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Introduction

Before stating our main results, we list some notations used in this work.

K a complete field with respect to a discrete valuation v and q = Spec K.
(9 K the ring of integers in K and S = Spec (9K.
k the residue field, assumed to be algebraically closed and s = Spec k.
A/K an abelian variety of dimension g.
03A6, 0 the group of components of the Néron model of A/K and its order.
L the minimal Galois extension of K such that AL/L has semi-stable

reduction.

03A6L the group of components of the Néron model of AL/L.
03A8, 03C8 the kernel of the canonical map a : 03A6 ~ (DL and its order.
Xlil a proper smooth geometrically connected curve of genus g.

We present in this paper some bounds for the group of components of a Néron
model associated to the jacobian of a curve. In order to use Raynaud’s des-
cription [16] of this group in terms of a regular model of the curve, we need to
assume that the gcd of the multiplicities of the irreducible components of the
special fiber obtained from the minimal model of XII is equal to one (this happens
for instance if the curve has an 1-rational point). We shall call such a curve XIII an
S-curve.

THEOREM 2.6. Let XII be an S-curve and A = Jac(X). Let 1AEp be the difference
between the Euler-Poincaré characteristics of the special fiber and the generic fiber
of the minimal model of Xlq. Then 0  2 ’EP-

It is worth noting that when E/K is an elliptic curve and p  5, the integer AEP is
equal to the valuation of the minimal discriminant of E (Ogg’s Formula). The
following result is an improvement for jacobians of a theorem of Lenstra and
Oort [7].

* Research partially supported by an Alfred P. Sloan Doctoral Dissertation Fellowship.
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THEOREM 2.4. Let XII be a smooth proper geometrically connected S-curve of
genus g and A = Jac(X). If the toric dimension t of this abelian variety equals zero,
then the order 0 of its group of components can be bounded in terms of the unipotent
rank u of A/K in the following way: 1:,prime ordl(~)(l - 1)  2u. In particular,
~  22" and if 1 divides ~, then 1  2u + 1.

The primes that divide 0 were first studied by Oort in [15] and a bound for cp(P)
depending only on the dimension of A (when A has potential good reduction) was
first found by Silverman [20]. However, these authors do not treat the case where
1 equals the characteristic p &#x3E; 0 of the residue field. The above bound was shown

to hold by Lenstra and Oort in [7] when u = dim A and 1 * p. It should

undoubtly hold for any abelian variety with t = 0.
Serre and Tate [19] have proven that if a prime q divides e = exp(Gal(L/ K)),

then q  2g + 1 and Oort [15] showed that if a prime 1 divides cp then l  2g + 1
(when p = 0 and u = g). This is not a coincidence; in [11], McCallum explains
why e kills the group IF. In section 3, we give a proof of a weaker version of his
theorem and we extend his bounds for e to the case of potentially toroidal
reduction. In particular, we show that q  2u + t - tss + 1 if q is a prime dividing
e, and tss is the toric rank of the semi-stable Néron model of AL/L. We conjecture
(3.7) that the group W satisfies the Oort/Lenstra bound of 2u + t - tss, i.e. that the
following inequality holds: 03A3lprimeordl(03C8)(l - 1)  2u + t - tss.

It is my pleasure to thank here all those whose conversations and advice have
been helpful in preparation of this paper, and, especially, Robert Coleman,
Hendrik Lenstra, William McCallum, Kenneth Ribet, Takeshi Saito and my
dissertation supervisor, Arthur Ogus.

1. Curves, Types and Picard Schemes

(1.1) Let XII be a smooth proper geometrically connected curve of genus g.
A proper and flat morphism X/S is a regular model for X/ri if X is a connected
regular scheme and X. is isomorphic to XII over 1. As an effective Cartier divisor,
the special fiber f!(s = 03A3ni=1 riCi, where ri is the multiplicity of the irreducible
component Ci. The integer s = gcd(r r.) satisfies the following properties:

2022 s divides g - 1 (see 2.1).
2022 If X/S has a section (for instance if XII has a rational point) then ri = 1 for
some i and s = 1.

2022 s is independent of the choice of a regular model for X. We shall say that XII is
an S-curve if its minimal model has s = 1.

