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The singular cohomology groups H’(X, C) of a non-singular algebraic variety
X over C can be obtained from the algebraic de Rham complex ([8]). For
a non-singular variety Y over a finite field k this de Rham complex does not
give the "correct" groups. A construction to remedy this has been proposed
and carried out by Dwork, Monsky, Washnitzer, Berthelot and others. It can
be described as follows. The affine non-singular variety Y is lifted to an affinoid
space X over K = the field of fractions of W(k). Let A denote the ring of
holomorphic functions on X. The de Rham complex Çl* of the holomorphic
differential forms on X still does not give the correct cohomology groups. One
refines the construction by introducing a subring At c A of overconvergent
holomorphic functions. The de Rham complex 03A9(A~) of overconvergent dif-
ferential forms has in many cases the correct cohomology.

In this paper one studies the de Rham cohomology for general affinoid spaces
X = spm(A) over a field K of characteristic o. Such a space can be seen as a lift
of an affine space Y = spec(A) over the residue field of K. In general Y has
singularities and one can no longer apply the Monsky-Washnitzer theory. In
particular an affinoid algebra A need not have an overconvergent presentation.

In section 1 one uses Artin-approximation in order to show that the de
Rham-cohomology groups of an affinoid space X = spm(A) where A has an
overconvergent presentation ç, do not depend on the choice of 9. Further it
is shown that any non-singular X (the affine space Y can have arbitrary
singularities) has at least locally for the Grothendieck topology on X an over-
convergent presentation. This enables us to define de Rham cohomology sheaves
on X.

In the special case that X is non-singular, connected and dim X = 1, one uses
an embedding of X in a non-singular projective curve over K to obtain an
overconvergent presentation. In section 2 the same embedding is used for an
explicit formula of dim H1R(X). For certain families of one-dimensional affinoid
spaces X ~ S the method above gives the rank of the O(S)-module H1DR(XS). This
resembles a result of Adolphson [1] and recent work of Baldassarri [3].
For affinoid spaces X with dim X &#x3E; 1 we have only some results in the case

"X is the complement of a hypersurface t = o". In case t = 0 defines a non-
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singular hypersurface over the residue field of K, the Monsky-Washnitzer
theory has a residue map and a Gysin exact sequence ([11]) and one knows
that dim HDR(X)  00 . In section 3 we allow t = 0 (and also t = 0) to have
singularities. A residue map is constructed and a Gysin-exact sequence. This
leads to some results on HDR (X). For the cohomology theory of Dwork,
Monsky and Washnitzer we refer to [10,11,14,15] and for affinoid spaces to
[5,6,7].

Section 1. Overconvergence

In this section K is complete with respect to a non-archimedean valuation. Let
K~X1,..., Xn~ denote the free affinoid algebra over K in the explicitly given
variables X1,..., Xn. An element f = 03A3a03B1X03B1~K~K1,..., Xn~ is called over-

convergent if for some À &#x3E; 1 one has lim |a03B1|03BB|03B1| = 0. The subring of overcon-
vergent elements is denoted by K~X1,..., Xn~~.

LEMMA 1.1. Weierstrass preparation and division is valid for K~X1,..., Xn~~.
Proof. We follow the by now classical method (see [6] p. 55, 56). Let

F~K~X1,...,Xn~~ have norm 1. A linear substitution Xi~03A303BBijXj with
(03BBij) E Gl(n, KO) (where KO is the valuationring of K) or a substitution of the
form Xi~Xi + Xein(i = 1,..., n - 1) and Xn Xn makes F regular in Xn of
some degree d. The substitution leaves K~X1,..., Xn~~ invariant. For a suitable
integer N  1 and all 03BB &#x3E; 1, 03BB~|K*| and close enough to 1, the element
F remains regular in X n of degree d on the polydisk {(X1, ... , Xn) E Kn~Xi|03BB
for i=1,...,n-1 and |Xn|03BBN}. An element G~K~X1,...,Xn~~ extends
to such a polydisk and hence in the usual Weierstrass division G = QF + R,
the elements Q and R belong to K~X1,..., Xn~~.
Among other properties of K~X1,...,Xn~~ one can derive from (1.1) the

following:

COROLLARY 1.2 (Monsky and Washnitzer [10]). K~X1,...,Xn~~ is
noetherian.

DEFINITION. Let A be an affinoid algebra over K. An overconvergent pre-
sentation ç of A is a surjective K-algebra homomorphism 9: K~X1,..., Xn~ ~ A
such that the kernel of ç is generated by overconvergent elements. We define
(~,A)~ as K~X1,...,Xn~~/(ker ~)~K~X1,...,Xn~~.
LEMMA 1.3.

