COMPOSITIO MATHEMATICA

JEFFREY LANG Generic Zariski surfaces

Compositio Mathematica, tome 73, nº 3 (1990), p. 345-361 <http://www.numdam.org/item?id=CM_1990__73_3_345_0>

© Foundation Compositio Mathematica, 1990, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Generic Zariski surfaces*

JEFFREY LANG

Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

Received 30 June 1988; accepted 19 July 1989

Introduction

The simplest type of purely inseparable cover of a variety X with coordinate ring A in characteristic $p \neq 0$ is obtained by taking $Y = \text{Spec}(A[\sqrt[p]{g}])$ for some $g \in A$. Efforts to relate the codimension one cocycles of X and Y ([2], [10]) have led to the ring-theoretic question, "If A is a UFD of characteristic $p \neq 0$, for what $g \in A$ is $A[\sqrt[p]{g}]$ a UFD?" A natural place to begin such investigations is with the case where A is a polynomial ring. Then we may ask, "For what $g \in k[x, y]$ is $k[x^p, y^p, g]$ a UFD?" Note that if g_x and g_y have no common factor in k[x, y] then the coordinate ring of the surface $z^p = g$ is isomorphic to A([10], pg. 393).

The main result of this paper is motivated by the classical result of Max Noether, that a generic surface in \mathbb{P}^3 has Pic $\cong \mathbb{Z}[7]$. This result was extended to all characteristics by Deligne [5].

Let G be of degree n and a_{ij} its coefficients: $G = \sum a_{ij}x^iy^j \in k[x, y]$, with k an algebraically closed field of characteristic $p \neq 0$. We say that a property P is true in general for the surface $z^p = G(x, y)$ if there exists a non-zero $Q \in k[A_{ij}]$ such that P is true whenever $Q(a_{ij}) \neq 0$. We say that P is generically true, if it is true when the a_{ij} are algebraically independent over Fp.

This article completes the project of determining the group of Weil divisors of the surface $z^p = G(x, y)$ for a general choice of G. Consider the following theorem.

*THEOREM (Blass-Deligne-J. Lang). The group of Weil divisors of the surface $z^p = G(x, y)$ is 0 (i.e., $k[x^p, y^p, G]$ is a UFD) if $n = \deg G \ge 4$ and p > 2, and is $\mathbb{Z}/2\mathbb{Z}$ if $n \ge 5$ and p = 2 in general.

In [11] Lang shows that is enough to prove (*) for a generic G. Blass in [1] calculates the divisor class group of $z^p = G$ for a generic G in the case where n = 0 (mod p) and $p \ge 5$. Grant and Lang prove (*) for the remaining p = 2 and p = 3 cases.

^{*} Partially supported by University of Kansas GRF Fund # 3761-20-0038

346 Jeffrey Lang

Blass [1] uses the fundamental group to study the curves on a disingularization of $z^p = G$ to arrive at his result, where the argument depends on a result of W. Lang [12] and the fact that there are no singularities at infinity. If deg G is not divisible by p, then this approach does not work, as the singularities at infinity present difficulties.

In [6] and this paper, this problem is overcome by combining the fundamental group methods with purely inseparable descent [16]. All three articles use techniques of Grothendieck [7] to study coverings of one curve by another, but in this paper obstacles such as singular points and wild ramification arise. Because of this, weaker results concerning the action of Gal($k: \mathbb{F}_p(a_{ij})$) on the singular points are obtained (compare [2] page 273 and I. (5.7).), so that the arguments involving logarithmic derivatives II. (2.2) needed to be changed considerably.

Chapter I is quite long although the ideas are not difficult. If one is willing to accept the principal result in this chapter, Theorem 5.7, which intuitively seems true, then Chapter II provides a fairly brief and simple proof of the main theorem, II.(2.2).

A preliminary announcement of this article, coauthored by P. Blass, appeared in [4].

0. Notation and definitions

0.1 $k = \overline{k}$ is an algebraically closed field of characteristic $p \neq 0$. T_{ij} are indeterminates algebraically independent over $k, 0 \leq i + j \leq n$, where $n \geq 4$ is a fixed positive integer.

$$F(x, y) = \sum_{0 \le i+j \le n} T_{ij} x^i y^j.$$

 $\sum \text{ stands for } \sum_{0 \le i+j \le n} \text{ unless stated otherwise.} \\ F_x, F_y \text{ means } \partial F/\partial x, \partial F/\partial y, \text{ etc.} \\ H(F) = F_{xx}F_{yy} - F_{xy}^2 = \text{hessian of } F. \\ L = \overline{k(T_{ij})}, \text{ the algebraic closure of } k(T_{ij}). \\ G = \text{Gal}(L: k(T_{ij})). \\ A = \text{Spec}(k[T_{ij}]). \\ E = \text{Spec}(k[T_{ij}]/(F_x, F_y)). \\ \text{There is a natural morphism} \end{cases}$

 $E \xrightarrow{\pi} A$.

If $X \to A$ is a morphism, E_X will denote the scheme $E \times A$ and $\pi_X: E_X \to X$ the projection. If $U \subset A$ is open or closed, $\pi_U: E_U \to U$ has the foregoing meaning

with respect to the inclusion map $U \rightarrow A$. Also the same conventions are applied to the map $X \rightarrow E$.

0.2 Closed points of A will be identified with polynomials of degree n in k[x, y]. Define a subset $V \subseteq A$ as follows: If $n \neq 0 \pmod{p}$, then a polynomial $g \in k[x, y]$ belongs to V if and only if g_x and g_y do not meet at infinity. If $n = 0 \pmod{p}$ then $g \in V$ if and only if the surface $z^p = g$ has no singularities at infinity. In both of these cases V is open and dense in A (see [2] page 267, no. (0.2) and [6] no. (0.2)). Now define a subset $U \subset V$ as follows: $g \in U$ if and only if $g \in V$ and $z^p = g$ has only non degenerate singularities (i.e., $g_x = g_y = 0$ implies hessian of $g \neq 0$). It turns out that U is a non empty open subset of V (see I(3.2) below).

0.3 With F as above, let $R = L[x, y, z]/(z^p - F(x, y))$ and S = Spec R. Then all of the singularities of S are rational double points and there are $(n - 1)^2$ of them if $n \neq 0 \pmod{p}$ and $n^2 - 3n + 3$ otherwise (see I(3.5)). When their coordinates need to be written, we will write $Q = (a_1, a_2, a_3)$. Thus we define $H(Q) = (F_{xx} - F_{xy}^2)(a_1, a_2)$.

0.4 Let X be a noetherian scheme, Et(X) the category of finite étale coverings of X. Let Ω be an algebraically closed field. b: Spec $\Omega \to X$, a geometric point of X. Let $Y \in Et(X)$. $F_b^X(Y)$ is the set of liftings

If $W \to X$ is a morphism, we then obtain a base change functor $Et(X) \to Et(W)$, which will be denoted by R_W or simply R. If X and Y are schemes, $X \cup Y$ denotes the disjoint union of X and Y.

0.5 In the following definition the ground field is assumed to be algebraically closed of characteristic $p \neq 0$. π : $A \rightarrow B$ is a finite separable morphism of curves with B irreducible and smooth.

0.6 Definition: $\pi: A \to B$ is called *r-simple* over a point $q \in B$ if there exists a point $p \in \pi^{-1}(q)$ such that for all $p' \neq p$ in $\pi^{-1}(q)$, p' is a nonsingular point of A, π is unramified at p', and such that the cardinality of $\pi^{-1}(q)$ is deg $\pi - r + 1$.

