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Introduction

The simplest type of purely inseparable cover of a variety X with coordinate ring
A in characteristic p ~ 0 is obtained by taking Y = Spec(A[pg]) for some g E A.
Efforts to relate the codimension one cocycles of X and Y ([2], [10]) have led to
the ring-theoretic question, "If A is a UFD of characteristic p ~ 0, for what g E A
is A [pg] a UFD?" A natural place to begin such investigations is with the case
where A is a polynomial ring. Then we may ask, "For what g E k[x, y] is

k[xP, yP, g] a UFD?" Note that if gx and gy have no common factor in k[x, y] then
the coordinate ring of the surface zP = g is isomorphic to A([10], pg. 393).
The main result of this paper is motivated by the classical result of Max

Noether, that a generic surface in P3 has Pic ~ Z[7]. This result was extended to
all characteristics by Deligne [5].

Let G be of degree n and aij its coefficients: G = 03A3aijxiyj E k[x, y], with k an
algebraically closed field of characteristic p ~ 0. We say that a property P is true
in general for the surface zP = G(x, y) if there exists a non-zero Q E k[Aij] such
that P is true whenever Q(aij) * 0. We say that P is generically true, if it is true
when the aij are algebraically independent over Fp.

This article completes the project of determining the group of Weil divisors of
the surface zP = G(x, y) for a general choice of G. Consider the following theorem.

*THEOREM (Blass-Deligne-J. Lang). The group of Weil divisors of the surface
zp = G(x, y) is 0 (i.e., k[xp,yp,G] is a UFD) if n = deg G  4 and p &#x3E; 2, and is

Z12Z if n  5 and p = 2 in general.

In [11] Lang shows that is enough to prove (*) for a generic G. Blass in [1]
calculates the divisor class group of zP = G for a generic G in the case where n = 0
(mod p) and p  5. Grant and Lang prove (*) for the remaining p = 2 and p = 3
cases.

* 
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Blass [1] uses the fundamental group to study the curves on a disingularization
of zP = G to arrive at his result, where the argument depends on a result of W.
Lang [12] and the fact that there are no singularities at infinity. If deg G is not
divisible by p, then this approach does not work, as the singularities at infinity
present difficulties.

In [6] and this paper, this problem is overcome by combining the fundamental
group methods with purely inseparable descent [16]. All three articles use

techniques of Grothendieck [7] to study coverings of one curve by another, but in
this paper obstacles such as singular points and wild ramification arise. Because
of this, weaker results concerning the action of Gal(k: Fp(aij)) on the singular
points are obtained (compare [2] page 273 and 1. (5.7).), so that the arguments
involving logarithmic derivatives II. (2.2) needed to be changed considerably.

Chapter 1 is quite long although the ideas are not difficult. If one is willing to
accept the principal result in this chapter, Theorem 5.7, which intuitively seems
true, then Chapter II provides a fairly brief and simple proof of the main theorem,
II.(2.2).
A preliminary announcement of this article, coauthored by P. Blass, appeared

in [4].

0. Notation and definitions

0.1 k = k is an algebraically closed field of characteristic p ~ 0. Tij are

indeterminates algebraically independent over k, 0  i + j  n, where n  4 is
a fixed positive integer.

There is a natural morphism

If X ~ A is a morphism, Ex will denote the scheme E x A and nx : Ex - X the
projection. If U c A is open or closed, 03C0U : EU ~ U has the foregoing meaning
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with respect to the inclusion map U ~ A. Also the same conventions are applied
to the map X - E.

0.2 Closed points of A will be identified with polynomials of degree n in k[x, y].
Define a subset V ~ A as follows: If n ~ 0 (mod p), then a polynomial g E k[x, y]
belongs to V if and only if gx and gy do not meet at infinity. If n = 0 (mod p) then
g e V if and only if the surface zP = g has no singularities at infinity. In both of
these cases V is open and dense in A (see [2] page 267, no. (0.2) and [6] no. (0.2)).
Now define a subset U c Y as follows: g E U if and only if g ~ V and zP = g has
only non degenerate singularities (i.e., gx = gy = 0 implies hessian of g ~ 0). It
turns out that U is a non empty open subset of V (see 1(3.2) below).

0.3 With F as above, let R = L[x, y, z]l(zp - F(x, y)) and S = Spec R. Then all
of the singularities of S are rational double points and there are (n - 1)2 of them if
n ~ 0 (mod p) and n2 - 3n + 3 otherwise (see 1(3.5)). When their coordinates
need to be written, we will write Q = (a1,a2,a3). Thus we define H(Q) =
(Fxx - F2xy) (a1,a2).

0.4 Let X be a noetherian scheme, Et(X) the category of finite étale coverings
of X. Let Q be an algebraically closed field. b: Spec 03A9 ~ X, a geometric point of X.
Let Y ~ Et(X). FXb(Y) is the set of liftings

If W - X is a morphism, we then obtain a base change functor Et(X) ~ Et( W),
which will be denoted by RW or simply R. If X and Y are schemes, X u Y denotes
the disjoint union of X and Y.

0.5 In the following definition the ground field is assumed to be algebraically
closed of characteristic p ~ 0. n : A ~ B is a finite separable morphism of curves
with B irreducible and smooth.

0.6 Definition: 03C0: A ~ B is called r-simple over a point q E B if there exists
a point p ~ 03C0-1 (q) such that for all p’ ~ p in 03C0-1(q), p’ is a nonsingular point of A,
03C0 is unramified at p’, and such that the cardinality of 03C0-1(q) is deg n - r + 1.