(1) K~X1,..., Xn) t 4 K~X1,..., Xn~ is faithfully flat.
(2) Let 9 be an overconvergent presentation of the affinoid algebra A. If

(f1,...,fm)=ker~ with fl,...,fmEK(X1,...,Xn)t then (~,A)~ =
K~X1,..., Xn~~/(f1,...,fm). Further (~, A)t -+ A is faithfully flat.

Proof. (1) For any maximal ideal m of K~X1,..., Xn~~ one shows with the
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aid of (1.1) that K~X1,..., Xn~~/m is a finite extension of K. (see [4] (II. 3.5)).
Hence there exists a unique maximal ideal M of K~X1,...,Xn~ with

M~K~X1,..., Xn~~ = m. The completions of K~X1,..., Xn~~ localized at m
and K~X1,..., Xn~ localized at M are isomorphic and so K~X1,..., Xn~~ -
K~X1,..., XJ is faithfully flat.

(2) is an immediate consequence of (1).

PROPOSITION (1.4) (S. Bosch [4]). Let the complete field K have either cha-
racteristic 0 or satisfy [K:Kp]  oo with 0 =F p = char K, then K~X1,..., Xn~~
has the Artin approximation property.

Commentary. The statement of the Artin approximation in this case reads:
"Let fi , ... , fm belong to K~X1,..., Xag Y1,..., Yb~~, let 03B5 &#x3E; 0 and let y1,..., b
in K~X1,..., Xa~ have norms  1 and satisfy fi(X1,..., Xa, y1,..., yb) = 0
(i=1,...,m) Then there are y1,...,yb~K~X1,...,Xa~~ with ~yi-yi~  03B5
and fi(X1, ..., XQ, YI’ ..., Yb) = 0 for i = 1, ... , m".

Artin’s proof in [2] can be adapted to the above case without any surprises.
In case char K = p ~ 0 one has to add a verification of Lemma (2.2) [2] page
283. In the local analytic case such a verification is provided in [12] Section 8.
This proof in the local case carries over to the case of overconvergent power
series.

As in [2] Theorem (1.5a) we have the following consequences.

COROLLARY 1.5. Suppose that char K = 0 or char K = p * 0 and [K : KP]  oo .

Let A and B denote affinoid algebra’s with overconvergent presentations ~ and 03C8.
Let u : A - B be a morphism and let e &#x3E; 0. Then there exists a morphism u’ : A ~ B
with ~u - u’ Il  03B5 and such that u’ maps (qJ, A)t into (03C8, B)t. In particular if ~1 and
qJ2 are two overconvergent presentations of A and for any e &#x3E; 0 there exists an

automorphism u of A with ~ u - 1 ~  03B5 and u((~1, A)t) = (qJ2, A)t.

COROLLARY 1.6. A = K~X1,...,Xn~/I has an overconvergent presentation
if and only if there exists an automorphism a of K~X1,..., Xn~ such that u(I)
is generated by elements of K~X1,..., Xn~~.

Proof (1.5) follows from (1.4) along the lines of [2]. The only new thing one uses
is: if u : A - A satisfies u - 1 Il  1 then u is an isomorphism. (1.6) The "if" parts
as obvious. Suppose that A has an overconvergent presentation 9. Then there
exists u’: K~X1,...,Xn~ ~ A with p u’ - u~  e  1 and u’(K~X1,..., Xn~~) ~
(9,A)t. With the help of the Weierstrass -Theorem 1.1 one shows that

u’: K~X1,..., Xn~~ ~ (~, A)t is actually surjective. The faithful flatness implies
that ker(u’) is generated by overconvergent elements. So u’ is also an overconver-
gent presentation. Further u’ = u03C3 for some automorphism of K~X1,..., Xn~.
This proves (1.6).

PROPOSITION 1.7. Every reduced one-dimensional affinoid algebra has an
overconvergent presentation.
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Proof. Let A denote the normalisation of this algebra. It suffices to show that
every connected component of A has an overconvergent presentation. According
to [13] a regular, connected, one-dimensional affinoid space can be embedded
into a complete non-singular curve. This means a presentation by polynomial
equations and hence an overconvergent presentation.

PROPOSITION 1.8. Suppose that the affinoid algebra A is smooth over K. Then
X = Sp(A) has a finite covering by rational subspaces Xi = Sp(Ai) such that each
Ai carries an overconvergent presentation.

Proof. Let B have an overconvergent presentation ~ then every rational
subspace U of Sp(B) carries an induced overconvergent presentation, since

where fo,..., fm E B can be chosen in the dense subring (ç, B)t of B. According
to Kiehl ([9] Folgerung (1.14)) a smooth X has locally the form

K~X1,...,Xn,1/t~[Y]/(P)=B where t~K~X1,...,Xn~ is an element with

norm 1 and P is a monic polynomial in Y with coefficients in K~X1,..., X n) such
that dP/d Y is invertible in B. Of course we may truncate t without changing B.
Newton’s method on approximation of roots shows that a monic polynomial
Q~K~X1,..,Xn~[Y] which is close enough to P defines an affinoid algebra
isomorphic to B. So we are allowed to truncate the coefficients of P and we obtain
that B can be defined by polynomial equations. The proposition follows.

