any
fixed te $"’(J) and for 1  s  qJ+k+1, (s,q) = 1,|03C4| (1-(1-1/q)(k+1)/
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with QJ,t;s,t(x0,x1,..., Xn) being in Z[x0,x1,..., xn] and having degree at most

in Xj (1  j  n). Note that by the main inductive hypothesis for J and Lemmas
1.6, 1.7, we have, for Â E (J)t, 0  d  D0,1  d  D1, 1  s  qJ+k+ 1 S,
(s, q) = 1, |03C4|  (1 - ( 1 - llqxk + 1)/(n + 1))q-JT, the following estimates:

By the above estimates and by (2.50), (2.88), the length of QJ,t;s,03C4(x0,x1,...,Xn) is
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at most

Now we assume that there exist s, s with

such that

and we proceed to deduce a contradiction. By Lemma 1.3 (note h(oto) = 0), by the
definition of Xo (see (2.31)), and by (2.88), (2.34)-(2.36), (2.38)-(2.41), we see that
the assumption ~J,t(s, T) ~ 0 implies that
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This together with (2.28) implies that

On noting
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we see that (2.89) yields

contradicting (2.87). This contradiction proves that for any fixed t E J(J),

This fact and (2.78) imply (2.74) for k + 1, and the proof of the lemma is thus
complete.

LEMMA 2.4. We have

Proof. By (2.78), it suffices to show that for any fixed t E J(J), we have

We recall that (2.87) holds for k = n, that is,

ord,

for
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For x, z, z’ E Cp with ordpx &#x3E; 11(p - 1), ordp z  0, ordp z’  0, we have the
following identity for p-adic functions

(See Hasse [9], p. 273.) Hence we have, by (2.24), (2.25),

Recall (2.75) and let h* = h*(03BB1, ... , Ân, do, s) be the rational integer satisfying

By (2.75), (2.23), (2.93) we have for 03BB~ (J)t

Now by Lemma 1.6, (2.50), (2.92) and (2.94) we see that for any fixed t E J(J) and
for 1  s  qJ+1S, (s, q) = 1, |03C4|  q-(J+ l)T, we have

with Q1,t;S,t(XO’ xl, ... , Xn) being in Z[x0, xl, ... , xn] and having degree at most

in xj ( 1  j  n). By the main inductive hypothesis for J and by Lemmas 1.6,1.7,
we have, for 03BB~(J)t, 0  d0  D0, 1  d  D1, 1  s  qJ+1S, (s,q) = 1, |03C4| 
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q-(J+1) T, the following estimates

where L(J) = max1jnL(J)j. By the above estimates and by (2.50), (2.95), the
length of Q1,t;s,t(Xo, xl, ..., Xn) is at most

Now we assume that there exist s, t satisfying 1  s  qJ+1S, (s, q) = 1,

Itl  q-(J+1)T, such that

and we proceed to deduce a contradiction. In Lemma 1.3, let E = K(03B11/q0,
03B11/q1,..., 03B11/qn), ’ be a prime ideal of the ring of integers in E, lying above /te Thus

by (2.15), and

Note that h(03B11/qj) = (1/q)h(03B1j) and h(03B11/q0) = 0. By Lemma 1.3 and the definition of
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Xo (see (2.31)), and by (2.95), (2.34)-(2.36), (2.38)-(2.41), (2.28) we see that the
assumption (2.96) implies that

contradicting (2.91). This contradiction proves (2.90), whence the lemma follows.

LEMMA 2.5. The main inductive argument is true for J + 1.
Proof. We first show that
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From (2.20)-(2.22) we see that çG1 is a root of the polynomial

By (2.15) we have [K’(03B11/q0): K’] = q. This implies, by Abel’s Theorem (see, for
instance, Rédei [15], p. 674, Theorem 427), that 03B10~K’q, whence

since (p, q) = 1 by (2.3). Thus by Lemma 1.8, (2.1 ), (2.3) and (2.100), the polynomial
in (2.99) is irreducible in K’[x], that is,

This together with (2.98) and the identity

yields (2.97).
Write a = (03C3-1,..., Un)E Nn+2. By Lemma 2.4 and (2.50) we have

for

where (J) is the set of Q = «(J - 1, ... , (J n) satisfying

Every (u 1, ... , 03C3n) satisfying (2.65) can be uniquely written as

with
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By the fact that (G1,q) = 1 (see (2.20)) and by (2.65), (2.102), we see that

where r(J+ 1)(03BB*1, ... , Â*) is the unique solution of the congruence

Further, again by (2.20), (2.65), (2.102), we see that every (J E rc(J) determines an
unique g = g(03BB*1,..., À:, 03BB1,..., Àn)E 7L such that

with

From this and (2.22) we get

Now on recalling the identity

for x, z, z’ E Cp with ordp x &#x3E; 1/(p - 1) and z, z’ being integral (see Hasse [9],
p. 273), we see, by (2.24), (2.25), (2.105), that

On combining (2.101)-(2.104), (2.107), we obtain

for
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where 03A303BB1,...,03BBn is taken over the range

By (2.97) and the fact that ( p"s, q) = 1 (see (2.3)), we see that the qn elements

are linearly independent over K(03BEG1).

By the main inductive hypothesis for J, there exists a n-tuple (03BB*1,..., À:) with
0  03BB*j  q(1  j  n), such that the rational integers

are not all zero. Fix this n-tuple (03BB*1, ... , 03BB*n); take

set

and define (J+1) to be the set of 03BB = (03BB-1,..., 03BBn) satisfying

Obviously, by the choice of the n-tuple (03BB*1,...,03BB*n),(J+1) ~ 0. By (2.110), (2.106),
we obtain from (2.108) that
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By an argument similar to that in the proof of Lemma 3.5 in Yu [21], utilizing
Lemma 2.6 of [21], we conclude from (2.111) that

This completes the proof of the lemma.