0.7 If A is a Krull ring, Cl(A) will denote the divisor class group of A (see [15],
pg. 4 for the definition). By a surface, we mean an irreducible, reduced,
two-dimensional quasi-projective variety over an algebraically closed field. If E is
a normal surface, Cl(E) will denote the divisor class group of the coordinate ring
of E.
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0.8 Ak stands for affine n-space over k. k" is the set of all n-tuples of elements of
k. For g E k[x, y], Sg = {(03B1, fi) E k2: gx(03B1,03B2) = gy(03B1,03B2) = 0}.

I. THE GALOIS ACTION ON SINGULARITIES

1. Preliminaries

The proofs of the results in this section can be found in ([2], pgs. 275-276) or in
[1]. They are based on the techniques described in Grothendieck’s, SGAI,
Chapter VII.

Let i : Y - X be a morphism of locally noetherian connected (regular) schemes
and b : Spec Q - Y be a geometric point of Y, where Q is an algebraically closed
field. We will abuse notation and let b also denote the corresponding geometric
point of X.

1.1 The reader is reminded of the definition (see [7], pgs. 140-142) of the
induced homomorphism

Consider the diagram of functors,

(ENS is the category of finite sets. See [7], pg. 146.) We have that 03C01(Y, b) =
Aut(FI) and 03C01(X, b) = Aut(FXb). By SGAI (see [7], pg. 142) there is an

isomorphism of functors:

If 6 E 03C01(Y,b) = Aut(Fr), we define 6 = i*(03C3) by the diagram
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1.2. PROPOSITION. If W E Et(X) is irreducible, then n, (X, b) acts transitively
on Fx(W) for any base point b in X.

1.3. PROPOSITION. Let W ~ Et(X) be irreducible and assume that R(W) = Wy
decomposes into WY = S(Y) u T where s : Y ~ WY is a section and T is irreducible.
Then for any base point b E X the action of nI (X, b) on Fx(W) is transitive and twice
transitive.

1.4. PROPOSITION. Let W ~ Et(X), Rw(S) = Wy E Et(Y) and let b be a base
point in Y. Suppose that the action of 03C01(Y, b) on Fr (Wy) includes a nontrivial
permutation of r elements, then the action ofnl (X, b) on Fx(W) includes a nontrivial
permutation of r elements. Also, if b’ is any other base point in X not necessarily in
Y, the action of 03C01(X, b’) on FXb’(W) also includes a non trivial permutation of
r elements.

2. Some results on curves

In this section 03C0: A ~ B is a finite separable morphism of curves with

B irreducible and smooth where the ground field k is assumed to be algebraically
closed of characteristic ~ 0.

2.1. LEMMA. Assume that n is r-simple over q E B. Let p be the only point
of 03C0-1(q) where A may be singular. Let O*q be the henselization of Oq and K* its
quotient field. Then Spec(K*) x B A = S  Spec(Li)  ... Spec(L,,) where S is
a disjoint union of sections over Spec(K*), Lj is a finite separable field extension of
K* for each j, s  multiplicity of p on A, and Z[Li: K*] = r.

Proof. Let W = Spec T be an affine open neighborhood of q in B. Then
03C0-1(W) = Spec(R) is an affine open neighborhood of A containing the fibre
03C0-1(q) of q in A since n is finite. By hypothesis 03C0-1(q) consists of p and a finite
number of remaining points P2, ..., pn where A is smooth and unramified over
q and where n = deg n - r. Then Spec(O*q) xB A = Spec«9* q 0 T R). O*q ~T R is
a finite integral extension of (9* q and is therefore a direct sum O*q Q9T R = ~ Ri
where R1 = O*q 0T (9 p and Ri = O*q (D T (9pi for i = 2,..., n (see [13], Theorem
(43.15), pg. 185). The local rings (9q and (9,i are discrete valuation rings with
residue field k, so that O*q and Ri with i  2 are as well ([14], Theorem (5.11.1),
p. 193). Also, for i  2, Ri is a finite integral unramified extension of O*q. By
Nakayama’s lemma Ri = O*q for i &#x3E; 1, so that K* 0 T Ri = K* for i &#x3E; 1.

Now let p be the integral closure of Op in its total quotient field, and
let O*p = Op 0 T O*q and f9; = f9 p ~T O*q. Then Õ*p is the integral closure of O*p in
its total quotient ring ([15], page 101, Proposition 2) and we have that

O*q ~ O*p ~ f9: are integral extensions. Let m1, ... , ms be the maximal ideals of
f9 p. By ([16], page 299, Corollary 1) s  multiplicity of p on A. Again we have
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that 19; = ~sj=1 R’j where R’j = Omj ~ O*q are discrete valuation rings with
residue field k and whose valuation agrees with the valuation on Omj([14],
page 193). If we let t be a parameter for the maximal ideal of Oq, it then follows
that 03A3sj=1vj(t) = r where Vj is the valuation on Ri. Thus we have that

Li = K* Q9 T Ri are separable field extensions of K* with 03A3sj=1[Li: K*] = r, so
that we are done if K* ~T O*p = K* Q9 T 19; . This is not difficult to see. Since they
both have the same total quotient ring and K* ~T 19; is integral over K* Q9 T (9;
we have that the conductor of K* Q9 (9; in K* Q9 19; contains a nonzero divisor x.
Then x is integral over K* so that xn + a xn - 1 + ... + an = 0 for some ai E K*
with an ~ 0. Then an is in the conductor and is a unit in K* Q9 (9; .
2.2. THEOREM. Let 03C0: A ~ B, p ~ A, q ~ B be as in (2.1). Let B0 = B - (q) and
A 0 = 03C0-1(B0). Assume that the induced morphism A0 ~ BO is étale. If FB0b0(A0) has
deg n elements for some geometric point bo E BO, then each Lj in (2.1) is a Galois
field extension of K*.