0.7 If A is a Krull ring, Cl(A) will denote the divisor class group of A (see [15], pg. 4 for the definition). By a *surface*, we mean an irreducible, reduced, two-dimensional quasi-projective variety over an algebraically closed field. If E is a normal surface, Cl(E) will denote the divisor class group of the coordinate ring of E.

0.8 A_k^n stands for affine *n*-space over *k*. k^n is the set of all *n*-tuples of elements of *k*. For $g \in k[x, y]$, $Sg = \{(\alpha, \beta) \in k^2 : g_x(\alpha, \beta) = g_y(\alpha, \beta) = 0\}$.

I. THE GALOIS ACTION ON SINGULARITIES

1. Preliminaries

The proofs of the results in this section can be found in ([2], pgs. 275-276) or in [1]. They are based on the techniques described in Grothendieck's, SGAI, Chapter VII.

Let *i*: $Y \to X$ be a morphism of locally noetherian connected (regular) schemes and *b*: Spec $\Omega \to Y$ be a geometric point of *Y*, where Ω is an algebraically closed field. We will abuse notation and let *b* also denote the corresponding geometric point of *X*.

1.1 The reader is reminded of the definition (see [7], pgs. 140-142) of the induced homomorphism

 $i: \pi_1(Y, b) \to \pi_1(X, b).$

Consider the diagram of functors,

$$Et(Y) \longleftarrow Et(X)$$

$$\downarrow F_b^Y \qquad \qquad \downarrow F_b^X$$
ENS ENS

(ENS is the category of finite sets. See [7], pg. 146.) We have that $\pi_1(Y,b) = \operatorname{Aut}(F_b^Y)$ and $\pi_1(X,b) = \operatorname{Aut}(F_b^X)$. By SGAI (see [7], pg. 142) there is an isomorphism of functors:

$$F_b^Y \circ R_{\tilde{\tau}}^{\mu} F_b^X$$
 where $\mu \tau = \mathrm{id}(F_b^X)$ and $\tau \mu = \mathrm{id}(F_b^Y \circ R)$.

If $\sigma \in \pi_1(Y, b) = \operatorname{Aut}(F_b^Y)$, we define $\overline{\sigma} = i_*(\sigma)$ by the diagram

1.2. PROPOSITION. If $W \in Et(X)$ is irreducible, then $\pi_1(X, b)$ acts transitively on $F_b^X(W)$ for any base point b in X.

1.3. **PROPOSITION.** Let $W \in Et(X)$ be irreducible and assume that $R(W) = W_Y$ decomposes into $W_Y = S(Y) \sqcup T$ where $s: Y \to W_Y$ is a section and T is irreducible. Then for any base point $b \in X$ the action of $\pi_1(X, b)$ on $F_b^X(W)$ is transitive and twice transitive.

1.4. PROPOSITION. Let $W \in Et(X)$, $R_W(S) = W_Y \in Et(Y)$ and let b be a base point in Y. Suppose that the action of $\pi_1(Y, b)$ on $F_b^Y(W_Y)$ includes a nontrivial permutation of r elements, then the action of $\pi_1(X, b)$ on $F_b^X(W)$ includes a nontrivial permutation of r elements. Also, if b' is any other base point in X not necessarily in Y, the action of $\pi_1(X, b')$ on $F_b^X(W)$ also includes a non trivial permutation of r elements.

2. Some results on curves

In this section $\pi: A \to B$ is a finite separable morphism of curves with B irreducible and smooth where the ground field k is assumed to be algebraically closed of characteristic $\neq 0$.

2.1. LEMMA. Assume that π is r-simple over $q \in B$. Let p be the only point of $\pi^{-1}(q)$ where A may be singular. Let \mathcal{O}_q^* be the henselization of \mathcal{O}_q and K^* its quotient field. Then $\operatorname{Spec}(K^*) \times_B A = S \sqcup \operatorname{Spec}(L_i) \sqcup \cdots \sqcup \operatorname{Spec}(L_s)$ where S is a disjoint union of sections over $\operatorname{Spec}(K^*)$, L_j is a finite separable field extension of K^* for each $j, s \leq$ multiplicity of p on A, and $\Sigma[L_i: K^*] = r$.

Proof. Let $W = \operatorname{Spec} T$ be an affine open neighborhood of q in B. Then $\pi^{-1}(W) = \operatorname{Spec}(R)$ is an affine open neighborhood of A containing the fibre $\pi^{-1}(q)$ of q in A since π is finite. By hypothesis $\pi^{-1}(q)$ consists of p and a finite number of remaining points p_2, \ldots, p_n where A is smooth and unramified over q and where $n = \deg \pi - r$. Then $\operatorname{Spec}(\mathcal{O}_q^*) \times_B A = \operatorname{Spec}(\mathcal{O}_q^* \otimes_T R)$. $\mathcal{O}_q^* \otimes_T R$ is a finite integral extension of \mathcal{O}_q^* and is therefore a direct sum $\mathcal{O}_q^* \otimes_T R = \bigoplus R_i$ where $R_1 = \mathcal{O}_q^* \otimes_T \mathcal{O}_p$ and $R_i = \mathcal{O}_q^* \otimes_T \mathcal{O}_{p_i}$ for $i = 2, \ldots, n$ (see [13], Theorem (43.15), pg. 185). The local rings \mathcal{O}_q and \mathcal{O}_{p_i} are discrete valuation rings with residue field k, so that \mathcal{O}_q^* and R_i with $i \ge 2$ are as well ([14], Theorem (5.11.1), p. 193). Also, for $i \ge 2$, R_i is a finite integral unramified extension of \mathcal{O}_q^* . By Nakayama's lemma $R_i = \mathcal{O}_q^*$ for i > 1, so that $K^* \otimes_T R_i = K^*$ for i > 1.

Now let $\tilde{\mathcal{O}}_p$ be the integral closure of \mathcal{O}_p in its total quotient field, and let $\mathcal{O}_p^* = \mathcal{O}_p \otimes_T \mathcal{O}_q^*$ and $\tilde{\mathcal{O}}_p^* = \tilde{\mathcal{O}}_p \otimes_T \mathcal{O}_q^*$. Then $\tilde{\mathcal{O}}_p^*$ is the integral closure of \mathcal{O}_p^* in its total quotient ring ([15], page 101, Proposition 2) and we have that $\mathcal{O}_q^* \subseteq \mathcal{O}_p^* \subseteq \tilde{\mathcal{O}}_p^*$ are integral extensions. Let m_1, \ldots, m_s be the maximal ideals of $\tilde{\mathcal{O}}_p$. By ([16], page 299, Corollary 1) $s \leq$ multiplicity of p on A. Again we have that $\tilde{\mathcal{O}}_p^* = \bigoplus_{j=1}^s R'_j$ where $R'_j = \mathcal{O}_{m_j} \otimes \mathcal{O}_q^*$ are discrete valuation rings with residue field k and whose valuation agrees with the valuation on $\mathcal{O}_{m_j}([14]]$, page 193). If we let t be a parameter for the maximal ideal of \mathcal{O}_q , it then follows that $\sum_{j=1}^s v_j(t) = r$ where v_j is the valuation on R'_j . Thus we have that $L_i = K^* \otimes_T R'_j$ are separable field extensions of K^* with $\sum_{j=1}^s [L_i: K^*] = r$, so that we are done if $K^* \otimes_T \mathcal{O}_p^* = K^* \otimes_T \tilde{\mathcal{O}}_p^*$. This is not difficult to see. Since they both have the same total quotient ring and $K^* \otimes_T \tilde{\mathcal{O}}_p^*$ is integral over $K^* \otimes_T \mathcal{O}_p^*$ we have that the conductor of $K^* \otimes \mathcal{O}_p^*$ in $K^* \otimes \tilde{\mathcal{O}}_p^*$ contains a nonzero divisor x. Then x is integral over K^* so that $x^n + a_1 x^{n-1} + \cdots + a_n = 0$ for some $a_i \in K^*$ with $a_n \neq 0$. Then a_n is in the conductor and is a unit in $K^* \otimes \mathcal{O}_p^*$.