Thus we have established the main inductive argument for J = 0,1,...,
[log Ln/log q] + 1.

2.5. Completion of the proof of Proposition 2.1

The assumption that Proposition 2.1 is false, that is, there exist algebraic numbers
(03B11,..., a" in K and bl, ... , bn~ Z satisfying (2.14)-(2.18), such that

ordp 0398  U,

implies that the main inductive argument holds for Jo = [log Ln/log q] + 1,
whence we can deduce a contradiction (on utilizing Lemma 2.5 of Yu [21],
Lemma 1.6 and (2.46), (2.47); the argument here is completely the same as in
Section 3.5 of [21]), thereby proving the Proposition.

2.6. Proof of Theorem 2.1

Now this can be reduced to solving the system ôf inequalities (2.27)-(2.29). We
solve it in the following cases respectively:

Case (1.a). p = 2, n  8.
In this case q = 3,f  2 (see (2.2)), co = 17,02 = i. We have the following
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estimates:

It is easy to verify that

satisfy the system of inequalities (2.27)-(2.29).

Case(l.b). p = 2, 2  n  7.
In this case q = 3, f  2, co = 9, c2 = 158. We have the following estimates:
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It is easy to verify that

satisfy the system of inequalities (2.27)-(2.29).

Case (2.a). p &#x3E; 2, n  8.
In this case q = 2, f  1, D/qu  1 2 (see (2.7)), Co = 17, C2 = 5. We have the

following estimates:

It is easy to verify that

satisfy the system of inequalities (2.27)-(2.29).

Case(2.b). p &#x3E; 2, 2  n  5.
In this case q = 2, f  1, D/qu  1 2, co = 9,02 = 7. We have the following
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estimates:

It is easy to verify that

satisfy the system of inequalities (2.27)-(2.29).

Case (2.c). p &#x3E; 2, n = 6, 7.
In this case q = 2, f  1, D/qu  1 2, co = 9, C2 = 27 4. We have the following

estimates:
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It is easy to verify that

satisfy the system of inequalities (2.27)-(2.29).
In each of the above cases it is easily seen that

where c is the constant given in the statement of Theorem 2.1. Now the Theorem
follows from Proposition 2.1 at once.

2.7. Proof of Theorem 2.2 and Corollaries 2.3, 2.4

Proof of Theorem 2.2. Set

By (2.1), (2.4), (2.6) we see that K’ satisfies (2.1). Denoting by OK. the ring of

integers in K’, set

Then ,h’ is a prime ideal of OK., and we define ord’ 03B1(03B1~ K’), e’, fp, in the way
described in Section 0.2. Obviously
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Let

It is well-known that

By virtue of (2.120) and utilizing (2.8)-(2.10), (2.12), (2.13), (2.117)-(2.119), we see
that

On observing further that

we may apply Theorem 2.1 to ordfi’ (03B1b11... ann - 1) with Vj (1  1  n), (W*)’,
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(V*n-1)’ given by (2.117)-(2.119); and on utilizing (2.121), (2.113), (2.114), (2.116),
we obtain the inequality stated in Theorem 2.1. This proves Theorem 2.2.

Proof of Corollary 2.3. We remark, by (2.8), (2.1l)-(2.13) and the fact n  2,
that in Theorems 2.1 and 2.2 we may choose

Note further that the constants a, c in the statement of Theorem 2.1 satisfy

Now, on noting (2.3), we see that Theorems 2.1 and 2.2 yield the Corollary.

Proof of Corollary 2.4. By (2.15)-(2.18) we may apply Theorems 2.1 and 2.2
with Y" replaced by

We may also replace B’, Bo in (2.12) by B, B", respectively. By the inequalities (2.8),
0  03B4  (f log p/D)Z, W’ &#x3E; 1, we see that

On recalling (2.12), (2.13), n  2, it sufHces to prove

By the assumptions on Z, £5, W’, we need only to show that

where
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We need two inequalities, which can be easily verified:

where b &#x3E; 0 is fixed; and

with

where

By the hypothesis on W’, we have

We devide two cases.

(a) 03C8  (211qnD)nlp’. By (2.123) and (2.125), to prove (2.122) it suffices to show
that g(03C8) &#x3E; 0. By (2.3) and n  2, D  2 it is easy to verify that

On noting that

and utilizing (2.124), (2.126), we obtain g(03C8) &#x3E; 0.

(b) 03C8  (211qnD)n/03C1’. By (2.123) and (2.125), we see that (2.122) follows from
(2.126).

This completes the proof of Corollary 2.4.

3. Propositions for Kummer descent

The condition ordp bn = min, , j,,, ordp bj yields the sharpest form of the main
results of the present paper. When bl, ... , bn satisfy this condition, to transfer
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this property during the course of the Kummer descent (see (4.20) and (4.56) in
Section 4 below) is somewhat subtle, and some complication, compared with
the Kummer descent in the classical theory of linear forms in logarithms, arises
from here. The statement (d) of the following Propositions 3.1 and 3.3 is for this
purpose. Furthermore, we use the idea in the proof of Lemma 4.1 in Waldschmidt
[18] and in the proof of Lemmas 5.1, 5.2 in Lang [10], Chapter XI; and we give
refinements in our context, in order to obtain good constants in our estimates
for ord(03B1b11 ... 03B1bnn - 1).