Proof We have morphisms Spec(k(B0)) ~ Spec(K* ) ~ Spec(k(B0)) ~ B0.
Thus we obtain a geometric point b of Spec(K*) and the corresponding
geometric point bl of BO. By Grothendieck ([7], page 38), FSpec(K*)b
(S LJ Spec(L1 LJ ...  Spec(Ls)) ~ FB0b1(A0) ~ FB0b0(A0), which has deg n elements.
Therefore card FSpecb(K*)(S) + 03A3sj=1 card(AutK*(Lj)) = deg 03C0, so that 03A3sJ=1
card(AutK*(Lj)) = r. Since card(AutK*(Lj))  [Lj : K*], it follows by (2.1) that

[Lj: K*] = card(AutK*(Lj)) and hence Lj is Galois over K* for each j = 1,..., s.

2.3. COROLLARY. If the multiplicity of p on A is less than r in (2.2), then for any
base point b1 of B°, the action of 03C01(B0,b1) on F bl (A 0) contains a nontrivial
permutation of r-elements, holding all others fixed.

Proof. Again let b and hl be the geometric points of Spec(K*) and B° obtained
from the morphisms Spec(k(B0)) ~ Spec(K*) ~ Spec(k(B0)) ~ Spec(B0). By (2.1)
and (2.2), we may assume that L1 is a nontrivial Galois extension of K*. Let 03C3 be

a nontrivial element of Gal(L1, K*). Then 6 extends to an automorphism if of

k(B0)sep over K*.
By Grothendieck ([7], p. 143, Proposition 8.1) we have 03C01(Spec(K*), b) =

Gal(k(B0)sep, K*). The element 03C3 ~ 03C01 (Spec(K*), b) induces a nontrivial permuta-
tion of the r elements of Fb(Spec(L1)  ···  Spec(Ls)) and holds the deg n - r
elements of Fb(S) fixed. By (1.4), 03C01(B0,b1) induces a permutation of less than or
equal to r elements of FB0b1(A0), holding all others fixed. The independence of base
point also follows by (1.4).

3. The geometry of the map E ~ A

In this section we need to collect some facts about the geometry of the map E ~ A.

Many of the proofs are omitted because they could be found in [1] or [2].
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3.1. PROPOSITION. E is smooth, irreducible, and isomorphic to an affine space
over k of dimension equal to the dimension of A ([2], p. 281, (3.1.1)).

3.2. PROPOSITION. (a) U c V is open and dense, (b) 03C0V: Ev - V is a finite map,
(c) 03C0U: Eu --+ U is étale (see [2], pages 281-282 and [6], Chapter l, (3.5), (3.6), and
(3.8)).

3.3. PROPOSITION. For any base point b E U, the action ofn1 (U, b) on Fb(Eu) is
transitive.

Proof. As Eu is a dense open subscheme of E, it is irreducible and therefore
connected. The result follows by (1.2).

3.4. THEOREM. There exists a point g E V such that 03C0-1(g) consists of (n - 1)2
unramified points (at which n is étale) if n i= 0 (mod p), n2 - 3n + 3 unramified
points otherwise. k(E) is a field extension of k(A) of degree (n - 1)2 if n ~ 0 (mod p),
n2 - 3n + 3 otherwise.

Proof. We will prove this for the case n :0 0 (mod p). The remaining case uses
the same argument and is left as an exercise.
Assume first that n ~ 2 (mod p). Let g = xy = 1/n(xn - yn). Then gx =

y + xn-1, gy = x - yn-1 and the hessian of g is H = - (1 + (n - 1)2 xn-2yn-2).
Then g ~ V since xn - yn has distinct factors.

03C0-1(g) is the set of points in k2 where gx and gy meet. We have that gx, gy and
H are never simultaneously 0. For if (a, b) E k2 is a point where gx = gy = H = 0,
then (n - 1)2an-2bn-2 + 1 = 0 which implies that (n - 1)2an-lbn-l + ab = 0,
which gives ((n - 1)2 - 1)ab = 0 since a" -1 = -b and bn-1 = a. Therefore

n(n - 2)ab = 0 and hence a = b = 0. But then H(a, b) = -1.
Therefore, in fact g E U by (0.2). Thus 03C0-1(g) consists of (n - 1)2 unramified

points by (3.2). By (3.2) 03C0 is separable. It follows that [k(E) : k(A)] = (n - 1)2. If
n = 2 (mod p), the same argument works with g = x + xy + 1/n(xn - yn).
The proofs of the next two corollaries to (3.4) are proved by Blass ([2], page

287) for the case n = 0 (mod p), but the arguments are independent of this
assumption.

