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0. Introduction and results

0.1 The present paper is a continuation of the study in Yu [20] and [21], where
a brief history of the theory of linear forms in p-adic logarithms was given, and
precise results subject to a Kummer condition were proved. In this paper we
shall remove the Kummer condition, thereby establishing the p-adic analogue of
a celebrated theorem of Baker on linear forms in logarithms of algebraic
numbers (i.e. Theorem 2 of Baker [2]) and the p-adic analogue of Baker’s well-
known Sharpening II (i.e. Baker [1]).

Let ay,...,a, be n(>2) non-zero algebraic numbers and let K be the field of
degree d generated by a4, ..., a, over the rationals Q. We denote by p a prime
number and by 4 any prime ideal of the ring of integers in K, lying above p.
We shall establish estimates for

E=ord, (... " — 1),
where by, ..., b, are non-zero rational integers and ord, denotes the exponent
to which 4 divides the principal fractional ideal generated by the expression
(assumed non-zero) in parentheses. Our result will be in terms of real numbers
hy,...,h, satisfying h; < --- < h, and

h; = max(h(w;), |log o;|/(2nd),log p) (1 <j < n),

where log a; has its imaginary part in the interval (—=, n] and h(x) denotes the
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logarithmic absolute height of «. This is defined by

he) = log <|a| [ max(t, Ia""l)>,

j=1

where m is the degree of «, a is the leading coefficient of the minimal polynomial
of a over the rational integers Z, and a'V, ..., a™ are the conjugates of «. Then
as a simple consequence of our main result (see Section 0.2), we have

E < ®log(2dB),

where B is the maximum of the |b;| (1 <j < n) and

® = 7-105(10nd//log p)**™* Vp®'h, ... h, log(24ndh’)

with d' = max(d, 2) and h’ = max(h,, 1). When ord, b, = min ord, b;, h’ can be
replaced by max(h, -, 1). This is the p-adic analogue of Baker’s [2] Theorem 2.
As a second corollary, analogous with Baker’s [1] Sharpening II, we suppose
that the above condition on ord, b, is satisfied and A’ is modified accordingly;
then for any 6 with 0 < < 1, we have

Z < max(®log(3~®|b,|/h,), 5B/|b,)).

Thus we have overcome all the difficulties associated with the work of [14] —see
the discussion in our earlier papers [20],[21] — and except for the minor
replacement of p by p? in the case d = 1, we have established and strengthened
all the main assertions (Theorems 1,3 and 4) given there.

In order to overcome the essential probem in applying the Kummer theory to
the final descent in the p-adic case, we introduce a new ingredient into the
analytic part of our proof. It is an irreducibility criterion for the polynomial
x™ — a, where r is a prime number (see Lemma 1.8), and it is obtained as
a consequence of the Vahlen-Capelli Theorem (see Capelli [6] and Rédei [15]).
This enables us to construct a new auxiliary function (see the proof of Lemma 2.1),
and both the extrapolation and the passage from the Jth step to the (J + 1)th
step in the proof of the main inductive argument depend strongly on this
criterion (see the proof of Lemmas 2.3, 2.4 and 2.5).

The research of this paper was partly done at the Max-Planck-Institut fiir
Mathematik Bonn and at the ETH Ziirich. The author would like to express
his gratitude to the Alexander von Humboldt-Stiftung, the Max-Planck-
Institut fiir Mathematik Bonn, the Forschungsinstitut fiir Mathematik and the
Mathematikdepartement of the ETH Ziirich for their support. The author is
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also very grateful to Professors A. Baker, R. Tijdeman, M. Waldschmidt and
G. Wiistholz for valuable discussions. Finally, the author expresses his gratitude
to his wife, Dehua Liu, for her assistance in many respects during the course
of the work.

0.2 Detailed statements of the main results. Let «,,...,®, be n(=2) non-zero
algebraic numbers and

Ko = Q(al,...,a,,), Do = [Ko:@] (0.1)

Let p be a prime number. Set

2, if p>2,
B {3, if p=2. 02)
Let K be an algebraic number field of degree D over Q such that
Ko(ls4), if p>2, . .
K2 i with w=e2mm (m=1,2,...). 0.3
{Ko(ca), if p=2 ‘ ( b0

Denote by , a prime ideal of the ring of integers in K, lying above p. For
ae K\{0}, write ord, « for the exponent of 4 in the prime factorization of the
fractional ideal («); define ord, 0 = co. Denote by e, the ramification index of
/# and by f, the residue class degree of 4. Write K , for the completion of K with
respect to the (additive) valuation ord,; and the completion of ord, will be
denoted again by ord,. Now let ¥ be an algebraic closure of Q,. Write C, for
the completion of ¥ with respect to the valuation of ¥, which is the unique
extension of the valuation | |, of @,. Denote by ord, the additive form of the
valuation on C,,. According to Hasse [9], pp. 298-302, we can embed K , into C,,:
there exists a Q-isomorphism y from K into ¥, such that K , is value-isomorphic
to Q,(¥(K)), whence we can identify K, with Q,(¥(K)). Obviously

ord,f=e,ord, B forall BeK,.

Let N be the set of non-negative rational integers and define

u:=max{teN|{,eK}, 0.4)
v:=max{teN|{,eK}, 0.5)
g = e2milPUa), (0.6)
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Set Zx:={leCl|e'eK}. For le % define

VU%=xnax{mdL5¥%,L£%§£}, 0.7)

where h(a) denotes the logarithmic absolute height of an algebraic number « (see,
for example, Lang [10], Chapter IV). Let V,..., V, be real numbers satisfying

Vi<...<V, 0.8)
and
V> Viogay) (1<j<n), 09)

where and in the sequel loga; =log|a;| + i arg a; with —n <arge; <=
(1<j<n). Let by,...,b,eZ, not all zero, and let B, By,..., B, be positive
numbers such that

B > max |bjl, max(L,|b;) < B;<B (1<j<n). (0.10)

1<j<n
Set
Va-1, if ord,b, = min, ., ord, b; or loga, is
V= linearly dependent on =i, log a,,...,loga,_; over @, (0.11)

Vo, otherwise.

Define

o =1/(2qf,log p). 0.12)
THEOREM 1. Suppose that

ord,a;=0 (I1<j<n) 0.13)
and

@:=(al...al— 1) £0. (0.14)
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Then we have

ord,® < Cy(n + l)"+2n"+“-pfﬁ —1 -(2 +1/(p— 1))n+2.
#

“ f logp
-D"*?V; ...V, log(D* B) max(nlog (2'°gn(n + 0)D*V), f, log p),

where

c. _ [404746-10%, if p>2,
© 7 |848625-12", if p=2.

COROLLARY 1. Suppose that (0.13) and (0.14) hold. Then

p’*
(fylogpy"*?
-max(log(2'°g(n + 1)?D?V), (f,log p)/n),

ord,® < Cy(n + 1)>"**- *D"*2V, ...V, log (D?B)
where
56345 (%", if p=1 (mod4),

C, =< 67587-25" if p=3 (mod4),
273297-36", if p=2.

THEOREM 2. Suppose that (0.13), (0.14) hold and

ord, b, = min ord, b;. (0.15)
1<j<n
Let
[0} C ( 1)2 +3 pff
=Cn+1)"3 ——— .
: (f, log py'*?
-D"*2V, ... V, max(log(2'°qn*D?V,_,),(f, log p)/n) (0.16)

with

1.0752, if p>2,

C,=p'Cy, p =
2=P % P {1.1114, if p="2.
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Let Z = w®/V; with

_ 13 ifj<nand mi,logay,...,loga, are linearly independent over Q,
T |1, otherwise, 0.17)

Q = p(10nD)*"* D(DV, _,)". (0.18)
Then for any j with 1 < j < n and any 6 with 0 < ¢ < Zf,(log p)/D, we have

ord, ® < max(ZV; log (6~ ZB;Q), 6B/ B;). 0.19)
When «,,...,q, are n (= 2) non-zero rational numbers, the hypothesis (0.13)

in Theorems 1, 2 and Corollary 1 may be omitted. For example, Theorem 1 has
the following

COROLLARY 2. Suppose that (0.14) holds and

@; =p;j/q; with p;,q;€eZ\{0} and gcd.(pj,q;)=1 (1<j<n).
Let A,,..., A, be real numbers such that A, <---< A, and

A; z max(|p;l, |q;l,p) (1 <j<n).

Set A= A,_, if ord,b, = min, ¢;c, ord,b; or loga, is linearly dependent on
ni,log ay,...,loga,_, and set A = A, otherwise. Let

225380-45", if p =1 (mod 4),
C*={ 67587-25" if p=3(modd), f= {
273297-36", if p=2,

et

, if p=1(mod4),
2, otherwise.

Then we have

S
ord, ® < C¥(n + 1)™** @W—zlog A, ...log A, log(4B)-

-max(log 2'%g(n + 1)? log A), f(log p)/n).

In the general case, the hypothesis (0.13) can also be removed. The following
Theorems 1’ and 2’ are the version in terms of the additive valuation on
Ko = Q(ay,...,a,) and without assuming (0.13). Denote by f, any prime ideal
of the ring of integers in Ko, lying above p. Let ord, ,e, , f,, be defined with
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respect to the field K,. Set

o if p=1 (mod 4),
= \m: 0.20
fo {max(fﬁo, 2), otherwise. (0.20)

Let V;,..., V, be real numbers satisfying V; <--- < ¥, and
V; > max(h(a;), |1og a;|/(12Do), 3(f4,/Do)* log p) (1 <j < n), (0.21)

and let B, By,..., B, and V be defined by (0.10) and (0.11).
THEOREM 1'. Suppose that (0.14) holds. Then we have

So
ord, © < Ci(n + 1)2** W(Do/fo)zmv1 ...V, log(4D3B)

(
-max(log(2'3q(n + 1)>D3V), fo(log p)/n),
where
225380-90", if p=1(mod4),
Ci =< 270348-100", if p=3(mod4d), f, =2,
1093188 144", if p=2, f, =2
and

, [ 270348-200", if p=3(mod4),f, =1,
1093188-288" if p=2,f,, = 1.

THEOREM 2'. Suppose that (0.14) and (0.15) hold. Let

® = p'Cin + 1)*3 @’%’mwo/fo)’"”n A
-max(log(2'°qn>D3V,-,), fo(log p)/n)
with p' =1.0752 if p>2and p' = 1.1114 if p = 2. Let
Q = p(20nD,)*™* (4D3V, )"
Then for any j with 1 < j < n and any & with 0 < 8 < 20®/(D,V;), we have

ord,, ® < max(w® log((25)™ 'w®B;Q/V)), 5B/B;),

where w is given by (0.17).
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1. Preliminaries

For the basic facts about p-adic exponential and logarithmic functions in C,,
we refer to Hasse [9], pp. 262274, or Section 1.1 of Yu [21]. We assume that
the variable z takes values from C,. If ord, z > 0, we say that z is integral. The

following concepts of normal series and functions are due to Mahler [13].
A p-adic power series

fi2)= i Mz —2z0)"  freC, (h=0,1,..)),
h=0

where z, e C, is integral, is called a normal series, if
ord, f,=20(h=0,1,...) and ord, f,—> o (h— o).

A p-adic function, which is definable by a normal series in a neighborhood of an
integral point in C,, is called a normal function. For the fundamental properties
of normal functions, we refer to Mahler [13].

LEMMA 1.1. Let ke Z be defined by

P p—1)<(+(p—1/pe,<p(p—1) (1.1)
and set
1, fxzland p* " '(p—1)>e,
~ ; 1.2
0= p otherwise. (1.2)

2+ 1/(p—1)e,

If BeC, satisfies
ord, (B —1) = 1/e,,
then
ord, (7 —1)> 0 + ;
p—1

Proof. This is Lemma 1.2 of Yu [21].
For later references, note that by (1.1) and (1.2) we have

1
<okl (1.3)
p
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and

K

P <otyp-. (14)
v €0

o

LEMMA 1.2. Suppose that 0 > 0 is a rational number, q is a prime number with
q # p,and M > 0, R > 0 are rational integers with q|R. Suppose further that F(z)
is a p-adic normal function and

F®
min (ord ESP ) + t0>

1<s<R (s q) 1
=0

.....

1
> (1 - a)RM() + Mord,(R!) + (M — 1) logI;. (1.5)

Then for all rational integers k, we have

k 1
ord, F<— p") > (1 - —)RMO.
q q

REMARK. Here log R and logp denote the usual logarithms for positive
numbers.

Proof. This is Lemma 1.4 of Yu [21].

Let E be an algebraic number field, 4’ be a prime ideal of the ring of integers
in E, lying above the prime number p. Let ord,, e, f, be defined in the same
way as in Section 0.2. For a polynomial P, denote by L(P) its length, i.e. the sum
of the absolute values of its coefficients.

LEMMA 1.3. Suppose that P(x,,...,Xn)€Z[Xy,...,Xn] satisfies

deg,,P<N;, 1<j<m.

If By,...,BmeE and P(B,,...,Bm) #0, then

ord P(By.... fu) < f[ Q] (logL<P)+ 5 Nh(ﬁ,>
# j=1

Proof. This is Lemma 2.1 of Yu [21].

LEMMA 1.4. Suppose that o # 0 is an algebraic number in K and be Z\{0}.
If o # 1, then

ord (x* — 1) < f D {]og(2|b|) + (p”* = 1)(1 + 1/(p — 1))e,h(x)}.
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REMARK. Note that here K may be chosen to be any algebraic number field
containing o.

Proof. If ord ,a # 0, then it is easily seen that ord ,(x* — 1) < 0; and when « is
a root of unity, we have, by Lemma 1.3,

ord,(@® —1) < ‘log 2.

D
fslogp
Thus we may assume that ord ,a = 0 and « is not a root of unity. Let s be the least
positive integer such that

o =1 (mod z).
Then
1<s<p—1 and ord,(a*—1)> l/e,. (1.6)

By an argument similar to that in the proof of Lemma 1.1 (see Yu [20], p. 418)
we see that if Be C,, satisfies ord,(f — 1) > 1/e,, then

ord, (7 — 1) > L, (L.7)
p—1

where k€7 is defined by the inequality p*~'(p — 1) < e, < p*(p — 1), whence

p* < (14 1/(p — 1)e,. (1.8)

On applying (1.7) to o, we get

" 1
ordp(ocs” - 1) > p—Tl

Note that aP* # 1, since a is not a root of unity. By the basic properties of the
p-adic exponengial and logarithmic functions (see, for example, Yu[21], §1.1)
and by Lemma 1.3, (1.6), (1.8), we obtain

ord,(a® — 1) < ord,(a"7" — 1)
= ord,{exp(b log(x**")) — 1}
= ord (b log(a*"")) = ord, b + ord,(«*"" — 1)
< log |b| D
logp ~e.f,logp

{log2 + (p”* — 1)(1 + 1/(p — 1))e,h(@)}.
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On noting the inequality e,f, < D, the lemma follows at once.

LEMMA 1.5. Let B4,...,B,€ K. Suppose that
PjieZ[xy,....,x] (I<is<nl<j<m)
(not all zero) satisfy

deg, Py <Ny (1<i<nl<js<ml<k<r).

Write
X = 1max {(i L(Pij)> exp( z': N jkh(ﬁk)>}
<j<sm i=1 k=1
and

vij= Pi(By,....B) (I<is<nl<j<m)
If n > mD, then there exist y,,...,y,€Z with

0 < max |y;| < X™P/tn=mD)

1<ign
such that
Y yiyi=0 (I1<j<m).
i=1

Proof. This is Lemma 2.2 of Yu [21].
Define for zeC
Aiz;k)=(z+1)...(z+ k)/k! (keZ,k>1) and A(z;0)=1,

and for [ meN

1 {dm
Alzk, Lm) =, {E; (A(y; k))’} -

For every positive integer k, let v(k) be the least common multiple of 1, 2, .

25

(1.9)

(1.10)

.k
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LEMMA 1.6. For any zeC and any integers k > 1,1 > 1,m > 0, we have

k kl
|A(z;k,l,m)|<<e-|z|: > , (1.11)

Let q be a positive integer, and let x be a rational number such that qx is a positive
integer. Then

g (v(k)"A(x;k, L m)e Z, (1.12)
and we have
v(k) < 3%, (1.13)

Finally, for any positive integers k, R and L with k = R, the polynomials
(Az + r;k))'(r =0,1,...,R—1;1=1,...,L) are linearly independent.

Proof. (1.11) is a slight improvement of Lemma 2.4 of Waldschmidt [18]
and Lemma 2.3 of Yu [21], and will be proved below. (1.12) is just Lemma T1
of Tijdeman [17]. For a proof of (1.13), see the proof of Lemma 2.3 of Yu [21].
The last assertion of the lemma is just Lemma 4 of Cijsouw and Waldschmidt [7].

To prove (1.11), we may assume m < kl. Thus

A(ysk,Lm) = (A(y; k) X ((y +j0) - (y +jm)) (1.14)

where the summation is over all selections j,,...,j, of m integers from the set
1,...,k repeated I times. Now (1.14) implies that

|A(z;k, I, m)| < A(|z]; k, 1, m).

Hence it suffices to show that

k kl
A(x;k,l,m)g(e-xz ) x> 0. (1.15)

(1.15) is obviously true for k = 1, and we may assume k > 2. Write

(x + k)
k!

fx) = g(x) = A(x;k).

It is easy to see that the polynomial f(x) — g(x) has non-negative coeffi-
cients, whence so does the polynomial (f(x)) — (g(x))", because of /' — g' =
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(f—g)(f"" '+ f'"2g + .- + ¢g'!). By this observation we get

L4 ) — Ak Lm) >0, x>0,
m! dx™

Thus to prove (1.15) it suffices to show that

1 m k kl
—d—(f(x))’s e XT , x20,k>2. (1.16)
m! dx™ k
For x > 0, we have
dm kl kl—m+1)

I"(x + k) < I™(x + k).