2.2. THEOREM. Let $\pi: A \to B$, $p \in A$, $q \in B$ be as in (2.1). Let $B^0 = B - \{q\}$ and $A^0 = \pi^{-1}(B^0)$. Assume that the induced morphism $A^0 \to B^0$ is étale. If $F_{b_0}^{B^0}(A^0)$ has deg π elements for some geometric point $b_0 \in B^0$, then each L_j in (2.1) is a Galois field extension of K^* .

Proof. We have morphisms $\operatorname{Spec}(\overline{k(B^0)}) \to \operatorname{Spec}(K^*) \to \operatorname{Spec}(k(B^0)) \to B^0$. Thus we obtain a geometric point b of $\operatorname{Spec}(K^*)$ and the corresponding geometric point b_1 of B^0 . By Grothendieck ([7], page 38), $F_b^{\operatorname{Spec}(K^*)}(S \sqcup \operatorname{Spec}(L_1 \sqcup \cdots \sqcup \operatorname{Spec}(L_s)) \cong F_{b_1}^{B^0}(A^0) \cong F_{b_0}^{B^0}(A^0)$, which has deg π elements. Therefore card $F_b^{\operatorname{Spec}(K^*)}(S) + \sum_{j=1}^s \operatorname{card}(\operatorname{Aut}_{K^*}(L_j)) = \operatorname{deg} \pi$, so that $\sum_{j=1}^s \operatorname{card}(\operatorname{Aut}_{K^*}(L_j)) = r$. Since $\operatorname{card}(\operatorname{Aut}_{K^*}(L_j)) \leqslant [L_j: K^*]$, it follows by (2.1) that $[L_j: K^*] = \operatorname{card}(\operatorname{Aut}_{K^*}(L_j))$ and hence L_j is Galois over K^* for each $j = 1, \ldots, s$.

2.3. COROLLARY. If the multiplicity of p on A is less than r in (2.2), then for any base point b_1 of B^0 , the action of $\pi_1(B^0, b_1)$ on $F_{b_1}(A^0)$ contains a nontrivial permutation of r-elements, holding all others fixed.

Proof. Again let b and b_1 be the geometric points of $\text{Spec}(K^*)$ and B^0 obtained from the morphisms $\text{Spec}(\overline{k(B^0)}) \to \text{Spec}(K^*) \to \text{Spec}(k(B^0)) \to \text{Spec}(B^0)$. By (2.1) and (2.2), we may assume that L_1 is a nontrivial Galois extension of K^* . Let σ be a nontrivial element of $\text{Gal}(L_1, K^*)$. Then σ extends to an automorphism $\bar{\sigma}$ of $\overline{k(B^0)}^{\text{sep}}$ over K^* .

By Grothendieck ([7], p. 143, Proposition 8.1) we have $\pi_1(\operatorname{Spec}(K^*), b) = \operatorname{Gal}(\overline{k(B^0)}^{\operatorname{sep}}, K^*)$. The element $\overline{\sigma} \in \pi_1(\operatorname{Spec}(K^*), b)$ induces a nontrivial permutation of the *r* elements of $F_b(\operatorname{Spec}(L_1) \sqcup \cdots \sqcup \operatorname{Spec}(L_s))$ and holds the deg $\pi - r$ elements of $F_b(S)$ fixed. By (1.4), $\pi_1(B^0, b_1)$ induces a permutation of less than or equal to *r* elements of $F_{b_1}^{B^0}(A^0)$, holding all others fixed. The independence of base point also follows by (1.4).

3. The geometry of the map $E \rightarrow A$

In this section we need to collect some facts about the geometry of the map $E \to A$. Many of the proofs are omitted because they could be found in [1] or [2]. 3.1. PROPOSITION. *E* is smooth, irreducible, and isomorphic to an affine space over k of dimension equal to the dimension of A ([2], p. 281, (3.1.1)).

3.2. PROPOSITION. (a) $U \subset V$ is open and dense, (b) $\pi_V : E_V \to V$ is a finite map, (c) $\pi_U : E_U \to U$ is étale (see [2], pages 281–282 and [6], Chapter I, (3.5), (3.6), and (3.8)).

3.3. PROPOSITION. For any base point $b \in U$, the action of $\pi_1(U, b)$ on $F_b(E_U)$ is transitive.

Proof. As E_U is a dense open subscheme of E, it is irreducible and therefore connected. The result follows by (1.2).

3.4. THEOREM. There exists a point $g \in V$ such that $\pi^{-1}(g)$ consists of $(n-1)^2$ unramified points (at which π is étale) if $n \neq 0 \pmod{p}$, $n^2 - 3n + 3$ unramified points otherwise. k(E) is a field extension of k(A) of degree $(n-1)^2$ if $n \neq 0 \pmod{p}$, $n^2 - 3n + 3$ otherwise.

Proof. We will prove this for the case $n \neq 0 \pmod{p}$. The remaining case uses the same argument and is left as an exercise.

Assume first that $n \neq 2 \pmod{p}$. Let $g = xy = 1/n(x^n - y^n)$. Then $g_x = y + x^{n-1}, g_y = x - y^{n-1}$ and the hessian of g is $H = -(1 + (n-1)^2 x^{n-2} y^{n-2})$. Then $g \in V$ since $x_n - y_n$ has distinct factors.

 $\pi^{-1}(g)$ is the set of points in k^2 where g_x and g_y meet. We have that g_x, g_y and H are never simultaneously 0. For if $(a, b) \in k^2$ is a point where $g_x = g_y = H = 0$, then $(n-1)^2 a^{n-2} b^{n-2} + 1 = 0$ which implies that $(n-1)^2 a^{n-1} b^{n-1} + ab = 0$, which gives $((n-1)^2 - 1)ab = 0$ since $a^{n-1} = -b$ and $b^{n-1} = a$. Therefore n(n-2)ab = 0 and hence a = b = 0. But then H(a, b) = -1.

Therefore, in fact $g \in U$ by (0.2). Thus $\pi^{-1}(g)$ consists of $(n-1)^2$ unramified points by (3.2). By (3.2) π is separable. It follows that $[k(E): k(A)] = (n-1)^2$. If $n = 2 \pmod{p}$, the same argument works with $g = x + xy + 1/n(x^n - y^n)$.

The proofs of the next two corollaries to (3.4) are proved by Blass ([2], page 287) for the case $n = 0 \pmod{p}$, but the arguments are independent of this assumption.

3.5. COROLLARY. The surface S has $(n - 1)^2$ singularities at finite distances if $n \neq 0 \pmod{p}$, $n^2 - 3n + 3$ otherwise.

3.6. COROLLARY. All of the singularities of S are nondegenerate.

4. Some *r*-simple morphisms

This section begins by producing an example of a $g \in V - U$, such that $\pi^{-1}(g)$ is a set of $(\deg \pi) - 2$ distinct elements when p = 3 and $\deg(\pi) - 3$ distinct elements when p = 2.

