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Section 0. Introduction

A theorem of A. Huber in [H] asserts that if M is a complete noncompact
two-dimensional Riemannian manifold with the negative part of its Gaussian
curvature being integrable, then M is parabolic in the sense that it does not admit
any nonconstant bounded harmonic functions. Our goal of this project is to find
an appropriate generalization or analogue of Huber’s theorem in higher
dimension. Realizing that Huber’s theorem fails completely for real manifolds in
dimension greater than 2 (see [L-T 1]), we turned our attention to the complex
category. In particular, we will prove that if a complete Kahler manifold satisfies
some integral curvature conditions then it does not admit any nonconstant

positive pluriharmonic functions. This can be viewed as a generalization of
Huber’s theorem because in dimension 2, all real manifolds are Kâhler manifolds
and harmonic functions are pluriharmonic.

This paper is organized in the manner that Section 1 and Section 2 are

discussions on Riemannian manifolds in general. The Kähler assumption wil not
be imposed on the manifold until Section 3. In Section 1, we consider geometric
consequences when the Ricci curvature of M is assumed to satisfy an integrability
condition. In particular, we will show that the volume growth of M can be
controlled by the growth of an LP integral of the negative part of the pointwise

1 Research partially supported by the authors’ NSF grants.
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lower bound of the Ricci curvature. In the original version of this paper we

proved this fact for p  n - 1, where n is the real dimension of M. However recently
we found out that Gallot has studied a similar assumption on the Ricci curvature
in [G] with a substantial overlap with our argument. In fact, his agument is more
refined in the way that one only needs to assume that p &#x3E; n/2. The proof
presented in Section 1 will incorporate his argument and ours for the purpose of
applying to our situation.

In Section 2, we study a certain class of differential inequalities which often
arises in geometry. In particular, integrability conditions of nonnegative
functions satisfying one of these differential inequalities will be derived. In the last
section, we will apply the theory developed in Section 1 and Section 2 to

holomorphic mappings from a complete Kähler manifold to a Hermitian

manifold. We conclude by observing that all the computations, in fact, are valid
for pluriharmonic mappings which is defined in [L].
The first author would like to thank S.Y. Cheng and A. Treibergs for many

helpful discussions and their interest in this work. We would also like to express
our gratitude to L.F. Tam for proof-reading our original manuscript and
providing a simplier and slightly more general argument for Corollary 3.2 by way
of Corollary 2.2.

Section 1. Curvature and Volume Growth

A higher dimensional anologue of the integral of the negative part of the
Gaussian curvature on surfaces is the integral of some power of the negative part
of the pointwise lower bound of the Ricci curvature. The following lemma
obtained by a modification of Gallot’s Theorem in [G] enables us to control the
volume growth of the complete manifold in terms of the growth of such an

integral.

THEOREM 1.1. Let M be a complete noncompact Riemannian manifold without
boundary of dimension n. Let us denote R(x) to be the pointwise lower bound of the
Ricci curvature,

Ricij(x)  R(X)gij,

and R _ (x) = max{0, -R(x)} to be the negative part of R(x). If the geodesic ball of
radius r centered at y E M is denoted by By(r), its volume is denoted by Vy(r), and the
area of its boundary is denoted by Ay(r), then for any p  n - 1 there exists

constants C1, C2 &#x3E; 0 depending only on n such that for any r &#x3E; 0,
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Also if n &#x3E; 2 then for any n/2  p  n - 1, there exists constants C3, C4, Cs &#x3E; 0

depending only on n such that

for any r &#x3E; ro &#x3E; 0, where H + = max{0, HI is the positive part of the mean
curvature function on aBy(r 0).

Proof. In terms of normal polar coordinates centered at the point y, the
volume element of M can be written as dV = a(O, r) dr dO. The first variational
formula gives

where H(8, r) denotes the mean curvature of the geodesic sphere of radius r at the
point (8, r). The second variational formula yields

with hi; being the second fundamental form of the geodesic sphere. However the
inequality

and the definition of R(03B8, r) implies that (1.2) can be estimated by
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If we set

then by differentiating and applying (1.1) and (1.3), we have

and

Moreover, f satisfies the initial conditions

because a - rn-l and H - (n - 1)r-1, as r ~ 0. Integrating inequality (1.5) from
0 to ro and using (1.6), we obtain the inequality

Let us now first consider the case when p = n - 1. Integrating (1.7) from 0 to r1
and using (1.6), we have

Using the definition of f, and the inequality (a + b)n-1  2n-2(an-1 + bn-1), for
a, b  0, we obtain

We shall point out that this inequality is only valid for those values of ri such that
the point (0, rl ) is within the cut locus of y. If we denote the sets