Let K, D, p, q, u, v, ao,,,h, ord, f be defined in Section 0.2. Evidently,

Fix

Recall 2 K:= {l~C|e1~ K} and for 1 E 2 K

Define

Obviously, lo E 2 K,/t. Throughout this Section ll, ... , ln denote n(2) elements
of fil K,jt such that

and V1,...,Vn denote n real numbers satisfying

and

By linear dependence (or independence) of elements of 2 K,fz we mean that over Q.
By the rank of a finite set of elements in 2 K,/t’ we mean the cardinal of a maximal
linearly independent subset of the given set.
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PROPOSITION 3.1. Suppose that 10, l1,..., ln are linearly independent. Then
there exist l’0 = 10, l’1,..., ln ~LK, and msj E Z(1  s  n, 0  j  s) such thatt

(a) [K((03B1’0)1/q, ...,(03B1’n)1/q): K] = q n-1 1 where 03B1’j := eli (0  j n),

(b) V(l’s)  max (V,, 1 2(V0 + ··· + V,» (1  s  n),
s

(c) ls = E mSjlj (1  s  n),
j=o

(d) mss = qWs for some ws~N (1  s  n),

(e) max |msj|  2((s + 1)D3)s+ ’(s + 1)! Vo Vs s (1  s  n),

max Mnj 4((n + 1)D3)n+1n!V0Vn-2n-1Vn max(V,,, 2 + Vn)).

Proof. Let N = 7Llo + 7Ll1 + ··· + 7Lln and

Mq = {l~LK,|there exists t E N such that qtl~M}.

For l~Nq write T= 1 + M ~Nq/N. Then the order of fin Nq/N is qh for some
h E N, and by Lemma 1.11 we see that

Set q’:= max {order of fil l~Nq}, then

For

We see, by (3.9), that qw~Ns(0  s  n), whence Ns has the least element tss
satisfying 1  tss  q"’. We fix tsj(0  j  s) such that

((3.11) is possible in virtue of the division algorithm.) Then there exist l’0, l’1,..., l’n

t Here and in the sequel 03B11/q (a~K) denotes qth root, which may be chosen in Cp. See also the remark
after the statement of Theorem 2.1.
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in Nq, such that

By the linear independence of 10, ll , ... , ln and by the construction, {qwl’0,...,
qwl’n} is a basis of qwNq, whence {l’0,..., l’n} is a basis of JI! q. Observing ls~N~
Jl!q (0  s  n), we see that there exist msj~Z (0  s, j  n) such that

On combining (3.12) with (3.13) we get

and

Now (3.13)-(3.15) imply (c) and (d). We assert that

for otherwise we would have, by (3.15), too = q"’° with 0  Wo  w, whence, by
(3.12), l0 = qW-wol’o and ao = (03B1’0)qw-w0~Kq, a contradiction to the definition
of ao (see (0.4)-(0.6)). Hence 10 = l’0, ao = rx’o. By (d), we see that tss  qw implies
tss  qw-1  1 2qw. By this observation, (3.10)-(3.12) yield (b). By (3.7), (3.3),
Lemma 1.12, (3.2), we have Vs  f (log p)/D &#x3E; 1/D &#x3E; Vo (1  s  n), whence
!(Vo + Vi + ··· + V2)  1 2(s + 1)Vs. So from (b) and (3.3), we obtain

Now Lemma 1.11 together with the above estimates and the linear independence
of 1’0,..., ln implies (e). It remains to verify (a). Suppose that (a) is false, i.e.,
K((03B1’0)1/q,..., has degree (over K) less than qn+ 1, we proceed to deduce
a contradiction. By Lemma 1.9, we have a relation
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for some il E KB{0} and jo, ... , j,, e N with

Note that ord as = 0, since ls E Nq ~ LK, (0  s  n). Thus by (3.16) we have
ordjt il = 0. Let A E fi? K,jt be such that e). = il. Now by (3.16) there exists j E 7L
such that

Write

Note that 2ni/ q E LK,, since (q E K by (0.3). Thus 1 E LK, and

whence l~Nq. Therefore there exist io, ..., in E 7L such that

On comparing (3.18) with (3.19), we get, by the linear independence of l’0,...., ln,

a contradiction to (3.17). This proves (a). The proof of the Proposition is thus
complete.

LEMMA 3.1. Let l1,..., ln, l’j, 03B1’j (0  j  n) be given in Proposition 3.1 and its
proof. Suppose that

Suppose further that 1 E YK, , and V &#x3E; 0 are such that
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Then there exist l’ E Y K,fe and mo, ..., mn E 7L such that

where

Proof. Let

and (if V" &#x3E; Uo)

We proceed to prove the following assertions:

(Po) The Lemma holds if nVn-1  V  min(Uo, Vn);

and (if Yn &#x3E; Uo)

(Pk) The Lemma holds if Uo + (k - 1)/D  V  min(Uo + k/D, Y")

We now show (P0). On applying Proposition 3.1 to l0,...,ln-1, 1 and
Vil , ... , Vn-1, V, we see that there exist l’E.2 K,ft and mo,..., m" E Z such that
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(a), (c), (d) hold and that

(by the fact that nVn-1  V), whence (b) is valid. Further by Lemma 1.11 and
by (c), (b), (3.22), (b) of Proposition 3.1, the inequality n Jt;.-1 1  V and the linear
independence of 1’0, ... , l’n-1, l we have

i.e. (e.l) holds. From the second inequality of (3.26) and the assumption
V  min(Uo, Vn), recalling (3.24), we get

This together with (b) and nVn-1  V implies (e.2). Thus we see that (Po) is true.
If Vn  Uo, then (Po) is exactly the Lemma. So we may assume V &#x3E; Uo and we

prove the Lemma by induction on k.
Assuming (Po),..., (Pk)(0  k  ko), we proceed to show (Pk+1). Now

If [K((03B1’0)1/q,...,(03B1’n-1)1/q,~1/q):K] = qn+1 where ~ = el, then we may take
l’ = l, ~’ = ~, m0 = ... = mn-1 = 0, mn = 1, whence (Pk+1) is trivially true. So
we may assume in the sequel