352 Jeffrey Lang

4.1. EXAMPLE. In (a), (b), (c), p = 3 and $g \in V - U$ is such that the curves $g_x = 0$ and $g_y = 0$ meet at deg $\pi - 3$ points of k^2 transversally with intersection multiplicity 1 and exactly one point with intersection multiplicity 3. In (d), (e), p = 2 and $g \in V - U$ is such that $g_x = 0$ and $g_y = 0$ meet at det $(\pi) - 4$ points transversally with intersection multiplicity 1 and exactly one point Q with intersection multiplicity 4.

(a) If $n = 2 \pmod{3}$, with $n \ge 5$, let $g = x^n + y^n + x^4 + xy - x$ if n - 2 = 3s with $s = 1 \pmod{3}$, otherwise let $g = x^n + y^n + xy^3 + xy - x$. In both cases Q = (1, 1).

(b) If $n = 1 \pmod{3}$, with $n \ge 7$, let $g = x^n + y^n + x^5 + x^4 + (y + (-1)^n)^3 x + y^2$. $Q = ((-1)^{n-1}, 0)$.

(c) If $n = 0 \pmod{3}$ with $n \ge 6$, let $g = xy^{n-1} - x^{n-1} + x^{n-2}y + x^{n-4} + x$ if n = 3s with $s = 1 \pmod{3}$, otherwise let $g = xy^{n-1} + x^{n-2}y + x^{n-4}y^3 - x^{n-1} + x$. In both cases Q = (1, 1).

(d) If n = 2s + 3 with $s \ge 1$, let $c \in k$ be such that $c \ne 0, 1$ and $g = (x + y)^2 (x + y + 1)^{2s} x + y^3 (y + c)^{2s} + x^3 y$. Q = (0, 0).

(e) If n = 2s + 6 with $s \ge 0$, let c be as in (d) and $g = xy(f(y) + x)^2 + (x + y)^2$ $(x + y + 1)^{2s}x + y^3(y + c)^2$ where f(y) has degree s + 2, f(y) + y has 0 as a root of multiplicity 1 and is such that $f(c) + c \ne 0, 1$. Q = (0, 0).

The idea is now to construct using (4.1) a line L in A containing g so that the curve E_L lying above it in E is 3 simple over g if p = 3 and 4 simple over g if p = 2. When p = 3 we also want E_L to be nonsingular. The approach is to find $h(x, y) \in k[x, y]$ so that the line L defined by $g(x, y) + \lambda h(x, y)$: $\lambda \in k$, has the desired properties. We will do this explicitly for case (4.1(a)) and (4.1(d)) above, leaving the details for the remaining cases in (4.1) to the reader.

4.2. THEOREM. Let p = 2 or 3, $n \ge 4$. Then there is a line L in $A = \text{Spec } k[T_{ij}]$ containing g such that (a) E_L is irreducible (b) $\pi_L: E_L \to L$ is 3 simple over g if p = 3, 4 simple over g if p = 2, (c) E_L is nonsingular if p = 3. If p = 2, $\pi_L^{-1}(g)$ contains exactly one singular point of multiplicity 2.

Proof. Case: p = 3, $n = 2 \pmod{3}$, $g = x^n + y^n + x^4 + xy - x$, $n \ge 5$, n - 2 = 3s with $s = 1 \pmod{3}$. Let L be the line in Spec $k[T_{ij}]$ corresponding to polynomials of the form $\lambda y + g, \lambda \in k$. Let $\pi_L : E_L \to L$ be the induced morphism. E_L is isomorphic to Spec $k[x, y, \lambda]/(-x^{n-1} + x^3 + y)$, $-y^{n-1} + x + \lambda) \cong k[x, y]/(-x^{n-1} + x^3 + y) \cong k[x]$, which is a line. This proves (a) and (c).

 $E_L \to L$ is isomorphic to the projection to the Spec($k[\lambda]$)-axis of the space curve in Spec $k[x, y, \lambda]$ defined by $g_x = \lambda + g_y = 0$.

The matrix of partials with respect to x, y, and λ is

 $\begin{bmatrix} g_{xx} & g_{xy} & 0 \\ g_{xy} & g_{yy} & 1 \end{bmatrix}.$

From (4.1) we have that if $\lambda = 0$, then det $\begin{bmatrix} g_{xx} & g_{xy} \\ g_{xy} & g_{yy} \end{bmatrix} \neq 0$ for every point of the space curve except the point Q defined by $\lambda = 0, x = 1, y = 1$. It then follows that there are $(n-1)^2 - 3$ points of $\pi^{-1}(g)$ where π is unramified and exactly one remaining point $Q \in \pi^{-1}(g)$. Therefore π is 3 simple over Q.

Case: $p = 3, n = 2 \pmod{3}, n-2 = 3s$ with $s \neq 1 \pmod{3}, g = x^n + y^n + xy^3 + xy - x$. Apply the same argument with L defined by the space curve $g + \lambda y, \lambda \in k$.

Case: p = 2, n = 2s + 3 with $s \ge 1$ with $s \ge 1, g = (x + y)^2 (x + y + 1)^{2s} x + y^3$ $(y + c)^{2s} + x^3 y$, where $c \ne 0, 1 \in k$. Let L be the line in Spec $k[T_{ij}]$ defined by polynomials of the form $g + \lambda x, \lambda \in k$. E_L is isomorphic to Spec $k[x y, \lambda]/(g_x + \lambda, g_y) = k[x, y]/(y^2(y + c)^{2s} + x^3)$, hence E_L is irreducible. This proves (a). This proves (a).

The matrix of partials with respect to x, y and λ for the ideal $(g_x + \lambda, g_y) k[x, y, \lambda]$ is

$$\begin{bmatrix} 0 & x^2 & 1 \\ x^2 & 0 & 0 \end{bmatrix}$$

From (4.1) we have that $\begin{bmatrix} g_{xx} & g_{xy} \\ g_{xy} & g_{yy} \end{bmatrix} \neq 0$ at every point of E_L with $\lambda = 0$ except at the point Q given by $\lambda = 0$, x = 0, y = 0. Thus there are $(n - 1)^2 - 4$ points of $\pi_L^{-1}(g)$ that are unramified over g and there is exactly one additional point of $\pi^{-1}(g)$ where E_L has a singularity of multiplicity 2. Therefore π_L is 4-simple over g.

The next theorem summarizes what has been shown in Sections 3 and 4.

4.3. THEOREM. There exists a point $g \in V - U$ and a line L, closed in V, such that $g \in L$ and $L_U = L \cap U$ is open and dense in L and closed in U. Let L_1 be the open subset of L defined by $L_U \cup \{g\}$. Then we have induced coverings

with $E_{L_1} \xrightarrow{\phi} L_1$ 3-simple over g if p = 3, 4-simple over g if p = 2. In the case p = 2, the fibre over g in E_{L_1} contains exactly one singular point of multiplicity 2.

4.4. REMARK. $E_U \rightarrow U$ is étale. Therefore by base change $E_{L_U} \rightarrow L_U$ is étale.

5. The action of G on sing(S)

5.1. PROPOSITION. Let b: Spec $\Omega \rightarrow L_U$ be any geometric base point; then the

354 Jeffrey Lang

action of $\pi_1(L_U, b)$ on $F_b^{L_U}(E_{L_U})$ includes a permutation of r elements, holding all other elements fixed, with r = 3 if p = 3, r = 4 if p = 2.

