
COMPOSITIO MATHEMATICA

KIYOHIKO TAKEUCHI
Some birational maps of Fano 3-folds
Compositio Mathematica, tome 71, no 3 (1989), p. 265-283
<http://www.numdam.org/item?id=CM_1989__71_3_265_0>

© Foundation Compositio Mathematica, 1989, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1989__71_3_265_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


265

Some birational maps of Fano 3-folds

KIYOHIKO TAKEUCHI
Department of Mathematics, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya, 464, Japan

Received 29 April 1988; accepted in revised form 2 January 1989

Compositio Mathematica 71: 265-283, 1989.
© 1989 Kluwer Academic Publishers. Printed in the Netherlands.

Section 0. Introduction

Iskovskih [2] investigated the double projections of Fano 3-folds from lines on
them assuming the existence of lines, and classified the Fano 3-folds. (Later
Shokurov [11] showed that this assumption always holds.) Mori [6] treated
these projections with the numerical method using the extremal ray theory.

In this paper, we study the projections from general points or conics (instead of
the ones from lines in Iskovskih’s works [2]; see also [11], where the projections
are studied by different methods) on Fano 3-folds using the extremal ray theory.
We can give an alternate simpler proof of Iskovskih’s result without using the
existence of lines:

(0.1) THEOREM. Let V = V2g-2 in Pg+1 be a Fano 3-fold satisfying Pic V =
Z(-KV). Then g = 12 or g  10. (Here the number g is called the genus of V (see
(1.0)).)

Thus this approach simplifies the coarse classification of Fano 3-folds. We
should mention that the existence of lines needed in the classification of Fano

3-folds with the Picard number 03C1  2 [8] can be replaced with the above coarse
classification.

The existence of lines mentioned above was one of the key results needed in
Iskovskih’s approach, which was proved by elaborate geometric arguments. We
can also give another simpler proof of the result of Shokurov [11](1):

(0.2) THEOREM. (The existence of lines and smooth conics). Let V be a Fano
3-fold as in (1.0) and assume g  8. Then there exist a line (i.e. a rational curve
C such that C.( -Ky) = 1) and a smooth conic on V.

The extremal ray theory enables us to prove Theorem 0.2 with only numerical
calculation. Our arguments thus considerably simplify the proof of the classific-
ation of Fano 3-folds.

(1) Though this simplifies Shokurov’s proof, it still needs his result (1.8).
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Our approach also gives birational maps between Fano 3-folds systematically,
and in particular the following remarkable birational map.

(0.3) THEOREM. Let V = V14 in P9 be a Fano 3-fold with g = 8 satisfying
Pic V = Z(-KV). There is a birational map of a cubic 3-fold B3 in P4 to V, whose
indeterminacy is the union of a quartic rational curve and 16 lines in B3.

Fano and Iskovskih [4] constructed a different birational map of B3 to V14. In
their case, the indeterminacy in B3 is the union of a quintic elliptic curve and 25
lines, but the union of rational curves in our case.

In Section 1, we recall the well-known results in [2] for lines and conics on
Fano 3-fold V, and reproduce the work of Reid [10] on the anti-canonical
morphism of the blow-up of V at a point or along a conic.
The main part of this paper is in Section 2. We construct (bi)rational maps of

Fano 3-folds as the projections from points or conics, and prove Theorems 0.1
and 0.2.
We discuss in Section 3 the new birational map between a cubic 3-fold B3 and

a Fano 3-fold V14 (Theorem 0.3).(2)
The author is grateful to Professor S. Mori and Professor S. Mukai for a lot of

helpful suggestions and encouragement, and to Mr. Hayakawa for useful con-
versation.

The following notations are used in this paper.
For a subset Y of the projective space, ~Y~ means a projective subspace

spanned by Y. Let X be an irreducible reduced subscheme of a scheme Y. We
denoted by multx Y the multiplicity of Y at the generic point of X.

Let V be a projective 3-fold. Let X be a point or a conic in Y and L a divisor of
V. For a positive integer n, |L - nX| means the linear subsystem of ILl consisting
of all divisors D E ILl such that multXD  n.

Section 1. Preliminary

(1.0) In this paper, all varieties are considered over the field C of complex
numbers. Let V = V2g - 2 c [Pg+1 be a Fano 3-fold of the principal series, i.e., a
smooth complete irreducible algebraic variety of dimension three over C whose
anti-canonical Cartier divisor - KV is very ample. Hence V is embedded by the
anti-canonical system 1- K v 1, and the genus g of V is the integer defined by
dim |-KV| = g + 1, which satisfies deg V = (-KV)3 = 2g - 2.