3.5. COROLLARY. The surface S has (n - 1)2 singularities at finite distances if
n ~ 0 (mod p), n2 - 3n + 3 otherwise.

3.6. COROLLARY. All of the singularities of S are nondegenerate.

4. Some r-simple morphisms

This section begins by producing an example of a g E v - U, such that 03C0-1 (g) is
a set of (deg n) - 2 distinct elements when p = 3 and deg(n) - 3 distinct elements
when p = 2.
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4.1. EXAMPLE. In (a), (b), (c), p = 3 and g ~ V - U is such that the curves gx = 0
and gy = 0 meet at deg 03C0 - 3 points of k2 transversally with intersection

multiplicity 1 and exactly one point with intersection multiplicity 3. In (d), (e),
p = 2 and g E V - U is such that gx = 0 and gy = 0 meet at det(03C0) - 4 points
transversally with intersection multiplicity 1 and exactly one point Q with
intersection multiplicity 4.

(a) If n = 2 (mod 3), with n  5, let g = x" + yn + XI + xy - x if n - 2 = 3s
with s = 1 (mod 3), otherwise let g = xn + y" + xy’ + xy - x. In both cases
Q = (1,1).

(b) If n = 1 (mod 3), with n  7, let g = xn + yn + x5 + x4 + (y + (-1)n)3 x +
y2. Q = ((-1)n-1 ,0).

(c) If n = 0 (mod 3) with n  6, let g = xyn-1 - xn-1 + xn-2 y + xn-4 + x
if n = 3s with s = 1 (mod 3), otherwise let g = xyn -1 + xn-2y +
xn-4y3 - xn -1 + x. In both cases Q = (1,1).

(d) If n = 2s + 3 with s  1, let c E k be such that c ~ 0,1 and g = (x + y)2
(x + y + 1)2sx + y3(y + c)2s + x3y. Q = (0,0).

(e) If n = 2s + 6 with s  0, let c be as in (d) and g = xy( f (y) + x)2 + (x + y)2
(x + y + 1)2,X + y3(y + c)2 where f(y) has degree s + 2, f(y) + y has 0 as a root
of multiplicity 1 and is such that f (c) + c ~ 0, 1. Q = (0, 0).
The idea is now to construct using (4.1) a line L in A containing g so that the

curve EL lying above it in E is 3 simple over g if p = 3 and 4 simple over g if p = 2.
When p = 3 we also want EL to be nonsingular. The approach is to find

h(x, y) E k[x, y] so that the line L defined by g(x, y) + 03BBh(x, y): 03BB E k, has the desired

properties. We will do this explicitly for case (4.1 (a)) and (4.1 (d)) above, leaving the
details for the remaining cases in (4.1) to the reader.

4.2. THEOREM. Let p = 2 or 3, n  4. Then there is a line L in A = Spec k[Tij]
containing g such that (a) EL is irreducible (b) 03C0L: EL ~ L is 3 simple over g if p = 3,
4 simple over g if p = 2, (c) EL is nonsingular if p = 3. If p = 2, ni 1 (g) contains

exactly one singular point of multiplicity 
2.

Proof. Case: p = 3, n = 2 (mod 3), g = xn + yn + X4 + xy - x, n  5,
n - 2 = 3s with s = 1 (mod 3). Let L be the line in Spec k[Tij] corresponding
to polynomials of the form Ây + g, 03BB ~ k. Let 03C0L : EL -+ L be the induced

morphism. EL is isomorphic to Spec k[x, y, 03BB]/(-xn-1 + X3 + y,
-yn-1 + x + 03BB) ~ k[x, y]/(-xn-1 + x3 + y) ~ k[x], which is a line. This

proves (a) and (c).
EL ~ L is isomorphic to the projection to the Spec(k[03BB])-axis of the space curve

in Spec k[x, y, 03BB] defined by gx = 03BB + gy = 0.
The matrix of partials with respect to x, y, and 03BB is
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From (4.1) we have that if 03BB = 0, then det|gxx gxy| ~ 0 for every point of the
gxy gyy

space curve except the point Q defined by 03BB = 0, x = 1, y = 1. It then follows that
there are (n - 1)2 - 3 points of 03C0-1(g) where 03C0 is unramified and exactly one
remaining point Q E 03C0-1(g). Therefore n is 3 simple over Q.

Case: p = 3, n = 2 (mod 3), n - 2 = 3s with s ~ 1 (mod 3), g = x" + y" +
xy’ + xy - x. Apply the same argument with L defined by the space curve
g + 03BBy, 03BB ~ k.

Case: p = 2, n = 2s + 3 with s  1 with s  1, g = (x + y)2(x + y + 1)"x + y3
(y + c)2s + x3 y, where c ~ 0, 1 E k. Let L be the line in Spec k[Tij] defined by
polynomials of the form g + 03BBx, 03BB E k. EL is isomorphic to Spec k[x y, 03BB]/(gx + 03BB,
gy) = k[x, y]/(y2(y + c)2s + X3), hence EL is irreducible. This proves (a).
This proves (a). 
The matrix of partials with respect to x, y and 03BB for the ideal (gx + 03BB, gy)

k[x, y, 03BB] is

From (4.1) we have that gxx gxy ] ~ 0 at every point of EL with 03BB = 0 except at
gxy gyy -

the point Q given by 03BB = 0, x = 0, y = 0. Thus there are (n - 1)2 - 4 points of
03C0-1L 1 (g) that are unramified over g and there is exactly one additional point of
03C0-1(g) where EL has a singularity of multiplicity 2. Therefore nL is 4-simple over
g.
The next theorem summarizes what has been shown in Sections 3 and 4.

4.3. THEOREM. There exists a point g E V - U and a line L, closed in V, such
that g E L and Lu = L n U is open and dense in L and closed in U. Let Li be the
open subset of L defined by Lu u {g}. Then we have induced coverings

with EL1  L1 3-simple over g if p = 3, 4-simple over g if p = 2. In the case p = 2,
the fibre over g in EL1 contains exactly one singular point of multiplicity 2.