Proof. Consider the case p = 3, $n = 2 \pmod{3}$, L defined by $g + \lambda y$ in the proof of (4.2). Let $S_0 = \{Q \in \overline{k[\lambda]}^2 : g_x(Q) = g_y(Q) + \lambda = 0\}$. It is left as an exercise to verify (apply the same argument as (3.4) and (3.5)) that S_0 has $(n - 1)^2 = \deg(\pi_{L_U})$ elements. Let $b_0 : \operatorname{Spec}(\overline{k(\lambda)}) \to \operatorname{Spec}(k(\lambda))$ be the base point of L_U such that $F_{b_0}(E_{L_U}) \cong S_0$. The proposition then follows by (1.4), (2.3), (4.3) and (4.4). The remaining cases are similar.

5.2. PROPOSITION. For any geometric point b in U, the action of $\pi_1(U, B)$ on $F_b(E_U)$ includes a permutation of r elements, holding all other elements fixed, with r = 3 if p = 3, r = 4 if p = 2.

Proof. Use (1.4) and (5.1).

5.3. Let $Z = \operatorname{Spec} k[T_{00}, T_{20}, T_{11}, T_{02}, \dots]$. Z corresponds to polynomials g such that $z^p = g(x, y)$ has a singularity at the origin. Z_U then corresponds to g in U that have a singularity at the origin.

5.4. THEOREM. For each base point b in Z_U , there exists an $A \in F_b^{Z_U}(E_{Z_U})$ whose stabilizer in $\pi_1(Z_U, b)$ acts transitively on $F_b(E_{Z_U}) - \{A\}$. (For the proof see ([2], page 295, (3.3.1).)

5.5. COROLLARY. $\pi_1(U, b)$ acts on $F_b(E_U)$ transitively and twice transitively for any base point b in U ([2], page 295, (3.3.2)).

5.6. THEOREM. If p = 3, then for any geometric point $b: \operatorname{Spec} \Omega \to U$, the action of $\pi_1(U, b)$ includes the alternating group on $F_b(E_U)$. If p = 2 then for each pair $A, B \in F_b(E_U)$ there is a pair $C, D \in F_b(E_U) - \{A, B\}$ such that $\pi_1(U, b)$ acts as the identity on $F_b(E_U) - \{A, B, C, D\}$ and permutes the elements of $\{A, B, C, D\}$ nontrivially.

Proof. Assume p = 3. Let $b: \operatorname{Spec} \Omega \to U$ be a base point. By (5.2) and (5.5) we have for each pair $A, B \in F_b(E_U)$, there is a $C \in F_b(E_U)$ such that $\pi_1(U, b)$ includes a nontrivial permutation of $\{A, B, C\}$ which acts as the identity on $F_b(E_U) - \{A, B, C\}$. If this permutation is a transposition then by (5.5) we are done. If not then by (5.5) we have that for each pair A, B there is a $C \in F_b(E_U)$ such that the 3-cycle $(A, B, C) \in \pi_1(U, b)$. Then choose a 3-cycle $(C, D, E) \in \pi_1(U, b)$ with $D \neq A$ or B. If $E \neq A, B$, then $(C, D, E)^2(A, B, C)(C, D, E) = (A, B, D) \in \pi_1(U, b)$. If E = B, then $(C, D, B)^2(A, B, C) = (A, B, D) \in \pi_1(U, b)$. This shows that the action of $\pi_1(U, b)$ on $F_b(E_U)$ contains all 3-cycles of elements of $F_b(E_U)$. The statement for p = 2 follows immediately from (5.2) and (5.5). The independence of base point is by Grothendieck ([7], pg. 141).

Recall that $F = \sum_{0 \le i+j \le n} T_{ij} x^i y^j$, $L = \overline{k(T_{ij})}$, $S = \operatorname{Spec}(L[x, y, z]/(z^p - F))$, $G = \operatorname{Gal}(L: k(T_{ij}))$ and $\operatorname{Sing}(S) = S_F = \{Q \in L^2 : F_x(Q) = F_y(Q) = 0\}$.

5.7. THEOREM. $G = \text{Gal}(k(\overline{T_{ij}}): k(T_{ij}))$ acts on Sing(S) as the full symmetric

group if p = 3. If p = 2, then for each pair $Q_1, Q_2 \in S_F$, there exists a pair Q_3, Q_4 in $S_F - \{Q, Q_2\}$ and a $\sigma \in G$ such that $\sigma(Q_1) = Q_2$, $\sigma(Q_2) = Q_1$, $\sigma(Q_3) = Q_4, \sigma(Q_4) = Q_3$ and such that σ acts as the identity on $S_F - \{Q_1, Q_2, Q_3, Q_4\}$.

Proof. Let $b: \operatorname{Spec}(\overline{k(T_{ij})}) \to \operatorname{Spec}(k(T_{ij}))$ be the base point of U such $F_b(E_U) \simeq \operatorname{Sing}(S)$. We have by Grothendieck ([7], pg. 143) a surjective homomorphism $G \to \pi_1(U, b)$. The identification $\operatorname{Sing}(S) \simeq F_b(E_U)$ is G-equivariant, where G acts on $F_b(E_U)$ via $G \to \pi_1(U, b)$. Thus by (5.6) if p = 2 the action of G on $\operatorname{Sing}(S)$ contains a 2-, 3- or 4-cycle or a disjoint product of 2-cycles. If this action contains a 4-cycle then its square is a disjoint product of 2-cycles. Then (5.5) gives us the desired result. If this action contains a 2-cycle then G acts as the full symmetric group on $\operatorname{Sing}(S)$ by (5.5), while if it contains a 3-cycle then this action includes the alternating group by the same argument used in the p = 3 case of (5.6). In each of these cases the result still holds.

If p = 3, then by (5.6) the action of G on Sing(S) contains the alternating group. Thus it is enough to show that this action includes at least one odd permutation. This can be accomplished by showing ([14], page 81) that $\delta = \prod_{i < j} (\alpha_i - \alpha_j)^2$ is not the square of an element in $F_3[T_{ij}]$ where the α_i are x-coordinates of the points in Sing(S), and F_3 is the prime subfield in $L(\delta$ is the discriminant of $\prod_i (x - \alpha_i)$). We are done then if we prove the corresponding result for a specialization of F, that is, for some choice $T_{ij} = \alpha_{ij} \in k$.

Several cases must be considered. We will consider only a few, admittedly simpler ones, leaving the remaining cases as an exercise.

If $n = 1 \pmod{3}$ with *n* even let $g = x^n + y^n + xy$. Then the *x* coordinates of S_g are the roots in *k* of $f(x) = x^{(n-1)^2} - x$. δ will then equal the determinant of -I, where *I* is the $(n - 1)^2$ identity matrix. Thus $\delta = -1$ which is not the square of an element in F_3 .

If $n \equiv 2 \pmod{3}$, with *n* odd, let $g = x^n + y^n + xy + y$. Then the *x* coordinates of S_g are the roots in *k* of $f(x) = x^{(n-1)^2} - x - 1$. δ is equal to the determinant of the matrix

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & \cdots & -1 & -1 \\ 1 & 0 & 0 & \cdots & 0 & -1 & -1 \\ & & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ & 1 & 0 & 0 & \cdots & \cdots & 0 & -1 & -1 \\ 1 & 0 & 0 & \cdots & \cdots & -1 \\ & & & \cdots & \cdots & \cdots & \cdots \\ & 1 & 0 & 0 & \cdots & \cdots & \cdots & -1 \\ & & & 1 & 0 & 0 & \cdots & \cdots & 0 & -1 \end{bmatrix}$$

Therefore $\delta = (-1)^{n^2-2n} = -1$. If $n = 0 \pmod{3}$ with *n* even, let $g = x^{n-1}y + xy^{n-2} + y^{n-1} + y$. The x-coordinates of S_g are the roots of $f(x) = (x^{n-1} + 1)[(x^{n-1} + 1)^{n-3} - x^{(n-2)^2}]$. Again $\delta = -1$ by a similar computation.

