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An important part of Donagi’s proof [2] of generic Torelli for projective
hypersurfaces involves recovering the polynomial structure on certain spaces of
homogeneous polynomials. In this paper we give a different method for

recovering the polynomial structure. Besides being simpler, our method also
enables us to prove generic Torelli for some hypersurfaces not covered by
Donagi’s argument. More precisely, we get the following theorem:

THEOREM. The period map for smooth hypersurfaces of degree d in Pn+1 is

generally injective except possibly for the following cases:
(i) d = 3 and n = 2 (cubic surfaces).

(ii) d|n + 2.
(iii) d = 4 and 4|n.

REMARKS.

(i) In Donagi’s original theorem [2], hypersurfaces with d = 6 and n - 1 mod 6
also had to be excluded.

(ii) The reasons for excluding (i) and (ii) are discussed in [2, §6]. For some recent
progress on (ii), see [5]. At the end of the paper we will comment on (iii).

Proof. Let S = C[x0, ..., xn+ 1], and let Sr be the graded piece of S in degree r.
Then a smooth hypersurface X c Pn+1 of degree d is defined by some f ~ Sd . J and
R will denote the Jacobian ideal and ring of f, and their graded pieces are Jr and Rr
respectively. As explained in [2], we may assume that

To prove generic Torelli, it suffices to show that X can be recovered up to

projective equivalence by the algebraic part of its Infinitesimal Variation of
Hodge Structure (see [1]).

Let k = gcd(d, n + 2). Using the symmetrizer lemma, Donagi [2] shows that
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the algebraic IVHS data determines the map

up to isomorphism. Note that k  d - 1 by (1) and our assumption dtn + 2. This
means that Rk ~ Sk , and as noted in [2], the proof of the theorem is

straightforward once we recover the isomorphism Rk ~ Sk up to GL(S 1 )
equivalence (this is what we mean by the phrase "polynomial structure").
Furthermore, when 2k  d - 1, an easy argument shows that the map (2)
determines the polynomial structure (see [2, Lemma 4.2]).

It remains to consider the case 2k  d - 1. Since k|d, this inequality implies
either k = 1 or 2k = d. The polynomial structure is automatic when k = 1, so that
we may assume 2k = d and k &#x3E; 1. To recover the polynomial structure in this
case, we proceed as follows.

In the process of symmetrizing to obtain (2), one also obtains the map

which together with (2) gives the sequence

The basic idea is to use this sequence to determine when a codimension

1 subspace of Rk has a base point. The precise result is the following:

PROPOSITION. Let d and k be as above, and assume that 2k = d, k &#x3E; 1 and

d &#x3E; 4. If W c Rk ~ Sk is a codimension 1 subspace, then the sequence

obtained from (3) is exact at the middle term if and only if W is base point free.

Before proving the proposition, let’s explain how it determines the polynomial
structure on Rk. The key point is that the codimension 1 subspaces of Rk ~ Sk
which have a base point (necessarily unique) are the image of the Veronese
imbedding P*(S1) - P*(Sk), where for a vector space V, P*(V) is the projective
space of codimension 1 subspaces of V. It is well known that the image of the
Veronese determines the polynomial structure on Rk ~ Sk [2, Lemma 4.2].

Also, note that the case d = 4 not coverèd by the proposition corresponds
exactly to the case d = 4, 4|n excluded in the statement of the theorem. Thus the
theorem follows immediately from the proposition.

Proof of the Proposition. First, assume that W is base point free. Then it follows
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from Theorem 2 of [4] that
(i) ^2 W ~ Sk ~ W ~ S2k ~ S3k is exact at the middle term.

(ii) W ~ S1 ~ Sk+1 is onto.
From (ii), we see that W ~ J2k ~ J3k is surjective (note that J2k = Jd =

S1·Jd-1). Then an easy diagram chase shows that (4) is exact at the middle term.
Now assume that W c Rk has a base point a. For r  0, set Wr =

{F E Sr : F(a) = 0}. Then Wr is a codimension 1 subspace of Sr, and we may identify
Wk with W. Now consider the commutative diagram:

The map oc is surjective, and then a diagram chase shows that 03B2 is surjective
whenever the top row is exact in the middle. Thus, to prove the proposition, it
suffices to show that the map 03B2: Wk ~ J2k -+ j3k n W3k is not surjective.

Since the generators fx0,...,fxn+1 of the Jacobian ideal J form a regular
sequence, we can resolve J using the Koszul sequence of fxo, ... , fXn+ 1 . The first
relations between the generators occur in degree d - 1, so that the map
Sr (g) jd-1 Jr+d-1 is an isomorphism for r  d - 1. From 2k = d and d &#x3E; 4,
we see that k + 1  d - 1, and hence

Since J3k n W3k has codimension 1 in J3k(J3k is base point free), an easy
dimension count shows that Im(03B2) is a proper subspace of J3k n W3k. Thus P is
not surjective, which concludes the proof of both the proposition and the
theorem. D

The above argument simplifies the "polynomial structure" part of the proof of
generic Torelli for projective hypersurfaces, and we should mention that the proof
of the symmetrizer lemma has also been simplified [3].
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The last case excluded in our theorem, when d = 4 and 4|n, is frustrating: it is
generally believed that this case should be accessilble by IVHS methods, but both
Donagi’s arguments [2, §5] and the above proposition break down in this
situation (one can show that the sequence (4) is exact in the middle for all
codimension 1 subspaces, base point free or not).
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