4.4. REMARK. EU ~ U is étale. Therefore by base change ELu --+ LU is étale.

5. The action of G on sing(S)

5.1. PROPOSITION. Let b: Spec 03A9 ~ LU be any geometric base point; then the
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action of nI (Lu, b) on Ff;U(E Lu) includes a permutation of r elements, holding all
other elements fixed, with r = 3 if p = 3, r = 4 if p = 2.

Proof. Consider the case p = 3, n = 2 (mod 3), L defined by g + iy in the proof
of (4.2). Let So = {Q ~ k [Â] 2: gx(Q) = gy(Q) + Â = 01. It is left as an exercise to
verify (apply the same argument as (3.4) and (3.5)) that So has (n - 1)2 = deg(03C0LU)
elements. Let bo : Spec(k(03BB)) ~ Spec(k(03BB)) be the base point of Lu such that

Fb0(ELU) ~ So. The proposition then follows by (1.4), (2.3), (4.3) and (4.4). The
remaining cases are similar.

5.2. PROPOSITION. For any geometric point b in U, the action of nI (U, B) on

Fb(Eu) includes a permutation of r elements, holding all other elements.fixed, with
r = 3 if p = 3, r = 4 if p = 2.
Proof Use (1.4) and (5.1).
5.3. Let Z = Spec k[Too, T20, T11, T02, ... ]. Z corresponds to polynomials

g such that zP = g(x, y) has a singularity at the origin. ZU then corresponds to g in
U that have a singularity at the origin.

5.4. THEOREM. For each base point b in Zu, there exists an A E FAUb(EZU) whose
stabilizer in nI (ZU, b) acts transitively on F b(E zu) - {A}. (For the proof see ([2],
page 295, (3.3.1).)

5.5. COROLLARY. 03C01(U, b) acts on Fb(Eu) transitively and twice transitively for
any base point b in U ([2], page 295, (3.3.2)).

5.6. THEOREM. If p = 3, then for any geometric point b : Spec 03A9 ~ U, the action
of 03C01(U, b) includes the alternating group on Fb(E,). If p = 2 then for each pair
A, BEF b(Eu) there is a pair C, D E Fb(EU) - {A, Bi such that 03C01(U, b) acts as the
identity on Fb(Eu) - {A, B, C, D} and permutes the elements of {A, B, C, DI
nontrivially.

Proof. Assume p = 3. Let b : Spec 03A9 ~ U be a base point. By (5.2) and (5.5)
we have for each pair A,BEFb(Eu), there is a C E Fb(E,) such that 03C01(U, b)
includes a nontrivial permutation of {A, B, C} which acts as the identity on
Fb(Eu) - {A, B, CI. If this permutation is a transposition then by (5.5) we are
done. If not then by (5.5) we have that for each pair A, B there is a C ~ Fb(Eu)
such that the 3-cycle (A, B, C) E 03C01(U, b). Then choose a 3-cycle (C, D, E) ~ 03C01 ( U, b)
with D ~ A or B. If E ~ A, B, then (C, D, E)2 (A, B, C) (C, D, E) = (A, B, D) E
03C01(U, b). If E = B, then (C, D, B)2 (A, B, C) = (A, B, D) ~ 03C0 1 ( U, b). This shows that
the action of 03C01(U, b) on Fb(Eu) contains all 3-cycles of elements of Fb(Eu). The
statement for p = 2 follows immediately from (5.2) and (5.5). The independence of
base point is by Grothendieck ([7], pg. 141).

Recall that F = 03A30i+jn Tijxiyj, L = k(Tij), S = Spec(L[x, y, z]/(zP - F)),
G = Gal(L: k(Tij)) and Sing(S) = SF = {Q E L2 : Fx(Q) = Fy(Q) = 01.

5.7. THEOREM. G = Gal(k(Tij): k(Tij)) acts on Sing(S) as the full symmetric
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group if p = 3. If p = 2, then for each pair Q 11 Q2 E SF, there exists a pair
Q3, Q4 in SF - {Q, Q2} and a 03C3 ~ G such that Cr(Ql)=Q2, 03C3(Q2) = Q1,
03C3(Q3) = Q4, 03C3(Q4) = Q3 and such that a acts as the identity on SF - {Q1, Q2,
Q3, Q4}.

Proof. Let b: Spec(k(Tij)) ~ Spec(k(Tij)) be the base point of U such

Fb(EU) ~ Sing(S). We have by Grothendieck ([7], pg. 143) a surjective homo-
morphism G ~ 03C01 (U, b). The identification Sing(S) ~ Fb(Eu) is G-equivariant,
where G acts on Fb (Eu) via G ~ 03C01(U, b). Thus by (5.6) if p = 2 the action of G on
Sing(S) contains a 2-, 3- or 4-cycle or a disjoint product of 2-cycles. If this action
contains a 4-cycle then its square is a disjoint product of 2-cycles. Then (5.5) gives
us the desired result. If this action contains a 2-cycle then G acts as the full
symmetric group on Sing(S) by (5.5), while if it contains a 3-cycle then this action
includes the alternating group by the same argument used in the p = 3 case of
(5.6). In each of these cases the result still holds.