- kl= cee
L b vy w R B Y

From this and the inequality k! > (2nk)'/?k*e~* (see Yu [21], Lemma 2.7) we
obtain, for x >0 and k > 2,

1 dm m (X + k)kl ek 1 .x + k kl
] d—;,;(f(x))’ < () < el((znk)”zk") (x+ kM < (e . ) )

This is just (1.16), whence the proof of (1.11) is complete.
Let B’, B, be positive numbers, T, L,,..., L, (n > 2) be positive integers. Set
L’ = maXl <j<n Ll'

LEMMA 1.7. Suppose that by,...,b,,A1,..., 4,T1,...,Ta—1 are rational
integers satisfying

!bJISB’ (1 <]<n), |bn|<Bm Osljglﬂ (1 <]<n),
TJ>O (1<]<n), T1+"‘+Tn—l<T.

Then
I — 1)(B,L' + BL)\T
[T 1AGa; = bjdni )| < eT'<1 s X T ..)) .
j=1

Proof. This is Lemma 2.4 of Yu [21], which is a slight improvement of a
Lemma in Loxton, Mignotte, van der Poorten and Waldschmidt [12].

For a field E and a positive integer h, write E"* = {a"|a€E}.

LEMMA 1.8. Let r be a prime number, k a positive integer, and E a field. When
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r = 2, we suppose further that —1€E?. If acE and a¢ E’", then the polynomial

k
x" —a

is irreducible in E[x].
Proof. This is a simple consequence of the following

VAHLEN-CAPELLI THEOREM: Over a field F a polynomial
x"—a (n=2;aeF, #0)

is reducible if, and only if,
a=p (d|n,>1;BeF)

or
4ln, o= —4y* (yeF).

(For a proof see Capelli [6] (when F is a number field) and Rédei [15], pp. 675-
679 for the general case.)

LEMMA 19. Let ay,...,a, be non-zero elements of an algebraic number field
K and let o}/, ..., al/P denote fixed pth roots for some prime p. Further let

= K(al,.. a,l,/"l) Then either K’ (al/?) is an extension of K’ of degree p
or we have

_ Jn-1,P
a, =a ann 17

for some y in K and some integers ji,..., j,—1 with 0 <j, <p.
Proof. This is a lemma of Baker and Stark [4].

LEMMA 1.10. Let a be a non-zero algebraic integer of degree d with conjugates
oy =&, 0y, . .., 0. Set [a] = max;jcqla;|. If a is not a root of unity, then

1
log[a] > W0

Proof. The lemma holds for d = 1, since log[a] >log2 > 3. By a result of
Dobrowolski [8], which states that

logd
logl_]> d29
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the lemma is valid for d > 21, since logd > log 21 > 3. Thus we may assume that
2 < d < 20 in the sequel. By Smyth [16], we see that if « is not reciprocal, then

log 0, 1
logm = T > 2d2,

where 6, = 1.324 ... is the real root of x> — x — 1 = 0. For o reciprocal we see
that the lemma holds for d = 2,4,..., 16, in virtue of a result of Boyd [5]. It
remains to verify that the lemma holds for d = 18, 20. Obviously p = 61 is a prime
satisfying

3d<p<5d ford=18,20.

On replacing 6 by 5 in the proof of Dobrowolski [8], we conclude that

logd 1
log[a] > i > 2 for d = 18, 20.

This completes the proof of the lemma.

LEMMA 1.11. Let K be a number field of degree D over Q,and l,,...,1, linearly
dependent (over Q) elements of Fx. Then there exist ty,...,t,€Z, not
all zero, such that

tlll + b + tmlm = 0

and

It < Qm — DDV, ...V, /Vi (1 <k<m),

where Vy,..., V,, are positive numbers satisfying
V; = max| h(e"), Il 1<j<m).
! 2nD

Proof. This is a slight improvement of Lemma 4.1 of Waldschmidt [18]. By
virtue of Lemma 1.10, we may replace Co(D) = 9D? in the proof of Lemma 4.1
in [18] by Co(D) = 2D?, and the lemma follows at once.

LEMMA 1.12. Let K and f, be defined in Section 0.2. If p =2 or p = 3 (mod 4),
then f, > 2.
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Proof. By (0.3) we may assume

. {@@4), ifp>2,
ags), ifp=2.

Now the conclusion of the lemma follows immediately from Lemma A in the
Appendix, where we take K, = Q.

We record two simple inequalities for later references. For any real number
o > 0 and integer m > 2, we have

ﬁ (j+ 0)=m! exp( Y log<1 + J>> <m! exp( i ]1) <m!m°.  (1.17)

j=2

Secondly, it is easy to verify that

Ax — 1
log(ﬁ——)) > tlogx for x > 3. (1.18)
log x

2. Results subject to a new Kummer condition.

Let p be a prime number, K be an algebraic number field of degree D over Q
such that

{,eK ifp>2 and {;eK ifp=2. 2.1)

Denote by £ a prime ideal of the ring of integers in K, lying above p. Let
ord,, e,, f, be defined as in Section 0.2. We have, by Lemma 1.12,

Li=z2 if p=2 or p = 3(mod 4). (2.2)

Let q,u, v, oo be defined as follows

2, ifp>2
_ 2 ; 23
{3, ifp=2, 23
u =max{teN|{ e K}, 24
v =max{teN|{,eK}, 2.5)

o = e2mil/(pva") (2_6)
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Thus ape K and
q“<2D ifp>2; q“<3D ifp=2. 2.7

Suppose that «;,...,a,e K (n > 2) and V;,..., V,, V¥_, are real numbers such
that

V> max(h(a,-), “’%) (L<j<n), 28)
Vi< < Vo, 29)
Vi1 = max(p*, (21 qnD?V,_,)"). (2.10)

Let b,,...,b,€Z, not all zero, B, B, B,, By, W, W* be positive numbers such that

B> max |b;|, B> max |bjl, B,=1|b,l, Bo=> min |bjl, (2.11)

1<j<n 1<j<n 1<j<n,bj#0
1 f,logp (B, B f.logp
> 14+ — 22224 ) p"log By, , 2.12
w max{log( +pn D 7, + 7 p" log By D (2.12)
where

. .
_ )3 lfp = 2, " o__ 1, lf plbm
- {5, ifp>2 2 7= {0, otherwise,

W* > max(W, nlog(2!!gnD)). (2.13)

In this section we shall prove the following Theorems and Corollaries.

THEOREM 2.1. Suppose that

Q(oo, 415+, %) = K, (2.14)
[K(axd,alf,... ak): K] =q"*!, (2.15)
ord,a; =0 (1<j<n), (2.16)
ord, b, = min ord, b; 2.17)
1<j<n
and

O:=(4...alr —1)#0, (2.18)
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".(n + 1)n+1nn

ord, ® < ca gt (g —1)-
n!

.pfﬁ—l.<2+1/(p—

1) n+2 5
D"V, ... V,W*log V*_
q“ f/,logp > 1 n Og n—1»

where a, ¢ are constants given by the following tables

p=2
n 2<n<g7 n=8
a i$ §
¢ 6803.1852 70718.74
p>2
2€<n<Ss n=26,7 n=8
7 2 5
14016.196 12314.974 101186.36

REMARK. Here a}/,...,a} are fixed gth roots in C,. If (2.15) holds for a
choice of gth roots in C,, then it holds for any choice of gth roots in C,, since
K contains gth roots of unity by (2.1) and (2.3). In the proof of Theorem 2.1,
the choice of gth roots will be fixed by (2.23) and (2.25).

THEOREM 2.2. In Theorem 2.1, (2.14) may be omitted.
COROLLARY 2.3. Suppose that (2.15)—(2.18) hold. Then we have

ord, ® < c'(a’)"-

(n + 1)n+1nn.pf/,_ 1 .<2 ¥ 1/(p _ 1)>n+2.
n! q" Sfilogp

.Dn+2Vl e I/;, maX<]og B’ n log(zllan)’f/; lzgp) .
-max(n log(2''qnD?V,_,), f, log p),

where

ifp>2,

L[ ifp>2 202373,
C |24, - if p=2.

ifp=2, 424312.44,
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COROLLARY 24. Let Z',Z, 5, W’ be positive numbers satisfying

n+1._n Sp _ n+2
75 @y BV p 1,<2+1/(p 1)) ,

n! q" Jylogp
*D"*2V; ...V, max(n log(2''qnD?V,_,), f, log p),

Sy logp

0<d< Z,

I 1
W > maX{p' 10g<6‘ ‘f’% ZB.,>, n log(2!!qnD), f"——;gp }

where a', ¢’ are given in Corollary 2.3 and

, 10752, ifp>2,
11114, ifp=2.

Suppose that (2.15)2.18) hold. Then

ord, ® < max(Z’W’V,,, (—SB%—ZZ—’)

Write

G=ph—1. (2.19)
By Hasse [9], p. 220 and (2.3), (2.4), we see that

q“|G.
Let u be the order to which g divides G, and let G,, G, be the integers such that

G =q"Go = ¢*G;. (2.20)
Denote by { a fixed Gth primitive root of unity in K, such that

{00 = {pul( = af’) (.21
and by ¢ a fixed qGth primitive root of unity in C, such that

piot. 2.22)
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By (2.21), (2.22), we can fix a gth root a}?e C such that

£% = (adlry?". (2.23)

By (2.16) and Lemma 1.3 of Yu [21], there exist r},...,r,€Z such that
ord,(«;{" — 1) > 1/e,(1 <j < n). Let ry,...,r,eZ be such that

r; = p*rj (mod G), 0<r<G (1<j<n),

then, by Lemma 1.1,
1
ord, («?" (" — 1) > 0 + =1 (1<j<n), (2.24)
where «, 0 are defined by (1.1) and (1.2). By (2.24) and (2.3) we see that
1 s 1 1 14 & .
(™)' :=exp alog(af My a<j<n),

where the logarithmic and exponential functions are p-adic functions, are well
defined. Furthermore it is easy to verify that there exist gth roots a1, ..., a}/9¢
C, such that

@<LV = (a}layreEs (1<j<n). (2.25)

2.1. The statement of a proposition towards the proof of Theorem 2.1

We define hy, ..., hs, &1, &2, 1 by the following formulae, which will be referred
as (2.26).

ho = n log(2!qnD),

. (n+1)n+1nn . 1 n
hl =COC4C2._._T_-q (q—l)f'; 2+;T .

1 -1 1\~
h, = hl(Czn(n + 1)q<2 + F)) , 14+¢ = <1 — h—2> s

hy = (hy — 1)/n?, 1+, =e'/™,

n.(n+1)n+1nn- . .D. 1 n hO
hs = coc3ch T q"q—1) ? 2+p_~—1 'm,
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hs

he = cociche3cs

n!
Wit =617 x 10712 ——
nheq
1
hg = cyn(q — 1)<1
_ f1/14, ifp>2,
T=0.108672, ifp=2.

+(n +

1 9
JZnn(l — —c3(n n 1)>q

(n + 1)n+lnn—l

q"(q - 1)'2,,'<2+
q

log(nhohe)

l) nhoh6 ’

1

35

i)
1 1
TamtD 1)><1 _h_1><1 + p—_“l)

(2.26)

In Section 2.1-2.5, we suppose that ¢y, ¢, ¢35, €3, ¢4 are real numbers satisfying
the following conditions (2.27)—(2.29):

If p=2,n>8, then
16/9 < c; <7/2,

co =17,
if p=2,2<n<7,then

=9 16/9<c; <3,
if p>2,n>8, then

=9, 16/9<c; <3,
if p>2,2<n<5, then

co=9, 4/5<c;<11/10,
if p>2,n=26,7, then

co=9, 3/4<c, <11/10,

1\? 1
(-3 (-l
! 1
+E)Cl +< +

! )(log3°(l+
Co—l

=21+ ! !
= Co—l h6
(1
+(-+
q

c;=18/5, 32<cs <64,

c, =18/5, 32<c; <64,

c; =8/3, 64<c;<128,

02=7, 60<C3S80,

Cy = 27/4, 56 < C3 < 80,

1
hy

1 )1
—+
co—1) ¢,

1 1
h_()) + 1)(2 + p—_ 1

)

128 < ¢4 < 256;

64 < ¢y < 120;

64 < ¢y < 120;

64 < cq < 120

64 < ¢4 < 120.
2.27)

1
—+
C3
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1 1 1 1 2loghs
1+—)4(1 -+4
+< +h4>{( +c0—1>n+ +21°an+ ho +
+<1+;) : }i 2.28
p—l qn+1f;6 C4' ( )

1 1 1
(1) (- D ees - 1)
hs q p—1 ¢

4 2+1(p-1 1 {log(ho +1) + 1

gt 3 ho n+1
1 1 1 loghy logg )}
(=) 14+ —+ B2 089 0 229
( ‘1>( n  hg ho gho 1 ( )
Set
n+1y"*n" *—1
U=+ e+ eaeocscteses T grneiq - 1 ot

L2+ 11y

W'D'ﬁ-ZVl-”VnW* lOg V:—l- (230)
#NI A

PROPOSITION 2.1. Suppose that (2.14)—(2.18) hold. Then

ord,® < U.

2.2. Notations

The following formulae will be referred as (2.31).

(oo,
S=qrdn+npwj’
Sy logp
T (fulogp U ]
| "D cicsW*6 |
L_,=[w*],

i Y
LO = * s
_CIC4(L_1 + 1) lOg Vn—l
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Y
Li=|——r | (1<i<n),
ciconp*SY;

n L . S (L-1+1)(Lo+1)
Xo=D Lj+1)-3TE-1*Dlel 2 + .
° ,-:1_11( s+ 1) <e< L—1+1>)

(, . (1= 1)B,Ls + BL)\".
<1 + L )

-exp(p"S Z L;V; + nD max I§>.

j=1 1<j<n

For later covenience we need the following inequalities (2.32)2.47).

Loy + 1) Lo+ 1) fI (Li+1—=Go) = COGo<1 _$>S(T+ n>’

=1 n

(note that, by (2.19), (2.20), G, = (p”* — 1)/q*.)

1 1 1\ 1
= sTos(1————Y1-=) 2,
19T >< A+ 1))( h,) e

- 1
S ), LV, <
P jgl 7 C1C2

1 1 1
- < — — ) —Y,
TL-y+1) (1 + h0><2 + b 1) cics

- L 'L, 1 1
Tb4LgnlmBl+B §<@+——)——x
T p—1) cics

Y,

(L_y + 1)Ly + 1)(0 + —1——>
p—1

1 1 1 1
<{t+—)1+—)———0U,
< h4)< D — 1) qnﬂf/. C1C4
(Lot + Lo+ D log(e(2 + —— ) <(1+2) Ly
-1+ 1)(Lo + 1) log|e I_.+1))S ) nce 0

(L-1+ (Lo + 1) log(qLy)

1 1 loghs\ 1
<{l+—|2+=5—+—7") —7,
< + h4>< + 2llan t ho ) C1C4

37

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

2.37)

(2.38)

(2.39)
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1

nD max V,<—Y, (2:40)
1<j<n h6
n l
log<D ]‘I (L; + 1)) (2.41)
j=-1 hy
Tlog(L_y +1) logtho+1) 2+ 1/(p—1) 1
og(L-y +1) loglho+1) 2+ /(+P1 ). 1 4 (2.42)
log p ho q" €1C3

In (2.43)-(2.45), J, k are rational integers with 0 < J < [log L,/logq],0 <
k < n,n is given in (2.26).

1 1,
- 1
<(1 q)n+1q T + )ordpb,l
1 1\N2+1/(p—1 1
1—=|1+— . U, 243
= < q)( * h8> (n+ 1g"*' cics ( )
1\ 1 1 1
l—=)——qg'T+1)g’**s{{1--)0 + —
<( q>n+1q >q (( q) p—1>
< <1 - l)(1 + i)<2 + L 1) 1 U, (2.44)
q hg p—1 gq)c

J+k
<1_1> Ly log(g’*ks)

q/ n+1 logp
1\/1 loghy loggqg 2+ 1/(p—1) 1
<{t—-)- . U, 2.45
< q)(" * ho * gho MK (n+ g™t cycy (243)
L+ +L,_; <3T, (2.46)
(L_y + 1)(Lo + 1) < 4ST. (2.47)

Proof of (2.32). Similar to the proof of (3.12) of Yu [21]. Note that we use (1.3),
(1.4) and the fact e, f, < D to show

ﬁ (1 3 Goclczan"Slg) S 1
i=1

1+81

and

n n
1+2) <l+e,.



Linear forms in p-adic logarithms I~ 39
Proof of (2.33)-(2.37). Similar to the proof of (3.13)—(3.17) of [21].

Proof of (2.38). Similar to the proof of (3.18) of [21]. We use the inequality
c3 < 160 (see (2.27)) to show

S 1
- s 11 S - *_ X
log(e(2 + I+ 1)) log(2'*gnD) " log V¥,
Proof of (2.39). From (2.31) and the definition of h, (see (2.26)) we get

1 1 1
L_ 1)(L ({1l +—) —Y ——.
(Lo + D(Lo + 1) ( +h4>clc4 e

Thus to prove (2.39) it suffices to show
Ly < hs(V_ )2+ 1@ D), (2.48)

since log V¥_, > ho. Now by (2.30), (2.31) we have

qL, < h5<(n :l)e)nq(q —1)

2+ 1/(p-1)
p*(f; logp)"

(c2qn)"~'D"V,...V,_,Glog V*_,

< hs(3e)*""Vg(g — 1)°

.<2+ 1/(p — 1)

AT )(czanzV,,_l)"“G log V*_,. (2.49)
%

By (2.3), (2.2) it is easy to verify that

24 Yp— DY (6 x @, i p=2,
"(‘1‘”( f,logp )s{ax(%)ﬂ"-l, it p>2.

On combining this and (2.27), (2.10), (2.49), we obtain
gL, < hs(2'1qnD?V,_ )" 'Glog V¥_y < hs(V¥-1)* " "log V_,.
Now this inequality and the following inequality

1
log V*_, < (VX (1+n')/n ith =
og 1 ( l) w1 n 2“qD
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which can be verified similarly as in the proof of (3.19) of [21], yield (2.48) at once.