Sy(r) = {03B8 e Sn-1y| (8, r) is within cut locus of y},
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we see that they satisfy the monotonicity property, Sy(r2) ~ Sy(r1), if r1  r2 -
Integrating inequality (1.8) over the set Sy(r 1 ) yields

where 03C9n-1 denotes the area of the Euclidean unit (n - 1 )-sphere. This proves the
case when p = n - 1 with C1 = 2n-2 03C9n-1 1 and C2 = 1/(n - 1)n-1.
For the values p = s(n - 1) &#x3E; n - 1, we simply apply Hôlder inequality to the

second term on the right hand side of ( 1.9) and use the fact that the volume of the
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geodesic balls of radius r is an increasing function of r, and conclude that

We will now consider the case when n/2  p  n - 1. Note that n must be at

least 3 for this situation to occur. Following an argument of Gallot in [G], by
setting 03B4 = (2p - n)/2p - 1 one can rewrite inequality (1.5) in the form

We claim that there is a constant C6 &#x3E; 0 depending only on n such that

This inequality is obvious if the left hand side is nonpositive. Otherwise, applying
the algebraic inequality (a + b)p  (pP /(p - 1)p-1)abp-1 to the left hand side
of inequality (1.10), using the assumption on p and the definition of 03B4,
and integrating this inequality from ro to r, over those values where

f-lJ(af/ar) is nonnegative, we conclude that its nonnegative part p(0,r)=
max{0, f-03B4(~f/~r)(03B8, r)l satisfies the estimate

Using the definitions of 03B4, f, and (1.1), we rewrite this inequality as

where H + = max{0,H}. Integrating over the set Sy(rl ) and using the mono-
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tonicity property, this implies that

Applying the Cauchy-Schwarz inequality to the left hand side yields

On the other hand, we have

Therefore (1.11) implies

where C7 = C6(2p - 1)(n - 1)2p-l. Integrating with respect to rl from ro to r2,
we conclude that
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Hence

which proves the theorem.

By integrating these estimates and using the fact that Ay(r) = (~Vy/~r)(r), we
deduced the following:
COROLLARY 1.2. Let M be a complete Riemannian manifold without boundary.
With the notation of Theorem 1.1, if for any p &#x3E; n/2 the growth of the LP-norm of
R - satisfies

then

Another corollary of Theorem 1.1 is the following generalization of Huber’s
theorem in [H].

COROLLARY 1.3. Let M be a complete open surface whose negative part of its
Gaussian curvature defined by K_(x) = max{0, - K(x)} satisfies

for some constant al &#x3E; 0 and for all r &#x3E; 0. Then M is parabolic.
Proof. By Theorem 1.1 and the curvature assumption, the length of the

boundary of the geodesic ball of radius r centered at y satisfies
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for r sufficiently large. Now we invoke the criterion (see [L-T 1]) for the

parabolicity of M by checking the condition

Section 2. Differential inequalities and integrabilities

In this section we will focus our attention to positive functions defined on
a complete manifold which satisfy a certain class of differential inequalities.

THEOREM 2.1. Let M be a complete noncompact Riemannian manifold without
boundary. Assume u is a nonnegative function on M satisfying the differential
inequality

for some constant q  0, and for some functions k  0 and g on M. Let us assume
that the negative part of g define by g - = max{0, - gl is integrable, and also that
there exists a positive constant p and a point y E M, such that for all r sufficiently
large, the function u satisfies

Then

where M+ = {x E M u(x) &#x3E; 0}.
Proof. Without loss of generality we may assume that Img dV  oo. Other-

wise, we can replace g by the function

and let r ~ oo after the theorem is proved for gr. In fact, a consequence of the
theorem is that the integral of g will be finite if u E L"(M).
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Let e &#x3E; 0 be an arbitrary constant and ~(x) to be the cut-offfunction depending
only on the distance from x to the point y which is defined by

with the properties that ~  0 and |~~|2  3r- 2 . Multiplying the differential
inequality on both sides by the factor 0’uP-’I(ul’ + e) and integrating over
M yields

Integrating the first term on the left hand side by parts gives

Substituting this into inequality (2.1) yields
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Using the estimate on |~~|2 and the assumption on u, the left hand side can be
estimated by

which tends to 0 as r ~ oo. Hence we arrive at the inequality

Now letting e ~ 0 and observing that the second integral converges by Lebesgue
convergence theorem and the first integral converges by the monotone con-
vergence theorem to the desired inequality.
We would like to point out that if k ~ 0 and u &#x3E; 0, then the theorem implies

that f Mg dV  0. This is a slight generalization of a theorem of the second author
in [Y], where he assumed in addition that g is bounded from below. On the other
hand if k &#x3E; 0 and M+ g dV  0, then we can conclude that u must be identically 0.