If p = 3, then by (5.6) the action of G on Sing(S) contains the alternating group.
Thus it is enough to show that this action includes at least one odd permutation.
This can be accomplished by showing ([14], page 81) that £5 = 03A0ij(03B1i - 03B1j)2 is
not the square of an element in F3[Tij] where the ai are x-coordinates of the
points in Sing(S), and F3 is the prime subfield in L(03B4 is the discriminant of 03A0i
(x - 03B1i)). We are done then if we prove the corresponding result for a specializa-
tion of F, that is, for some choice Tij = 03B1ij E k.

Several cases must be considered. We will consider only a few, admittedly
simpler ones, leaving the remaining cases as an exercise.

If n = 1 (mod 3) with n even let g = xn + yn + xy. Then the x coordinates of Sg
are the roots in k of f (x) = x(n-l)2 - x. £5 will then equal the determinant of -I,
where I is the (n - 1)2 identity matrix. Thus 03B4 = - 1 which is not the square of an
element in F 3. 

If n - 2 (mod 3), with n odd, let g = xn + y" + xy + y. Then the x coordinates

of Sg are the roots in k of f(x) = x(n-1)2 - x - 1. b is equal to the determinant of
the matrix
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Therefore 03B4 = (-1)n2-2n = -1. If n = 0 (mod 3) with n even, let g =

x" -1 y + xyn-2 + yn-1 + y. The x-coordinates of S. are the roots of f(x) =
(x" -1 + 1)[(xn-1 + 1)n - 3- x (n - 2)2 ]. Again b = -1 by a similar computation.

II. THE GROUP OF WEIL DIVISORS OF S

1. Techniques of purely inseparable descent.

If R is a noetherian integrally closed domain then R is a Krull ring ([16], pp. 1-4
for definition) and X = Spec(R) will be regular in codimension one and the group
of Weil divisors of X ([9], pg. 130) and the divisor class group of R as defined in
Samuel’s notes ([16], pg. 18) are isomorphic.

Let k be an algebraically closed field of characteristic p ~ 0. Let g E k[x, y] be
such that gx and gy have no common factors in k[x, y]. Define a derivation D on
k(x, y) by D = gy(olox) - gx(~/~y). For each non negative integer m, let Am =
k[xpm, ypm, g] and let Xm c Ak be the surface defined by zpm = g. Then
Ao = k[x, y]. Denote the quotient field of Am by Em. Each Am is isomorphic to the
coordinate ring of Xm ([10], pg. 404) and is thus noetherian integrally closed and
hence a Krull ring. Since Apm ~ Am+1 ~ Am we have that Am is integral over
Am+1. By Samuel ([16], pgs. 19-20) there is a well defined homomorphism
~m : Cl(Am+1) ~ Cl(Am). Define Dm : Em ~ Em as follows.
Given a E Em, it can be written as a = 03A3pm-1i=0 1 afmgi for unique (X, e k(x, y). Then

define

Dm is a derivative on Em ([10], pg. 404). For each m  1, let .Pm be the
additive group of logarithmic derivatives of Dm in Am. Thus Fm =

{f-1 Dm(f) ~ Am : f~ Am}.
1.1. THEOREM. (a) There exists a ~ k[x,y] such that DP = aD, (b) ker Dm ~
Am = Am+ 1- (c) ker(~m) ~ .Pm, (d) Dm = apmDm, (e) the order of Fm is pM for some
M  deg(g) (deg(g) - 1)/2. ([2] pgs. 393, 394, 404.)

1.2. THEOREM. Let D : K ~ K be a derivation of a field K of characteristic p ~ 0.
Let K’ = ker(D) and [K: K’] = p. An element t E K is a logarithmic derivative (i.e.,
there exists an XE K such that t = Dx/x) if and only if Dp-1(t) - at + tp = 0
where DP = aD ([16], pg. 64, (3.2)).

1.3. THEOREM. Let D = gy(~/~x) - gx(~/~y) and 03B2 ~ k[x, y] be such that

Dp = 03B2D. If (a, b) ~ k2 is such that gx(a, b) = gy(a, b) = 0, then 03B2(a, b) =
(H(a, b))p-1/2 where H = gxy - gxxgyy ([3], Theorem 3.4).
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1.4. LEMMA. Let t = 03A3pm-1j=003B1pmigj E Am. If t E 2 m then the degree of each oc is
less than or equal to deg(g) - 2 ([3], Cor. 3.6).

Consider Zariski surfaces X : zP = g such that gx and gy meet transversally and in
the maximum number of points of k2. This number is (n - 1)2 if n :0 0 (mod p),
n2 - 3n + 3 otherwise, where n = deg(g). Such a g we will say satisfies condition (*).
This is equivalent to saying that g E U (see [2], pg. 268 and [6]). In both of these
cases, polynomials g E k[x, y] satisfy (*) for a general choice ([2], pg. 282).

1.5. THEOREM. Let g satisfy (*). Then for each m  0, Fm ~ .Po, the group of
logarithmic derivatives of D = gy(~/~x) - gx(ôlôy) in k[x, y]. ([16], II (2.1)).
1.6. LEMMA. Let g satisfy (*). If 0 ~ t E 20 then t(Q) e 0 for at least one point of
Sg = {Q ~ k2 : gx(Q) = gy(Q) = 0.} Furthermore, if n = deg(g) ~ 0(mod p) then

t(Q) ~ 0 for at least n - 2 points of Sg([11], pg. 278,(2.9)).
For each Q E Sg let H(Q) denote a root of the polynomial W2 = H(Q) in k