We have on X an intersection theory (see [2], Chap. XIII or [6], page 58-61) with
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the following properties:

(a) (Ci·Cj) = (Cj·Ci)  0 for all i ~ j,
(b) (Ci·Xs) = 0 for all i = 1, ... , n. In particular, (Ci·Ci)  0 for all i = 1,..., n,
(c) 2p(CJ - 2 = (Ci·Ci) + (Ci·K) where p(Ci)  0 is the arithmetical genus of Ci

and K is the relative canonical divisor.

(d) 2g - 2 = (X., + (Xs·K) = 03A3ni=1ri(Ci·K).

Assertion (b) implies that the intersection matrix M = ((Ci·Cj)) and the vector
’R = (r1,..., rn) satisfy to the relation M·R = 0. Given such a matrix M, we
define what some authors call the dual graph of the curve; this graph is connected
because the special fiber Xs is. The vertices of the dual graph G associated to the
matrix M are the "curves" Ci. Two vertices Ci and Cj are linked by exactly
cij = (Ci Ci) edges. (G, - M, s-1R) defines what we called an arithmetical graph
in [9].

Let P denote the vector (p(C1), ... , p( Cn». A type T is a set (n, M, R, P) as above,
satisfying in particular the relation M ·R = 0 and such that the graph G associat-
ed to M is connected. The group of components of the type T is defined as
03A6(T) = Ker(tR)/Im(M), where M : 71.n -+ Zn and tR: Zn ~ Z. The notion of type has
been introduced by Artin and Winters in [1]. The problem of associating a curve
to a given type is discussed in [23] and [24].

(1.2) Let A/ri be an abelian variety of dimension g and si /8 its Néron model. We
have the following exact sequences of group schemes over s:

sit is the connected component of 0 in ds.
03C00(As) is the (finite etale) group scheme of
components.
We let 03A6 denote the finite group 03C00(As)(k).
U is a unipotent group scheme of dimension
u(A).
0393 is a torus of dimension t(A).
B is an abelian variety of dimension a(A).

In particular, g = u + t + a. The following key theorem is due to Raynaud [16]
(see also [5], IX, Section 12).

THEOREM 1.3. Let X/S be a regular model of the S-curve X, and let
T = (n, M, R, P) be its associated type.

1. The connected component A0s is isomorphic over s to the group scheme Pic’
2. The finite abelian group 03A6 := 1to(ds)(k) is isomorphic to 03A6(T).

We review some standard results on the Picard scheme of a curve. Let k be an



148

algebraically closed field and C/k a proper connected curve purely of dimension
1 whose irreducible components Ci, i = 1,..., n have multiplicity ri. Let Ci be the
normalization of Ci.

2022 PiCC/k is a smooth group scheme over k and Picg/k denotes the connected
component of the identity in PiCC/k.

2022 The map i : Cred ~ C induces a morphism of group schemes i* : PiCC/k ~
PicCred/k which is surjective with connected unipotent kernel (see [14]).

. The map p:  =  Ci ~ Cred induces a morphism of group schemes

p* : Pic0Cred/k - PiC0k which is surjective. Its kernel is a smooth and affine group
scheme; when C lies on a regular surface, the kernel has dimension equal to the
first Betti number of the dual graph G(C) of C ([1], Lemma 2.8).

2022 The map 03C0:C =  Ci ~  =  Ci induces a morphism of group schemes
03C0* : Pic0c/k ~ Pic0c/k which is surjective, and Pic0c/k is the largest quotient of Pico
which is an abelian variety. In particular, if C = Xs is the special fiber of
a regular model of an S-curve, a = Eg(Ci).

A regular model X/S is called an SNC-model when its special fiber is isomorphic
over k to a curve C whose irreducible components are smooth and such that the

singularities of Cred are formally isomorphic to the one of the union of the
coordinates axis in an affine space A 2.

2022 In the case of an SNC-model of an S-curve, the kernel of p* is a torus ([5], IX,
12.3 or [12], page 47); the toric rank of A equals the first Betti number of the
graph associated to the special fiber.

The "Embedded Resolution of Singularities" [8] shows the existence, for any
curve XII, of a regular SNC-model X/S. It follows easily from what has just
been reviewed that:

COROLLARY 1.4. Let XII be an S-curve. The dimension of the maximal torus in
the special fiber of the connected component of the Néron model of A = Jac(X) is
equal to the first Betti number of the graph associated to the special fiber of the
regular SNC-model of X/ri over S.

We summarize in the next corollary some results that follow from 1.3 and 1.4, 2.3,
2.5 of [9].