II. THE GROUP OF WEIL DIVISORS OF S

1. Techniques of purely inseparable descent.

If R is a noetherian integrally closed domain then R is a Krull ring ([16], pp. 1–4 for definition) and X = Spec(R) will be regular in codimension one and the group of Weil divisors of X ([9], pg. 130) and the divisor class group of R as defined in Samuel's notes ([16], pg. 18) are isomorphic.

Let k be an algebraically closed field of characteristic $p \neq 0$. Let $g \in k[x, y]$ be such that g_x and g_y have no common factors in k[x, y]. Define a derivation D on k(x, y) by $D = g_y(\partial/\partial x) - g_x(\partial/\partial_y)$. For each non negative integer m, let $A_m = k[x^{p^m}, y^{p^m}, g]$ and let $X_m \subset A_k$ be the surface defined by $z^{p^m} = g$. Then $A_0 = k[x, y]$. Denote the quotient field of A_m by E_m . Each A_m is isomorphic to the coordinate ring of X_m ([10], pg. 404) and is thus noetherian integrally closed and hence a Krull ring. Since $A_m^p \subseteq A_{m+1} \subseteq A_m$ we have that A_m is integral over A_{m+1} . By Samuel ([16], pgs. 19–20) there is a well defined homomorphism ϕ_m : Cl $(A_{m+1}) \rightarrow Cl(A_m)$. Define $D_m: E_m \rightarrow E_m$ as follows.

Given $\alpha \in E_m$, it can be written as $\alpha = \sum_{i=0}^{p^m-1} \alpha_i^{p^m} g^i$ for unique $\alpha_i \in k(x, y)$. Then define

$$D_m(\alpha) = \sum_{i=0}^{p^m-1} (D\alpha_i)^{p^m} g^i.$$

 D_m is a derivative on E_m ([10], pg. 404). For each $m \ge 1$, let \mathscr{L}_m be the additive group of logarithmic derivatives of D_m in A_m . Thus $\mathscr{L}_m = \{f^{-1}D_m(f) \in A_m : f \in A_m\}$.

1.1. THEOREM. (a) There exists $a \in k[x, y]$ such that $D^p = aD$, (b) ker $D_m \cap A_m = A_{m+1}$. (c) ker $(\phi_m) \cong \mathscr{L}_m$, (d) $D_m^p = a^{p^m} D_m$, (e) the order of \mathscr{L}_m is p^M for some $M \leq \deg(g) (\deg(g) - 1)/2$. ([2] pgs. 393, 394, 404.)

1.2. THEOREM. Let $D: K \to K$ be a derivation of a field K of characteristic $p \neq 0$. Let K' = ker(D) and [K: K'] = p. An element $t \in K$ is a logarithmic derivative (i.e., there exists an $x \in K$ such that t = Dx/x) if and only if $D^{p-1}(t) - at + t^p = 0$ where $D^p = aD$ ([16], pg. 64, (3.2)).

1.3. THEOREM. Let $D = g_y(\partial/\partial x) - g_x(\partial/\partial y)$ and $\beta \in k[x, y]$ be such that $D^p = \beta D$. If $(a, b) \in k^2$ is such that $g_x(a, b) = g_y(a, b) = 0$, then $\beta(a, b) = (\overline{H}(a, b))^{p-1/2}$ where $\overline{H} = g_{xy}^2 - g_{xx}g_{yy}$ [[3], Theorem 3.4).

1.4. LEMMA. Let $t = \sum_{j=0}^{p^m-1} \alpha_i^{p^m} g^j \in A_m$. If $t \in \mathscr{L}_m$ then the degree of each α_j is less than or equal to deg(g) - 2 ([3], Cor. 3.6).

Consider Zariski surfaces $X: z^p = g$ such that g_x and g_y meet transversally and in the maximum number of points of k^2 . This number is $(n - 1)^2$ if $n \neq 0 \pmod{p}$, $n^2 - 3n + 3$ otherwise, where $n = \deg(g)$. Such a g we will say satisfies condition (*). This is equivalent to saying that $g \in U$ (see [2], pg. 268 and [6]). In both of these cases, polynomials $g \in k[x, y]$ satisfy (*) for a general choice ([2], pg. 282).

1.5. THEOREM. Let g satisfy (*). Then for each $m \ge 0$, $\mathscr{L}_m \simeq \mathscr{L}_0$, the group of logarithmic derivatives of $D = g_v(\partial/\partial x) - g_x(\partial/\partial y)$ in k[x, y]. ([16], II (2.1)).

1.6. LEMMA. Let g satisfy (*). If $0 \neq t \in \mathcal{L}_0$ then $t(Q) \neq 0$ for at least one point of $S_g = \{Q \in k^2 : g_x(Q) = g_y(Q) = 0\}$ Furthermore, if $n = \deg(g) \neq 0 \pmod{p}$ then $t(Q) \neq 0$ for at least n - 2 points of $S_g([11], pg. 278, (2.9))$.

For each $Q \in S_g$ let $\sqrt{\overline{H}(Q)}$ denote a root of the polynomial $\omega^2 = \overline{H}(Q)$ in k (if p = 2. $\sqrt{\overline{H}(Q)}$ is just $g_{xy}(Q)$.) Let $\mathbb{Z}/p\mathbb{Z}$. $\sqrt{\overline{H}(Q)}$ be the additive cyclic subgroup of k generated by $\sqrt{\overline{H}(Q)}$. If $t \in \mathcal{L}_0$, then $D^{p-1}t - at = -t^p$ by (1.2). By (1.3) this implies that $(t(Q))^p = (\sqrt{\overline{H}(Q)})^{p-1}t(Q)$. Thus $t(Q) \in \mathbb{Z}/p\mathbb{Z}.\sqrt{\overline{H}(Q)}$ for each $Q \in S_g$. We obtain a homomorphism $\Phi: \mathcal{L}_0 \to \bigoplus_{Q \in S_g} \mathbb{Z}/p\mathbb{Z}.\sqrt{\overline{H}(Q)}$ defined by $\Phi(t) = (t(Q)_{Q \in S_g})$. From (1.6) we have

1.7. LEMMA. Let g satisfy (*). Then Φ is an injection.

2. The generic class group

Let $(\mathbb{Z}/p\mathbb{Z})^s$ be a direct sum of *s* copies of $\mathbb{Z}/p\mathbb{Z}$, $p \neq 0$, $s \geq 3$. Let C(S) be the group of permutations of elements of $(\mathbb{Z}/p\mathbb{Z})^s$ and *T* be the group of automorphisms of $(\mathbb{Z}/p\mathbb{Z})^s$ corresponding to sign changes of coordinates (if p = 2, $T = \{id\}$). Let $p_1: C(S) \times T \to C(S)$ be the projection map. Let *H* be a subgroup of C(S) that contains for each pair of coordinates of elements of $(\mathbb{Z}/p\mathbb{Z})^s$, an element $\sigma \in C(S)$ that permutes the given coordinates, permutes two others and acts as the identity on all other coordinates. Thus σ will be a product of two disjoint transpositions.

2.1. LEMMA. Let $G \subseteq C(S) \times T$ be such that $p_1(G)$ contains {H if p = 2, C(S) if $p \ge 3$ }. If W is an invariant subgroup of $(\mathbb{Z}/p\mathbb{Z})^s$ under the action of G, then W = 0, $\mathbb{Z}/p\mathbb{Z}$, or has a nonzero element which has at most four nonzero coordinates if p = 2, 3 nonzero coordinates if $p \ge 3$.