Set K’ = K((03B1’0)1/q,...,(03B1’n-1)1/q). By Proposition 3.1, we have [K’:K] = qn.
This together with (3.28) yields [K’(~1/q):K’]  q. Thus by Lemma 1.9, there
exist ~1~KB{0} and t0,...tn-1~Z with 0  tj  q (0  j  n) such that

From (3.29) and the fact that l, 1’0,... , l’n-1~LK,, we see that ordpqi = 0. So
there exists 03BB1 eC such that
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From (3.29) we get, by li = 10 and (3.2),

for an integer t. Now the linear independence of l0, ..., ln-1, 1 implies that of
l’0,...,l’n-1, l. This together with (3.31) yields the linear independence of
l’0,...,l’n-1,03BB1, whence

10, ..., ln-1, À1 are linearly independent. (3.32)

Note that by (3.27) and (3.24) we have

Next we show that

From (3.29) and Proposition 3.1, (b), we see that

where the last inequality follows from the fact that V &#x3E; Uo + k/D  Uo (see
(3.27)). To bound IÂ11/(2nD) we estimate |t|. By (3.1), (3.2) we have
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From (3.5), (3.10)-(3.12) we get for 1  s  n

and

So in any case

Thus, by (3.31), (3.22), (3.30), (3.36), (3.37) we get

Note that by (3.1), (3.2), li = Io,

and by Proposition 3.1, (b),

Thus by (3.31), (3.22), (3.38), (3.24) and the inequalities n2, 1/D 
vn-1/(f log p) (see (3.7), (3.3)), f 2 if p = 2 (see Lemma 1.12), we get
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Now, on noting (by (3.33)) ((q + 1)/(2q))V  nVn-1  f log p/D, (3.34) follows
from (3.35) and (3.39).
By (3.30), (3.32H3.34) we can apply the inductive hypothesis, which states that

(Po), ... , (Pk) are true, to Ai and ((q + 1)/(2q)) V, and thus we can find l’ e LK, and
m’0,..., m’n~Z such that

By (3.31) and (c’) we have

with

Thus (c), (d) hold. It remains to verify (e.l) and (e.2). We first deal with the case
when p &#x3E; 2. So q = 2. By (3.1) and the inequalities

we get
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So by (3.40) and (e’.1) we have

whence (e.l) is valid. It is easy to see that the right-hand side of (e’.2) is at
least 105. Thus (e.2) can be verified similarly. This completes the case p &#x3E; 2. The

verification of (e.1 ) and (e.2) for the case p = 2 is similar, so we omit the details.
This establishes the assertion (Pk+1). The proof of Lemma 3.1 is thus complete.

PROPOSITION 3.2. Let li , ... , ln be given in Proposition 3.1 and suppose that

Vn  nVn-1.

Then we can replace (e) for s = n in Proposition 3.1 by

where C3 , ... , C6 are given in Lemma 3.1.
Proof. Apply Lemma 3.1 to 1 = ln, V = v,,.

Let r + 1 be the rank of {l0,...,ln}. We fix the integers jo, ..., jr with 0 =
jo  ...  jr  n such that lj0,..., Ijr are linearly independent and lj is linearly
dependent on lj0, ..., ljs for j with js  j  js+1 (0  s  r, jr+1 := n + 1).

PROPOSITION 3.3. Suppose that

Then there exist 10 = l0, l’1,..., l’r~ .PK,; and rational integers ui’s (&#x3E;0) and mij’s
such that
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Proof. Let N = 7Lljo + ... + 7Lljr-l and

By Lemma 1.11, we see, similarly to the proof of Proposition 3.1, that X is of
finite index in Np,q. Denote by phqw the index, where h, we N. Set for 0  s  r

Obviously phqw c- N,,, whence Ns has the least element tss  phqw (0  s  r). We
fix tsi (0  i  s) such that

((3.42) is always possible by the division algorithm.) Then there exist

1’0,..., l’r-1 ~ %p,q such that
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By the linear independence of ljo,...,ljr-1 1 and by the construction,
{phqwl’0,...,phqwl’r-1} is a basis of phqw Np,q, whence {l’0,...,l’r-1} is a basis of
%p,q. Observing ljs ~ N c %p,q (0  s  r), we see that there exist mij’s in
7L (i = j0,...,jr-1) such that

Taking ui = 1, we see that (3.44) is exactly (c) for i = jo, ... , jr-1. It is easy to see,
on combining (3.43) with (3.44), that

Thus

mjss = phsqws for some hs, ws E N with hs  h, ws  w (0  s  r).

We assert that ho = Wo = 0, for if ho &#x3E; 0, then from

we get

a contradiction to (0.5); and if wo &#x3E; 0, then we have

a contradiction to (0.4). Thus ho = Wo = 0 and moo = 1, l0 = l’o. For i with

js  i js+1 (0  s  r), from (3.44) and the fact that li is linearly dependent
on ljo,..., ljs, we see that li is linearly dependent on l’0,..., Is. Let Ui be the least
positive integer such that

where the equality follows from the fact that {l’0,..., l’r-1} is a basis of Np,q. Then
we obtain (c) for i with js  i  js+ 1 (0  s  r). From the definitions of Ui and

aep,q we get
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Now set

By Lemma 1.11, vit is of finite index qk in Mq for some k E N. As before, for
s = 0,..., r let tss be the least positive integer for which there are tsi (0  i  s) in
Z such that

and

We fix for s = 1,..., r

By (3.46), for s with 0  s  r there is 1; E vU q such that

So by the definition of aep,q, we have 1; e aep,q (= Zl’0 + ··· + Zl’r-1). This and
(3.50) yield qk1 tss. On the other hand, 03C4ss  qk by definition. Thus, recalling (3.48),
we get

Dénote by l’r E Mq the element such that

As before, we can see that 10,... , l’r is a basis of Mq. On noting that In e M ~ vit q
and taking Un = 1, we obtain (c) for i = n. It is easily seen that m"r = qwr for some
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w, E N with wr  k and tr, = qk-Wr. This completes the proof of (d). By
(3.41 )-(3.43), (3.45), (3.49), (3.51), (3.52), irr = qk-wr and the inequalities

we obtain (b). Further by Lemma 1.11, (b), (c), the linear independence of
l’0,..., lr, the definition of ui, we get (e). Finally, using an argument based on
Lemma 1.9 and the fact that (q E K (see (0.3)), which is similar to that in the proof
of Proposition 3.1, we obtain (a). The proof of the Proposition is complete.