COROLLARY 1.5. Let Xs = 03A3ni=1riCi be the special fiber of an SNC-model of an
S-curve X/ri. Let di = 03A3i~j(Ci· Cj). Suppose that the Jacobian A = Jac(X) has toric
dimension equal to zero. Then the group of components of A has order equal to
~ = 03A0ni=1rdi-2i and is killed by lcm(rirj,(Ci·Cj) ~ 0).
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2. Bounds for the Order of 03A6

DEFINITION 2.1. Let T = (n, M, R, P, G) be a type and di the degree of the
vertex Ci in the graph G. The linear rank go(T) is defined by the formula:

Let 03B2(T) denote the first Betti number of the graph G. It is not hard to check that
2fi(T) - 2 = 03A3(di - 2). The linear rank go could be thought as a generalization
for types of the Betti number. Note that go(T) is an integer: see for instance 3.6 in
[9].

These numbers could be thought as analogue of the unipotent, toric and abelian
ranks u, t, a of the special fiber of the Néron model of the jacobian of a curve
X having type T. It is clear from the definitions that ce  a. One shows easily,
using 2.10, that 03B3  u for any S-curve.

2022 For any curve X/~ we let g0(X) = g(X) - 03A3ni=1rig(Ci) where g(Ci ) is the

geometrical genus of the irreducible component (Ci, ri).

Since any regular model of X/rq is obtained from the minimal model by a sequence
of blow ups, g0(X) depends only on the minimal model of X, and hence only on
X itself. We note that when T is associated to a curve X, g(T) equals g(X), the
genus of X. Since g(Ci)  p(Ci), the linear rank g0(T) of a type T associated to any
regular model X/S of X satisfies g0(T)  go (X ); moreover g0(T) = go (X ) iff all the
irreducible components of the special fiber of X are smooth. This is the case for
any regular SNC-model.
To any type T = (n, M, R, P, s) we can associate a new type s -1 T = (n, M,

s-1R,P,1) with the relation: g0(T) - 1 = s·(g0(s-1 T)- 1). Since g0(T) and
g0(s-1T) are integers, s divides g0(T) - 1. If g0(T)  0, then g0(T)  g0(s-1T)
03B2(G), as quoted below.

LEMMA 2.2. Let T = (n, M, R, P) be a type. If s = 1 or g0(T)  1, then

g0(T)  03B2(G).
Proof. We proved this fact in an elementary way in [9], Theorem 4.7. Note
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that it is not clear a priori that the integer 2go - 203B2 = 03A3(ri - 1)(di - 2) is non
negative since some of the degrees dis might be equal to one.

LEMMA 2.3. Let X/ri be an S-curve, and A = Jac(X). Then t(A)  g0(X) 
u(A) + t(A).

Proof. Let X/S be a regular SNC-model of X/ri and T its associated type. By
definition, go(X) = go(T) and by 1.4, t(A) = P(T). Using the same type To as in the
next theorem, we find a curve fvi such that 03B2(T) = 03B2(To) = t(fV) and go(T) =
go(To) = g(Yt). Since t(Yt)  g(OJ/t), the first inequality follows. The second
inequality is immediate because g(X) = u(A) + t(A) + a(A) and a(A) =
03A3ni=1 g(Ci).
We can now generalize a result of Oort and Lenstra [7] in the case where the

abelian variety A is the jacobian of an S-curve (see also the introduction). Let
0 denote the order of the group 03C00(As)(k) and ~(p) the order of its prime-to-p part.
Let also l(x) := 03A3l prime ordl(x)(l - 1), for any integer x.

THEOREM 2.4. Let X/~ be an S-curve and A = Jac(X). If the toric dimension
t(A, K) = 0, then 1(o)  2go(X)  2u(A, K).

Proof. Let friS be a regular SNC-model for X/~ and T = (n, M, R, P, 0, G(T))
the associated type. G(T) is a tree because t(A) = 0 (1.4). The integers ~, go(X) and
the graph G(T) depend only on n, M, R and not on P. Let Po = (0,..., 0) and
To = (n, M, R, Po, 0, G(T)). By Winters’ Existence Theorem [24], one can find
a discrete valuation ring A of equicharacteristic 0, a regular SNC-model
&#x26;/Spec A of its generic fiber fvi/t such that the type associated to fV is the given
type To .

Since G(To) is a tree and Po = (0, ... , 0), the jacobian of fvi is an abelian variety
of dimension g,(X) with purely additive reduction over A. Moreover, since A is
of equicharacteristic 0, ~(p) = 0. We can then apply Lenstra/Oort’s Theorem to
get l(~)  2g0(X).