Proof. Assume p = 2 and that $W \not\cong 0$ or $\mathbb{Z}/p\mathbb{Z}$. Then W contains an element of the form $(0, n_2, \ldots, n_s) = x$ where at least one $n_j \neq 0$. We may assume without loss of generality that $n_2 \neq 0$. Let $\sigma \in H$ be a product of two disjoint 2-cycles, one of which permutes the first and second coordinates of elements of $(\mathbb{Z}/p\mathbb{Z})^s$. Then $x - \sigma x \neq 0$ and $x - \sigma x$ has at most four nonzero coordinates.

Assume $p \ge 3$. Again if $W \not\cong 0$ or $\mathbb{Z}/p\mathbb{Z}$ then W contains an element of the form $x = (0, n_2, \ldots, n_s)$ with $n_2 \ne 0$. Choose such a $x \in W$ with the minimum number of nonzero coordinates. If this number is larger than 3, there is a $\sigma \in G$ that permutes the first two coordinates and holds all others fixed except for possible sign changes. Then either $x + \sigma x$ or $x - \sigma x$ has fewer non-zero coordinates than x.

2.2. MAIN THEOREM. (Blass-Deligne-J. Lang). Let k be an algebraically closed field of characteristic $p \neq 0$, let $n \ge 4$ if $p \ge 3$ and $n \ge 5$ if p = 2. Let $\{T_{ij}: 0 \le i + j \le n\}$ be a set of algebraically independent variables over $k, L = \overline{k(T_{ij})}, F = \sum_{0 \le i + j \le n} T_{ij} x^i y^j$ and $A = L[x^p, y^p, F]$. If p > 2, then Cl(A) = 0, if p = 2, then $Cl(A) \cong \mathbb{Z}/2\mathbb{Z}$.

Proof. The case $p \ge 5$ is proved in [6]. So assume p = 2 or 3. Let $F' = F - T_{10}x - T_{01}y - T_{00}$. Then by a change of coordinates we have that $z^p = F$ is isomorphic to $z^p = F'$ so that we may assume $F = T_{20}x^2 + T_{11}xy + T_{02}y^2 + \cdots$.

By (1.1), Cl(A) $\cong \mathscr{L}_0$, the group of logarithmic derivatives of $D = F_y(\partial/\partial x) - F_x(\partial/\partial y)$ in L[x, y]. By (1.4) each element of \mathscr{L}_0 has degree at most n-2. We proceed in a series of steps.

Step 1. Assume $n = 0 \pmod{p}$. Then $t \in \mathscr{L}_{0}$. Then the degree (n-2) form of t is an integral multiple of $(\overline{F})y/x$, where \overline{F} denotes the highest degree form of F. (Note that $x(\overline{F})_x + y(\overline{F})_y = 0$ by Euler's formula and that $(\overline{F})_y/x = -(\overline{F})_x/y \in L[x, y]$.) t = Dh/h for some $h \in L[x, y]$. Let \overline{h} represent the highest degree form of \overline{h} and \overline{t} the degree (n-2)-form of t. Then $\overline{th} = (\overline{h})_x(\overline{F})_y - (\overline{h})_y(\overline{F})_x$. Thus $\overline{xth} = x((\overline{h})_x(\overline{F})_y - (\overline{h})_y(\overline{F}_x)) + y((\overline{h}_y(\overline{F})_y - (\overline{h})_y(\overline{F})_y) = \deg(h) \cdot \overline{h}(\overline{F})_y - \deg(F) \cdot \overline{F} \cdot (\overline{h})_y = \deg(h) \cdot \overline{h} \cdot \overline{F}_y$ by Euler's formula. Therefore $\overline{t} = \deg(h) \cdot (\overline{F})_y/x$.

Step 2. Assume p = 2 or 3 and $r \le n - 2$. Let $V_r = \{t \in \mathcal{L}_0 : \deg(t) \le r\}$. Then V_r is not isomorphic to $\mathbb{Z}/p\mathbb{Z}$ if p = 3 or if p = 2 and r < n - 2.

Suppose that p = 3 and $V_r \cong \mathbb{Z}/3\mathbb{Z}$. Let $t \neq 0 \in V_r$. Then by (1.6), $t(Q) \neq 0$ for some $Q \in S_F$. If $Q \neq Q' \in S_F$ then $t(Q') \neq 0$, for otherwise by (I.5.7) there exists a $\sigma \in \text{Gal}(L: k(T_{ij}))$ that transposes Q and Q' and acts as the identity on $S_F - \{Q, Q'\}$. Then $\sigma(t) \in \mathcal{L}_0$ and by (1.7), t and $\sigma(t)$ are $\mathbb{Z}/p\mathbb{Z}$ -independent. Thus $t(Q) \neq 0$ for all $Q \in S_F$.

Clearly $Q = (0,0) \in S_F$. This implies that $t(0,0) = s\sqrt{T_{11}^2 - T_{20}T_{02}}$ by (1.6) with $s = \pm 1$. We may assume s = 1.

For all $\sigma \in \text{Gal}(L/k(T_{ij}))$, $\sigma(t) \in \mathscr{L}$. This clearly implies that all coefficients of t belong to $\sqrt{T_{11}^2 - T_{20}T_{02}} \cdot k(T_{ij})$.

By (1.2), $D^2t - at = -t^3$ with $a = F_{xy}^2 - F_{xx}F_{yy}$ (a can be calculated as D^3x/Dx).

After comparing coefficients of t on both sides of this differential equation we see that in fact all coefficients of t must belong to $\sqrt{T_{11}^2 - T_{20}T_{02}} \cdot k[T_{ii}]$.

If we now set $T_{ij} = 0$ for $i + j \ge 7$, in the equality $D^2 t - at = -t^3$, then the image of t will be a nonzero element of \mathcal{L}_0 for the case n = 6 by (1.2). By (1.1) this would imply that for n = 6, Cl(A) $\ne 0$ which contradicts the explicit computation for this example I obtained in ([2], pg. 184). A similar argument works for the case p = 2, again using the computation of Cl(A) for n = 5 and 6 in ([2], page 181).

Step 3. Assume that p = 2. The cases n = 5 and 6 are proved in ([2], Chapter 3). Therefore we assume that $n \ge 7$. Then $D(F_y)/F_y = F_{xy} \in \mathcal{L}_0$. Therefore $\mathcal{L}_0 \ne 0$. If $n \ne 0 \pmod{2}$ then by (1.6) each nonzero $t \in \mathcal{L}_0$ is such that $t(Q) \ne 0$ for at least 5 points $Q \in S_F$. By (I.5.7), (1.1) and (2.1), $Cl(A) \cong \mathcal{L}_0 \cong \mathbb{Z}/2\mathbb{Z}$. If $n = 0 \pmod{2}$ and $t \in \mathcal{L}_0$ then the degree (n - 2) form of t is equal to $s(\overline{F})_{xy}$ where s = 0 or 1 and \overline{F} is the degree n form of F by step 1. Then $t - sF_{xy} \in \mathcal{L}_0$ and has degree at most n - 3. By step 2, $V_{n-3} \not\cong \mathbb{Z}/2\mathbb{Z}$. Therefore by (I.5.7), (1.6), and (2.1) $V_{n-3} = 0$. Thus $t = sF_{xy}$ and by (1.1), $Cl(A) \cong \mathbb{Z}/2\mathbb{Z}$.