In the sequel of this paper we assume that K has characteristic 0. Let A/K be
a connected, non-singular, affinoid algebra of Krull-dimension n, which has
an overconvergent presentation 9. By 03A91(~, A)t or 03A91(A~) we denote the module
of continuous differentials of «p, A)t. If 9 induces the isomorphism (9, A)+ ~
K~X1,...,Xa~~/(f1,...,fb) then 03A91(~,A)~ is an «p, A)t-module generated by
dx 1, ... , dx,, and the relations between the generators are given by

Clearly 03A91(~, A)t ~ A is isomorphic to the usual module of continuous

differentials of A/K. Further Q l(A, (p)t is a projective module of rank n. Put
03A9p(~, A)t = 039Bp03A91(~, A)t, then we have a De Rham complex 03A9(~, A)t. This
complex depends on the choice of 9. The cohomology groups however do not
depend on 9 according to (1.5).
We will write HDR(~, A) or HVR(X) or HDR(~, X), where X = Spm(A), for the

cohomology of the de Rham complex 03A9(~, A)t. We will need a stronger version
of the independence of (p. Let B denote p1/(p-1) if the residue characteristic of K
is p ~ 0 and 1 otherwise.
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PROPOSITION 1.9. Let A/K be as above and let ~ and 03C8 denote two

overconvergent presentations of A. Let u and v be automorphisms of A with
Il u-1~, ~v-1Il  e such that u and v are bijections (cp, A)~ ~ (03C8,A)~. Then u
and v induce the same bijections HDR(~, A) -+ HDR(03C8, A).

Proof. It suffices to show that an automorphism u of A with u(g, A)t = (9, A)t
and Il u - 111 ~  e induces the identity on HDR(~, A).

One defines D = log(1 + (u - 1)) = 03A3(-1)n(u - 1)n+1/n + 1 as endomor-

phism of A. Then D is a derivation of A over K and ~D~  e and u = exp(D) =
03A3n0(Dn/n!). Consider the morphism of affinoid algebra F:A~A~T~ given
by the formula

Let oco, 03B11: (~, A)~~T~~ ~ (~, A)t denote the (~, A)t-algebra homomorphism
given by oco(T) = 0 and 03B11(T) = 1. One easily verifies that F maps (~, A)t into
(9, A)~~T~~ and that 03B10.F = id and a 1. F = u.

It suffices now to show that oeo and a induce the same maps in the de Rham

cohomology. We will show that ao and a 1 are homotopic. The space 03A9q(~, A)~~T~~)
is the direct sum of (qJ,A)t(T)t ~(~,A)~03A9q(~,A)~ and (~,A)~~T~dT~(~,A)~
03A9q-1(~, A)t. The homotopy {03B4q} between (ao)* and (oc,)* is given by: bq is zero
on the first vectorspace and ô . is integration from 0 to 1 with respect to T on
the second vectorspace. This proves 1.9.

1.10. Sheaves of de Rham cohomology

Let again A/K denote a non-singular, affinoid algebra of Krull-dimension n.
Let X = Spm(A) denote the associated affinoid space and let U c X be a
rational subset. Then there are f0,f1,...,fm~A generating the unit ideal such
that

Moreover

For an overconvergent presentation 9 of A one can choose fo,..., fm E «p, A)t
and one finds an overconvergent presentation of O(U) not depending on the
choices of fo,..., ,fmE(qJ, A)t but only depending on 9. We write (~, O(U)~) for
the corresponding subring of O(U) and 03A9q(~, O(U))~ for the corresponding
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differential forms on U. The complex of sheaves U ~ 03A9(~, O(U)~) on X has
sheaves of cohomology U -+ X(~)(U) associated with the pre-sheave U ~
HDR(~, U). We will consider the dependence on 9.

Let 03C8 be another overconvergent presentation of A and let U c X = Spm(A )
be a rational subset. There is an e &#x3E; 0 (depending on U) such that for any
automorphism u of A with ~u-1~Il  e the identity u(U) = U holds. Choose
u such that ~ u - 1 Il  e and u(qJ, A)t = (03C8, A)t. Then u(~, O(U))~ = (03C8, O(U))~
and u induces a bijection r(U): HDR(~, U) ~ HDR(03C8, U) depending only on
ç, 03C8, U. The resulting isomorphisms of sheaves r: F°(ç) - X(03C8) depend only
on 9 and 03C8. Further HDR(~, X) can be recovered from X(~) with the spectral
sequence {Hk(X, X1(~)}.
The above enables us to define the sheaves of the de Rham conomology for any