REMARK 2.5. The bound 2u(A) undoubtly holds for abelian varieties in general.
McCallum [11] has improved Lenstra/Oort’s proof to obtain l(~(p))  2u(A)
when t(A) = 0.
Note that Raynaud’s Theorem 1.3 let us translate the problem ofbounding 4J in

terms of the intersection matrix M only. We provide a more elementary proof
that l(~)  2go in [9], Theorem 4.8, where we do not use Winters’ and

Lenstra/Oort’s Theorems.
Winters’ Theorem can be used to show the existence of all kinds of jacobians

with specified group of components. It is sufficient to exhibit the right graph.

THEOREM 2.6. Let X/S be the minimal regular model of an S-curve XII. Let
AEp be the difference between the l-adic Euler-Poincaré characteristics of Ers and X,
where 1 ~ p = char(k). The order of the group 03A6(Jac(X)) is bounded by 2âEP-l.
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Proof. Following Dolgacev [4], we define the Betti numbers of a proper
connected curve C = Li=lriCi as follows. Let (nop): Ci ~ LI Ci -+ Ci with
Ci denoting the normalization of Ci and ôc:= 03A3P~Cred|(03C0p)-1(P)|-1.

The étale cohomology group with coefficients in the constant sheaf (7L/l7L)c,
(char(k) fl), can be computed by Hi(Cet, Z/lZC) ~ (Z/lZ)03B2i(C). It follows from the
definitions that

We showed in [9] that the order ~ of the group of components is bounded by
~  v·03BA(G), where 03BA(G) is the number of spanning trees of G and v is an integer
satisfying the bound l(v)  2go - 2fl (3.5, 4.7). In particular, v  22go-203B2. We
claim that 03BA(G)  2m-1 (see Lemma 2.7 below), so that ~  22go-203B2+m-1. In the
last two lemmas of this section, we shall show that 2go - 03B2  2u + t (2.10) and
that 03B4Xs - (n - 1)  t (2.8); we can then conclude the proof of the theorem:

LEMMA 2.7. Let T = (n, M, R, P, G) be a type. Then 03BA(G)  (m 03B2)  2m-l, where
K(G) denotes the number of spanning trees of G.

Proof. In order to obtain a spanning tree of G, one has to remove exactly
fi edges from the m edges of G. Hence the bound K K (m 03B2) follows. In order to prove
the second inequality, we show:

It is well known that (m 03B2)  (m 1 2(m-1)) or (m 1 2m) depending on whether m is odd or even.
It is also known that (m 1 2m)  2m-2 when m  10 is even. This proves our lemma in
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this case. In case m  9 is odd, (m 1 2(m-1)) = 1 2(m+1 1 2(m+1)) and since m + 1 is even,

(m 1 2(m-1))  2m-2. The reader will check the remaining cases by direct computa-
tions.

LEMMA 2.8. Let X/S be a regular model of an S-curve X/~. Then 03B21(Xs)  2a + t
with equality if X/S is an SNC-model.

Proof. Let Xs = 03A3ni=1 ri Ci be the special fiber of the given model of X/K. Let
b b-1 ~ ··· ~ X1 X be a sequence of blow ups of points such
that L is a regular SNC-model of X/~. Then 03B2(G(Ls)) = t by 1.4. Let mz be the
number of edges of G(Ls), so that, by definition, 03B2(G(Ls)) = mz - (n + b - 1).
Since 03B21(Xs) = 2a + 03B4Xs - (n - 1), we only need to show that mz  b + 03B4Xs.

Let Lreds = (~ni=1 Ci)~(~bj=1Ej) where Ci is the normalization of Ci c Xs and
Ej is the exceptional fiber of 4Jj. The map 03C8 := 4Jl 0 ... o 4Jb: Xreds ~ Xreds induces
by restriction the normalization map Ci ~ Ci. We can assume without loss of
generality that Ci n Cj = 0 for all i ~ j. It is not hard to check that by restriction
the map 03C8: Ci ~ Xreds is the map (n 0 p): Ci ~ U Ci.
The map 03C8 determines a partition c03B1 =1 A03B1 = {1,...,b} where i,j ~ A03B1 iff

03C8(Ei)=03C8(Ej). For any point P ~ Xreds, we have |03C8-1(P)|  03A3i(03A3j~A~(Ci·Ej)).
Hence

We claim that 03A3(Ei·Ej) + c  b. This will follow if we show that 03A3ij~A03B1
(Ei·Ej)  IAal - 1. In fact, given Aa, we can construct the following graph: the
vertices are the Ei s and Ei is linked to Ei iff (Ei·Ej) - 1  0. Since the Eis are
exceptional fibers mapping to the same point, this graph is connected. Hence the
number of edges is at least equal to the number of vertices minus one.