PROPOSITION 3.4. Suppose that

Then the second inequality in (e) of Proposition 3.3 can be replaced by

where C4 is that given in Lemma 3.1,

Proof. Very similar to the proof of Lemma 3.1 and Proposition 3.2. It is easy to
write down the proof mutatis mutandis, and we omit the details here.

4. Proof of Theorems 1, l’, Corollaries 1 and 2

Proof of Theorem 1. By Lemma 1.3, (0.14), (0.7)-(0.10) we have
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Evidently, (0.4), (0.5) imply

Set

with

with J given by (0.12), where the second inequality follows from (0.2) and Lemma
1.12.

Let r + 1 be the rank of {l0, l1,..., ln} and jo, j 1, ... , jr be the integers with
0 = j0  j 1 ...  jr  n such that lj0,...,ljr are linearly independent and lj is
linearly dependent on lj0,..., ljs for j with js  j  js + 1 (0  s  r, Jr + 1 : = n + 1).
We deal with the following eight cases (a)-(h) separately.

We shall prove

where a’ and c’ are given in Corollary 2.3. By (4.3) and DVj  f log p (1  j  n)
(see (0.9), (0.7)) we get
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We assert that we may assume

for otherwise we would have, by (4.3), (0.9), (0.7), D  2 (see (0.3)),

and (4.7) would follow from (4.1), (4.8) and (4.10). So in the rest of (a), we can
assume (4.9).
Now we apply Proposition 3.1 to 11, ... , ln. On recalling (0.6) and noting, by the

fact that l’j E 2 K,ft’ that

we get

where

Note that b"1,..., b"n are not all zero, since b’1,..., b’n are not all zero by the
equality 03B1b’00(03B1’1)b’1 ... (03B1’n)b’n = 03B1b11 and the assumption r = n. This fact

together with r = n yields

Further we have

By Proposition 3.1, (b) and (4.6) we see that
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By Proposition 3.1, (e), (4.4) and the assumption V,,  nVn-1, we get

It is easily verified, by (4.9) and the inequality (x - 1)/(log x)2  1/2 for x &#x3E; 1,
that

From (4.9) and the inequalities n  2, D  2, DVn-1  f log p (see (0.9), (0.7)),
(1.18), we see that

Observe that we have

by (4.13) and Proposition 3.1, (d). Thus, by (0.2), ordpbn = ord b’. So by (4.13) we
see that

Now by (4.11), (4.14), (4.15) we can apply Corollary 2.3 to

ord((03B1’1)b"1 ... (03B1’n)b"n - 1), and on observing (4.12), (4.16)-(4.20) and using (1.17),
we obtain (4.7).

(b) r = n, Vn  nVn-1.
We shall prove

Using (4.1) and arguing as in (a), we may assume
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Obviously (4.1 )-(4.15), (4.16) (with 1  j  n) and (4.20) are valid in the case (b).
By (4.16) with 1  j  n and (1.17) we have for n &#x3E; 2

and we remark that (4.23) is trivially true for n = 2 by (4.16) with j = 1. Note also,
by Proposition 3.1, (b) and the assumption Vn  nVn-1 we have

By Propositions 3.1 and 3.2, on noting that

and using (4.13) and (4.4), we get

By (4.22) and (4.25) it is easily seen that

From (4.22), (4.24), (1.18) and the inequalities n  2, D  2, DVn-1  f log p, we
have

By (4.26), (4.27), (4.24) and the inequalities n  2, D  2, we obtain
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Now by (4.11), (4.14), (4.15) we can apply Corollary 2.3 to

ord((03B1’1)b"1 ... (03B1’n)b"n - 1), and on noting (4.12), (4.16) (with 1  j  n), (4.23)-
(4.25), (4.28), (4.20), we obtain (4.21).

(c) 2  r  n, jr  n.
We shall prove

On arguing by (4.1 ) as in the case (a) and noting r(n - r + 1)  2(n - 1)  n, we
may assume

Define

Then by the assumption jr  n we have

By Lemma 1.11, we see that there exist uj ~ Z, ui &#x3E; 0 (1  j  n) and mjs ~ Z
(1  j  n, 0  s  r) such that
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and

Write

By (4.32), (4.33) we get

By (0.13) and (4.34), we have

where

We assert that we may assume
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for otherwise, by (4.36), we would have

whence Lemma 1.3 would yield

Now by (4.36), (4.34), (4.4) we get

By (4.30) and by the inequalities

it is readily verified that

On noting that D  2, r(n - r + 1)  2(n - 1) &#x3E; 1 and using (4.40), (4.31) we
obtain

By (4.31) we have

Now by (4.37) and the linear independence of l0, l’1,..., lr, we may apply (4.7)
and (4.21) to ord((03B1’1)b"1 ...(03B1’r)b"r - 1). On observing U2  U1,(4.35), (4.31),
(4.41), (4.42), we obtain (4.29).
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We shall prove

Utilizing (4.1), arguing as in the case (a), noting r(n - r + 1)  2(n - 1)  n, we

may assume

Then by Proposition 3.3, we have

Writing

we get

By (0.13) and (4.45) we see that
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where