rigid analytic space X over K which is non-singular and pure of dimension n.
Indeed by (1.8), X has an admissible covering {Xi} by affinoid spaces having

overconvergent presentations {~i} = 9. The sheaves X(~i) on X have canoni-
cal isomorphisms X(~i)|Xi~Xj~X(~j)|Xi~Xj. So we find sheaves (X,~)
on X. For another admissible covering of X and another family of overconver-
gent presentations 03C8 one finds a canonical isomorphism (X, qJ)-+ (X, 03C8).
The hypercohomology of the usual de Rham complex O. on X gives rise to

a spectral sequence Er ~ H(03A9) with Ep,q2 = HP(X, Xq). It is possible to

construct an overconvergent version (E, 9),, r  1, of this spectral sequence
with (E, ~)p,q2 = HP(X, (Xq, 9». This might lead to a definition of overconver-
gent de Rham cohomology on X as above.

In many cases, e.g. X is proper or X is an algebraic variety or dim X = 1, the
overconvergent presentations ç = {~i} can be chosen such that gi and gj
coincide on X i~Xj for all i, j. In such a case there is an overconvergent de Rham
complex (n*, ç) and the overconvergent de Rham cohomology is defined as the
hypercohomology of (0*, 9). (and does not depend on ~).

(1.11) AN EXAMPLE. Let Z = Spm(K~X, Y~/(Y2 - X(X - n)(X - 1)))
where 0  |03C0|  1. We take the obvious overconvergent presentation. The
spectral sequence implies the exactness of

(X0, ~) is the constant sheaf with stalk K and the bad reduction of Z implies
H1(Z, K) = K. Using Section 2 one can calculate dim HDR(Z) = 2 and so
dim H0(Z, (X1, ~)) = 1.

Section 2. Dimension one

The field K is supposed to have characteristic 0 and to be algebraically closed.
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THEOREM 2.1. (Compare [1]). Let X be a connected, non-singular, one-dimen-
sional affinoid space. Then X can be embedded in a complete non-singular curve
X of genus g such that X = X - (B1~··· u Bn) where the Bi are distinct open
subspaces of 9 isomorphic to {z~K||z| 11. The de Rham cohomology groups
of X are:

Proof. The embedding X  X is constructed in [13]. We consider first the case
n = 1. Let i: {z~K||z| 1}  B1 be an analytic isomorphism. Choose a sequence
03C11  P 2  ... in IK*l with limp,,, = 1. Put Xm = X - 03C4{z ~ K||z|  03C1m} and
ôX m = 03C4{z~K||z| = 03C1m}. Then O(X)~ = lim O(Xm) and 03A91(Xm)~ = lim03A91(Xm)
are provided with the direct limit topology. The kernel of the continuous
map d: O(X)~ ~ 03A91(X)~ consists of the constant functions on X, (i.e. K) and we
have only to show that coker(d) has dimension 2g.
To any fE(9(Xm) we associate f03C4 defined on {z~K|03C1m|z| 1} and its

expansion f03C4 = 03A3~n=-~anzn.

LEMMA 2.2. ~f~m:= the supremum-norm of f on X m is equal to maxn0 lanl |03C1nm.
Proof. In the canonical reduction Xm ~ X m the subset X m - DXn is mapped

to one point. So for every f~ O(Xm) we have that ~f~m equals the supremum
norm on ôXm = maxn~Z(|an|03C1nm).

This expression decreases when pn increases. It follows that |ak|03C1km 
rnaXn.Z 1 an 1 pn m for every k &#x3E; 0. This proves (2.2).

LEMMA 2.3. The image of d: O(X)~ ~ 03A91(X)~ is closed.
Proof. Let E denote the image. We have to show that E n 03A91(Xm) is closed

for every m. Choose a converging sequence 03C9i~E~03A91(Xm). Let fi~O(X)~
satisfy dfi = coi. The expansion of fi03C4 is 03A3~n=-~ an(i)zn where we have chosen
ao(i) = 0. It is convergent on pn  |z|  1 since coi - T = d(fi03C4)=03A3nan(i)zn-1 dz
converges on 03C1m  1 z  1.