Proof of (2.40), (242)—(2.44), (2.46), (2.47). Similar to the proof of (3.20),
(3.22)~(3.24), (3.26), (3.27) of [21].

Proof of (2.41). Similar to the proof of (3.21) in [21]. Here we need (2.7).

Proof of (2.45). Similar to the proof of (3.25) in [21]. We need to use the
definition of # in (2.26), from which it follows that

nlogq < nho < nW*.

So far we have established the inequalities (2.32)—(2.47). Now we introduce
some more notations. For (J,A_y,...,4,, To,...,To—1)€ N2"*3 set

n—1

Asz,D)=AG 'z 4+ ALy + 1L, Ao + 1,70) [ Abud; — bjdn; 1), (2.50)

ji=1
where A(z; k) and A(z; k, I, m) are defined by (1.9) and (1.10). In the sequel, we

abbreviate (A-4,...,4,) as 4, (tg,...,Ts~1) as T and write |t| = 19 + -+ + Tp_;.
Let

Do =[Q(20): Q], Dy =[K:Q(x)] (= D/Dy). (2.51)
By (2.14) we can fix a basis of K over Q of the shape

édo,d = agoalild. ..aﬁ"d with (kld’ .. .,k,,d)e N" and Z kjd < Dl —-1< D,
j=1

do=0,....Dg—1, d=1,...,D,.  (2.52)

2.3. Construction of the rational integers p(4, d,, d)

We recall thatr,, . .., r, are the rational integers in (2.24); G, G,, G, are defined by
(2.19), (2.20); X is given in (2.31); Dy, D, are given in (2.51).

LEMMA 2.1. For

dy=0,...,Do—1, d=1,...,D, (2.53)
and A =(A_q,...,A,) in the range

0S4<L; (-1<j<n), rid+-+rdy=0 (modG,), (2.54)
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there exist p(A,dy,d)e Z with

0 < max |p(4,do, d)| < Xg/™ "
Adod

such that
Y Y p(Ado,d)spaMol(s,7) ] (F L) =0 (2.55)
A do,d j=1

for all (s, 7o, ...,1,—1)€ N"*1 satisfying

1<s<S, (s9=1 [I<T
where X, ranges over (2.54), Z;, 4 ranges over (2.53).
REMARK. In the sequel s always denotes a rational integer and t always
denotes a point (tq,...,7,-1)€ N" The expression (s, 7o, ..., T,~1)€ N"*1 will
be omitted.

Proof. For te Z, define

(gt = {}. = (l_l,...,ln)e Nn+2|0< ljs LI(_I SJS n),
Fidy + - + rydy = tGy(mod Go)}. (2.56)

Let

T ={teZ|0<t<q" "€, +#0}. (2.57)
By (2.20) we have

€n% =0 for t,ted witht#t¢. (2.58)
Denote by € the set of A = (A_y,...,4,)e N"*2 satisfying (2.54). Then

¢=)¢%. (2.59)

ted

By (2.59), (2.58), (2.56), we see that every A€ ¥ determines uniquely t =
t(Ady,...,A4)€ T and k = k(A4,...,A,)€ Z such that

Fidi + o + 1Ay = tGy + kGo. (2.60)
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Write h = h(Ay,..., A, do, s) for the rational integer satisfying

h=p°k(dy,...,4)s +dy (mod p’q*) and 0 <h < p°q“. (2.61)

By (2.60), (2.21), (2.6), (2.61) we obtain

at(i)oc(nll + - +rndn)s do + p¥k(Ay,..., ln)sCGnst(ll ,,,,, An)

= aO
— a’(l)(l],...,l,.,do.s) CGlst().l ..... l,.)‘ (262)

For 4, dy, d, s, t with Ac €,0<dy <Dy, 1 <d<D;,1<s<Sand(s,q)=1,
and |1| < T, set

n
Piiodise(X0s X1y oy Xg) = WLy + 1)) Ag(s, T)xh@re--ordmdos) [T Pehssthia
ji=1

By Lemmas 1.6 and 1.7 we see that each P; 4, 4.5 iSs @ monomial in xg, X;,..., X,
with rational integer coefficient, the absolute value of which is at most

Y —10 L_y+1)(Lo+1
3<L_1+1)mer—m(1+("_1)(BnL1+BLn)>T <e<2+ S >)( +1)(Lo+1)

T — To L_ 1 + 1
' (L_1+1)(Lo+1
< 3<L_,+m(l , (= D(B,Ly + BL,,))T (e(Z ,_S )) o)

T L_i+1
Further
deg, Piaoas: <P*SLj+D (1<j<n).
Note that (2.1), (2.3), (2.4) and (s, q) = 1 imply that
—1eK? when ¢=2; and ({.)¢K"

By (2.20),(2.21) we see that {%'*is a root of x? ™ — ({ ). Thus, in virtue of Lemma
1.8, it follows that the ¢*~* elements

(o =0,1,...,¢" " — 1

are linearly independent over K. On combining (2.58), (2.59), (2.62) and the above
fact, we see that (2.55) is equivalent to that for each te 7

Z Z Pl,do,d;s,t(ao’ Agyeens an)p(l, dOa d) = O

Ae¥, do,d

1<s<S, ,9=1, |7/<T (2.63)
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For each te 7, in (2.63) there are (1 — 1/q) S(*}") equations and at least

n [L+1
DoDy(L-y + (Lo + 1) [] [ ’G+ :I-G'(','lg.c.d.(rl,...,r,,,Go)

j=1 Y

ZGLD(L_, + (Lo + 1) 1‘[ (L + 1 — Go)
0 =

j=1
unknowns p(4, dy, d). By (2.32), we can apply Lemma 1.5 to (2.63) for each te 7
(note that h(ay) = 0), and the lemma follows at once.
2.4. The main inductive argument

For rational integers r), LY’(—1 <j < n) and p¥(4, do,d) = pV(A_y,..., Ay,
dy, d), which will be constructed in the following main inductive argument, set

¢s(z1) =2 Y p (& do, d)apaMs(z, 1) [T (@ C9)7, (2.64)
j=1

A do,d
where X, is taken over the set € of A = (A_,,..., 4,) satisfying
0<L<LY (-1<j<n),  rd+ - +rd=r"modG,). (265
Note that by (2.24), the p-adic functions
(o {9)* = exp(4;zlog(ef (™) (1 <j<n)

are normal.

The main inductive argument. Suppose that there are algebraic numbers
oy,...,0, in K and rational integers by, ..., b, satisfying (2.14)—(2.18), such that

ord,® > U. (2.66)

Then for every J € Z with 0 < J < [log L,/log q] + 1 there exist ' e 7, L e Z
(—1<j<n) with

0 <Gy, LP=L; (j=-10),
0<LY<q™ L (1<j<sn, €V#§
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and p9 (A, do,d)e Z for Le 69,0 < dy < Doy,1 < d < D, with

0< anaxlp")(/l, do,d)| < X}/
,do,d

such that
¢J(s9 T) =0 for 1 SRS qJS, (S, q) = 1’ Itl < q_JT

The main inductive argument will be proved by an induction on J. On taking
r® =0, LY = Lj(—1 < j < n), p™(4,do, d) = p(4, dy, d), which are constructed
in Lemma 2.1, we see, by Lemma 2.1, that the case J = 0 is true. In the rest of
Section 2.4, we suppose the main inductive argument is valid for some J with
0 < J < [log L,/log ¢q], and we are going to prove it for J + 1. We always keep
the hypothesis (2.66). We first prove the following Lemmas 2.2, 2.3, 2.4, then
deduce from Lemma 2.4 the main inductive argument for J + 1.

Set

b,
V=4 — b—’ W A<j<n),  pPA) =Y pV(4 do, d)esa

do,d

Write (gﬁ” (te Z) for the set of A = (A_4,..., 4,) satisfying

0<i;<LY (-1<j<n),

Pidy 4 e+ rpdy =19 + Gy (mod Gy) (2.67)
and define
TV ={teZ|0<t<g" " 6" #0}. (2.68)
By (2.20),
¢nE" =0 for t,teT " with t#¢. (2.69)

By (2.65), (2.67), (2.68),

¢ = () & (2.70)
te7 ()
Define
n—1
L1z =Y pPWAE) [T 05y, (2.71)
ji=1

Aeg)
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and for te 7Y define

n—1
frD= 3 pPDAED T @0y, @72)
reg) j=1
e = T pUDAL) [] @ L. @.73)
re€) j=1

LEMMA 2.2. For every te 79,1 = (1q,...,Ta—1) With |t| < T and ye Q with
y > 0and ord, y > 0, we have

_ Tlog(L-, +1)

logp ord, b,.

0rdp(¢l.r(y, T) - fl,(( Vs 1.')) > U

Proof. Similar to the proof of Lemma 3.2 of Yu [21].

LEMMA 23. For k=0,1,...,n we have

$s(5,7)=0  for 1<s<q’*™*S, (59 =1,

7] < (1 - f_ 1<1 - é))q"T. (2.74)

Proof. By (2.67)—(2.70), every ie ¢ determines uniquely ¢ = t(4;,...,4,)€
TP and k = k(A4,...,A,) € Z such that

ridy+ o+ rdy =19 +tGy + kG, 2.75)

Let h = h(44,..., A4, do, 5) be defined by (2.61). Thus by (2.75), (2.21), (2.6), (2.61),
we get

at(f)o C(nl; + .+ rpin)s do + pvsk(Ay,..., ).n)c(hst(/ll ..... ln)csr(h

= ao
= a’(l)(ln,-...lmdo,s) CG;st(}.l ,,,,, ln)csrh’). (276)

We now prove that (2.74) is equivalent to the statement that for every te 7 ) we

*Of course, t and k are not necessarily the same as that in (2.60); however we still use these notations,
because no confusion will be caused.
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have

G5i(57)=0 for 1<s<qg’*s, (5,9) =1,

Il < <1 - ;% (1 - $>)q"’T. @.77)

By the identity

¢J(z’ T) = Z ¢J,t(z’ t), (278)

teg )
(2.77) implies (2.74) at once. Conversely, by (2.78), (2.76) and the fact that
(&t t=0,1,...,¢" " -1

are linearly independent over K, which has been established in the proof of
Lemma 2.1, we see that (2.74) implies (2.77). Thus

(2.74) is equivalent to (2.77). (2.79)

In the sequel, let ¢ denote an arbitrarily fixed element of V). By the main
inductive hypothesis for J and by (2.79), we see that (2.77) with k = 0 is true. We
now assume (2.77) is valid for some k with 0 < k < n. We shall proveit for k + 1if
k < n and include the case k = n for later use. Thus we see, by Lemma 2.2, that

_ Tlog(L-, + 1) _

ord, f;.(s,7) = U log p

ord, b,

for 1 <s < qJ+kS’ (S, (1) = 19

IT| < (1 - f_ 1(1 - é))q" T. (2.80)

Note that by (2.24) and (2.17), the p-adic function

n—1
IT @ ¢y
j=1

is normal, where 6 is given by (1.2) and can be written as 6 = [/m with [, m being
coprime positive integers, and p?:= f' with fe C, being a fixed mth root of p.
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Further by (1.14) and (2.3) we see that
plot IOt O (L 4 1))t A (p 0, )

is a normal function, whence so is

pL-1+ DLot DO+1/(G=1)A (p=07 7).
Thus, by (2.72) we see that

Fyu(z,7):= pltt ¥ Do DOTUO=INS (p=02,7)

k+1 1
f <(|1- 1—-|)q7’ .
or |t ( —— < q))q T (2.81)
are normal functions. We now apply Lemma 1.2 to each function in (2.81), taking
J+k 1 1 -J
R =g’ ks, M= 1—--)qg°T|+ L (2.82)
n+1 q

By an argument similar to the proof of (3.74) in Yu [21], using Lemma 2.6 of [21],
we deduce from (2.80) that

m

14
min ord | — —F;, sp",r)> n m()}
1<s<R.(s,q)=1 { p(m! dz 2

_ Tlog(L-, + 1) B
logp

22U+ (Lo + 1)(Lo + l)<0+p_1_1>

1 N _,
— (n " 1(1 —(—1>q T+ 1>ordpb,I

1 1 1 1\|2+1/(p—1

ST L 1D L)\22 e =D 1

ho n+1 q hg q C1C3
k+1 1

<(1="=(1==))q”’

for |7| <1 T (1 q>>q T, (2.83)

where the second inequality follows from (2.42) and (2.43).
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On the other hand, by (2.82), (2.44), (2.45), we see that

logR
logp

1 1 1 1
< 1—=)g’T+1)gs([1-=)0+— )+
(n+1< q>q )q (( q) p—1>

1 1 J+kS
+ °<1———>q_JT'l—(&—)

(1 - é) RM6 + Mord,(R!) + (M — 1)

n+1 q logp
1 1 1\ 1
<(1 +_)<1_1>(2+___)_U+
hs q p—1 4qjc
1\/1 logh, logq 2+ 1/p—1) 1
+(1—={-+ + +7) . U. 2.84
( q)(" ho ghy 1 (n+Dg"* cicy (259

Now we see from (2.83), (2.84), (2.29) that each F, ,(z,1) in (2.81) satisfies the
condition (1.5) with R, M given by (2.82). Thus by Lemma 1.2 and (2.81) we obtain

S S 1
Ordp ﬁ,t(5’1> = Ordp FJ.t<5p0’T) - (L—l + 1)(LO + 1)(0 + pT1>

> <1 - 1)RM&? —(L_; + (Lo + 1)(0 + L)
q p—1

1\ 1 1
>1—=) —¢"STO— (L, + )(Lo + 1){ 0 + ——
q) n+1 p—1

k+1 1
fi z <(1- 1--))q7’T. .
or seZ, |1] <1 — 1( q))q T. (2.85)

By the second inequality in (2.83), we have

1
OI'd‘,b,l +(L-y + (Lo + 1)(0 + p——I)

Tlog(L-, + 1)
logp

_ 1 H 1 1 1
Ly 2FUe=n L, flogho+ D) 11 <1+_>}.
T cic ho n+1 q hs

U
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Observe that the right-hand side of the above inequality is, by (2.29), not less than
the extreme right-hand side of (2.84). Hence by Lemma 2.2 (note that
ord,(s/q) > 0 by (2.3)), by the above observation and by (2.84), (2.82), we get

s s Tlog(L-, +1)
d -7 |- - >V -—"r——— —
or p(qﬁ I (q ‘L’) i (q 1)) U logp ord, b,

> (1 - 1)RM@ —(L_y + (Lo + 1)<9 + ;>
q p—1

N 1, 1
> (1 - 5) g STO— (Loy + (Lo + 1)(0 T 1)

for s>1, [Tl < T. (2.86)

On combining (2.85) with (2.86), and utilizing (2.33) and (2.37), we obtain

ord, ¢, (E, 1:) > min{ord, Jis (5,1:), 0rd,,<d> 12 (i, 1.') —fi1s (ir))}
q q q q

A T 1

ro 1)? 1 1
> v K“E) (’"ca(nﬂ))(l_h_l)_

k 1
for s>1, |7 < (1 it 1<1 ——))q"T. (2.87)

From now on we assume 0 < k < n.
On the other hand, by Lemma 1.6 and (2.50), (2.76) we see that for any
fixed teJY and for 1 <s<qg'***!,(s,q9)=1,|t|<(1 — (1 — 1/q}k + 1)/



50 Kunrui Yu
(n + 1))g~ ' T, we have

G 2ot DT DL 4 1)y ,(5,7)
= T T Pk dg, d)g -t F Dt

leq") do,d

n
X (V(L_ L + 1))tOAJ(S, T)al(x)(ll,...,l,.,do,s) l"‘[ a})").js+kjd
j=1

= Ql,t;s,r(ao’ Oyyenns an), (2.88)

with Q; rs.:(X0, X1, - -, X,) being in Z[x¢, X1, ..., X,] and having degree at most
pr§J)qJ+k+1S + D < pqu+1SLj + D
in x; (1 < j < n). Note that by the main inductive hypothesis for J and Lemmas

1.6, 1.7, we have, for 1e¥Y,0<d <Dy, 1<d<D,;,1<s<qg ***!s§,
(s,9) = 1,|t] < (1 —(1 = 1/g)k + 1)/(n + 1))g~’ T, the following estimates:

|P‘J)(l,do,d)| < X(l)/(co—l), qZJ(L—|+l)(Lo+1) < Lf(L—1+1)(Lo+ 1)’

qk+ls (L-1+1)(Lo+1)
IA(@ s+ A-; Loy + 1L, + Lto)l < |2+ ——
L_,+1

S gct Y (L-1+1)(Lo+1)
<lef[2+—— ,
((z+553)

MLy + D) T] 1AGuA, — by,

i=1

< 3L-1+ Do T-10 (1 + (n— 1)(B,L; + B’Ln))T—to

T_To

< 3L+ 0T <1 + (n— 1)(Bn;:1 + B’Ln)>T'

By the above estimates and by (2.50), (2.88), the length of Q ,.¢ (xg, X;5- - -» X,) 1S



Linear forms in p-adic logarithms 1I 51

at most

n by 2L Lo+ 1) S gt I (L-1+1)(Lo+1)
D L.+ 1) X3/co= L2 -1+1)(Lo+ el2 + .
j=l_—!1( j ) 0 L—l +1

.3(L—1+1)T<1 + (n - 1)(Bn§:1 + B’L"))T.