By Proposition 3.3, we have

We assert that we may assume

for otherwise we would have (ail ... 03B1bnn)MPvqu = 1 and Lemma 1.3 would yield

Again by Proposition 3.3, and using (4.6), (4.45), (4.47), (4.4), (4.2) and the
assumption V,,  4 1 r(r + 1)Vn-1, we get

By (4.44) and the assumption 2  r  n, it is readily seen that

furthermore, on noting (1.18), we get
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Observing jr = n, we see that

whence, by (4.47), Proposition 3.3, (d) and (0.2), we get

Thus by (4.47) we see that

By (4.48)-(4.50) we may apply Corollary 2.3 to ord((03B1’1)b"1 ... (03B1’r)b"r - 1), and on
noting (4.46), (4.51)-(4.56), (1.17), we obtain (4.43).

We shall prove

Using (4.1), arguing as in the case (a), and noting r(n - r + 1)  2(n - 1)  n, we
may assume

Note, by Proposition 3.3, that (4.45)-(4.49), (4.51) and (4.56) are valid in the
present case. Further, by Lemma 1.3, we may assume (4.50). By (4.51) and (1.17)
we see that if r &#x3E; 2 then

and we remark that (4.59) is trivially true if r = 2. From Proposition 3.3, (b) and
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the assumption Vn  4 r(r + 1)Vn-1, we get

Note that the constants C4, CS in Proposition 3.4 satisfy

By Propositions 3.3, 3.4 and on noting (4.45), (4.47), (4.2), (4.4), (4.61) we obtain

By (4.58) and the assumption 2  r  n it is readily verified that

Further, by (4.58), (4.60) and (1.18) we have

On noting r(n - r + 1)  2(n - 1)  4, D  2 and using (4.60), (4.63), (4.64) we
get
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Now we may apply Corollary 2.3 to ord((03B1’1)b"1 ... (03B1’r)b"r - 1); and on using
(4.46), (4.59), (4.65), (4.51), (4.60) and (4.56), we obtain (4.57).

(f) r = 1, j1  n.
It is easily seen that (4.35) with oc’ = 03B1j1 and (4.38) are valid in the present case;

the latter is just

We may also assume (4.37). On applying Lemma 1.4 to ord((03B1’1)b"1 - 1) and
utilizing (4.35), (4.66), h(03B1’1)  Vn-1 and e B D, we get

where U 1 is given in (4.7).

(g) r = 1, j1 = n .
By Lemma 1.11 and the fact that is linearly dependent on lj0 = 10 (1  j  n),

there exist UjE 7L, uj &#x3E; 0, mj0 ~ Z (1  j  n) such that

Write

We have

We may assume an 1 ~ 1, for otherwise Lemma 1.3 would yield
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By (4.4), we have

On applying Lemma 1.4 and using (4.68), (4.69), we obtain

(h) r = 0.

By the fact that every Ij (1  j  n) is linearly dependent on lo, we see that
abl ... ann is a root of unity. By Lemma 1.3, we get

Note that by the inequalities DVj  f log p (1  j  n) (see (0.7), (0.9)), n  2,
r(n - r + 1)  1 4(n + 1)2, it is readily verified that

On observing (4.71) and the fact that the cases (a)-(h) cover all the possibilities,
we complete the proof of Theorem 1.

Proof of Corollary 1. By (0.2)-(0.4), (0.12) and Lemma 1.12, we have

Now we prove that f(x) = xx+1+03C3/(x+ 1)x+2 decreases monotonically for
x  1. Set g(x) = log f(x). It sufhces to show that
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It is easily verified that

Now for x 3 2 we have

On noting that n  2, we get

By (4.72) and (4.73), Corollary 1 follows from Theorem 1 at once.

Proof of Corollary 2. Let

Then for j = 1,..., n we have

Now

From this and (4.74) we get
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and Corollary 2 follows trivially. Thus we may assume k 1 b 1 + ... + knbn = 0 and
we obtain

On combining (4.74)-(4.76), we may assume in the sequel

Set

Thus D = 2. Denote by  a prime ideal of the ring of integers in K, lying above p.
It is well-known that

By (4.77) we have

Note that for j = 1, ... , n we have

and

whence
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Thus we may take

By (4.78) and (0.14) we may apply Corollary 1; and by the above observations,
Corollary 2 follows from Corollary 1 immediately.

Proof of Theorem l’. Let

We may assume

for otherwise we would have

and the theorem would hold trivially. By (4.79), (4.80) we get

If eo &#x3E; 1, we may assume further that (ail ... 03B1bnn)e0 ~ 1, for otherwise we would
have, by Lemma 1.3,

whence the theorem would follow at once. Thus in any case we have

By Lemma 1.3 and by the identity h(a) = h(1/03B1) for any non-zero algebraic
number a, we get

Thus, by e0f0  Do, we have
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Further, by (4.83) and (0.21), we see that

Now we choose

and let p be any prime ideal of the ring of integers in K, such that /t ;2 0. Thus

By Lemma 1.12 and Lemma in the Appendix, we have

where fo is given by (0.20). It is readily verified, by (4.84), (4.85) and (0.21), that

Now by (4.86), (4.82) and the fact that ord03B1’j = ord003B1’j = 0 (1  j  n), which
follows from (4.79), we can apply Corollary 1 to ord((03B1’1)b1 ... (03B1’n)bn - 1 ); and on
utilizing (4.81), (4.87)-(4.90), we obtain Theorem 1’.

REMARK 1. It is easy to verify that if K = Ko with K defined by (4.86), then
Ci can be replaced by 2nC1, where C1 is given in Corollary 1.

2. Using the argument in the proof of Theorem l’, we can deduce from
Theorem 1, instead of from Corollary 1, a more precise and more sophisticated
bound for ordfio 0.