Further fiat is a Cauchy sequence for the supremum norm on {z~K||z| =
03C1m+1}. Indeed, according to (2.2)

let the constant c satisfy c a |n|1- 03C11-nm03C1nm+1 for all n  0 then one finds
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So {fi} is according to (2.2) a Cauchy sequence in (9(Xm+l). Then f~ =
lim fi~O(Xm+1) satisfies d(f~) = lim coi. Hence lim 03C9i~E~03A91(Xm).
We continue now the proof of (2.1). Let (9a(X - t(O» and 03A91a( - 1(0)) denote

the meromorphic (or rational) functions and differential forms on 9 with only
a pole in T(O).
The differentiation d 1: Oa( - 1(0)) - Çll 1(0)) has a cokernel H of dimen-

sion 2g as one easily computes with the help of Riemann-Roch. This yields an
injective map H - HbR(X) = coker(d: (9(X)t -+ 03A91(X)~).
The vectorspace HDR(X) provided with the topology induced by 03A91(X)~ is

a locally convex Hausdorff space. It induces on H the usual topology since
dim H  oo and the topology is Hausdorff. So H is complete as a subspace of
H1DR(X). Since 03A91a( - 1(0)) is dense in 03A91(X)~ one finds that H is dense in
H1DR(X). This implies H = H1DR(X) and it proves the case n = 1.
The exact and commutative diagram

and H1(, 03A91) ~ K;H1(, O) ~ Kg implies the case n = 2 of the theorem. By
induction, with a similar proof of the induction step, one obtains the general
statement.

EXAMPLE 2.4. Let X be the affinoid subspace of P1 of the form X =

{z E K ||z|  1} - Bi ~ B2... Bn, where the Bi’s are disjoint open discs of radii
|03C0i| and with centers ai.
Every element f of O(X) has a unique expression

in which each 03A3m0am(i)Tm(i = 0,..., n) is a power series with lim am(i) = 0.
The element f is overconvergent if and only if each 03A3am(i)Tm is overconver-
gent. An easy calculation shows that the images of the differential forms
(03C0i/z - ai) dz(i-1, ..., n) form a basis of H1DR(X).
EXAMPLE 2.5. Let 2 be a compact subset of P’ 

1 not containing oo and let
X denote the open subspace P1 - J of P1. The kernel of d: (Q(X) -+ 03A91(X) is of
course K. The cokernel of d can be identified with the finite additive K-valued

measures J1 on Y with total measure J1(2) = 0. Equivalently one can describe the
cokernel of d as the K-vectorspace of K-valued currents on the tree of the
reduction of X. Let 03C9~03A91(X). The measure y corresponding to (O can be

described as follows. Let U c 2 be a compact open subset. There exists
a connected affinoid Y c X containing oo, such that IP 1 - Y=B1~···~Bn, the
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B1,..., Bn are open discs and the corresponding closed discs are still disjoint.
Further it can be arranged such that (B1~··· uBs)n2 = U.
Then

The Example 2.4 shows that J1 = 0 is equivalent to (J) is exact. On the other

hand, a construction analogous to [6] I.8.9. shows that every such measure J1
is the image of a differential form 03C9.

REMARK 2.6. The condition "K algebraically closed" in Theorem 2.1 is

superfluous. In general for a finite extension L of the field K one sees that
HiDR(X)~K L~ HiDR(X~K L). If X is absolutely non-singular and connected of
dimension 1 then there exists a finite extension L of K such that X~KL can be
embedded in a complete, non-singular curve Y over L such that Y - X ~KL
is the disjoint union of n subspaces isomorphic to {z~L||z|  1}. The proof of
(2.1) yields HDR(X ~KL) = L2g+(n-l) and this determines H1DR(X).
COROLLARY 2.7. Let X, , B1, ..., Bn be as in (2.1). Choose ai ~ Bi for
i = 1,..., n. Then the natural maps of the algebraic De Rham cohomology groups
HiDR( - (ai , ..., an}) into the analytic De Rham cohomology groups HiDR(X)
are isomorphisms.

Proof. For i = 0, this is obvious. For i = 1, both spaces have dimension

2g + (n-1) and one has to show that the map is injective. Let 03C9 be an algebraic
differential form on  - {a1,...,an} and suppose that 03C9 = df for some
f ~ (9(X) t. There are open discs B’i  Bi(i = 1,... n) such that f is holomorphic on
X’ =  - (Bi ~ ··· u B’n) and w = df holds on X’. Using isomorphisms ti: Bi .::+
{z ~ K ||z|  1} such that 03C4i(ai) = 0 and 03C4i(B’i) = {z ~ K ||z|  03C1i} for some 03C1i  1

we find that 03C9|Bi has the form 03A3n-~an,i03C4nidi. The terms a-1,i are zero since
03C9 = df holds on Pi  |03C4i|  1 and f = constant +
03A3n~-1(an,i/n + 1)03C4n+1i extends to a meromorphic function on Bi with possibly
a pole at ai . So f is a rational function on  with poles ~ {a1,...,an}. This
shows that the map between the H1DR-groups is injective.