Now we assume that there exist s, with

k+1 1
1<s< gt s, (s,9) =1, |r|<<1— + (1——)>q"T
n+1 q

such that

¢J,t(s’ T) # 09
and we proceed to deduce a contradiction. By Lemma 1.3 (note h(x,) = 0), by the

definition of X, (see (2.31)), and by (2.88), (2.34)—(2.36), (2.38)—(2.41), we sec that
the assumption ¢, (s, 7) # 0 implies that

ordp¢l ,(S, T) S Ol'dp QJ,';S,‘!(“O’ [ S an)

flogp {log(D ImTw@+ 1)>+
Ty i=-1

— 1)(B,L, + BL
(n —1)( ..T1 + n)> +2L-y + 1)(Lo + 1)logL, +

1
— llogXO +log3-T(L-; + 1)+

+T log<1 +

S
k+1 R
+ g Loy + )(Lo + 1) log<e<2 + I 1)) +

+p "“SZLV + nD max V}

i= 1<j<n

<q“‘"-—q:D—{l(l+ ! >[log<D IT (L; + 1)>+nD max V}+
h e.flogp g Co — i=-1 1<j<n

1 1 1
+1+ *S ), LV, + +
< q(co — 1)) Z Q< co — 1

>log3-T(L_1 + 1)+
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1 _ /
+1(1+ )Tlog(1+(n 1)(B,Ly +BLn))+
q co—1 T

1 S
+ (1 + m)(L_l + (Lo + l)log(e<2 * Z‘TT)) "

1
+ ;1-'2(L_1 + 1)(Lo + l)logL,,}
1 1 1 1 1 1
—U k—n 1 — - 1 -
<‘71 1 {< +c0_1>(h6+h7)‘:1+< +C0_1>Cz+
1 1 1 1 1
+|-+ log3-{1+—|+1){2+—]—+
q ¢ —1 ho p—1)c;
1 1\1 1
+(1+ I+—)-——+
co— 1 hy)n c,
1 1 1 2loghg\ 1
—(1+—)(4 — .
+q( +h4>< +21°an+ h, >c4}
This together with (2.28) implies that
1 1)\2 1 1
d X —Ug- (1 -= l——— {1 —— | —
ordy gr.6.9 < va (1= 1) (1- L ) (1)
1 1 1 1
|1+ |1 +—)—-
( h4>< P—l)q"“f, Cs
1 1 1 2loghg\ 1
—{1—==J{1+—]{4 —r.
< q)( +h4>< T 2% T Ty >c4}
On noting
1 1 1 1 2loghy
l+—— ) —— 1—-)|(4
<+P—1>q"“f,+< q)( T 2% " h, )

><1+——1 )———1 +4<1 1)><1+ 1) !
p—l qn+1f/‘ q p—l qk+lf/"

(2.89)
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we see that (2.89) yields

Lug{(1 =Y (1o — L )(1-1)-
orde buls7) < U4 Kl 'q) (1 Toln+ 1))(1 'm)
1 1 1 11
——11 . 1 ==,
qkﬂ( +h4>< +P—1)f,« 54}

contradicting (2.87). This contradiction proves that for any fixed te 7V,

bris,7) =0 for 1<s<g’™*'s,  (s9=1,

k+1 1
<(1-"—(1--))q'T.
i ( n+1<1 q))q T

This fact and (2.78) imply (2.74) for k + 1, and the proof of the lemma is thus
complete.

LEMMA 24. We have

¢J(§,T>=0 for 1<s<q’*'s, (s,9) =1, 7] < g Y*OT.
qd
(2.90)

Proof. By (2.78), it suffices to show that for any fixed te 7, we have
¢,,,<f,r) =0 for 1<s<g'™'§, (9=1 ltl<q " PT.
q

We recall that (2.87) holds for k = n, that is,

ord 6, (S2)> (11 P L asTo-
Id, @, q’t q n+1q

— (Lo + D)(Lo + 1)<0 + ;—1—1)

1 1)? 1 1
{8 ()0 -5)-
1 1 1 1
()l )erad

for s>1, |t|<q Y*VT 291)
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For x,2,2/e C, with ord,x > 1/(p — 1), ord, z >0, ord,z' >0, we have the
following identity for p-adic functions

(1 + x* = (1 + xpyF.
(See Hasse [9], p. 273.) Hence we have, by (2.24), (2.25),
(o CIYID = (@ L)ty = (@flaphegris (1<) < n). 292
Recall (2.75) and let h* = h*(4,,..., 4,, d,,s) be the rational integer satisfying
h* =dogq + p’k(Ay, ..., A)s (modp°q“*') and 0 < h* <piq *l, (2.93)

By (2.75), (2.23), (2.93) we have for ie ¢

(J)
agof(rlll+ +radn)s é(r +tGl)s(aé/q)doq+p"k().1 ..... An)s

— é(r‘-” +tG1)s(a(1)/q)h*(}., sevsAnsdo,S) (294)

Now by Lemma 1.6, (2.50), (2.92) and (2.94) we see that for any fixed te 7 and
for 1 <s<q’*'S,(5,9) =1, |7 <q Y*VT, we have

g O gU DAL DML (L, 1»*°¢,,<f,r)
"\4q

Z Z pU)(,l’do,d)qZ(J+l)(L—l+1)(Lo+ D«

Ae@i") do,d

X ((Loy + DA, (2,Q(aé/ﬁ)’*‘(‘b---v‘m‘w-

n

. l—[ (a}/'I)P"ljS"'qkja

= QF wsolg®, all, ..., 02"9), (2.95)
with QF s .(x0,X,,.. ., x,) beingin Z[x,, x,, . .., x,] and having degree at most
P*L¢’*1S + gD < q(p*SL; + D)

inx; (1 < j < n). By the main inductive hypothesis for J and by Lemmas 1.6, 1.7,
we have for 1eb?,0<dy <Dy, 1 <d<D;,1 <s<g*!S,(s,9) = 1,]1] <
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g~ Y* VT, the following estimates

J 1 -1 1)L - 1 -
'p( )(/‘[_’do,d)l sXO/(Co ), qZ(J+ WL-1+1)(Lo+1) S(an)Z(L 1+1)(Lo+1),

S (L-1+1)Lo+1)
IA@ Yt Vs +A_;Loy + Lo + Ltg)l <{el2+ ,
L_,+1

(WL_y + 1) nﬁl |A(b,A; — bjl,,;r,-)|

j=1

< 3(L—1+1)toe(l/q)T—to<1 N (n — 1)(B,LY + B'LLJ)))q-uH)T

q—(l+ l)T

< 3(1/q)m_,+1)<1 " (n— g(B,L, + B’Ln)>(1/q)T
T b

where [ = max, ¢;<,L{”. By the above estimates and by (2.50), (2.95), the
length of Q% (Xg>X1,--.,X,) is at most

D f[ (L; + 1)+ X Lo~ D3A/QTL-1+1)

i=-1

S (L-1+1)Lo+1) AL
del2 L )21+ D(Lo+ 1)
((+=25)) L)

Now we assume that there exist s,t satisfying 1 <s<q¢’*'S, (s,9) =1,
|7| < ¢~ Y* VT, such that

( (n—1)gq(B,L, + B Lﬂ))(l/m
1+ = )

i G r) # 0, (2.96)

and we proceed to deduce a contradiction. In Lemma 1.3, let E = K(ag/%,
al/4,...,al), 4 bea prime ideal of the ring of integers in E, lying above 4. Thus

[E:Q] = [E:K][K:Q] =¢"*'D
by (2.15), and
e.=e, fo2f

Note that h(a}/?) = (1/g)h(x;) and h(x§/?) = 0. By Lemma 1.3 and the definition of
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X (see (2.31)), and by (2.95), (2.34)-(2.36), (2.38)—(2.41), (2.28) we see that the
assumption (2.96) implies that

s
* 1/a o1 1
ord, ¢, (a, T) < ord, QF .50/, a1/, . .., a}/9)

n+1 n
<——u—-{log(D I1 (L,-+l)>+c 1

\eﬁf/zlogp j=-1 0—1

log X + log 3-

1 1 — 1)g(B,L, + BL,
-aT(L_1+1)+aTlog<l+(n M(BaLy + )>+

T

S
+(L-y + 1)(Lo + Dlog <e<2 + I+ 1)) +

+ 2L-y + 1)(Lo + 1)log(qL,) + p*S ¥ L;V; + nD max V,}

j=1 1<j<n

<éu{<1+601_1)(hi6+hi7)c1+<1+001_l)é+
+<$+col_ 1>(l°g3-<1+%>+ 1><2+#)c—13+
+(1 +h_l4><(1 +Col—1>%+4+21°:1n1) + 2k;,§hs>i}
<o{(1 -3 -aan) 0 -5)-
- (1 +h—t><1+p%l>ﬁ;.é},

contradicting (2.91). This contradiction proves (2.90), whence the lemma follows.

LEMMA 2.5. The main inductive argument is true for J + 1.
Proof. We first show that

[K(E™) @i, ..., an): K(E9)] = ¢". 297
Let K’ = K(2}4,...,al). By (2.15),

[K':K]=q" (2.98)
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From (2.20)—(2.22) we see that £ is a root of the polynomial

x® 7 — Lue K[x] € K'[x]. (2.99)

By (2.15) we have [K'(«}/%): K'] = q. This implies, by Abel’s Theorem (see, for
instance, Rédei [15], p. 674, Theorem 427), that o, ¢ K'9, whence

{u=0of ¢ K", (2.100)

since (p, q) = 1 by (2.3). Thus by Lemma 1.8,(2.1),(2.3) and (2.100), the polynomial
in (2.99) is irreducible in K’'[x], that is,

[K'(65): K] = [K(): K] =q" """
This together with (2.98) and the identity
[K'(£): K(EPHILK(£S): K] = [K'(¢°"): K'][K":K]

yields (2.97).
Write 6 = (6_14,...,06,)€ N"*2, By Lemma 2.4 and (2.50) we have

Y Y pV(0,do, d)espaA g™V s + 013 Loy + 1,60 + 1,70)

oe¥) do,d
n—1 n
[T A®no; — bjon; 1)) [1 (@ {)i¢® =0
i=1 j=1

for 1<s<q’*, (sq9=1 [<q VT, (2.101)
where €V is the set of 6 = (6_34, ..., 0,) satisfying

0<o;<LY (-1<j<n, roi+-+ro=r" (modG,).

(2.65)
Every (o4,...,0,) satisfying (2.65) can be uniquely written as
o;=47 +4q4 (1<j<n) (2.102)
with
L9 g
0<i¥<q O<A<LY™P@,.. ., 4n:= [—Lq—L] (1<j<n).

(2.103)
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By the fact that (G, q) = 1 (see (2.20)) and by (2.65), (2.102), we see that

Fidy + o+ A, =rITVEE 2% (mod Gy), (2.104)
where rY*D(AY, ..., A¥) is the unique solution of the congruence
gx =19 — (r AT + - + 1,49 (mod G;) with 0<x<G,.

Further, again by (2.20), (2.65), (2.102), we see that every o € €’ determines an
unique g = g(4},..., A¥, A1,..., 4,) € Z such that

rllr + --- +rnA:‘ + ‘1("111 + -+ rnj'n) =r.0, + -+ r,o,
=19+ gAY, ..., A Ay, ..., 4Gy

(mod qG)
with 0 <g(Af,..., A% A1, . d) < g**h. (2.105)
From this and (2.22) we get
ég(l} ..... in)Gis _ C(rlll +'-'+r,.).,,)s5(r11",‘+"'+rn).;‘.—r(l))s' (2.106)

Now on recalling the identity
(1 + 2P = (1 + xpf*

for x,z,z'e€ C, with ord,x > 1/(p — 1) and z, 2’ being integral (see Hasse [9],
p. 273), we see, by (2.24), (2.25), (2.105), that

n n n
% o g 3 3 ()
H (a; Cn)a,(s/q) = l‘[ (a;/q)" s, l—[ a;) Ajs esr 7 .égw; ..... An)Gis. (2.107)
j=1 ji=1

j=1

On combining (2.101)—(2.104), (2.107), we obtain

)

4-1  g-1 n " . Y Lo

*, .
)P H(“jq)p D) Z Z Y P (Aoy, Ao, AT +
A1=0 =0 j=1 A-1=0 A0=0 A1,...,An do.d

+ q'll’-- "1: + q'q‘na dO,d)édo,d.A(q_(J+l)s + 'l—l;L-—l + la )“0 + la TO)

n—1

* I Alq(bad; — b4,) + (byAT — b;i¥); 7))

j=1

for 1<s<q’*'sS, (59 =1, [t < g VU+IT, (2.108)
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where Z;, ;. is taken over the range

.....

0 < /l < L(-J+l)(/l*,. . .,l*), ry /11 + -+ r,,/l,, = r("+l)(l*, ceey l*)
J j 1 n 1 n

By (2.97) and the fact that (p*s, q) = 1 (see (2.3)), we see that the ¢" elements

n

I1 (@})7% with 0<Af<q(l<j<n)

ji=1

are linearly independent over K(¢%). (2.110)

By the main inductive hypothesis for J, there exists a n-tuple (4}, ..., A¥) with
0< /1;‘ < ¢(1 <j < n), such that the rational integers

p(l)(l—l’lo’j’r + q'q'la oo 91: + qlmead)
for 0<A4; <Ly (j=-10), A,...,4,satisfying (2.109),
0<dy<Dy, 1<d<D,

are not all zero. Fix this n-tuple (A}, ..., A¥); take

J+1) J+1 a* *).
! =1 )( ]’---7A'n)9

L™ =LY =L; (j=-10, LY™V:= LYYVGE, 0% (1<j<n),
pu+1)('1—1’ 2'09 ’11" ey )'m d09d) = p(‘,)(l—15)‘09 '1’: + qlb- .. ’)“: + qlna dO,d)

and define ¥ *Y to be the set of A = (1_,,..., A,) satisfying
0S4 <L (1<j<n,  ridi+ o + 1k = 1Y% (mod Gy).

Obviously, by the choice of the n-tuple (1%, . . ., A*), ¢V 1 # @. By (2.110), (2.106),
we obtain from (2.108) that

Z Z p(l+l)(l’ d0$d)€do,dA(q_(‘,+l)s + l—l;L—l + 1, /10 + 1, To)'

Ae¥W +1) do,d
n—1 n
* [1 A(bal; — bjdn) + (bad} — bjak); 1)) [T (@ ¢35 =0
ji=1 i=1

for 1<s<q’*'S, (5,99=1, |1|<q VVT (2.111)
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By an argument similar to that in the proof of Lemma 3.5 in Yu [21], utilizing
Lemma 2.6 of [21], we conclude from (2.111) that

¢s+1(57) =0

for1<s<q’'S, (sq9=1  |tl<q V*VT

This completes the proof of the lemma.

Thus we have established the main inductive argument for J =0,1,...,
[log L,/logq] + 1.

2.5. Completion of the proof of Proposition 2.1

The assumption that Proposition 2.1 is false, that is, there exist algebraic numbers
oy,...,0, In K and by,...,b,€ Z satisfying (2.14)—(2.18), such that

ord,® > U,
implies that the main inductive argument holds for J, = [log L,/logg] + 1,
whence we can deduce a contradiction (on utilizing Lemma 2.5 of Yu [21],

Lemma 1.6 and (2.46), (2.47); the argument here is completely the same as in
Section 3.5 of [21]), thereby proving the Proposition.

2.6. Proof of Theorem 2.1

Now this can be reduced to solving the system of inequalities (2.27)—(2.29). We
solve it in the following cases respectively:

(l.a) p =2, n=S8;
(lb) p=2, 2<n<T,
(2a) p>2, n=8;
2.b) p > 2, 2<n<S;
(2c) p> 2, n==6,7.

Case (1.a). p=2,n>=8.
In this case g =3,f, > 2 (see (22)), co = 17,¢c, = £. We have the following
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estimates:

1 1
— < 1.08736 x 1072, — < 648 x 10727,

ho hl

1

= < 1.2 x 10723, 146 <14+10722

2

1

h—<4.15x 10725, 1+ <1+5x1072%5
3

(1+e)1+e)<1+11x10722

1
— <3927 x 10728, log hs < 5.3228576,

ha

1 1

— < 1486 x 10729, — < 1.326 x 1077
he hs

It is easy to verify that

co=17, ¢; =1.7986328, c, =%, c3=1108111, c, = 187.84615

satisfy the system of inequalities (2.27)—(2.29).

Case (1b). p=2,2<n< .
Inthiscase g =3, f,>2,¢c0=9,¢c, = 18 We have the following estimates:

1
hl < 4.94584 x 1072, P < 7.656646 x 1072,

0 1

1
W < 1.48846 x 1076, 146 <1+42977 x 1079,

2

1

=< 306267 x 107%, 146, <1+3063 x 1075,
3

(1 + &)1 + &) < 1 + 3.00764 x 1075,

hi < 4.82116 x 1078, log hs < 4.6310664,

4

L <3004 x10-t,  Lcgiorxiomt,
he h

7
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It is easy to verify that
co=9, c;=18412753, ¢, =18 ;3 =46.503685 «c, = 79.452008

satisfy the system of inequalities (2.27)—(2.29).

Case (2.2). p>2,n>8.
In this case ¢ = 2, f, > 1, D/q" > } (see (2.7)), co = 17, ¢, = 5. We have the
following estimates:

l<0.011272, i<7.13 x 10726,
ho hy

his 1.027 x 10722, 14+6 <1+822x1072%%
2

his 457 x 10724, 1+e <6x 10724
3

(1+e)1+e)<1+83x10722

1 <2325 x 10725, log hs < 4.9272357,

hs
1 < 14 x 10728, ig 1.3 x 10728,
he h,

It is easy to verify that

1
co=17, c¢; = 0.4100107-(2 + p_—l>’

1
;=195 c3= 63.710446-(2 + m), ¢y = 227.85949

satisfy the system of inequalities (2.27)—(2.29).

Case 2.b). p>2,2<n<5.
In this case ¢ =2, f, > 1,D/q" > 1,¢c0=9,c, =7. We have the following
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estimates:
1

— < 0.051525, — < 4.1008 x 10~8,

ho hl

W < 6.88933 x 1076, 1+6 <1+13779 x 1073,
2

hl< 1.64032 x 1077, 146 <1+1641 x 1077,
3

(1 + &)1 + ;) < 1+ 139432 x 1075,

1
W <9.19912 x 1078, log hs < 4.3384949,
4

1
— < 1.761 x 10710, — < 3.555x 1071°.
6 h7

It is easy to verify that

1
=9 ¢ = 0.4296612'(2 + F), c;=1,

1
c3 = 30.649838'<2 + p—l)’ ¢y = 118.25702

satisfy the system of inequalities (2.27)—(2.29).