(2.9) We defined the blow up of a graph G with respect to a vector Q in 1.8 of [9].
The following straightforward lemma discusses the effect of a blow up on the
integers go(T) and 03B2(T). Let Ek denote the kth column vector of the identity
matrix. We say that a blow up is trivial if Q = Ek, singular if Q = qEk with q &#x3E; 1

and elementary if Q = Ei + Ej.
A trivial blow up corresponds to blowing up a regular point of the special fiber,

a singular blow up could correspond to blowing up a singular point of the special
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fiber belonging to exactly one irreducible component and an elementary blow up
corresponds to blowing up the intersection of two curves that intersect normally.

LEMMA 2.10. Let (G, M, R) be an arithmetical graph with invariants fi and go’
Q = (ql, ... , qn) an integer vector and (G,, MQ’ RQ) the blow-up of G with respect
to Q, with invariants flQ:= 03B2(GQ) and gQ := go(GQ). Then 03B2Q = fi + (q - 1) if the
blow up is singular, 03B2 = PQ if the blow up is trivial or elementary and 03B2Q  fi
otherwise. Moreover, g0  gQ, 2go - 203B2  2gQ - 203B2Q and 2go - 03B2  2gQ - PQ.

3. Base Change to Semi-Stability

Let A/K be an abelian variety. Since we assume that K is complete with respect to
a discrete valuation and that the residue field is algebraically closed, we have
Gal(K/K) = I(K/K):= I K . Fix an odd prime 1  3, 1:0 p and let 03C1:1 K -+ Aut(T, A)
be the action of IK on the Tate module TlA of A. For any finite extension M/K of
K, we let u(M), t(M), a(M) be respectively the unipotent, toric and abelian rank of
AM/M.

. There exists (see [5], IX) an integer e  1 minimal with the property that

The characteristic polynomial of any matrix 03C3 E 03C1(IK) c Aut(TI A) has rational
integer coefficients. When e = 1, the abelian variety AK/K is said to have
semi-stable reduction and AK/K has semi-stable reduction if and only if

u(K) = 0.
2022 There exists (see [3], 5.15) a finite Galois extension L/K such that (a - id)2 = 0

for all 03C3 ~ 03C1(IL) and such that L is minimal with this property:

AM/M has semi-stable reduction iff L ~ M.

Let ass = a(L) and t,, = t(L).

We generalize now to the potential toroidal case (i.e. tss ~ 0) some bounds for e =

exp(Gal(L/K )) given in [11] by McCallum. For any integer x = p i ... pkk, with
p i , ... , pk distinct primes, we let

Note that L(x) is always an even integer, so that {x|L(x)  2n} = {x|L(x) 
2n + 1}.
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PROPOSITION 3.1. Let A/K be an abelian variety which does not have

semi-stable reduction over K (i.e. u = u(K) =1- 0). Let e denote the exponent of the
finite group I(L/K) and write e = pw.e(p) with pfe(P). Then max(L(pW), L(03B5(p))) 
2u + t - tss. If tss &#x3E; t, e is divisible by a prime at most equal to (tss - t + 1)  g + 1

and if ass &#x3E; a, 03B5 is divisible by a prime at most equal to (2ass - 2a + 1).

REMARK 3.2. For elliptic curves with potential good reduction, max(L(p"’),
L(03B5(p)))  2. This bound is achieved in the case of y2 = x3 - 2x2 - x over
Q2,nr (Example 5.9.1 in [18]). The extension L/K needed has its inertia group
isomorphic to SL2(F3); this group has order 24 and exponent 12. In particular, we
see that a bound of the form L(03B5)  2u does not hold for elliptic curves.
For elliptic curves with potential multiplicative reduction, it is known that the

inertia group has order 2 (the curve is a quadratic twist of the Tate curve, see [21],
14.1). Our bound is then also achieved.
We show in [10], Proposition 2.7, that if A is the jacobian of an S-curve having

tame potential good reduction then e = [L:K]  2(2u + 1).
Proof of 3.1. Let T = TlA and consider the filtration T ~ T1 ~ T2, where

T1 = T1L and T2 is the orthogonal of T1 under the Weil pairing on T (see [7],
Proof of 1.3). IK acts on each graded piece of T/T1 fl3 T1/T2 fl3 T2 as a finite
group of automorphisms. By minimality of L/K, IL is the kernel of this action. The
actions of IK on TIT, and T2 are isomorphic. We have ([5], IX, Section 2):

rankZ1T1/T2=2ass and rankZ1(T1/T2)IK = 2a,

rankzz T2 = tss and rankZl(T2)IK = t.