2.8. A generalization of theorem 2.1.

For certain families 03C1:X ~ S of one-dimensional affinoid spaces we will

generalize (2.1). Hère X and S are connected affinoid spaces, p is smooth, the
fibres of p have dimension one and p has an overconvergent presentation. The
last statement means that (9(X) can be written in the form (9(S)( Tl, ... , Tn~/
(f1,..., fm) where each Ji is overconvergent w.r.t. T 1, ... , T" . The problem is to
determine ker(d) and coker(d) = HDR(X/S) for
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We suppose that X/S is obtained from a curve X/S by deleting open, disjoint
discs B1,..., Bn. This means the following:

X / S is a connected and smooth curve of genus g. The open disc Bi is the image
of an open immersion ui:S  {t~K||t|1} ~  such that p 0 ul is the projec-
tion onto S. Further X = X - Bi ~ ··· u Bn. The embedding X c X induces an
obvious overconvergent presentation for X - S. One easily verifies that the
proof of (2.1) extends to the new situation. One finds as result: ker(d) = (9(S)
and coker(d) is a projective O(S)-module of rank 2g + (n - 1).

EXAMPLES 2.9.

(1) S = Spm(K~03BB, (1/03BB(1 - 03BB)~) and

X = Spm(l9(S)(X, Y)/(Y2 - X(X - 1)(X - 03BB))).

Then H1DR(X/S) is a free 19(5)-module of rank 2
(2) S as above and X the affinoid space with algebra:

Then HDR(X/S) is a free O(S)-module of rank 2N + 1.

In the examples above the Gauss-Manin connection can be defined on HDR(X/S).
This differential equation is a direct sum of hypergeometric equations.

3. The complément of a hypersurface

In this section we do some calculations on the de Rham cohomology of the
affinoid space X = Sp(A) in which A has the form A = K~X1,..., Xn,t-1~ and
t~K~X1,...,Xn~ is an element with norm 1. The algebra A depends only on
the zero-set of the residue class t~K[X1,..., Xn] of t. So we may suppose that
t and t are polynomials of degree d and that î has no multiple factors. Further
X = Sp(A) is an affinoid subset of {X~Kn|t(X) ~ 01 = the complement of
the hypersurface.

In the special case where i = 0 is a non-singular variety in K" one can apply
the Gysin exact sequence of [11] II p. 231.
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Indeed, A’ and À’/(0 are non-singular complete intersections. This gives
a reduction in the dimenson for the calculation of the HDR . In the special case
n = 2 one finds the following:

Let (f = 0) c K2 have s components Y1,..., Y,. Let gi denote the genus of
i and ni = #(i - Yi). Then:

This follows from the Gysin sequence and Theorem (2.1).
In this section we try to give calculations for the dimensions if "f = 0" and

even "t = 0" have singularities. In order to do this we give a detailed description
of the residue map.
A general linear transformation of the coordinates (for convenience we

suppose that K is infinite) brings fin the form: t is a monic polynomial in X" of
degree d and the gcd. of f and ~t/~Xn is 1. Lifting t to t we may suppose
that t is a polynomial of total degree d ; t is monic in X" of degree d and the
discriminant 0394~K[X1,...,Xn-1] of t wrt.Xn has norm 1 as an element of

K~X1,..., Xn-l).
We want to define a residue map Res:A~~B~, where B denotes

K~X1,..., Xn, 0394-1~/(t), which generalizes the usual residues of meromorphic
differential forms in one variable. First we make a formal computation.

LEMMA 3. l. Let t0,...,td-1 denote indeterminates; let t~Z[t0,..,td-1][X]
denote the polynomial X d + td-1Xd-1 + ... + to; let f1 denote the discriminant
of t and let [n] denote the least common multiple of 1, 2,..., n.

Then every rational expression (03A3imdaiXi)t-m with ai E Z[t0,..., td-1] can
uniquely be written as

The coefficients satisfy 0394dmbi and [m-1]0394dmcj belong to Z[to,..., td-1].
Proof. Introduce indeterminates 03BB1,...,03BBd such that t = (X - À1)... (X - 03BBd)

and Z[t0,...,td-1] is seen as a subring of Z[03BB1,..., 03BBd]. The given expression
can uniquely be written in the form
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where 0394dmc(i, n) belong to Z[03BB1,...,03BBd]. Indeed A belongs to the ideal
(t/(X - Â1), ... , t/(X - 03BBd)) of Z[03BB1,..., 03BBd] and so

This implies that t - m has the required form and the same holds for Pt-m
where P is a polynomial of degree  md. There is a unique decomposition as

Rewriting this in the form

one finds that 0394dmbi and [m - 1]0394dmcj belong to Z[03BB1,..., 03BBd]. Those elements
are invariant under the permutations of {03BB1,..., 03BBd} and so 0394mdbi,0394md[m-1]cj~
Z[t0,...,td-1].

DEFINITION OF RES 3.2.

Res:K[X1,...,Xn,t-l] ~ K[X1,...,Xn,0394-1]/(t) is given by using (3.1) with
Z[t0,...,td-1] replaced by K[X1,...,Xn-1] and X by Xn and

modulo(t).