Case (2¢). p>2,n=6,17.
In this case ¢ = 2, f, > 1, D/q" > >4, ¢ =9, c; = 4. We have the following

estimates:

1

1 < 0.0154283, — < 8.398 x 10729,

ho hl

1

E—<9523><10“17 1+¢e <1+575%x 10718
2

1

h—<3024x10 1+6<1+304x10718
3

(1+e)1+e)<1+58x10716,

1

S < 1.95 x 10719, log hs < 3.7861582,

4

1 - 1 -

— <371 x 10722, — <37 x 10722,

h6 h7
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It is easy to verify that

1 27
co=9, c¢; =04099183 (2 + Iﬁ>’ €2="7,

c3 = 31.978249°(2 + ;:I_—I>, ¢y = 104.3852

satisfy the system of inequalities (2.27)—(2.29).
In each of the above cases it is easily seen that

1 \2
(1 + &)1 + e2)cocicscs < C<2 + p———l) s

where c is the constant given in the statement of Theorem 2.1. Now the Theorem
follows from Proposition 2.1 at once.
2.7. Proof of Theorem 2.2 and Corollaries 2.3, 2.4

Proof of Theorem 2.2. Set

K = Q(xo,ay,...,0,) € K, D'=[K:Q]. (2.112)

By (2.1), (2.4), (2.6) we see that K’ satisfies (2.1). Denoting by Oy the ring of
integers in K', set

ﬁ, = ﬁf‘\OK:.

Then 4’ is a prime ideal of Oy, and we define ord ,a(a€ K'), e, f, in the way
described in Section 0.2. Obviously

o <t (2.113)
u=max{teN|{yeK'} =u,

: : (2.114)
v=max{te N|({,eK'} =,
g := e2mIPYE) = g (2.115)

ord,,a=%ord,a for ae K'. .116)
#
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Let
. _Dfy .
Vj==5i'V,~ (1<j<n), (2.117)
1 fologp(B, B
*Y . — A er T
(W*y - max{log(l + on D v + v )
p" log Bo, fﬁ’;’,g” ,nlog(2“an’)}, 2.118)
(V¥-1) = max (p’*, 21 *qn(D'* V-1 )"). (2.119)
It is well-known that
Jegap <D (2.120)
Jv epfy D

By virtue of (2.120) and utilizing (2.8)—(2.10), (2.12), (2.13), (2.117)—(2.119), we see
that

1
V};max(h(aj),f”l;),gp> a<j<n, Vi< <V,

D’ D D’ D
—‘V,_—'—‘V 1<-<n9 —(W*)’g—W*y
A A A

D oavr y < Riogvr .. @.121)
ety Ju

On observing further that

Qap, &y, ..., 0,) = K (by (2.112), (2.115)),
[K'(#0)'"% 2i,...,0a/%): K] = ¢"*1  (by (2.15), (2.115)),
ordya; =0 (1<j<n) (by (2.16),(2116)),

we may apply Theorem 2.1 to ord, (8 - ofr — 1) with V) (1 <j < n), (W¥),
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(Vx-1) given by (2.117)—(2.119); and on utilizing (2.121), (2.113), (2.114), (2.116),
we obtain the inequality stated in Theorem 2.1. This proves Theorem 2.2.

Proof of Corollary 2.3. We remark, by (2.8), (2.11)—(2.13) and the fact n > 2,
that in Theorems 2.1 and 2.2 we may choose

1
W* = max <log B,nlog(2!'qnD), &%)
Note further that the constants g, ¢ in the statement of Theorem 2.1 satisfy

101186.36 x 5", if p> 2,
ca < .
70718.74 x §)*, if p=2.

Now, on noting (2.3), we see that Theorems 2.1 and 2.2 yield the Corollary.

Proof of Corollary 2.4. By (2.15)—(2.18) we may apply Theorems 2.1 and 2.2
with V, replaced by

Vi :=max |V, 5—3
" " B,ZW')

We may also replace B, By in (2.12) by B, B,, respectively. By the inequalities (2.8),
0<6<(flogp/D)Z, W > 1, we see that

B, B B
Tt <4+ 57 'ZB,W <287 'ZB,W'.
v tvisy,t

On recalling (2.12), (2.13), n > 2, it suffices to prove
1 1 1
max{log(l oot fi—D"g—” ZB,,W’),log Bn,ngi’f, nlog (2“an)} <w.
By the assumptions on Z, §, W’, we need only to show that
1
log (1 + ;zﬁW’) < W, (2.122)
where

y = 5-114108P ll())ngB,,.
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We need two inequalities, which can be easily verified:
d
E(x —log(1 + bx)) >0 for x>1, (2.123)

where b > 0 is fixed; and

g(x)>0 for x> 10° (2.129)
with

g(x):= p" log x —log (1 + (p'/p)x log x),
where

_fs ite>2 (L0752 ifp>2,
8, ifp=2 P=1114, it p=2.

By the hypothesis on W', we have

W’ = p' max{log y, (n/p’) log(2''qnD)}. (2.125)
We devide two cases.

(@) ¥ = (2''gnD)"*". By (2.123) and (2.125), to prove (2.122) it suffices to show
that g(y) > 0. By (2.3) and n > 2, D > 2 it is easy to verify that

g((2**gnDy"*") > 0. (2.126)
On noting that

v = (21 qnD)"" > 108
and utilizing (2.124), (2.126), we obtain g(y) > 0.

(b) ¥ < (2''gnD)"*’. By (2.123) and (2.125), we see that (2.122) follows from

(2.126).
This completes the proof of Corollary 2.4.

3. Propositions for Kummer descent

The condition ord, b, = min, ¢, ord, b; yields the sharpest form of the main
results of the present paper. When b,,..., b, satisfy this condition, to transfer
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this property during the course of the Kummer descent (see (4.20) and (4.56) in
Section 4 below) is somewhat subtle, and some complication, compared with
the Kummer descent in the classical theory of linear forms in logarithms, arises
from here. The statement (d) of the following Propositions 3.1 and 3.3 is for this
purpose. Furthermore, we use the idea in the proof of Lemma 4.1 in Waldschmidt
[18] and in the proof of Lemmas 5.1, 5.2 in Lang [10], Chapter XI; and we give
refinements in our context, in order to obtain good constants in our estimates
for ord,(o}' ... ap" — 1).
Let K, D, p, q,u,v, %, £, 0rd,, f, be defined in Section 0.2. Evidently,

2g < p°q" < 3D. (3.1)
Fix
2mi 1
ly=——, =— 3.2
" pg” ° p'q"D (32)

Recall Zx:={leC|e'eK} and for le Ly

Il f.logp
— n It J4 08P
V(l): max{h(e ) D D 3.3)
Define
Zx ={leCle'eK, ord,(e') = 0}. (34)

Obviously, lo € £, ,. Throughout this Section [y,.. ., I, denote n(>2) elements
of g, , such that

Imjl<n (1<j<n), (3.5)

and V,,..., V, denote n real numbers satisfying

n<--<V, (3.6)
and
Viz V() (A<j<n). 3.7

By linear dependence (or independence) of elements of £y , we mean that over Q.
By the rank of a finite set of elements in £ ,, we mean the cardinal of a maximal
linearly independent subset of the given set.
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PROPOSITION 3.1. Suppose that ly,1,,...,1, are linearly independent. Then
there exist lo = lo, ly,...,I,€ Lk ,and m;e Z(1 < s <n,0 < j <) such that'

(a) [K(()",.... ()" : K] = q"*", where afj= el (0<j<n),
(b) V(%) < max(V,3(Vo + - + K) (I1<s<n),

(C) ls = Z msjl} (1 < N s n),
j=0
(d) mg = q"* for some w,eN (1 <s<n),

(e) max |mg| < 2((s + DD3) (s + YL VE (1<s<n),

<j<s

max |m,;| < 4((n + D)D" 'nlVoViZ2V, max(V,, 3(nV,—; + V,)).

1<j<n
Proof. Let M = Zly + Z1, + --- + ZI, and
My = {le Ly ,|there exists teN such that g'le #}.

Forle #, write T=1+ .M € M,/ #. Then the order of ['in .4,/ is q" for some
heN, and by Lemma 1.11 we see that

4" < Q@ + YD) WV, ... V. (3.8)
Set ¢*:= max{order of [|le .#,}, then
Q"M = M. (3.9)

Fors=0,1,...,n, let

s—1
N,= {teZ|t>O, there exist ts,-eZ(O <j<s) such that ) ¢l + tlseqwjlq}.

i=0

We see, by (3.9), that g¥ e Ny(0 < s < n), whence N, has the least element ¢,
satisfying 1 < t,, < ¢%. We fix t,;(0 <j < s) such that

ti=0 0<j<y), if tg = q"; (3.10)
—3q" <t;<3g" (0<j<s), ift,<q” (.11

((3.11) is possible in virtue of the division algorithm.) Then there exist I5, [5,..., [,

tHere and in the sequel ' (xe K) denotes gth root, which may be chosen in C,. See also the remark
after the statement of Theorem 2.1.
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in ., such that

Y tili=4q"l; (0<s<n). (3.12)
j=0

By the linear independence of Iy, [y,...,I, and by the construction, {g"lj,...,
q"l;} is a basis of g*.# ;, whence {ly, ..., 1,} is a basis of .#,. Observing l;e /4 <
M, (0 < s < n), we see that there exist m;;eZ (0 < s, j < n) such that

=Y myl,. (3.13)

j=0

On combining (3.12) with (3.13) we get

mi;=0 O0O<s<ns<j<n) (3.14)
and
tsss =q" (0 <s<n). (3.15)

Now (3.13)—3.15) imply (c) and (d). We assert that
tOO = qw,

for otherwise we would have, by (3.15), too = g"° with 0 < wy < w, whence, by
(3.12), Iy = ¢¥~"°ly and ay = (xp)*" "°e€ K4, a contradiction to the definition
of aq (see (0.4)—0.6)). Hence I, = Iy, ag = ap. By (d), we see that t, < ¢* implies
t, < q¥ ! < 4q”. By this observation, (3.10)—(3.12) yield (b). By (3.7), (3.3),
Lemma 1.12, (3.2), we have V; > f, (logp)/D > 1/D > V, (1 < s < n), whence
Vo + Vi + -« + V) < 4(s + 1)V,. So from (b) and (3.3), we obtain

14
2nD

max(h(e“‘), > <¥s+ 1DV, 1<s<n).

Now Lemma 1.11 together with the above estimates and the linear independence
of Iy,..., I, implies (e). It remains to verify (a). Suppose that (a) is false, i.e.,
K((@p)'4,. .., (a,)'"9) has degree (over K) less than g"*!, we proceed to deduce
a contradiction. By Lemma 1.9, we have a relation

(@o)... (@) =1 (3.16)
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for some ne K\{0} and jo,...,j,e N with

1 < max j;<gq. 3.17)

0<s<n
Note that ord, a; = 0, since lye M4, = L , (0 < s < n). Thus by (3.16) we have
ord,n = 0. Let Ae L , be such that e* = n. Now by (3.16) there exists je Z
such that
Jolo + - +juln +gA +j2mi = 0.

Write

2mi
l=—{A4+j—).
(%)

Note that 2ri/qe L, since { € K by (0.3). Thus le £ , and

ql=jolo + - + julne M, (3.18)
whence le #,. Therefore there exist i, ..., i,€ Z such that

L=ioly + -+ + inly. (3.19)
On comparing (3.18) with (3.19), we get, by the linear independence of Iy, ..., 1,

Jjs=qi;, (0<s<n),

a contradiction to (3.17). This proves (a). The proof of the Proposition is thus
complete.

LEMMA 3.1. Let l,...,1,,1;,a; (0 <j < n) be given in Proposition 3.1 and its
proof. Suppose that

VaznV, . (3.20)
Suppose further that le L , and V > 0 are such that

los...,la—1,1 are linearly independent, (3.21)
Imli <=, V(I)<V, (3.22)

W, <V, (3.23)
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Then there exist I'e £k , and my, ..., m,€ Z such that

@ [K(@0)",...,(@n-1)""% (n")""): K] = """, wheren’ =¢",
b vI)<V,
© l=melo+ - +m,_l,_y +m,l,

d) m,=q" for somev,eN,

(e.1) max |m;| < C3DVy(DV)Ce,

1<j<n
VvV Ca
.2 il < CsDVy(DV,- )",
€2 s < () W0

where

241, ifp>2,
Cy = 4((n + D)+ nl/n"~2, Co= { > Ur>

271, ifp=2,

Cs(n + 1), ifp>2,
= C = ,C .
e {Cs(" Fme@r, ifp=z 0T MG
Proof. Let
(n+1)*,-y, ifp>2,
= 3.24
0 {%(n+1)2V,.-1, ifp=2 (324
and (if V, > Uy)
D(V, — U,), if D(V, — Uo)eZ,
= 3.25
ko {[D(V,, —Upy)] + 1, otherwise. (3:25)

We proceed to prove the following assertions:
(Po) The Lemma holds if nV,_; < V < min(U,, V,);
and (if V, > Uy)

(P,) The Lemma holds if U, + (k — 1)/D < V< min(U, + k/D, V,)
(k=1,..., k).

We now show (P,). On applying Proposition 3.1 to ly,...,l,_,,] and
Vis..., Va_1, V, we see that there exist l'eZy,, and my,...,m,eZ such that
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(a), (c), (d) hold and that
VI <max(V,3(Vo+ - + Voo  + V) SV

(by the fact that n¥V,_; < V), whence (b) is valid. Further by Lemma 1.11 and
by (c), (b), (3.22), (b) of Proposition 3.1, the inequality n¥,_; < V and the linear
independence of Iy,...,1I,-1,1, we have

max |m;| < 4((n + 1)D2)"* 'n!DVo(DV,_ )" (DV)?

1<j<n

< C3DVo(DV)" < C3DV,o(DV)®e, (3.26)

i.e. (e.1) holds. From the second inequality of (3.26) and the assumption
V < min(U,, V,), recalling (3.24), we get

max |m;| < CsDVo(DV, )"

1<j<n

This together with (b) and nV,_; < V implies (e.2). Thus we see that (P,) is true.
If V, < Uy, then (P,) is exactly the Lemma. So we may assume V > U, and we
prove the Lemma by induction on k.

Assuming (Py),...,([P)(0 < k < k), we proceed to show (P ;). Now

k k+1
Uo + D <V< min(Uo + %, V,,). (3.27)

If [K((2p)'4,...,(0h-1)"9,nt9): K] = q"*!, where n = ¢!, then we may take
'=Ly=nmg=--=m,_, =0, m, =1, whence (P, ) is trivially true. So
we may assume in the sequel

[K (@), ..., (@n-1)""% 0" 9): K] < g"* 1. (3.28)
Set K’ = K((xp)'", ..., («,—1)'9). By Proposition 3.1, we have [K': K] = gq".
This together with (3.28) yields [K'(n'/9): K'] < q. Thus by Lemma 1.9, there
exist n, € K\{0} and t,,...,t,-1€Z with 0 < t; < q (0 < j < n) such that

n=(x0)°...(tn-1)"""n}. (3.29)

From (3.29) and the fact that L 15, ..., [, € Lk ,, we see that ord,n, = 0. So
there exists 4, € C such that

heLx, € =ny, [Imi|<m. (3.30)
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From (3.29) we get, by Iy = I, and (3.2),

I =toly+ -+ ty_1lh_1 + gAy + t-2mi
=(to + P'q")o + t1ls + -+ + ta-1lh-1 + g4y (3.31)
for an integer ¢. Now the linear independence of ly,...,I,—, [ implies that of
Io,...,1,—1,1. This together with (3.31) yields the linear independence of
05+ 1n_1,41, whence

loy...,ln—1,4; are linearly independent. (3.32)

Note that by (3.27) and (3.24) we have

1
nv,_, <&V<min<vo +E V,,). (3.33)
2q D
Next we show that
1
via) <y, (3.34)
2q

From (3.29) and Proposition 3.1, (b), we see that
B <  htn) + 0 = D) + -+ + )
<V @ = D)+ + Vi)
< é(v +@= D3+ -+ mVyo)

1
<—V+<1 ——>':¥n(n + DVa-y
q

ittty (3.35)
2q

where the last inequality follows from the fact that V > Uy + k/D > U, (see
(3:27)). To bound |4,|/(2rD) we estimate |¢|. By (3.1), (3.2) we have

2n

Imly =Imly = —— (3.36)

X<

7'C
P .
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From (3.5), (3.10)-(3.12) we get for l < s <n
[Iml}| = |ImL| <=, ift,=4q"

and
| B .
[Im | < —7 Z t;I1Im ] < 3(s + Dn, if 1 < ™.
So in any case

Iml| <46+ Dr, (1<s<n). (3.37)

Thus, by (3.31), (3.22), (3.30), (3.36), (3.37) we get

n—1
[t < (lIml|+q[Im,11|+ (-1 Y, ]Iml’)

s=0
1
<¥g—Dn(n+ 1) +4q+5— % (3.38)
Note that by (3.1), (3.2), o = lo,

1ol 1 1
2D pq"D 2qD

and by Proposition 3.1, (b),

14
2nD

SVE) <+ DV <3+ DV (Iss<n).

Thus by (3.31), (3.22), (3.38), (3.24) and the inequalities n>2, 1/D <
Vi-1/(f, log p) (see (3.7), (3.3)), f, = 2 if p = 2 (see Lemma 1.12), we get

l'lll q— .1 Itl
27tD V+2D+(q—1) 32+ - +n)V,,1+D

1 1
S—V+<1 ——)V,,-,{%n(n+ 1)—%+
q q

1 1 q+5 1
+—— =+ +1)+3%- - )}
f logp (24 D T T - D)

111 1
< v+ —(1 - —>U0 <1ty (3.39)
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Now, on noting (by (3.33)) (¢ + 1)/2q))V = nV,_, = f, log p/ D, (3.34) follows
from (3.35) and (3.39).