COROLLARY 2.2 Let M, u, g, and k satisfy the assumption of Theorem 2.1 In
addition, let us also assume that M admits a positive Green’s function. Then u must
be identically 0.

Proof. Assume that there is a point z ~ M such that u(z) &#x3E; 0. Let GZ(x) be the
positive Green’s function on M with a pole at z. Pick a sequence Gi(x) of
nonnegative smooth superharmonic functions on m which has the properties that

Gi - Gz weekly in L2. This can be achieved by simply capping-off Gz near the
pole. Now consider the function w = uev, where v = -03B1Gi for some constant
a &#x3E; 0. Observe that

by the assumption on u.
On the other hand, w satisfies the differential inequality
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Applying Theorem 2.1 to the function w and using the fact that Av a 0, we have

for all compactly supported function 0 such that ~(z) = 1 and 0  1. Integrating
by parts and letting i - oo, we conclude that

which gives a contradiction since a is arbitrary.
The next theorem allows us to deduce integrability conditions on nonnegative

functions which satisfy a similar class of differential inequalities.

THEOREM 2.3. Let M be a complete noncompact Riemannian manifold without
boundary. Assume that u is a nonnegative function on M satisfying the differential
inequality

for some constants q, ko &#x3E; 0, and for some function g on M. Then for any constant
p &#x3E; 1 and any fixed point y ~ M, there exist constants C8, C9 &#x3E; 0 depending only
on ko such that the function u must satisfy

for any r &#x3E; 0. 1 n particular, if
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and

as r - oo, then

as r ~ oo.

Proof. Let 0 be the cut-off function defined in the proof of Theorem 2.1.
Multiplying both sides of the differential inequality by ~2up-2 and integrate by
parts yields

However the right hand side can be estimated by

It is also clear that we can choose 0 to satisfy the inequality



138

hence (2.3) becomes

The second term on the left hand side of inequality (2.2) can be estimated by

The theorem follows by combining this and inequalities (2.2) and (2.4).

Section 3. Holomorphic Mappings and Holomorphic Functions

We are now ready to study holomorphic mappings from a Kahler manifold
whose Ricci tensor satisfies certain integrability conditions.

THEOREM 3.1. Let M be a complete noncompact Kâhler manifold without
boundary of complex dimension m. Let R(x) denote the pointwise lower bound of the
Ricci curvature of M and R - (x) its negative part as defined in Theorem 1.1. Assume
that R - (x) satisfies

and

for some p &#x3E; m, and some f3  2/(m - 1). Let 03C8 be a nonconstant holomorphic
mapping from M into a complex Hermitian manifold N which has holomorphic
bisectional curvature bounded from above by K(z) for all z E N. Suppose that the
curvature of the image of M under 03C8 satisfies K(03C8(x))  - B for all x ~ M and for
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some constant B &#x3E; 0. If we denote the trace of the pulled-back metric tensor of N on
M by

Then it must satisfy the inequality

I n particular, if either

or M admits a positive Green’s function, then 03C8 has to be identically constant.
Proof. A direct computation (see [Lu], [C-C-L], and [L]) verifies that

u satisfies the Bochner type differential inequality

Holomorphicity of 03C8 and the assumption that u is nonconstant implies that the
zero set of u must be of measure zero on M. We claim that there is a constant

p’ &#x3E; m such that

Indeed, the Cauchy-Schwarz inequality implies that

The assumption on fi allows us to choose p’ = (2/j8) + 1 &#x3E; m.

Applying Corollary 1.2 and Theorem 2.3 by setting p = p’ and q = 1, we
conclude that
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The theorem now follows from Theorem 2.1 and Corollary 2.2.
We would like to point out that the assumption that M possesses a positive

Green’s function is necessary even in dimension 2. In fact, let us consider

a complete surface M with constant - 1 curvature which has finite volume. By
Huber’s theorem, M is conformally equivalent, hence holomorphically equi-
valent to a compact surface with finite punctures. One can conformally change
the metric to a complete metric which is fiat in a neighborhood of each puncture.
This new metric satisfies the hypothesis of Theorem 3.1 except the existence of
a positive Green’s function. However, it is holomorphically equivalent to

a surface with constant -1 curvature, which gives a counter-example.
In the case if a Kähler manifold admits a nonconstant bounded holomorphic

function, by scaling the holomorphic function, one can interpret it as a holo-
morphic mapping to the unit ball in C. On the other hand, the unit ball is
biholomorphic to the Poincaré disk with the complete metric with - 1 curvature.
By taking the composition map, we obtain a holomorphic mapping from the
Kähler manifold into the hyperbolic space form. Hence applying Theorem 3.1 to
this setting we have the following:

COROLLARY 3.2. Let M be a complete noncompact Kahler manifold without
boundary of complex dimension m. Let R(x) denote the pointwise lower bound of the
Ricci curvature of M and R - (x) its negative part as defined in T heorem 1.1. Assume
that R _ (x) satisfies

and

for some p &#x3E; m, and some fl  2/(m 1). Then M does not admit any nonconstant
bounded holomorphic functions.