In order to extend this to: K~X1,...,Xn,t-1~~ = A~ ~ K~X1,...,Xn,0394-1~~/
(t) = B t, we introduce some norms.

For any 03BB &#x3E; 1, Il ~03BB on K[X1,..., Xn, t -1 ] is the supremumnorm on the set

(For notational convenience we assume K algebraically closed). For any p &#x3E; 1

we define I I ~03C1 on K[X1,..., Xn,0394-1]/(t) as the norm induced by the supremum-
norm on K[X1,..., Xn,0394-1] with respect to the set

Similar for



235

We apply 3.1 to Xint-m(0  i  d and m  1). One calculates then that there
exists a constant c such that Amdbi and [m - 1]0394mdcj are polynomials in
Z[t0,...,td] of total degree  m.c. It follows that B1 bi~03C1  pmc’ and

for some constants c’, c" &#x3E; 0 since 1 [m - 1 ] -1  m. Let L: K[X1,..., X", t-l]-+
K[X1,...,Xn,t-1,0394-1] be the K[X1,..., Xn-1]-linear map given by the
formula:

and

If p &#x3E; 1 is chosen small enough with respect to 03BB &#x3E; 1 then one calculates from

the estimates above that ~ Res(a)~03C1  Cllalll and ~L(a)~03C1  Cllalll for some
constant C &#x3E; 0. So Res and L can be extended by continuity to maps on the
completions with respect to ~ ~03C1 and II Il l. Taking the direct limit over all À &#x3E; 1

and p = 03C1(03BB) &#x3E; 1 one finds (continuous) maps

The domain of definition of Res and L can also be extended to K~X1,...,
Xn,0394-1,t-1~~. We note that for any a~K~X1,...,Xn,0394-1,t-1~~ one has
again

where

PROPOSITION (3.3). The following sequences are exact.

Proof. The exactness of the second sequence follows easily from (*), with the
exception of the calculation of kemel ~/~Xn. Write b~K~X1,..., Xn,t-1, 0394-1~~
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in the form

with b0~K~X1,...,Xn,0394-1~~ and all b(i,m)~K~X1,...,Xn-1,0394-1~~. Put
Xin(~/~Xn)t = Ait + si with Ai, Bi polynomials of degree  d wrt.Xn. Then
(~/~Xn(b) has the form

We note that Ai(i ~ 0) has the form dXn-1 + lower degree and that Bo =
dXd-1n + lower degree terms.

If (DIDX.)(b) = 0 then (a/aXn)(bo) = 0 and every coefficient of t-m is zero.
Hence b0~K~X1,...,Xn-1,0394-1~~. For m = 1 one finds b(i, 1) = 0 for i = 1, ...,
d - 1. For m = 2 one finds b(i, 2) = 0 for i = 1,...,d-1 and b(0,1) = 0 etc. So
all b(i, m) = 0 and b = bo has the required form. A similar argument yields: if
(~/~Xn)(b) lies in K (X 1 , ... , Xn, t-1~~ and bo = 0 then bE K~X1,...,1 xnl t-1~~.

This shows that in the first exact sequence one has ker(Res) = im(ô/ôX").
The remaining verifications are easy.

NOTATIONS AND DEFINITIONS 3.4. A = K~X1,...,Xn,t-1~~;
B=K~X1,...,Xn,0394-1~~/(t); C = K (X 1, ... , X n - 1) t and A’=A~0394-1~~;
C’ = C~0394-1~~. For every p  0 one defines a residue map

Resp: Q’) ~ B ~c03A9p-1(C) by the formule

Put M = Res(A), this is a C-submodule of B and for each p one has

Res(03A9p(A)) = M ~ 03A9p-1(C).
We note that B ~c03A9p-1(C) equals B ~c’03A9p-1(C’). Define V: B ~ B~03A91(C’)

such that V - Res = Res2 0 d 1. One easily verifies that V exists and is unique, and
that V is a connection. Using V one defines maps vq: B 8 Qq(C’) -+ B 0 03A9q+1(C’)
by

A straight-forward verification shows that: ~q-1Resq=Resq+1dq for all

q  1. In particular it follows that V is an integrable connection and that
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{B ~ 03A91(C’), ~q} is the de Rham-complex associated to V. Also {M ~ S2q(C), ~q}
is the De Rham-complex associated to V: M ~ M ~ 03A91(C).

COROLLARIES. 3.5.

(i) The canonical morphisms 03A9(C)~ker(03A9(A)M~03A9(C)) and

03A9(C’) ~ ker(03A9(A’) B~ Q’(C’)) are quasi-isomorphisms.
(ii) HiDR(A) ~ Hi-1(M ~ 03A9(C)).

(iii) dim H1DR(A)  d.
(iv) T he complex {B~03A9(C’),~} is quasi-isomorphic to {03A9(B),d}.
(v) For n = 2 the dimensions of HiDR(A) are finite.