By (3.30), (3.32)+3.34) we can apply the inductive hypothesis, which states that
(Po),...,(Py)aretrue, to A; and (¢ + 1)/(29))V, and thus we can find I'e £ ,and
my,...,m,eZ such that

(a) holds,

1
®) V()< %R V, whence (b) is valid,

€) Ay=molo+ - +m_sl_y + ml,

(d) m, =g" for some v,eN,

| \Gs 1\cs
©.1) max |mj| < C;DV[ L5 2Dy} < (L) cLowv)ee,
1<j<n 2q 2q

€2 max m<(LFL) 4 © CaDVy(DV,_)"
e S\ 2g ) \max(v (@), v, _y)) 3PP

By (3.31) and (c’) we have
I=moly + - +my_ (L, +m,l
with
mo = to + p°q“t + qmo,
mj=t;+qm; (1<j<n),

m, = qm;, = q°**1, (3.40)

Thus (c), (d) hold. It remains to verify (e.1) and (e.2). We first deal with the case
when p > 2. So g = 2. By (3.1) and the inequalities

k
n=2 D>2, V>U0+B>U0=(n+1)2V,,_1, DV, >f,logp>1,

we get
q+ 1 Ca Ce 312.41 1 2 n 5
7 C3DI/0(DV) 2 (4) ’ C3.pvqu.((n + 1) DVn—l) > 10 .
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So by (3.40) and (e'.1) we have

max |m;| <q max |mj|+q—1

1<j<n 1<j<n

1\¢ —1
a- (2 "copvovyce( 1+ 12201075
2q q

23 (1 + 3-107°)C3DV,o(DV)C
C3DVy(DV)Ss,

N

<
<

whence (e.1) is valid. It is easy to see that the right-hand side of (¢'.2) is at
least 10°. Thus (e.2) can be verified similarly. This completes the case p > 2. The
verification of (e.1) and (e.2) for the case p = 2 is similar, so we omit the details.
This establishes the assertion (P ). The proof of Lemma 3.1 is thus complete.

PROPOSITION 3.2. Let ly,...,l, be given in Proposition 3.1 and suppose that
VaznV,—,.

Then we can replace (¢) for s = n in Proposition 3.1 by

(e*) max |m,;| < C3DVo(DV,)%,

1<j<n

Va
max(V(l,), n¥, -,

max |m,;| < <

1<j<n

Cq
)) CsDVo(DV,-1)",

where Cs,...,Cg are given in Lemma 3.1.
Proof. Apply Lemma 3.1tol=1,,V =1V,.

Let r + 1 be the rank of {ly,...,1,}. We fix the integers jo,..., j, with 0 =
Jjo < -+ <jr, < nsuch that l;,,...,I; are linearly independent and /; is linearly
dependent on [}, ..., 1; for j with j, <j <jo+1 (0 < S< 7, jppqi=n+ 1)

PROPOSITION 3.3. Suppose that
2<r<n, j=n.

Then there exist Iy = lo,114,...,1, € %, , and rational integers u;’s (>0) and m;;’s
such that
@) [K(@)',...,()"):K]=¢""", whereaj=¢ (0<j<r)
(b) V(l;) < max(V,,_,ﬂ, %(VO + SVn—r+s)) < %(S + 1)Vn—r+s (l <5< r)9
V() < max(V,, 3Grr + DV,oy + V),
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s
©) wl, = 2 mil; (s i< j+1,0<s<7),
ji=o

dw=1 (=jo,--sish  (upg)=1 O0<i<n), mg=1,
m;,, = p**q* for some h,w,e N (1 <s<r),
m,, = q* for some w,e N,

(e) max( max u;, max |m,~j|>

Js<i<js+1 Js<i<js+1
1<j<s

S2s+ DD s+ N VoViao,es (I<s<r),
max |m,;| < 4(r + DDy 1 Vo ViZ3V, x

1<j<r

X max(V,,, %(‘kr(r + 1)Vn—l + Vn))
Proof. Let /" =2Z1;) + --- + ZI;,_, and
N pa = {l€ %k ,| there exist h',w' e N such that p* ¢*'le 4}

By Lemma 1.11, we see, similarly to the proof of Proposition 3.1, that 4" is of
finite index in .4, ,. Denote by p"q” the index, where h,we N. Set for0 < s <r

N, = {te Z|t > 0, there exist t;;€Z (0 < j < s) such that

s—1
Y tul;, + tl;, e p"q¥ A M}.
i=0

Obviously p"q* € N, whence N has the least element ¢, < p"g” (0 < s < r). We
fix t; (0 < i < s) such that

t; =0 (0<i<ys), if t, = p"q”, (3.41)

—3p"q¥ <ty <3p

hg® (0<i<s), if t < p"g”. (342
((3.42) is always possible by the division algorithm.) Then there exist
0s--->1,—1 € N}, such that

tal, = p"q"l, O <s<r). (3.43)
(0]

s

12
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By the linear independence of [;,...,I;_, and by the construction,
{p"q"l5,...,p"q"1,~ 1} is a basis of p*q* A4, ,, whence {I,,..., I} is a basis of
Npq Observing |, e /= N, , (0<s <r), we see that there exist m;;’s in
Z (i =jg,---5jr—1) such that

=Y myl; fori=j; withs=0,...,r—1 (3.44)
j=0

Taking u; = 1, we see that (3.44) is exactly (c) for i = jg,...,j.—;. [t is easy to see,
on combining (3.43) with (3.44), that

tsmj,s = p"q® (O <s<r). (3.45)
Thus

m;, = p"q"* for some h,w,e N with hy <hw,<w (0<s<r).

s

We assert that hy = w, = 0, for if hy > 0, then from
ly = mgolo = p'gq*°ly

we get
(oo = o = (ap)?™° P e KP  (where o = e'0),

a contradiction to (0.5); and if w, > 0, then we have
(oo =) = (@)™ "™ e KT,

a contradiction to (0.4). Thus hy, = wy, =0 and mge = 1, I, = . For i with

Js <i<js+1 (0 <s <), from (3.44) and the fact that [, is linearly dependent
onl; ,1;,» we see that [; is linearly dependent on [y, ..., [. Let u; be the least

jod

positive integer such that

uli€Zly + - + ZL_, = N,

p.q9’

where the equality follows from the fact that {Ij, ..., I, } is a basis of 4/, ,. Then
we obtain (c) for i with j; <i < jg+; (0 <s < r). From the definitions of u; and
N p.q WE get

(ubpq):l (.js<i<js+1s0<5<r)'
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Now set

M=1+ -+ 2,y + 2, =N, , +ZI,
M, = {le Z ,|there exists k' e N such that ¢*le 4}.

By Lemma 1.11, . is of finite index ¢* in .#, for some ke N. As before, for
s =0,...,rlet 7, be the least positive integer for which there are t,; (0 < i < s)in
Z such that

Y tilieq M, (0O<s<r) (3.46)
i=0

and
r—1
Y tuli + t.l,eqdu, (3.47)
i=o

We fix fors=1,...,r
=0 (0<i<s), ift,=4g, (3.48)
-3¢ <1y <iq" O<i<s), if 1, <qt. (3.49)

By (3.46), for s with 0 < s < r there is I € .4, such that
gl =) tulie Ny, (3.50)
i=0

So by the definition of A/, ,, we have I{ e A, , (=ZIy + --- + ZI,_,). This and
(3.50) yield g* | 7,,. On the other hand, 7, < g* by definition. Thus, recalling (3.48),
we get

Tss =4, Ts,'=0 (0<s<r,0<i<s). (351)

Denote by I} € .#, the element such that

r—1

Y tili + 1.0, = 41} (3.52)

i=0

As before, we can see that [y, . . ., [, is a basis of .#,. On noting that [,e # = M,
and taking u, = 1, we obtain (c) for i = n. It is easily seen that m,, = g"~ for some
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w,e N with w, <k and 1, = ¢* ™. This completes the proof of (d). By
(3.41)-(3.43), (3.45), (3.49), (3.51), (3.52), 1,, = ¢* "~ and the inequalities

1 1
=<V, V. <j< 1), 3.2)),

Vj, S Vn—r+s (1 < s < r)a
we obtain (b). Further by Lemma 1.11, (b), (c), the linear independence of
05 - - - Iy, the definition of u;, we get (e). Finally, using an argument based on

Lemma 1.9 and the fact that {, € K (see (0.3)), which is similar to that in the proof
of Proposition 3.1, we obtain (a). The proof of the Proposition is complete.

PROPOSITION 3.4. Suppose that
2<r<n, j,=n, V,=2%r0r+ 1)V,_,.
Then the second inequality in (e) of Proposition 3.3 can be replaced by

(e*) max |mru| < C%DVo(DV,‘)C’G,

1<j<sr

Vv Ca
1< " CsDVo(DV,_.),
72 1] (max(V(l;), T+ 1)Vn_1)> SDVo(DVn-1)

where C, is that given in Lemma 3.1,

r!
C'3 — 4r—1(r + 1)3r'_2D2(r+1)’

5 =

C { 3 + 1), if p>2,

Tlesr+ 0@y, if p=2, CoTmARCY

Proof. Very similar to the proof of Lemma 3.1 and Proposition 3.2. It is easy to
write down the proof mutatis mutandis, and we omit the details here.

4. Proof of Theorems 1, 1’, Corollaries 1 and 2

Proof of Theorem 1. By Lemma 1.3, (0.14), (0.7)—(0.10) we have

ordﬁ®<f D

log2 + nV,B). 4.1
oy (8 ) @)
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Evidently, (0.4), (0.5) imply

29 < p'q" < 3D,

¢“<2D ifp>2 q¢<3D ifp=2.
Set
I, 2mi 1

e e
l;:==loga; =logla;| +iarga;
with
—m<arge; <.
By (4.4), (0.9), (0.7), (4.2), we have

Vo<oV; <&V, (1<j<n)

4.2)

4.3)

4.4)

4.5)

(4.6)

with ¢ given by (0.12), where the second inequality follows from (0.2) and Lemma

1.12.

Let r + 1 be the rank of {ly,1;,...,1,} and jg, j;,..

0=j, <j, <+ <j, <nsuchthatl
linearly dependent on /;

Jjo>

@ r=nV,<nV,_,.
We shall prove

/

l.

jo>*+ o Vir

P =1 (2+1(p—1)

ord, ® < 20’(%) (n+ 1p+2pte.

U

q

-D"* 2V, ...V, log(D* Bymax(nlog(2'°qn(n + 6)D*V), f,logp)

=U,,

.,Jj, be the integers with
are linearly independent and /; is
Sl for jwithj < j < jo+10 < s <7 jerrs=n+1).
We deal with the following eight cases (a)—(h) separately.

@.7)

where @’ and ¢’ are given in Corollary 2.3. By (4.3)and DV; > f, logp(1 < j < n)

(see (0.9), (0.7)) we get

D
log2 <3U,.
f‘/‘logp og <2U1

4.8)
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We assert that we may assume

p* —1

B> 4-10°-20"(n + 1)"+2n"”1 L —
( (/. Tog )’

D*V,_,, 4.9)

for otherwise we would have, by (4.3), (0.9), (0.7), D > 2 (see (0.3)),

nV,B<3U;; 4.10)
filogp

and (4.7) would follow from (4.1), (4.8) and (4.10). So in the rest of (a), we can
assume (4.9).

Now we apply Proposition3.1tol,,...,,. On recalling (0.6) and noting, by the
fact that ;e L 4, that

ord/,a}=0 (1<j<n), 4.11)
we get
ord, © = ord (g («})" ... (@)’ — 1) < ord (1) ... ()" — 1), (4.12)

where

= Y bm; O<j<n, b =pqb;, 1<j<n). (4.13)

s=max(j,1)

Note that bf,...,b, are not all zero, since b},...,b, are not all zero by the

equality afo(a})” ... ()P = of'...ab" and the assumption r = n. This fact

together with r = n yields

(@y)P7 ... (o) # 1. 4.19)
Further we have

[K(xg, (@1)",. .., (o) 9): K] = q"*1. 4.15)
By Proposition 3.1, (b) and (4.6) we see that

V(ogay) < V() <V, =V, (4.16)

Viog)) S V() <3+ o)V;=V; (2<j<n)
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By Proposition 3.1, (¢), (4.4) and the assumption V, < nV,_,, we get

max |bj| < nBp°q“-4((n + )D*"* 'nin®>DVy(DV,—1)".

1<j<n

<4n"*3((n + 1D+ L(DV,_,)'B=:B". 4.17)

It is easily verified, by (4.9) and the inequality (x — 1)/(log x)* > 1/2 for x > 1,
that

(n + 1)log(D*B) > log B". (4.18)
From (4.9) and the inequalities n > 2, D > 2, DV, _, = f, logp (see (0.9), (0.7)),

(1.18), we see that

(n + 1)log(D*B) > max(n log(2'1gnD), ffll‘)’ﬁ). (4.19)

Observe that we have
b;‘ = bllm'l'l = b’lqw"

by (4.13) and Proposition 3.1, (d). Thus, by (0.2), ord ,b, = ord,b;. So by (4.13) we
see that

ord,b, = min ord,b; implies ord,b; = min ord,bj. (4.20)

1<j<n 1<j<n

Now by (4.11), (4.14), (415 we can apply Corollary 23 to
ord (o3 ... (@)’ — 1), and on observing (4.12), (4.16)—(4.20) and using (1.17),
we obtain (4.7).

by r=nV,=nV,_;.
We shall prove

a/ n _ p]'/,_l 2+1/(p_1) n+2
ord, ® <d4c{ = | (n+ 1" 20" {(n — 1)°- ( > .
* <2> () ( q" f,logp
*D"*2V, ...V, log(D* B)max(nlog(2'°qn*D*V), f, log p)
= U,. 4.21)

Using (4.1) and arguing as in (a), we may assume

S
el oy 4.22)

B> 8-105-20(n + 122 L — " _pay
( AT e
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Obviously (4.11)—(4.15), (4.16) (with 1 < j < n) and (4.20) are valid in the case (b).
By (4.16) with 1 < j < n and (1.17) we have for n > 2

Vi Vet S 5o z(n—l)'(n—l)" Vs (4.23)

and we remark that (4.23) is trivially true for n = 2 by (4.16) with j = 1. Note also,
by Proposition 3.1, (b) and the assumption V, > nV,_; we have

V(loga,) < max(V(l,),nV,-)=V, < V,. 4.24)
By Propositions 3.1 and 3.2, on noting that
C, <3, Cs<Cy(n+ 1" <4n’(n+ 1)3+1p2n+D

and using (4.13) and (4.4), we get

v\
max |b}| < p'q nB(V,) CsDVo(DV,_y)'

1<j<n
V 3
< 4nd(n + 1)>**1p2"* YDy, _,yYB <V’> =:B’. 4.25)
By (4.22) and (4.25) it is easily seen that
(n + 1)log(D*B) + 3log< V’) > logB". 4.26)

From (4.22), (4.24), (1.18) and the inequalitiesn > 2,D > 2, DV, _, > f, logp, we
have

(n + 1)log(D*B) + 3log<V ) max(n]og(Z”an) L‘lD—g> 4.27)

By (4.26), (4.27), (4.24) and the inequalities n > 2, D > 2, we obtain

1
v, max(logB” nlog(2!!gnD), —f%e>

<V, ((n + 1)log(D?B) + 3log<%)>
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<V,in+ l)log(DzB)-(%>_l (1 + log<%>)

< (n + 1)V, log(D?B). (4.28)

Now by (4.11), 4.14), (415 we can apply Corollary 23 to
ord ()" ... (@)’ — 1), and on noting (4.12), (4.16) (with 1 < j <n), (4.23)-
(4.25), (4.28), (4.20), we obtain (4.21).

©2<r<nj,<n
We shall prove

Sr 1

ord,® < 2c’<a§> (r+1)y*2rtttom —r 4 1)-p

2+ Yp =D\ ., 2p).

( j;logp D4V, +1...V,log(D*B)
-max(rlog(2'°gr(r + 1)D*V,,_,), f, log p)

=U,. (4.29)

On arguing by (4.1) as in the case (a) and notingr(n —r + 1) = 2(n — 1) > n, we
may assume

p*—1
-10%- I+ _.D2V,_,. 4.30
B> 4-10°-20°(r + 1y 2 AT (4.30)

Define
l; = ljs’ rx; =0, (0 <s < r).
Then by the assumption j, < n we have

VI) S Vi SVaepoias=Vs (I<s<). (4.31)

By Lemma 1.11, we see that there exist u;€ Z,u; >0 (1 < j<n) and mj;e Z
(1 <j<n0<s<r) such that

wli=Y mgl, (1<j<n) (4.32)

s=0
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and

u, =1 (1<s<vr), max u; < (2(r + )D*Y *1DV(DV,-1),

Is 1<j<n

1, ifi=s

R 1<s<vr),

Misi {0, figs LSSSN
2y +1 r V'l
max |mj| < (2(r + 1)D*) ' DVo(DV,-,) v
1<j<n n—1
1<s<r
Write

N
[~}

VAN
=

’ Al :
M:=u,...u, Mjs o= Mjs 1<j<no0
J

By (4.32), (4.33) we get

Ml=Y ml, (1<j<n),
s=0

max |mjs| < {2(r + DD?) "1 DVo(DV, - ) }" "
1<j<n Vn—l
1<s<r

By (0.13) and (4.34), we have

ord,® < ord (o ... o)™ — 1)

= ord (@) .. () — 1) < ord ()% .. (@) — 1)

where

by=3Y bmj (O0<s<r), bf=p"q'b; (1<s<r)
j=1

We assert that we may assume

(@) .. (o) #1,

87

4.33)

(4.34)

4.35)

(4.36)

4.37)
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for otherwise, by (4.36), we would have
(ab ... abmMPoe = |,

whence Lemma 1.3 would yield

ord, © < log2 < U,.

f,logp

Now by (4.36), (4.34), (4.4) we get

14
max || < B-n{Q(r + D2y *{(DV,_ Y} " +—" =B’ (4.38)

1<s<r Vn -1
By (4.30) and by the inequalities
2<r<n, r*n—r)=>4n-2), (4.39)

it is readily verified that

V
log(D*B") < r(n — r + 1)log(D?*B) + log(V a ) (4.40)

n—1

On noting that D > 2,r(n —r + 1) > 2(n — 1) > 1 and using (4.40), (4.31) we
obtain

V,log(D?*B") = V,_, log(D*B")

<rn—r+ 1V, log(DzB)-(VV" >_1 (1 + log(VV" ))

< r(n — r + 1)V, log(D?B). (4.41)

By (4.31) we have
ViV i S Vuoy oo Vs S Vyopir - Vg 4.42)

Now by (4.37) and the linear independence of [, 1, ..., [,, we may apply (4.7)
and (4.21) to ord ,((o1)*7 ...(%)* — 1). On observing U, < U,(4.35), (4.31),
(4.41), (4.42), we obtain (4.29).