(if p = 2. H=(Q) is just gxy(Q).) Let 7Llp7L. H=(Q) be the additive cyclic sub-
group of k generated by H(Q). If t E .Po, then DP -’t - at = - tp by (1.2). By
(1.3) this implies that (t(Q))p = (H(Q))p-1t(Q). Thus t(Q) E 7Llp7L.J H(Q) for
each Q E Sg. We obtain a homomorphism 03A6: F0 ~ ~Q~Sg Z/pZ. H(Q) defined
by V(t) = (t(Q)QeSg). From (1.6) we have

1.7. LEMMA. Let g satisfy (*). Then (D is an injection.

2. The generic class group

Let (7Llp7L)S be a direct sum of s copies of 7Llp7L, p ~ 0, s  3. Let C(S) be the group
of permutations of elements of (Z/pZ)s and T be the group of automorphisms of
(7Llp7L)S corresponding to sign changes of coordinates (if p = 2, T = {id}). Let
pl : C(S) x T ~ C(S) be the projection map. Let H be a subgroup of C(S) that
contains for each pair of coordinates of elements of (7Llp7L)S, an element 03C3 E C(S)
that permutes the given coordinates, permutes two others and acts as the identity
on all other coordinates. Thus a will be a product of two disjoint transpositions.

2.1. LEMMA. Let G ~ C(S) x T be such that p1(G) contains {H if p = 2, C(S) if
p  31. If W is an invariant subgroup of (7Llp7L)S under the action of G, then W = 0,
7Llp7L, or has a nonzero element which has at most four nonzero coordinates if
p = 2, 3 nonzero coordinates if p  3.

Proof. Assume p = 2 and that W e 0 or 7Llp7L. Then W contains an element of
the form (0, n2l ..., ns) = x where at least one nj i= 0. We may assume without
loss of generality that n2 ~ 0. Let 03C3 E H be a product of two disjoint 2-cycles, one
of which permutes the first and second coordinates of elements of (7Llp7L)s. Then
x - 03C3x ~ 0 and x - ax has at most four nonzero coordinates.
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Assume p  3. Again if W çk 0 or Z/pZ then W contains an element of the form
x = (0, n2, ... , ns) with n2 i= 0. Choose such a x E W with the minimum number of
nonzero coordinates. If this number is larger than 3, there is a a E G that permutes
the first two coordinates and holds all others fixed except for possible sign
changes. Then either x + 6x or x - 6x has fewer non-zero coordinates than x.

2.2. MAIN THEOREM. (Blass-Deligne-J. Lang). Let k be an algebraically
closed field of characteristic p ~ 0, let n  4 if p  3 and n  5 if p = 2.

Let {Tij: 0  i + j  n} be a set of algebraically independent variables over

k, L = k(Tij), F = 03A30i+jn Tijxiyj and A = L[xp,yp,F]. If p &#x3E; 2, then

Cl(A) = 0, if p = 2, then Cl(A) xé Z/2Z.
Proof. The case p  5 is proved in [6]. So assume p = 2 or 3. Let F’ =

F - T10 x - To 1 y - Too. Then by a change of coordinates we have that

ZP = F is isomorphic to zP = F’ so that we may assume F = T20 x2 + T11 xy +
To2y2 + ....
By (1.1), Cl(A) ~ F0, the group of logarithmic derivatives of D = Fy(èlèx) -

Fx(~/~y) in L[x, y]. By (1.4) each element of Yo has degree at most n - 2. We
proceed in a series of steps.

Step 1. Assume n = 0 (mod p). Then t c- Yo. Then the degree (n - 2) form of t is an
integral multiple of (F)y/x, where F denotes the highest degree form of F. (Note
that x(F)x + y(F)y = 0 by Euler’s formula and that (F)ylx = - (F)x/y E L[x, y].)

t = Dhlh for some h ~ L[x,y]. Let Ji represent the highest degree form of
h and t the degree (n - 2)-form of t. Then th = (li)x(F)y - (/ï)y(F)x. Thus
xth = x((h)x(F)y - (h)y(Fx)) + y((ny(F)y - (h)y(F)y) = deg(h) · h(F)y - deg(F). F. 
(n)y = deg(h) h · Fy by Euler’s formula. Therefore f = deg(h) - (F)y/x.
Step 2. Assume p = 2 or 3 and r  n - 2. Let Vr = {t E .Po: deg(t)  rl. Then Yr
is not isomorphic to 7Llp7L if p = 3 or if p = 2 and r  n - 2.

Suppose that p = 3 and Vr ~ Z/3Z. Let t ~ 0 E V,. Then by (1.6), t(Q) ~ 0 for
some Q E SF. If Q ~ Q’ E SF then t(Q’) ~ 0, for otherwise by (1.5.7) there exists

a 03C3 ~ Gal(L : k(Tij)) that transposes Q and Q’ and acts as the identity on
SF - {Q, Q’l. Then 03C3(t) ~ F0 and by (1.7), t and u(t) are Z/pZ-independent. Thus
t(Q) ~ 0 for all Q E SF. 

Clearly Q = (0, 0) ~ SF. This implies that t(0, 0) = sT211 - T20T02 by (1.6)
with s = ± 1. We may assume s = 1.
For all 03C3 ~ Gal(Llk(Tij)), 6(t) E Y. This clearly implies that all coefficients of

t belong to T211 - T20 T02 ·k(Tij).
By (1.2), D2 t - at = -t3 with a = Fxy - FxxFyy (a can be calculated as

D3 xIDx).
After comparing coefficients of t on both sides of this differential équation we

see that in fact all coefficients of t must belong to T i 1 - T20T02·k[Tij].
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If we now set Tij = 0 for i + j  7, in the equality D2 t - at = - t3, then the
image of t will be a nonzero element of 20 for the case n = 6 by (1.2). By (1.1) this
would imply that for n = 6, Cl(A) ~ 0 which contradicts the explicit computation
for this example 1 obtained in ([2], pg. 184). A similar argument works for the case
p = 2, again using the computation of Cl(A) for n = 5 and 6 in ([2], page 181).