Proof. (i) Let 03C9~03A9p(A) have 03B1(03C9) = Res(03C9) = 0 and d(w) = 0. Then w has
the form

with all b03B1~A (follows from (3.3))
With 1 = (-1)p03A3b03B1dX03B11 A ... A dX,,,,,-, one has

Each ôca/ôx" = 0 and according to (3.3) each c03B1~K~X1,...,Xn-1~~.
So co = d’1+ an element of OP(C). The same argument proves the second

statement.

(ii) is obvious from (i).
(iii) H1DR(A) ~ H0(M ~ Çl*(C» = ker V c ker(V: B ~ B 0 fl’(C’». The last V

is a differential equation of order d over C’ and the vectorspace of solutions
has dimension  d.

(iv) From (i) it follows that D = 03A9(A’)/03A9(K~X1,..., Xn, 0394-1~~) ~
B 0 03A9(C’) is a quasi-isomorphism. The well known morphism O.(B) -+ D given
by ce  A dt/t where W E O.(A’) is a lift of 03C9, is also a quasi-isomorphism. This
follows of course from [11] II. But in this case it follows easily from (3.3).
Indeed wEOP(A) can be written as

in which b03B2~K~X1,...,Xn-1,0394-1~~[Xn] has degree  d in Xn. If d(03C9) = 0 then
all ô(a,,,)l ax n = 0 and the acr lie in K (X 1, ... , Xn-1, 0394-1&#x3E; t. This shows that the
map Hp-1(03A9(B)) ~ HP(D) is surjective. The injectivity follows also from (3.3).

(v) Using (i) and (iv) one finds the Gysin-exact sequence for the cohomologies
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of the rings K~X1,0394-1~~,K~X1,X2,0394-1,t-1~~, K~X1,X2,0394-1~~/(t). The
first and the last ring have dimension 1 and hence their DR-cohomology is finite
dimensional. So the DR-cohomology of K~X1,X2,0394-1,t-1~~ is finite

dimensional. The next step is to construct a Gysin sequence for the rings
K~X1,X2,t-1~~, K~X1.X2,t-1,0394-1~~ and K~X1,X2,t-1~~/(0394). From this
(v) follows.
Of course we can replace 0 by an element 03B4 of the form (X 1 - 03BB1) ... (X 1 - 03BBs)

where 03BB1,...,03BBs~K are distinct. Applying the method of (3.1), (3.2) and (3.3) to
ô and X 1 (the discriminant is 1 in this case) one obtains the required exact
sequence.

3.6. In a rather special case we can calculate M = the image of Res. It is the
case where t has the form Xf - a with d | = 1 and a~K~X1,...,Xn-1~~ with
norm 1. The discriminant L1 equals d.a. An easy calculation shows that

Res1(Xd-1nt-mdXn) = 0 for m &#x3E; 1 and that

for m  1 and i  d - 2. It follows that

We continue this example for the case n = 2; write X, Y for the two variables
and t = Y’ - a. After identifying M and MdX, the operator V: M - M has the
form

where m0,...,md-2~K~X,a-1~~ and md-1~K~X~~.
For this operator V we have to calculate ker and coker. We note that a and

b E K~X~~ will give the same answer if à = 5. This means that a can be supposed
to have the form 03BB(X - 03BB1)n1...(X- Âs)ns with 1 Â 1= 1, lâil  1 and lÂj - Âjl | = 1
for i =1= j.

LEMMA 3.6.1. Let a be as above. The differential operator L on K~X,a-1~~
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given by L(m) = m’ - (i/d)(a’/a)m and 0  i  d satisfies:

(i) dim(ker L) = 1 if d divides all inl, ... , ins. Otherwise ker L = 0
(ii) dim(ker L) - dim(coker L) = - s + 1.

Proof (i) is rather obvious.
(ii) If ker L ~ 0 then m I-+b -1 L(bm), where b ~ 0 satisfies L(b) = 0, is the

ordinary differentiation on K~X,a-1~~ and we have already shown (ii) in that
case. If ker L = 0 then one can show that the image of L is closed in K~X, a-1 ~~.
The cokernel of L: K[X, a-1] ~ K [X, a-1] has dimension s - 1 and is repre-
sented by a basis 1/X - 03BB1,..., 1/X - 03BBs-1. The cokernel of L on K(X, a-1~~
has the same dimension.

COROLLARY (3.6.2.). The de Rham cohomology groups of K(X, Y, t-1 ~~
with t = Yd - A(X - îl)nl ... (X - As)ns have the following dimensions:

dim HDR = 1, dim HDR = gcd(d, nl, ... , ns) and dim HDR equals
1+(d-1)(s-1)-gcd(d,n1,...,ns).
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