@d2<r<nj,=nV, <irr+ 1)V,_;.
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We shall prove

al r fﬁ — 1
ord, ® < 3¢ r+ 0yttt m—r+ Hr-17-

2 1 _ 1 r+2
' (%ng_» D"V, 4y ...V, log(D*B):
#

-max(rlog(2°qr*(r + 1)D*V), f, logp)
(4.43)

= U,

Utilizing (4.1), arguing as in the case (a), noting r(n — r + 1)=>2n—1)>=n, we

may assume

B> 105-200(r + 1y *2r - HDZV"_I. (4.44)

For i with j, <i <j,+, (0 <s <r)define

mij:=0 (j=s+ 1,...,1).

Then by Proposition 3.3, we have

uil,- = Z m,}l; (1 < i < n).

i=0

Writing

we get
=Y myl; (1<i<n). (4.45)
j=0
By (0.13) and (4.45) we see that
ord, ® < ord L LobM — 1)
(@)% — 1) < ord (17 ... () — 1), (4.46)

= ord ,(agP(a})"* . ..
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where

b;= Y bmj; (0<j<r), bj =p°q"b; (1 <j<r). 447

i=1
By Proposition 3.3, we have
[K (oo, ()", ..., () "/9):K] = ¢, (4.48)
ord,a; =0 (1<j<r) (4.49)
We assert that we may assume
@) () #1, (4.50)

for otherwise we would have (a}' ... a2")¥?*?“ = 1 and Lemma 1.3 would yield

D
d,® <—-——log2 .
ord, © f/,logpIOg <U,

Again by Proposition 3.3, and using (4.6), (4.45), (4.47), (4.4), (4.2) and the
assumption V, < ir(r + 1)V,_,, we get

V) S Vaprr =Vy, V(1) <1—¥ Vi-rej= Vi @<j<rn, (451)
VIy) < max(V,, 3Grir + DVa-y + V,) < Sr(r + DV, =V, (4.52)

max |b}| < Bnp°q" - (2(rD*Y'r'DVy(DV,_ Yy "Lty ~"-

1<jsr

31 (r + V*((r + D2y T IDV(DV,_,Y
< B-n(r + 1)’+3r2r(n—r)+r+2D2r(n—r+1)+2(DVn_l)(r—l)(n—r)+r

=: B" (4.53)
By (4.44) and the assumption 2 < r < n, it is readily seen that
rn —r + 1)log(D?*B) > log B’; 4.54)

furthermore, on noting (1.18), we get

n —r + 1)log(D*B) > max<r log(2!¢rD), f%). (4.55)
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Observing j, = n, we see that
miy = Lm, =0 (1 <i<n)
u;
whence, by (4.47), Proposition 3.3, (d) and (0.2), we get
b, = b,m,, = byu, ...u,q", ord,b;, = ord,b,.

Thus by (4.47) we see that

ord, b, = min ord,b; implies ord,b; = min ord,bj. (4.56)

1<j<n 1<jsr

By (4.48)(4.50) we may apply Corollary 2.3 to ord ()" ... ()" — 1), and on
noting (4.46), (4.51)~(4.56), (1.17), we obtain (4.43).

€ 2<r<nj,=nV, =i+ 1)V,_,.
We shall prove

!

a\ p'r—1
ord, ® < 4¢’ ) r+)*"rm—r+ -1y .

2 1 _ 1 r+2
. <—tf{g’g—p)> ‘D" 2V, 4y ...V, log(D?B)
#

-max(rlog(2'°qr*D*V), f, log p)
— U, 4.57)

Using (4.1), arguing as in the case (a), and notingr(n — r + 1) = 2(n — 1) > n, we
may assume

Ji— 1
B> 8:105-20(r + 1y*p-1. 2 -DV,_,. 4.58)

(f, logp)?

Note, by Proposition 3.3, that (4.45)—(4.49), (4.51) and (4.56) are valid in the
present case. Further, by Lemma 1.3, we may assume (4.50). By (4.51) and (1.17)
we see that if r > 2 then

1
Vi Viey S5z 0= DU = I Vo Vs, (4.59)

and we remark that (4.59) is trivially true if r = 2. From Proposition 3.3, (b) and
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the assumption V, > 4r(r + 1)V, _,, we get

V(;) < max(V(),4r(r + DV,— 1) =V, < V. (4.60)
Note that the constants C,, C’ in Proposition 3.4 satisfy

C, <3, Cs<Cir+ D> <4 Y(r+ 1)¥+3r2DHY, (4.61)

By Propositions 3.3, 3.4 and on noting (4.45), (4.47), (4.2), (4.4), (4.61) we obtain

v\
max |b]| < Bnp*q“Q(rD*Yr!DVy(DV,_,y ~1)"~" (—") CsDV,(DV,_.)

1<j<r V:.

S Bn'4'_1 ,r2r(n—r)+2(r + 1)2r+3D2r(n—r+l)+2 .

- 1) AN
’(DV,,_I)(r 1)(n r)+r<7;)

=B 4.62)

By (4.58) and the assumption 2 < r < n it is readily verified that

rn —r + 1)log(D*B) + 3 log<%> > logB". (4.63)

r

Further, by (4.58), (4.60) and (1.18) we have

D

r

V
rin —r + 1)log(D*B) + 3log (#) > max(rlog(2“qu), fﬁiOg—p> (4.64)

On noting r(n —r + 1) > 2(n — 1) > 4,D > 2 and using (4.60),(4.63), (4.64) we
get

1
V., max <log B’,rlog(2''gqrD), IL—D(EB )

< V’,{r(n —r + 1)log(D*B) + 3log<zj‘>}

2 Vn -1 Vn
<rnh—r+ 1)V,log(D*B)- 7 1 + log 7

<rHn—r+ 1)V, log(D*B). (4.65)
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Now we may apply Corollary 2.3 to ord,,((oc’l)”"' - (oc;)""' — 1); and on using
(4.46), (4.59), (4.65), (4.51), (4.60) and (4.56), we obtain (4.57).

) r=1,j, <n.
It is easily seen that (4.35) with &) = a;, and (4.38) are valid in the present case;
the latter is just

|b7] < Bn(4D?)**~Y(DV,_,)'~ DV, =:B". (4.66)

We may also assume (4.37). On applying Lemma 1.4 to ord,((oc’l)""’ — 1) and
utilizing (4.35), (4.66), h(ay) < V,-; and ¢, < D, we get

ord, ® < ord,((a})® — 1)

<2 {log2B") + (p%* — (1 + 1/(p — 1))DV,_1}

Jilogp
<7 Togp (P = DU+ 1/(p = DV, + (1 — DiogDV,) +
+ log(D2B) + (4n — 6)log D + (n — 1)log 16 + log(2n)}
<Us (4.67)

where U, is given in (4.7).
(g) r= l’jl = n.
By Lemma 1.11 and the fact that [; is linearly dependent on [, = [, (1 < j < n),
there exist u;e Z,u; > 0, mjoe Z (1 < j < n) such that
u_"lj= mjol(), uj<2D3V0.
Write
M=u,...u,_y, b{=Mp°q"b,.
We have

ord, © < ord, (24! ... alm)MP'®" — 1) = ord,(abi — 1). (4.68)

We may assume abt s 1, for otherwise Lemma 1.3 would yield

D
ord, ® < —log2 < U,.
# filogp g !
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By (4.4), we have
|by| = |b,Mp°q*| < B2D*)" ' =:B". (4.69)

On applying Lemma 1.4 and using (4.68), (4.69), we obtain

{log(2B") + (p”* — 1)(1 + 1/(p — 1))DV,}

D
ord, ® <
# flogp

D
< 5 1)1 + 1/(p — 1))DV, +
f/,logp{(p X /(p—1))
+ log(D?B) + (2n — 4)log D + n log 2}
<U,. (4.70)

(h)r=0
By the fact that every /; (1 < j < n) is linearly dependent on Iy, we see that

ab'...al is a root of unity. By Lemma 1.3, we get

ord,® < log2 < U;.

» 108D
Note that by the inequalities DV; > f, log p (1 < j < n) (see (0.7), (0.9)), n > 2,
r(n —r 4+ 1) < Xn + 1)?, it is readily verified that

@.71)

On observing (4.71) and the fact that the cases (a)-(h) cover all the possibilities,
we complete the proof of Theorem 1.

Proof of Corollary 1. By (0.2)—(0.4), (0.12) and Lemma 1.12, we have

1
uz2, 24+ ——<

P— 0 <0.155334, if p=1 (mod 4),

’

()] -hI\O

1
>2, 2-|-—_1<2 0 <0.1137802, if p =3 (mod 4),
p_

uzl, 0<0.1202248, ifp=2. 4.72)

Now we prove that f(x)=x*"'"?/(x + 1)**? decreases monotonically for
x = 3. Set g(x) = log f(x). It suffices to show that

g(x) <0 for x>3.
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It is easily verified that
o <$(by (4.72), log(l+y)=>3y for 0<y<%

Now for x > % we have

i 1
go=2r1%2_ log<1 + —)

x(x + 1) x
<f_x_+_112_;.l
x(x + 1) > x
1
gl 1){—(%—o)x+%+o'}
1
<x(x+ 1){_(%_0)'%"'%4'6}
=m(%ﬁ—%)<0-

On noting that n > 2, we get
(n+ 120" "1 = fm)(n + 12" < f2)n + 1)+
=gr:2°(n + 1)>"+4, (4.73)
By (4.72) and (4.73), Corollary 1 follows from Theorem 1 at once.
Proof of Corollary 2. Let

kjs=ord,o;, o =p Ma; (1<j<n). (4.74)
Then for j=1,...,n we have

pYlp; and A; > max(p~%p,l,lq;l,p) ifk; >0, 4.75)
p~%lg; and A; > max(p;l,|p*q;l,p) if k; <O.
Now

N M S ) (N (4 )
From this and (4.74) we get

0, if kyb, + - + k,b, > 0,

d,0 =
o {klb1 + o+ kyby, if kb, + - + kb, <0,
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and Corollary 2 follows trivially. Thus we may assume k, b; + --- + k,b, = Oand

we obtain

® = (@) ... (o) — 1.

On combining (4.74)—(4.76), we may assume in the sequel

ord,a0; =0 (1<j<n)
Set

.o {@(44), if p>2
Q). i p=2.

(4.76)

4.77)

Thus D = 2. Denote by £ a prime ideal of the ring of integers in K, lying above p.

It is well-known that

e/'=1,

b i p=1moda)
#7712, otherwise.

By (4.77) we have
ord,a; =0 (1<j<n).

Note that for j=1,...,n we have
1
log A; > logp 21}—92

log A; > logmax(|p;|,1q;1) = h(x;),

and

llog ol < |logla;l| + 7 < logmax( p;|,|q;]) + 7 < log 4; + =,

whence

[loga;| 1

<= ; <logA..
22D 47t(logA,+7t) 0gA;

(4.78)
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Thus we may take
V;=logd; (1<j<n), V=1logA.

By (4.78) and (0.14) we may apply Corollary 1; and by the above observations,
Corollary 2 follows from Corollary 1 immediately.

Proof of Theorem 1'. Let

kj=ord, a;, aj=p Maf (1<j<n) (4.79)
We may assume

kb, + - +kb, =0, (4.80)
for otherwise we would have

ord, © = min(k,b; + -+ + k,b,,0) <0,
and the theorem would hold trivially. By (4.79), (4.80) we get

ord, © < ord, (¢} ...0")es — 1) = ord, (1) ... (an)>" — 1). (4.81)

Ife, > 1, wemay assume further that (b ... aﬂ")e,,o # 1, for otherwise we would
have, by Lemma 1.3,

D,
ord, ® < ——log2,
02 S logp

whence the theorem would follow at once. Thus in any case we have
(@) ... (o) # 1. (4.82)

By Lemma 1.3 and by the identity h(x) = h(1/a) for any non-zero algebraic
number o, we get

D,

|kl < )< ———V;
J J f/.ologp J

h 1<j<n. 4.83)

Dy
J4, logp
Thus, by e, f,, < Do, we have

h(a)) < |k;lh(p) + e, (o) < 2(Do/fy )V (1< j<n) (4.84)
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Further, by (4.83) and (0.21), we see that

|logo| = min |logaj + 2mmni| < | —k;logp + e, loga;|
meZ
< Do/f3)V12D +1) (1< j<n) (4.85)

Now we choose

_ JKo(Cy), if p>2,
K= {KO(C3)a if p=2 (4.86)

and let £ be any prime ideal of the ring of integers in K, such that 4 2 4,. Thus
D =[K:Q] = [K:K]D,. (4.87)
By Lemma 1.12 and Lemma in the Appendix, we have
€4 = €y (4.88)
1 =Jo (4.89)

where f, is given by (0.20). It is readily verified, by (4.84), (4.85) and (0.21), that

I. l
max (h(a;-), ”‘2’5 g", I l‘)’g” ) <2Do/f, V=V, (1<j<n). (4.90)

Now by (4.86), (4.82) and the fact that ord ,&; = ord, «; = 0 (1 < j < n), which
follows from (4.79), we can apply Corollary 1 to ord ,((a1)" ... (¢,)** — 1);and on
utilizing (4.81), (4.87)-(4.90), we obtain Theorem 1'.

REMARK 1. It is easy to verify that if K = K, with K defined by (4.86), then
C' can be replaced by 2"C,, where C, is given in Corollary 1.

2. Using the argument in the proof of Theorem 1’, we can deduce from
Theorem 1, instead of from Corollary 1, a more precise and more sophisticated
bound for ord, ©.

5. Proof of Theorems 2 and 2’

Proof of Theorem 2. We record inequalities (5.1)—(5.3) for later use. It is readily
verified that

logx < x'7 for x > 10'°, 5.1
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Byn>2D>2 DV, > f,logp and Lemma 1.12 it is easy to see that

ﬁg > 101°, (5:2)
Y

Recalling p’ = 1.0752 if p > 2 and p’ = 1.1114 if p = 2, we show

D f,logp
! > 1 UanD), =X, 53
p' log ( T, logpQ> max<n og(2''gnD) D ) (53)

We verify the case p = 2 and leave the remaining cases to the reader. Now g = 3,
p' = 11114.By D > 2,DV,_, > f,logp and Lemma 1.12 we see that forn > 8

11, n 11, n+1
2_3_nq < ﬂ < (IOnD)z‘” 1)p”
(DVa-r) (log 4y

which implies (5.3); (5.3) for p=2, 2<n <7 is readily verified by direct
calculation.

Letr + 1be the rank of {I, ..., 1,}, where [; is given by (4.4) and (4.5). We fix
0=j, < j, <+ <j,<n as in the proof of Theorem 1. We deal with the
following eight cases (a)—(h) separately, and we shall freely use the discussion in
the corresponding cases (a)—(h) of the proof of Theorem 1.

In the proof of Theorem 2 we always bear the following simple observation in
mind that if (0.19) holds for Z > 0 and any 6 with 0 < ¢ < (f, log p/D)Z, then so
does (0.19) for any Z” > Z and any 4" with 0 < ¢" < (f, logp/D)Z".

@ r=nV,<nV,_,.
By (0.15) and (4.20), we have

ord, b, = min ord,bj. (5.4)

1<jgn
On noting (4.11), (4.14), (4.15), (5.4) we may apply Corollary 2.4 to
ord (1) ... () — 1).
Set

’

¥, = 20’<%> (n+ 1)r*ipnte.

p* —1 ,<2 + 1/(p — 1))"”,
q" fulogp

*D"*2V, ...V, max(nlog(2'°qn*D*V,_,), f, logp), (5.5)

where a', ¢’ are given in Corollary 2.3. By the argument in the proof of Corollary
1, we have

¥, <®/p'. (5.6)
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By (4.13), Proposition 3.1.(e), (4.4) and V, < nV,_

B
B3] < 4w 2((n + DD 1DV, 1) B, = =" B

where B” is given by (4.17). Now we take
Z=0/, Z' =Y,V
Then by (4.16) and (5.6) we get

zZ vV, 1
— <

Z ov, Sy<t

1, We get

1"
=: By,

(5.7)

(5.8)

(59)

It is readily verified, on noting (5.3), (5.7) and (0.18), that for any & with

0 <6< (f,logp/D)Z,

1
max{p’ log<5‘1 f_;lc))gp ZB;:),nlog(Z“an), f_L;gp }

< p'log(6™'ZB,Q).

(5.10)

By (4.12), (4.16), (5.7)—(5.10), an application of Corollary 2.4 yields that for any

6 with 0 <6 < (f, logp/D)Z

ord, ® < max(p'¥, log(é~'ZB,Q),B"/B;)
< max(ZV,log(6~*ZB,Q), 5B/B,).

This is just (0.19) with j = n. Suppose now 1 < j < n. We take

=7

15 @
= —"— Z,
z 7V

J

Then, by (5.6), we have

!

z
P¥, <O=12V;, S<1

B, :=B" (B” is given by (4.17)).