5. Proof of Theorems 2 and 2’

Proof of Theorem 2. We record inequalities (5.1)-(5.3) for later use. It is readily
verified that
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By n  2, D  2, DVn-1  f log p and Lemma 1.12 it is easy to see that

Recalling p’ = 1.0752 if p &#x3E; 2 and p’ = 1.1114 if p = 2, we show

We verify the case p = 2 and leave the remaining cases to the reader. Now q = 3,
p’ = 1.1114. By D  2, DVn-1  fl log p and Lemma 1.12 we see that for n  8

which implies (5.3); (5.3) for p = 2, 2  n  7 is readily verified by direct
calculation.

Let r + 1 be the rank of {l0 ll, ... , ln}, where Ij is given by (4.4) and (4.5). We fix
0 = jo  j1  ...  jr  n as in the proof of Theorem 1. We deal with the

following eight cases (a)-(h) separately, and we shall freely use the discussion in
the corresponding cases (a)-(h) of the proof of Theorem 1.

In the proof of Theorem 2 we always bear the following simple observation in
mind that if (o.19) holds for Z &#x3E; 0 and any £5 with 0  03B4  (fit log p/D)Z, then so
does (0.19) for any Z"  Z and any £5" with 0  03B4"  (fit log p/D)Z".

By (0.15) and (4.20), we have

On noting (4.11), (4.14), (4.15), (5.4) we may apply Corollary 2.4 to

Set

where a’, c’ are given in Corollary 2.3. By the argument in the proof of Corollary
1, we have
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By (4.13), Proposition 3.1.(e), (4.4) and V,,  nVn-1, we get

where B" is given by (4.17). Now we take

Then by (4.16) and (5.6) we get

It is readily verified, on noting (5.3), (5.7) and (0.18), that for any ô with
0  03B4  (fie logp/D)Z,

By (4.12), (4.16), (5.7)-(5.10), an application of Corollary 2.4 yields that for any
03B4 with 0  03B4  (f log p/D)Z

This is just (0.19) with j = n. Suppose now 1  j  n. We take

Then, by (5.6), we have

On noting (5.3), (5.11) and (4.17), it is easy to see that for any £5 with
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By (4.12), (4.16), (5.11)-(5.13), on applying Corollary 2.4 to

we get

It remains to show that for any b with 0  03B4  (f log p/D)Z,

To prove (5.15) we may assume

and it sufHces to show that

Note that, by (5.2) we have

Hence we get, by (5.1), (5.16),

whence (5.17) and (5.15). On combining (5.15) with (5.14), we obtain (0.19). This
completes the proof in the case (a).

(b) r = n, Vn  n Vn-1.
In the present case, (5.4), (4.11), (4.14), (4.15) are also valid. Hence we may apply

Corollary 2.4 to ord((03B1’1)b"1 ... (03B1’n)b"n - 1). By (4.13), Proposition 3.2 and (4.4) we
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get

where B" is given by (4.25). Set

By (5.5), (5.6) we see that

Now take

Thus

It is easily verified, by (5.3), (5.18) and (0.18), that for any ô with 0  03B4 
(f log PID)Z,

By (4.12), (4.16) (with 1  j  n), (4.24), (5.18)-(5.22) and (5.2), an application of
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Corollary 2.4 yields that for any b with 0  03B4  (flog p/D)Z,

which is just (0.19) for j = n. It is readily to verify (0.19) for j with 1  j  n, using
the same argument as in the case (a). We omit the details here

REMARK. If (0.15) does not hold, then we have the following result.
Suppose that (0.13) and (0.14) hold. Suppose further that r = n and

Set

Then for any b with 0  03B4  (fftlog p/D)Z, we have

ordft e  max(ZVjlog(03B4-1 ZBjQ), bB/Bj),

where Q and C2 are given in Theorem 2.
Proof. By (4.13) and Proposition 3.1, and by the first row of (0.15)’, we see that

Obviously (0.1 )’ implies that
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In case (a) (r = n, Vn  nVn-1), set

and

Note that by the argument in the proof of Corollary 1, we have

Further (5.24) gives

Thus

We have also

On applying Corollary 2.4 to ord((03B1’1)b"1 ... (03B1’n)b"n - 1) and using (4.12), we obtain

The rest of the proof is completely the same as in the case (a) with (0.15), so we
omit the details. We also leave the verification for the case (b) (r = n, Vn  n Vn- 1)
to the reader.
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In this case we set

and (4.31), (4.35), (4.38) are valid. We may also assume (4.37). Thus we can
apply the results proved in the cases (a), (b) and the above remark to

ord(((03B1’1)b"1 ··· (03B1’r)b"r - 1), since {l0, log 03B1’1,..., log 03B1’r} = {l0, lj1,...., ljr} has rank
r + 1. Set

where C*2 is obtained by substituting r for n in C2. Let h with 0  h  r be such

that

Let

By the inequality DVj  f log p (1  j  n) (see (0.7), (0.9)), it is easily verified
that

and hence

Set Q* = p(10rD)2(r+ 1)(DVn-2)’. Obviously, Q*  Q, where Q is given by (0.18).
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Note also that

where B" is given by (4.38). Now by (4.35), (4.37) and on applying the cases (a), (b)
and the Remark (below the proof for the case (b)) to ord((03B1’1)b"1 ... (03B1’r)b"r - 1), we
see that for anY ôi 1 with 0  03B41 1  (f log p/D)Z*, we have

whence for any £5 with 0  03B4  (f log p/D)Z, we have, by (5.28),

where the third inequality follows from

which can be easily verified, using (0.18) and (4.38).
When j  n, on noting that (by (5.2))

we see, by (5.29) and by an argument similar to the proof of (5.15), that

When j = n, we see from (5.29) that
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Similarly to the proof of (5.15), it is easily seen that

On combining (5.30) with (5.31) we get

This completes the proof for the case (c).