Each element of 03C1(IK) acting on any of the graded pieces has a characteristic
polynomial with rational integers coefficients ([5], IX, Proof of 4.3). We can then
bound max(L(pw), L(03B5(p))) by using the lemma below; the multiplicity of one as
eigenvalue of any element of 1K acting on T1/T2 is at least equal to 2a. Similarly
for T2, where this multiplicity is at least equal to t. Note also that (2ass - 2a) +
(tss - t) = 2u + t - tss.

If tss &#x3E; t, 1 K acts non trivially on T2 and hence some element of 1 K satisfies
(xe - 1) 2= 0, e minimal with this property and e &#x3E; 1; the bound for L(e) given in
the next lemma shows that a prime dividing e equals at most tss - t + 1. The
argument in case ass &#x3E; a is similar.

LEMMA 3.3. Let S ~ GLn(Zl) be such that its characteristic polynomial has
integer coefficients and its minimal polynomial divides (xe - 1)q. Assume that e is
minimal with this property and let tl denote the multiplicity of the eigenvalue one.
Then L(e)  n - tl.
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Proof. Recall the following factorization of the polynomial xe - 1 over 7L:

where 0j(x) is the minimal irreducible polynomial of a primitive dth root of one.
This cyclotomic polynomial has degree (p(d) (9(x) is the Euler function). When
d ~ 2 (mod 4), Bd(x) = f)d/2( -x); in particular if e - 2 (mod 4), we have xe - 1 =

03A0d|e/203B8d(x)03B8d(-x). Since the characteristic polynomial divides a power of the
minimal polynomial, we have

Suppose that e ~ 0 (mod 4). Let e = pa11 ... pakk, so that L(e) = 03A3~(paii). By
minimality, e = lcm(dle, such that td f=. 0). Hence there exists integers d l , ... , dh,
dividing e such that, for each 1  i  k, there exists 1  j  h with ordpi(dj) = ai
and tdj  1. Since n = t + 03A3d|exp(S),d~1td~(d), we can write

Suppose that e ~ 2 (mod 4). Then 4e) = L(e/2) and n = tl + t2 + 03A3d|e/2,d~1(td +
t2d)qJ(d). By the same reasoning as in the previous case, we have L(e)  n - tl. 

(3.4) Let A/K be an abelian variety and let L/K be the minimal field extension
such that AL/L has semi-stable reduction over L. For any finite extension M/L,
the natural map from the Néron model (AL)M to the Néron model of the abelian
variety (AL)M/M induces an isomorphism of their connected components (see
[5], IX, 3.2). This isomorphism induces an injection

We denote by 03A8 = 03A8(A, K) the kernel of the canonical map 03B1:03A6(A,K) ~
03A6(AL, L).
For any integer m  3, gcd(m, p) = 1, let Am be the group scheme of m-torsion

points of A and Km = K(Am) be the smallest field extension over which the points
of Am are rational. The minimal extension L is always contained in Km ([3], 5.15)
and L = Km when A/K has potential good reduction (see [19], Cor. 3, page 498).
In the following theorem, we prove a weaker version of a result of McCallum in
[11], using a method of Silverman [20].
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PROPOSITION 3.5. T he prime-to-p part of 03A8 injects into H1(IL/K, AIK/Lm). I n

particular, the order of 03A8(p) is bounded by a constant depending only on g and tp(p) is
killed by the order of I(L/K).