(5.11)

(5.12)

On noting (5.3), (5.11) and (4.17), it is easy to see that for any & with
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0 <4 < (f,logp/D)Z,

max {p' log (6‘ ! I“L;g—l—)ZBZ), nlog(2* 1an),I/'l%E}
< p' log(6~*ZBQ). (5.13)
By (4.12), (4.16), (5.11)—(5.13), on applying Corollary 2.4 to
ord () ... @) — 1),
we get
ord, ® < max(¥,p’ log(6~ ' ZBQ),d)
< max(5ZV;log(é~ ' ZBQ), d). (5.14)
It remains to show that for any ¢ with 0 < 6 < (f, log p/D)Z,
15ZV;log(6 ' ZBQ) < max(ZV;log(6~ ' ZB;Q), 6B/B,)). (5.15)

To prove (5.15) we may assume

J

log(—ﬁ—) > $1og(0~'ZB;Q), (5.16)

and it suffices to show that
1ZV;log(B/B;) < 86B/B;. (5.17)

Note that, by (5.2) we have

67'ZB,0 >

Q > 10'°,
S, logp

Hence we get, by (5.1), (5.16),

$B/B, _ (67'ZB,0)"

> >6"'ZBQO=6"1ZV,_, =612V,
log(B/B;) ~ log(6~*ZB,0) 0 ! J

whence (5.17) and (5.15). On combining (5.15) with (5.14), we obtain (0.19). This
completes the proof in the case (a).

b)yr=nV,=2nvV,_,.

In the present case, (5.4), (4.11), (4.14), (4.15) are also valid. Hence we may apply
Corollary 2.4 to ord (1) ... ()’ — 1). By (4.13), Proposition 3.2 and (4.4) we
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get

by | < 4n*(n + 1)3"“D2‘"“’(DV,,_1)"B,,(

V.\> B
_n — _nBI/ — ’"
V;,) B Br,

(5.18)
where B” is given by (4.25). Set

a\" _ p*—1 2+ 1/p—1)\*2
¥, =4c (n+ 1 e — 1) — ( .
: <2> K f,logp
*D"*2V, ... V,_,V,max(nlog(2!°qn?D? Vu-1), f, logp).
By (5.5), (5.6) we see that

Y,_¥ ¥ _2V,
® ¥, © pn

(]

7.

n

(5.19)
Now take

(5.20)
Thus

Z,< <1
Z pn 7

(5.21)
It is easily verified, by (5.3), (5.18) and (0.18), that for any & with 0 < § <
(f, logp/D)Z,

1 1
max{p’ log<6‘ 1 I%ZB;’), nlog(2“an),—f%}
n V.\3
<50 o =] )
ra{s- 0[5

(5.22)
By (4.12), (4.16) (with 1 < j < n), (4.24), (5.18)~(5.22) and (5.2), an application of
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Corollary 2.4 yields that for any J with 0 < ¢ < (f,log p/D)Z,

ord,® < max(\vz-g o' log (6~ 1ZB,QV,/V.)?), 53/3,,)

< max{CI)- %(log(é“‘ZB,,Q) + 3log<; )) éB/B, }
< max {ZV,-log(6~'ZB,Q), 6B/B,},

which is just (0.19) for j = n. It is readily to verify (0.19) for j with 1 < j < n, using
the same argument as in the case (a). We omit the details here

REMARK. If (0.15) does not hold, then we have the following result.
Suppose that (0.13) and (0.14) hold. Suppose further that r = n and

h=max{i|l1 <i< nordb-—mmord bt <m,

ord, b; = 1mlzn ord, by. 0.15y
Set
(D/ > C (n + 1)2n+3____lL_~ Dn+2V V .
s (Flogpy™2 = T1e

max(log (2'%(n + 1)>°D?V, )’fﬁlog p),

15 @
7 V

Z=
Then for any 6 with 0 < é < (f,log p/D)Z, we have
ord, ® < max(ZV;log(é~'ZB;Q), 6B/B;)),

where Q and C, are given in Theorem 2.
Proof. By (4.13) and Proposition 3.1, and by the first row of (0.15), we see that

max{i|1 <i<n,ord, b} = 1mlin ord, by} = h. (5.23)

Obviously (0.15) implies that

j<h (5:24)
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In case (a) (r = n, V, < nV,_,), set

’

a\" ph—1 [(2+1/p— 1))”+2
Y, =2'{=] (n+ 1) in"te < .
’ <2> (n+1) q" filogp

-D"*2V, ...V, max(nlog(2'°q(n + 1)>D?V,),f log p)

and

¥,

Z=-2,
Vi

(V' is given in (4.16)).

Note that by the argument in the proof of Corollary 1, we have
¥, <D/p.

Further (5.24) gives

Vi< Va< 'V
Thus
Z_1 %V

Z o v,~"
We have also
|bxl < B"=:B}, (B” is given in (4.17)).

On applying Corollary 2.4 to ord ,((«})% ... ()" — 1) and using (4.12), we obtain

ord,©® < max{‘l@max(p’ log (5“ % ZB;;),

nlog(2'1qnD), f—"lgﬂ>, 5}.

The rest of the proof is completely the same as in the case (a) with (0.15), so we
omit the details. We also leave the verification for the case (b) (r = n, V, = nV,_,)
to the reader.

c)2<r<n j<n
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In this case we set

d; =0,

. (L<s<r)

and (4.31), (4.35), (4.38) are valid. We may also assume (4.37). Thus we can
apply the results proved in the cases (a), (b) and the above remark to
ord ()"t -+ (o) — 1), since {lo,logas,...,logay} = {lo,1;,,..., 1, } has rank
r+ 1. Set

J,

D #
)r+2

O* = CH(r+ )¥*3 ————
: (f,logp

I
x D2V, V.. 1max<log(21°q(r 12Dy, )L 108P Og”>

where C% is obtained by substituting r for nin C,. Let h with 0 < h < r be such
that

ord, by = min ord, b;.

1<isr

Let
15 o* 15 o*
Z* = 52
T Vs 7 Vaorer 62)
(0] . . .
Z = o jfixed with 1 < j < n. (5.26)

i

By the inequality DV; > f logp (1 < j < n) (see (0.7), (0.9)), it is easily verified
that

(I>* 2 1L Var o Vi

5.27
SBET D Vayer Ve 6-27)
and hence
zZ* 1 1 V.
< — . ._1__ .
Z 10m+1)* vV, (528)

Set Q* = p(10rD)*** DV, _,)". Obviously, Q* < Q, where Q is given by (0.18).
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Note also that

[bh+1l| < B" =: By,
where B” is given by (4.38). Now by (4.35), (4.37) and on applying the cases (a), (b)
and the Remark (below the proof for the case (b)) to ord ()% ... (o)’ — 1), we
see that for any 6, with 0 < d, <(f,logp/D)Z*, we have

ord,© < max(Z*V,_,.,log(d1 ' Z* Bj+,1Q*),6,),
whence for any  with 0 < d < (f, logp/D)Z, we have, by (5.28),

ord,© < max(Z*V,_,,,log(6” ' ZB"Q),d)

1 1

Vao
< max{ —- ZV, 2L og(3™1 ZB"0), 6
max(m mr iR 2y, o 9 >

Vn—l
| 4

n

log <5’IZBQ L)a) (5.29)

10

1
Smax<—-ZVj 7
n—1

where the third inequality follows from

Vv
log(6~1ZB"Q) < (n + 1)*log <5_IZBQ 7 " ),
n—1

which can be easily verified, using (0.18) and (4.38).
When j < n, on noting that (by (5.2))

Vn— 1 -1 Vn Vn— 1 -1 Vn
— S —— ZBQ)-
% log(é ZBQ > 7 log(o BQ)-| 1 + log %

Vn—l n n—1

n

< log(d™'ZBQ),
we see, by (5.29) and by an argument similar to the proof of (5.15), that

ord,©® < max({5ZV;log(é~ ' ZBQ),9)
< max(ZV, log(6~ ' ZB,0), 6B/B))

When j = n, we see from (5.29) that

ord,® < max {f@ZV,,ﬂ(log (6~'ZBQ) + log(VV" )),(5}. (5.30)

n—1
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Similarly to the proof of (5.15), it is easily seen that

%= ZV,_,log(6"*ZBQ) < max(ZV,-,log(6"*ZB,Q), 6B/B,). (5.31)
On combining (5.30) with (5.31) we get

ord,® < max(ZV,log(é~'ZB,Q), 4B/B,).

This completes the proof for the case (c).

REMARK. From the proof we see that in the case (c), the hypothesis (0.15)
can be omitted.

d2<r<nj,=nV, <irr+ 1)V,_,.
In this case we have (4.48), (4.49) and we may also assume (4.50). By (4.56) and
(0.15) we see that

ord,b; = min b;. (5.32)

1<i<r
Thus we can apply Corollary 2.4 to ord ,(«7)% ... ()" — 1). Set

\r -1
¥ = iC(aE> -+ 172 - 1)"'pﬁqu <

2+ 1o - 1))'”,
fulogp

'Dr+2Vn—r+1 s Vn max(rlog(210qr2D2 Vn—l)sf/zlogp)y

FN
[\
BN

¥ 1y, @
= et Z=—. 5.33
V. 5 rr+ 1)V, v (5.33)

n

AR

By (5.5), (5.6) and the inequality DV; > f,logp (1 < j < n), we see that

> )np/>—1 O < D/48np)).  (5.34)

5 a
¥, =¥ (¥Ys/¥1) <6'<2'—'<2 + p—1

Hence
Z'|Z <V¥Y,/0 < 1/48np') < 1. (5.35)

By (4.47) and Proposition 3.3 we get

B
by | < 3"- B" =: B/, (5.36)
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where B” is given by (4.53). By (5.3), (5.36), (4.53) and (0.18), it is easily seen that for
any ¢ with 0 < 6 < (f, logp/D)Z, we have

max {p’ log<6‘ ! L‘—%QZBL) ,rlog(2*'qrD), L‘%}
< 48p'nlog(é6~'ZB,0). (5.37)
On noting (4.46), (5.33)—(5.37) and on applying Corollary 2.4 to
ord ,((a1)% ... (o) — 1),
we obtain for any 6 with 0 < 6 < (f,logp/D)Z

ord,® < max(¥,-48p'nlog(é~ ' ZB,Q), 4B/B,)
< max(ZV,log(6~'ZB,Q), 4B/B,),

which is exactly (0.19) with j = n. The verification of (0.19) for j < n is similar to
that in the case (a). We omit the details here.

@ 2<r<nj=nV,2irr+ 1)V,
In this case we have (4.48), (4.49), (5.32) and we may also assume (4.50). Thus we
can apply Corollary 2.4 to ord ()" ... (o) — 1). Set

Ay fe—1 (24 1)(p— DY *?
‘P5=4c’<ﬁ> (r+ 1+t — 1y -2 ( + Up )) .

2 " filogp
'Dr+2Vn—r+1 tee Vn—l V;' max(rlog(zloquDZ Vn-—l)’ f/z logp)’
¥ 0]
Z =3, Z=1-, (V,is given by (4.60)). (5.38)

By (5.5),(5.6) and the inequality DV; > f,logp (1 < j < n), we see that

Y, ¥, Y 1 V.
— =g — .1 .
® ¥, ® 10n+ Hn*p V, (5:39)
whence
A 1
(5.40)

=<— <1
Z " 10(n + )n?p’

By (4.47) and Proposition 3.4 we get

B
by | < E"'B" =: B/, (5.41)
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where B” is given by (4.62). By (5.3), (5.41), (4.62) and (0.18), it is easily verified
that for any ¢ with 0 < é < (f,log p/D)Z we have

1
max {p’ log (5 -t % ZB;') ,rlog(2"qrD), f”—lDog P }

3
< 10(n + U)np’ log(é'lanQ<%> ) (5.42)

For any ¢ in the above interval, we have, by (5.2)

log(6~'ZB,Q) > log<f ll;gpQ> > 3,
#

whence

J ; -1 V n 3 | :' -1 J n
I _r <= .0) _r
v log<5 ZB,,Q(V;) ) v log(6~'ZB,Q) (1 +log< ;>)

< log(6~'ZB,Q). (5.43)
On noting (4.46), (5.38)—(5.43), and on applying Corollary 2.4 to
ord,((})" ... (@) — 1),

we obtain for any é with 0 < 6 < (f,logp/D)Z

3
ord, ® < max( ¥s+10(n + 1)n?p’ log| 6 *ZB,Q £ , B/B,
# | 744

V; -1 Vn 3
< max (D-—V-log 0~ 'ZB,Q v ) J0B/B,

< max(ZV,log(6~*ZB,Q), 6B/B,),
exactly (0.19) with j = n. The verification of (0.19) for j < n s similar to that in the
case (a). We omit the details here.

A r=1j, <n
By DV, > f,logp (1 < j <n) and (0.18), it is readily verified that for any
6 with 0 < 6 < (f,log p/D)Z,

log(6~'ZB;Q) > logp. (5.44)
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Again by DV; > f,logp (1 < j < n), and by (5.44), we see that for any é with
0<d6<(f,logp/D)Z,

D 1
oD —— -1 —1 "
f,,log,,{@’ )( +p—1>DVn + (n — Dlog(DV,) +

+ (4n — 6)logD + (n — 1)log 16 + log(2n)}

< 2®log(d™'ZB;Q)
= $ZV,log(6™ 1 ZB,Q). (5.45)

By (0.16) and DV; > f, logp (1 < j < n), it is easy to see that

V,_
<1070 L <107 %®.
f,logp v,

Obviously, by (0.18),
log(D?B) < log(é ! ZBQ).

When j = n, we have

D V,_
log(D?*B) < 107 4®-—""L1og(6~'ZB
7, logp og(D*B) v og( Q)

=10"*ZV,_,log(é6 " *ZBQ)
<3 max(ZV,log(d6~*ZB,Q), 4B/B,), (5.46)

where the last inequality follows from (5.31). When j < n, we see, by an argument
similar to the proof of (5.15), that

D
log(D?B) < 10~ *®log(é ' ZBQ)
f,logp g

=10"*ZV,log(d~ ' ZBQ)
< $max(ZV,log(6~ ' ZB;Q), 4B/B;). (5.47)

On combining (4.67) and (5.45)-(5.47), we obtain (0.19).
(8 r=1j,=n
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By (4.70) and by the argument in the case (f), we can easily obtain (0.19).

(h) r=0.
In this case a,,...,, are roots of unity. By Lemma 1.3, we get
D
ord, @ < +log2,
# f,logp

whence (0.19) is trivially true.

Noting that the cases (a)—(h) cover all the possibilities, the proof of Theorem 2 is
complete.

Proof of Theorem 2’. By an argument similar to the proof of Theorem 1’, one
can easily deduce Theorem 2’ from Theorem 2. We omit the details here.

REMARK 1. Itiseasy to see that if K = K, with K defined by (4.86), then C in
the statement of Theorem 2’ can be replaced by 2"C,, where C, is given in
Corollary 1.

2. From the proof of Theorem 2, it is easily seen that (0.16) in the statement of
Theorem 2 can be replaced by ® = p’'¥, with ¥, given by (5.5). Accordingly, on
choosing K by (4.86), we can replace ® in the statement of Theorem 2’ by the
quantity p"¥', where ¥ is obtained from ¥, by substituting (in (5.5)) f, for f,
[K:Ko]1D, for D, 2Do/f, )V; for V; (1 < j<n).

Appendix

Let p be a prime number, K, an algebraic number field and

K , i 2, . ;
K= { 0(C4) if P> with Cm = eZm/m’ m= 3, 4.

Ko(&3), if p=2,

Let 4( /0) be a prime ideal of the ring of integers in K(K,), such that pe 4o S 4.
Let ord,, e,, f, be defined as in Section 0.2, and ord, , e, , f,, be defined with
respect to K in the similar way. Denote by F the finite field with p* elements.

LEMMA. Suppose that K # K,. Then

vee p e p=1meds,
£ A AT \max(f,,,2), otherwise.

Proof. For p =2, we have K = K({3). By the hypothesis, 1, {; are linearly
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independent over K,; and

A(IC)=|1 H=1+./3)
Y 413

2
= -3

Thus
ord, A(1,{3) = e, ord,(—3) =0,

whence {1, {3} is an integral basis at 4, (see Weiss [19], p. 159, 4-8-8). By [19],
p. 169, 4-9-2, we see that Kummer’s theorem (i.e. [19], p. 168, 4-9-1) holds for 4.
Note that the minimal polynomial of {5 over K is x* + x + 1. It is well-known
that the residue class field of Ko at 4 is Fs,, and that x% 4+ x + lisirreducible in
F»[x]. Thus if f, = 1, we see, by Kummer’s theorem, that

eslen, = elpilfro) = 1, fulfuy = S fr0) = 2. (A.1)

If f,, > 2, we see, by Lidl and Niederreiter [11], p. 48, 2.14, that x* + x + 1 splits
into two distinct linear factors in F,:[x], whence so does it in F,s, [x]. Thus

e, = e plpo) =1, fulfuy = f(Alfr0) = 1. (A2)

For p > 2, we have K = K(({4) = Ko(i). By the hypothesis, 1, i are linearly
independent over K,; and

Al i) = 'i = -4

—i
So
ord, A(l,i) =e, ord,(—4) =0,

whence {1,i} is an integral basis at z, (see [19], p. 159, 4-8-8) and Kummer’s
theorem holds for 4. Note that the residue class field of K, at £, is Fpr,, and the
minimal polynomial of i over Kq is x* + 1. It is well-known that if p = 1 (mod 4)
then x? + 1 splits into two distinct linear factors in F,[x], whence so does it in
F P, [x]. By Kummer’s theorem, we get (A.2). Note further that if p = 3 (mod 4)
then x? + 1 s irreducible in F,[x]. An argument similar to that in the case p = 2
yields (A.1) if f, =1 and (A.2) if f, > 2.
Thus the proof of the lemma is complete.
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