REMARK. From the proof we see that in the case (c), the hypothesis (0.15)
can be omitted.

In this case we have (4.48), (4.49) and we may also assume (4.50). By (4.56) and

(0.15) we see that

Thus we can apply Corollary 2.4 to ord((03B1’1)b"1 ... (03B1’r)b"r- 1). Set

By (5.5), (5.6) and the inequality DVj  fp log p (1  j  n), we see that

Hence

By (4.47) and Proposition 3.3 we get
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where B" is given by (4.53). By (5.3), (5.36), (4.53) and (0.18), it is easily seen that for
any £5 with 0  03B4  (f log p/D)Z, we have

On noting (4.46), (5.33)-(5.37) and on applying Corollary 2.4 to

we obtain for any £5 with 0  £5  (f log p/D)Z

which is exactly (0.19) with j = n. The verification of (0.19) for j  n is similar to
that in the case (a). We omit the details here.

In this case we have (4.48), (4.49), (5.32) and we may also assume (4.50). Thus we
can apply Corollary 2.4 to ord((03B1’1)b"1 ... (03B1’r)b"r - 1). Set

By (5.5), (5.6) and the inequality DVj  flog p (1  j  n), we see that

whence

By (4.47) and Proposition 3.4 we get
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where B" is given by (4.62). By (5.3), (5.41), (4.62) and (0.18), it is easily verified
that for any £5 with 0  £5  (f log p/D)Z we have

For any £5 in the above interval, we have, by (5.2)

whence

On noting (4.46), (5.38)-(5.43), and on applying Corollary 2.4 to

we obtain for any b with 0  03B4  (f log p/D)Z

exactly (0.19) with j = n. The verification of (0.19) for j  n is similar to that in the
case (a). We omit the details here.

(f) r = 1, j1  n.
By DVj  f log p (1  j  n) and (0.18), it is readily verified that for any

£5 with 0  03B4  (flog p/D)Z,
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Again by DVj  fit log p (1  j  n), and by (5.44), we see that for any ô with
0  03B4  (f log p/D)Z,

By (0.16) and DVj  f log p (1  j  n), it is easy to see that

Obviously, by (0.18),

When j = n, we have

where the last inequality follows from (5.31 ). When j  n, we see, by an argument
similar to the proof of (5.15), that

On combining (4.67) and (5.45)-(5.47), we obtain (0.19).
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By (4.70) and by the argument in the case (f), we can easily obtain (0.19).

(h) r = 0.

In this case rx1, ... , 03B1n are roots of unity. By Lemma 1.3, we get

whence (0.19) is trivially true.

Noting that the cases (a)-(h) cover all the possibilities, the proof of Theorem 2 is
complete.

Proof of Theorem 2’. By an argument similar to the proof of Theorem l’, one
can easily deduce Theorem 2’ from Theorem 2. We omit the details here.

REMARK 1. It is easy to see that if K = Ko with K defined by (4.86), then Ci in
the statement of Theorem 2’ can be replaced by 2" Ci, where Ci 1 is given in
Corollary 1.

2. From the proof of Theorem 2, it is easily seen that (0.16) in the statement of
Theorem 2 can be replaced by 03A6 = 03C1’03A81 1 with W 1 given by (5.5). Accordingly, on
choosing K by (4.86), we can replace 03A6 in the statement of Theorem 2’ by the

quantity 03C1’03A8’1, where 03A8’1 is obtained from W 1 by substituting (in (5.5)) fo for fit,
[K:Ko]Do for D, (2D0/f0)Vj for YJ (1  j  n).

Appendix

Let p be a prime number, Ko an algebraic number field and

Let (0) be a prime ideal of the ring of integers in K (K o ), such that p~ fio z .
Let ord, e,f be defined as in Section 0.2, and ord,,., eo, fo be defined with
respect to Ko in the similar way. Denote by Fp,, the finite field with pk elements.

LEMMA. Suppose that K =1= Ko. Then

Proof. For p = 2, we have K = K0(03B63). By the hypothesis, 1, (3 are linearly
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independent over Ko; and

Thus

whence {1, 03B63} is an integral basis at po (see Weiss [19], p. 159, 4-8-8). By [19],
p. 169, 4-9-2, we see that Kummer’s theorem (i.e. [ 19], p. 168, 4-9-1 ) holds for *0.
Note that the minimal polynomial of 03B63 over Ko is x2 + x + 1. It is well-known
that the residue class field of Ko at po is 1F2J/to and that X2 + x + 1 is irreducible in
F2 [x]. Thus if f/to = 1, we see, by Kummer’s theorem, that

If f0  2, we see, by Lidl and Niederreiter [11], p. 48, 2.14, that x2 + x + 1 splits
into two distinct linear factors in F22[x], whence so does it in F2f0 [x]. Thus

For p &#x3E; 2, we have K = Ko«4) = K0(i). By the hypothesis, 1, i are linearly
independent over Ko ; and

So

whence {1, i} is an integral basis at po (see [19], p. 159, 4-8-8) and Kummer’s
theorem holds for po. Note that the residue class field of Ko at po is Fpf0 and the
minimal polynomial of i over Ko is x2 + 1. It is well-known that if p ~ 1 (mod 4)
then x2 + 1 splits into two distinct linear factors in Fp[x], whence so does it in

Fpf0 [x]. By Kummer’s theorem, we get (A.2). Note further that if p - 3 (mod 4)
then x2 + 1 is irreducible in F, [x]. An argument similar to that in the case p = 2
yields (A.1 ) if f0 = 1 and (A.2) if f0  2.
Thus the proof of the lemma is complete.
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