Step 3. Assume that p = 2. The cases n = 5 and 6 are proved in ([2], Chapter 3).
Therefore we assume that n  7. Then D(Fy)/Fy = Fxy E 20. Therefore F0 ~ 0.
If n ~ 0 (mod 2) then by (1.6) each nonzero t E 20 is such that t(Q) ~ 0 for at least
5 points Q E SF. By (1.5.7), (1.1) and (2.1), Cl(A) ~ F0 ~ Z/2Z. If n = 0 (mod 2)
and t E 20 then the degree (n - 2) form of t is equal to s(F)xy where s = 0 or 1 and
F is the degree n form of F by step 1. Then t - sFxy E 20 and has degree at most
n - 3. By step 2, Vn-3 ~ Z/2Z. Therefore by (1. 5.7), (1.6), and (2.1) Vn-3 = 0. Thus
t = sFxy and by (1.1), Cl(A) ~ 7L127L.

Step 4. Assume p = 3. The case n  6 is proved in ([2], Chapter3). Assume then
that n a 7. If n ~ 0 (mod 3), use (1.5.7), (1.6), (2.1) and step 2 to conclude that
Cl(A) ~ 20 = 0. If n = 0 ( mod 3), we have by the same argument that Vn- 3 = 0.
Then by step 1, this implies F0 ~ 0 or 7L137L. By step 2, 20 = 0.

2.3. COROLLARY. Let p  3, n  5. Then for each m  0, Cl(Xm) = 0 where
X m is defined by zpm = F over L.

Proof. By (1.1) the kernel of the homomorphism on: Cl(Am+ 1) ~ Cl(Am ) is
isomorphic to 2m for each m  0. By (1.5) and (2.2) ~m is an injection for each m.
Since Cl(Ao ) = 0 and the coordinate ring of Xm is isomorphic (but not in general
k-isomorphic ([6], II.3.4)) to An, the result follows.

2.4. COROLLARY. Let p = 2, n  5. For all m &#x3E; 0, Cl(Xm) ~ Z/2Z.

Proof. By (2.2) we have that if m = 2, Cl(A1) ~ F0 ~ Z/2Z and that 20 is
generated by F xy = D(Fx)/Fx. It follows from Samuel ([16], pg. 62) that Cl(A1) is

generated by FxL[x,y]nAl. Write F = a2x + b2 y + c2xy where a, b, c E
L[x, y]. Then CI(A 1) is generated by the height one prime P1 = (a4 + c4 y2,
(a2 + c2y)(b2 + c2x)) in Ai = L[X2, y2, F]. Proceed now by induction to show
that Cl(Am) ~ Z/2Z, generated by Pm = ((a2 + c2 y)2m, (a2 + c2y)2m-l(b2 +
c2x)2m-l). It is not difficult to verify that Pm = FxL[x, y] n Am. The inclusions
A2m ~ Am+1 ~ Am induce homomorphisms CI(A;) -+ Cl(Am+1) ~ Cl(Am) by
Samuel ([16], pg. 10, Theorem 6.2). By induction we obtain homomorphisms
Z/2Z  Cl(Am+1)  Z/2Z. In [10], Lang showed that ce is injective and since each
height one prime in Am ramifies over A2m, the composition fia is just multiplication
by 2 ([9], pg. 403). We conclude that 0 ~ Z/2Z  Cl(Am+ 1)  Z/22 is exact. It is
not difficult to see that Cl(Am+1) is either Z/2Z or Z/4Z. Since a is an injection,
(Pm +1) ~ 0 in Cl(Am + 1). Since the ramification index of Pm over Pm + 1 is 2, it must
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be that oc is multiplication by 1 and 03B2 is multiplication by 2. There 03B2 is the 0-map
and a is an isomorphism.

In [11], Lang showed that if the divisor class group of zP = F is (Z/pZ)s for
some s as in (2.2) then the class group of zp = g is (7Llp7L)S for all g in a dense open
subset of A. Then by (1.1), (1.5) and (2.2) we obtain

2.5. COROLLARY. There exists a dense open subset W of A such that for all

g ~ W, Cl(Zpm = g) = {0 if p &#x3E; 2, Z/2Z if p = 2}.
The proof of the next two results are the same as those given in ([6], II(4.4) and

II(4.5)) for the case p  5.

2.6. COROLLARY. The hypersurface zpm = F(xl, ... , xr) has 0 divisor class
group for a generic F of degree n  4 if p &#x3E; 2. If p = 2, n  5 and r  3 then
Cl(z2m = F(x 1,..., xr)) ~ 0 for a generic F.

2.7. COROLLARY. (2.6) holds for a general choice of F as well (see introduction).
For each m  0, let Am be the set of g E A of degree n for which the order of

Cl(zp = g) is pm.

2.8. CONJECTURE (M. Artin). If the surface zP = G has geometric genus pg for
a generic polynomial G of degree n and if the order of Cl(zP = G) is ps, then the
codimension of Am+s  mpg for all m  0.
The author thanks P. Blass and W. Heinzer for useful suggestions and

comments.
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