The argument in the proof of Theorem 3.1 relies on the Bochner differential
inequality for the energy of holomorphic mappings. In fact, a larger class of
mappings from a Kàhler manifold also enjoy this differential inequality which
was defined as pluriharmonic mappings in [L]. We will refer the reader to [L] for
the computation and the proof of the following theorem.

THEOREM 3.3. Let M be a complete noncompact Kiihler manifold without
boundary of complex dimension m. Let R(x) denote the pointwise lower bound of the
Ricci curvature of M and R_ (x) its negative part as defined in Theorem 1.1. Assume
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that R - (x) satisfies

and

for some p &#x3E; m, and some fl  2/(m - 1). Let 03C8 be a nonconstant pluriharmonic
mapping from M into a Riemannian manifold N which has Hermitian bisectional
curvature bounded from above by K(z) for all z E N. Suppose that the curvature of
the image of M under 03C8 satisfies K(03C8(x))  - B for all x ~ M and for some constant
B &#x3E; 0. If we denote the trace of the pulled-back metric tensor of N on M by

Then it must satisfy the inequality

In particular, if either

or M admits a positive Green’s function, then 03C8 has to be identically constant.
By using the fact that the upper half plane is biholomorphic to the hyperbolic

space form, we conclude the following:

COROLLARY 3.4. Let M satisfies the same assumption as in T heorem 3.3. Then
M does not admit any nonconstant positive pluriharmonic functions.

THEOREM 3.5. Let M be a complete noncompact Kâhler manifold without
boundary of complex dimension m. Let S(x) denote the scalar curvature on M and
S_(x) its negative part defined by S_(x) = max{0, - S(x)}. Assume that S_(x)
satisfies
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and that there exists a constant p &#x3E; 1 and a point y E M such that

Suppose that the volume of geodesic balls of radius r centered at y satisfies

as r ~ oo. Let 03C8 be a nonconstant holomorphic mapping from M into a complex
Hermitian manifold N which has the same dimension and with Ricci curvature
bounded from above by RN(z) for all z E N. Suppose that the curvature of the image of
M under 03C8 satisfies RN(03C8(x))  - B for all x ~ M and for some constant B &#x3E; 0. If we
denote the fourth power of the Jacobian of the map 03C8 by

and the trace of the pulled-back metric tensor of N on M by

u = tr03C8*(ds2N).

Then either 03C8 is totally degenerate, i.e. v is identically 0, or u must satisfy

1 n particular, if either

or M admits a positive Green’s function, then 03C8 has to be totally degenerate.
Proof. It was derived in [C] that the function v satisfies the differential

inequality
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Arithmetic-geometric means implies that

Letting w = Vl/4m, we can rewrite the differential inequality as

Now we can apply Theorem 2.3 to conclude that

The theorem now follows from Theorem 2.1.

COROLLARY 3.5. Let M be a complete noncompact Kâhler manifold without
boundary of complex dimension m. Let S(x) and R(x) denote the scalar curvature and
the pointwise lower bound of the Ricci curvature on M, and S - (x) and R - (x) their
negative parts respectively. Assume that S - (x) satisfies

and that there exists a constant p &#x3E; m such that

Let 03C8 be a nonconstant holomorphic mapping from M into a complex Hermitian
manifold N which has the same dimension and with Ricci curvature bounded from
above by RN(z) for all z ~ N. Suppose that the curvature of the image of M under
03C8 satisfies RN(03C8(x))  - B for all x ~ M and for some constant B &#x3E; 0. If we denote
the fourth power of the Jacobian of the map 03C8 by
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and the trace of the pulled-back metric tensor of N on M by

u = tr03C8*(ds2N).

Then either 03C8 is totally degenerate, i.e. v is identically 0, or u must satisfy

In particular, if either

or M admits a positive Green’s function, then t/1 has to be totally degenerate.
Proof. The assumption on R _ and Corollary 1.2 implies the desired volume

growth condition to apply Theorem 3.5. Now we observe that S(x)  m R(x), and
the corollary follows.
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