Proof. Consider the following commutative diagram with exact columns:

The first column is isomorphic to the second for any integer m  3 such that
gcd(m, p) = 1 (see for instance [20]). The second column injects in the third by
standard Kummer theory: the injection A(K)/mA(K)  H1(IK/K, Am) is induced
by the connecting homomorphism of the long exact sequence of cohomology
obtained from the short exact sequence 0 -+ Am -+ A -+ A -+ 0, where the second
map is multiplication by m (see [21], page 197, in case of elliptic curves, but the
general case is similar).
Choose m = ~(p), in which case 03A6(p)K/m03A6(p)K ~ 03A6(p)K. In particular, 03A8(p) injects in

K /m(DK; hence 03A8(p) ~  4 H1(IL/K, AIK/Lm) and is then killed by the order of IL/K.
By a lemma of Silverman [20], the order of H1(IL/K, AIK/Lm) is bounded by
a constant depending only on g.

REMARK 3.6. Let X/K be an S-curve with p[L:K]. Let XS = Iri Ci denote the
special fiber of a regular SNC-model of X/K. In [5], 1, 3.4, Grothendieck shows
that [L : K ] divides lcm(r 1, ... , rn). When A = Jac(X) has potential good
reduction (toric ranks tx = tL = 0), it follows from the definitions that W = (f) and
hence (D is killed by lcm(r 1, ... , r.). If we assume only that the toric rank tK equals
zero, it follows from 1.5 that O is killed by a multiple of lcm(r 1, ... , r,,); this bound
is sharp in the case of elliptic curves with Kodaira reduction type I* , v odd.

3.7 Let A/K be an abelian variety. The canonical exact sequence 0 ~ 03A8 ~ 03A6 ~
03A6/03A8 ~ 0 should enjoy the following property:

The order 03C8 is divisible only by primes q smaller than or equal to 2u + t - tss + 1
(see 3.5, 3.1, or [11], where the case 1 = p is treated).

2022 03A6/03A8 is minimally generated by at most tss elements, where tss = t(L) is the toric
rank of the semi-stable model of AL/L. The bound is sharp.
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To prove this statement, we only need to show that (DL is minimally generated by
at most t(L) elements, since 0/’P  (DL. Grothendieck shows in [5], IX, 11.9,
11.11, that the inductive limit limM~L03A6(M) is isomorphic to (Q/7L)tss. Hence the
injection (DL q (Q/7L)tss implies that 4jL) is minimally generated by at most
tss elements. Note that if A is the jacobian of an S-curve, we can obtain the desired
result by using Raynaud’s Theorem 1.3 and our explicit computations in 5.2 of
[9].

Let E/K be an elliptic curve with reduction of type I*2k+1 and let p5. By
Tate’s algorithm, we know that (D = Z/4Z and that (DL = Z/2(2k + 1)Z. Hence
the subgroup W is non trivial. We claim that W = Z/2Z. It is sufficient to show
that W ) Z/4Z. We proved in the above theorem that a kills IF and it is

well-known that for such curve, 03B5 = 2 (see 3.2). Hence Y = Z/22, 03A6/03A8 is non
trivial and the bound above is sharp because t = 0 and tss = 1. Note that the exact
sequence is not always split, as it can be seen on the above example.

4 Elliptic Curves and Wild Ramification

Let E/K be an elliptic curve. Let L/K be the minimal field extension such that
EL/L has semi-stable reduction and e = exp(Gal(L/K )). The exponent of the wild
conductor b, defined in [13] has the following property:

For elliptic curves with additive reduction, this integer can be computed using
Ogg’s Formula [13]

where v(0) is the valuation of the discriminant of the minimal Weierstrass model
of E/K and n is the number of irreducible components of the special fiber of the
minimal model of E over S. The following theorem is an easy application of Ogg’s
Formula and of Tate’s Algorithm [22].

THEOREM 4.1 Let E/K be an elliptic curve with additive reduction.
1. If p = 2, 03B4 = 0 b E/K has reduction of type IV or IV*.
2. If p = 3, 03B4 = 0 b E/K has reduction of type III, 111*, I*0, I*03BD(03BD  1).
where the reductions are described by their Kodaira symbol as in [22].

Proof. We closely follow the notations in Tate’s Algorithm. Let

be a minimal equation of E/K. By 03C0k~a, we mean that nkla and 03C0k+1a.
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Since we assume that E has purely additive reduction, we may start with Case
3: nla3’ a4, a6, b2. It is not hard to check that when p = 2, n41A and when p = 3,
03C03|0394. If the reduction is of type II, 03B4 = v(A) - 2 and hence in both cases 03B4 &#x3E; 0.

In Case 4, we assume moreover that n21a6. If 03C02 II bs, the reduction is of type III
and à = v(A) - 3. Hence in the case p = 2, ô &#x3E; 0. In case p = 3, we claim that
03B4 = 0 or equivalently that v(0) = 3. In fact, v(0) = 3 iff v(8) + 3v(b4) = 3 and it is
easy to check that 03C02 ~b8 implies n Il b4.