Step 4. Assume p = 3. The case $n \le 6$ is proved in ([2], Chapter3). Assume then that $n \ge 7$. If $n \ne 0 \pmod{3}$, use (I.5.7), (1.6), (2.1) and step 2 to conclude that $\operatorname{Cl}(A) \cong \mathscr{L}_0 = 0$. If $n = 0 \pmod{3}$, we have by the same argument that $V_{n-3} = 0$. Then by step 1, this implies $\mathscr{L}_0 \cong 0$ or $\mathbb{Z}/3\mathbb{Z}$. By step 2, $\mathscr{L}_0 = 0$.

2.3. COROLLARY. Let $p \ge 3$, $n \ge 5$. Then for each $m \ge 0$, $Cl(X_m) = 0$ where X_m is defined by $z^{p^m} = F$ over L.

Proof. By (1.1) the kernel of the homomorphism $\phi_m: \operatorname{Cl}(A_{m+1}) \to \operatorname{Cl}(A_m)$ is isomorphic to \mathscr{L}_m for each $m \ge 0$. By (1.5) and (2.2) ϕ_m is an injection for each m. Since $\operatorname{Cl}(A_0) = 0$ and the coordinate ring of X_m is isomorphic (but not in general *k*-isomorphic ([6], II.3.4)) to A_m , the result follows.

2.4. COROLLARY. Let p = 2, $n \ge 5$. For all m > 0, $Cl(X_m) \cong \mathbb{Z}/2\mathbb{Z}$.

Proof. By (2.2) we have that if m = 2, $Cl(A_1) \cong \mathscr{L}_0 \cong \mathbb{Z}/2\mathbb{Z}$ and that \mathscr{L}_0 is generated by $F_{xy} = D(F_x)/F_x$. It follows from Samuel ([16], pg. 62) that $Cl(A_1)$ is generated by $F_x L[x, y] \cap A_1$. Write $F = a^2x + b^2y + c^2xy$ where $a, b, c \in L[x, y]$. Then $Cl(A_1)$ is generated by the height one prime $P_1 = (a^4 + c^4y^2, (a^2 + c^2y)(b^2 + c^2x))$ in $A_1 = L[x^2, y^2, F]$. Proceed now by induction to show that $Cl(A_m) \cong \mathbb{Z}/2\mathbb{Z}$, generated by $P_m = ((a^2 + c^2y)^{2^m}, (a^2 + c^2y)^{2^{m-1}}(b^2 + c^2x)^{2^{m-1}})$. It is not difficult to verify that $P_m = F_x L[x, y] \cap A_m$. The inclusions $A_m^2 \subseteq A_{m+1} \subseteq A_m$ induce homomorphisms $Cl(A_m^2) \to Cl(A_{m+1}) \to Cl(A_m)$ by Samuel ([16], pg. 10, Theorem 6.2). By induction we obtain homomorphisms $\mathbb{Z}/2\mathbb{Z} \xrightarrow{\alpha} Cl(A_{m+1}) \xrightarrow{\beta} \mathbb{Z}/2\mathbb{Z}$. In [10], Lang showed that α is injective and since each height one prime in A_m ramifies over A_m^2 , the composition $\beta \alpha$ is just multiplication by 2 ([9], pg. 403). We conclude that $0 \to \mathbb{Z}/2\mathbb{Z} \xrightarrow{\alpha} Cl(A_{m+1}) \xrightarrow{\beta} \mathbb{Z}/2\mathbb{Z}$ is exact. It is not difficult to see that $Cl(A_{m+1})$ is either $\mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z}$. Since α is an injection, $(P_{m+1}) \neq 0$ in $Cl(A_{m+1})$. Since the ramification index of P_m over P_{m+1} is 2, it must

be that α is multiplication by 1 and β is multiplication by 2. There β is the 0-map and α is an isomorphism.

In [11], Lang showed that if the divisor class group of $z^p = F$ is $(\mathbb{Z}/p\mathbb{Z})^s$ for some s as in (2.2) then the class group of $z^p = g$ is $(\mathbb{Z}/p\mathbb{Z})^s$ for all g in a dense open subset of A. Then by (1.1), (1.5) and (2.2) we obtain

2.5. COROLLARY. There exists a dense open subset W of A such that for all $g \in W$, $Cl(z^{p^m} = g) = \{0 \text{ if } p > 2, \mathbb{Z}/2\mathbb{Z} \text{ if } p = 2\}.$

The proof of the next two results are the same as those given in ([6], II(4.4) and II(4.5)) for the case $p \ge 5$.

2.6. COROLLARY. The hypersurface $z^{p^m} = F(x_1, ..., x_r)$ has 0 divisor class group for a generic F of degree $n \ge 4$ if p > 2. If p = 2, $n \ge 5$ and $r \ge 3$ then $Cl(z^{2^m} = F(x_1, ..., x_r)) \cong 0$ for a generic F.

2.7. COROLLARY. (2.6) holds for a general choice of F as well (see introduction). For each $m \ge 0$, let A_m be the set of $g \in A$ of degree n for which the order of $Cl(z^p = g)$ is p^m .

2.8. CONJECTURE (M. Artin). If the surface $z^p = G$ has geometric genus p_g for a generic polynomial G of degree n and if the order of $\operatorname{Cl}(z^p = G)$ is p^s , then the codimension of $A_{m+s} \leq mp_g$ for all $m \geq 0$.

The author thanks P. Blass and W. Heinzer for useful suggestions and comments.

References

- 1. P. Blass, Picard groups of Zariski surfaces. I. Comp. Math. 54 (1985) 3-86.
- 2. P. Blass and J. Lang, Zariski Surfaces and Differential Equations in Characteristic p > 0. Monographs and Textbooks in Pure and Applied Mathematics, No. 106, Marcel Decker, New York (1987).
- P. Blass and J. Lang, A method for computing the kernel of a map of divisor classes of local rings in characteristic p ≠ 0, Mich. Math. J. 35 (1988).
- 4. P. Blass and J. Lang, Surfaces de Zariski factorielles, C. R. Acad. Sc. Paris, T. 306, Série I, (1988).
- P. Deligne and N. Katz, Groupes de Monodromie en Geometrie Algébrique, Lecture Notes in Mathematics 340, Springer-Verlag, 1973.
- 6. A. Grant and J. Lang, Applications of the fundamental group and purely inseparable descent to the study of curves on Zariski surfaces, to appear in the Journal of Algebra.
- 7. A. Grothendieck, SGAI, *Lecture Notes in Mathematics*, No. 224, Springer-Verlag, New York, 1971.
- 8. R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties of small codimension, *Proc. Symp. Pure Math.*, 29 (Arcata), American Mathematical Society (1975).
- 9. R. Hartshorne, Algebraic Geometry. Springer-Verlag, New York (1977).
- 10. J. Lang, The divisor class group of the surface $z^{p^m} = G(x, y)$ over fields of characteristic p > 0. J. Alg. 84, 2 (1983).
- 11. J. Lang, The factoriality of Zarisksi rings. Compositio Mathematica (1987).

- 12. W.E. Lang, Remarks on p-torsion of algebraic surfaces, Compositio Math., 52 (2), (1984) 197-202.
- 13. M. Nagata, Local Rings. John Wiley & Sons, Inc. (1962).
- 14. M. Nagata, Field Theory. Marcel Dekker, Inc. (1977).
- 15. M. Raynaud, Anneaux Locaux Henséliens, Lecture Notes in Mathematics, Springer-Verlag, 1970.
- 16. P. Samuel, Lectures on Unique Factorization Domains. Tata Lecture Notes (1964).
- 17. O. Zariski and P. Samuel, Commutative Algebra, D. Van Nostrand Co., Inc. (1960).