In Case 5, we assume that n3lb8. If 03C02 II b6, then the reduction is of type IV and
03B4 = v(A) - 4. When p = 3, it is easy to check that n’IA and hence ô &#x3E; 0. When

p = 2, we claim that ô = 0 is the only possibility. In fact, njal, 03C02|b2 and v(A) = 4
iff v(27) + 2v(b6) = 4.

In Case 6, it is easy to check that when p = 2, 03C08|0394. Hence if the reduction is of
type I*0, ô = v(A) - 6 &#x3E; 0. When p = 3, it is easy to check that 03C06|0394 and that 7r6 ~0394
iff 03C06~(4a32a6 - a22a24 + 4a34). But this last condition is also necessary and

sufficient for the discriminant of P(T) = T3 + (a2/n)T2 + (a4/n2)T + a6 /n3 to
be non zero mod n. This shows that when the reduction is of type Ig, à = 0.

In Case 7, the reduction is of type I*, v  1 and b = v(A) - 6 - v. It is not hard
to check that

Moreover, when v is odd, the reduction is of type I* iff 03C003BD+3~b6 and when v is even,
the reduction is of type I*03BD iff 03C003BD+4~(a24 - 4a2a6). When p = 2, one checks that
03C003BD+8|0394 and hence 03B4 &#x3E; 0. When p = 3, it is easy to check that 03C003BD+6|0394 and that
03C003BD+6~0394 iff 03C003BD+6~b22b8 iff 03C003BD+4~b8. When v is odd, 03C003BD+4~b8 iff nv+3l1b6 because
4b8 = b2b6 - b24 and when v is even, 03C003BD+4~b8 iff 03C003BD+4~(a24 - 4a2a6).

In Case 8, if y2 + (a3/n2)y - a6/n4 has distinct roots mod n then the reduction
is of type IV* and 03B4 = v(0) - 8. When p = 3, it is easy to check that 03C09|0394 and
hence J &#x3E; 0. When p = 2, we claim that v(A) = 8 is the only case occurring. In
fact, v(A) = 8 iff v(27) + 2v(b6 ) = 8. This is the case because the condition on the
discriminant of the polynomial above is equivalent to 03C02~a3 and hence 03C04~b6.

In Case 9, the reduction has type III* and 03B4 = 03BD(0394) - 9 if 03C04a4. When p = 2, it
is easy to check that n61b6 and that 03C010|0394. Hence 03B4 &#x3E; 0. When p = 3, we claim that
03B4 = 0 is the only case occurring. In fact, v(A) = 9 iff v(8) + 3v(b4) = 9. But
b4 = a1a3 + 2a4 with 03C04|a1a3 and 03C03~a4. Hence 03C03~b4.

In Case 10, the reduction has type II* and 03B4 = v(0) - 10. In both character-
istics, 03C07|b8 and 03C011|0394. Hence in both cases, 03B4 &#x3E; 0.

COROLLARY 4.2. Let E/K be an elliptic curve with additive reduction and
p = char(k) = 2 or 3. Then p divides IGal(L/K)1 if and only if ~ = 1 or p|~.

Proof. We note that IV and IV* are the only types whose group of components
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has order divisible by 3, and similarly, the types III, III*, I*, I*, v  1 are the only
ones whose group of components has order divisible by 2.

COROLLARY 4.3. Let E1 /K be an elliptic curve with additive reduction such that
~(E1) is divisible by a prime q. If E2 is an elliptic curve isogenous to El over K, then
~(E2) = 1 or is also divisible by q.

Proof. Let L/K be the minimal extension such that E1L/L has semi-stable
reduction. It is a very deep fact proven in [5], IX, Cor. 2.2.7, that L/K is invariant
under isogeny. Hence when p = 2, 3, this corollary follows from the previous one.
When p  5 &#x3E; 2g + 1, the extension L/K is tame and our claim follows from the
following table:

REMARK 4.4. This table is well-known, but we could not find a precise
reference in the literature. It follows for instance from a quotient/desingulariza-
tion construction due to Viehweg [23] (see also [10], Sec. 1).

In [ 17], T. Saito gives necessary and sufficient conditions for X/K to have tame
semi-stable reduction in terms of a regular SNC-model X/S of X/K.
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