(2)S.L. Tregub obtained the same result assuming the existence of lines. (cf. S.L. Tregub: Construction
of a birational isomorphism of a cubic threefold and Fano variety of the first kind with g = 8,
associated with a normal rational curve of degree 4, Vestnik Moskov. Univ. Mat., Vol. 40, No. 6,
99-101, 1985; English transl. in Moscow Univ. Math. Bull.) The author is grateful to Prof. V.A.
Iskovskih for this information.
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We recall the results (1.1)-(1.5) of Iskovskih and the result (1.8) of Reid.

(1.1) PROPOSITION (Iskovskih [2, Proposition 1.7], [3, Ch. 4, Proposition
1.3]). A Fano 3-fold V2g-2 c Pg+1 of the principal series is an intersection of
quadrics if g  5 and if its any smooth canonical curve section is non-trigonal.

(1.2) Let r (resp. A) be the scheme parametrizing the lines (resp. conics) on Y,
and S(resp. T) the universal family of lines over r (resp. of conics over A). (r(resp.
A) is a closed subscheme of the Hilbert scheme of closed subschemes of Pg+1 with
Hilbert polynomial n + 1 (resp. 2n + 1).) Let

be the diagram of natural morphisms, and R = p(S) (resp. Q = q(T)) the image of
family S(resp. T) on V. We denote by Z(resp. C) the fiber of 11; (resp. p) and we use
the same letter Z(resp. C) instead of p(Z) (resp. q(C)) to represent its image on V.
(Here a conic C on V may be reducible or nonreduced.)

(1.3) PROPOSITION (Iskovskih [2, Lemma 3.2, Proposition 3.3], [3, Ch. 3,
Proposition 2.1]). Under the above notation, suppose that there exists a line
Z c V. Let ro be the irreducible component of the scheme rand SO the

corresponding family of lines on r. Then

(i) for any normal sheaf %z/v there are only two possibilities:

(1.4) PROPOSITION (Iskovskih [2, Lemma 4.2], [3, Ch. 3, Lemma 3.2]).
Suppose V is an intersection of quadrics in Pg+1 and there exists a smooth conic
C on V. Then there are only the following four possibilities for the normal sheaf

(Here (9c(d) denotes the invertible sheaf on C of degree d.)

(1.5) PROPOSITION (Iskovskih [2, Proposition 4.3], [3, Ch.3, Proposition
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3.3]). Suppose that T is not empty. Let To be an irreducible component of the
scheme T, 0394° = p(T’) and Q’ = q(T’) the corresponding component of A and of
Q respectively.

(i) If NC/V ~ OC ~ (!J efor the general conic C c QO, then 0° is nonsingular at its
general point, dim 0° - 2 and Qo = V, i.e., the morphism q: T° ~ V is generically
finite.

(ii) If NC/V ~ (!Je ( -1) ~ OC(1) for the general conic C c Q’, then 0° is non-

singular at its general point, dim 0394° = 2, dim Q’ = 2 and QO is either a Veronese
surface in p5 or one of its projections into a lower space with the exception of a
plane p2 and a quadric in P3.

(iii) If Xclv (9c(- 2) ~ OC(2) for the general conic C c Q’, then 0° is non-
singular at its general point, dim 0° - 3 and QO is 2-dimensional quadric on V.

(iv) If NC/V ~ (9c(- 4) ~ (9c(4)for the general conic C c Q’, then QO is the plane
P2 on V.

(1.6) REMARK. Let V ~ Pg+1 1 be of the first species and index 1, i.e.,
Pic V = ZH (where H - - Kv is a hyperplane section), and of genus g  5. Then
V is not trigonal whence V is an intersection of quadrics. Furthermore the cases
(c) and (d) in Proposition 1.4 are impossible, because V cannot contain
a projective plane F = P2 or a quadric surface F = P1  P1. In fact, KF = (Kv +
F)IF by the adjunction formula, and F - dH for some integer d by the hypothesis,
hence (K’)F = d(d - 1)2 deg V 1= 9 or 8 for any integer d.

(1.7) In the rest of this section, we assume that the Fano 3-fold V = V2« - 2 ~
Pg+1 is of the first species and index 1 and has genus g  5. Moreover, fix the
following assumptions and notations:

(A) Let P be a point in V, not lying on any line contained in V. (There is such
P by Proposition 1.3.) Let a: W ~ V be the blow-up of V at P and S = a -’(P).
Then S ~ P2, -KW ~ 03C3*(-KV) - 2S, (-KW)3 = 2g’ - 2, where g’ = g - 4.
(We treat the cases g  6.)

(B) Let C be a conic in V (assuming one exists). Such C has normal sheaf

Xclv - (9c ~ (9c or (9c (-1) ~ (9c(l) by (1.6). Let u: W ~ V be the blow-up
of V along C and S = 03C3-1(C). Then S is a rational scroll (Hirzeburch surface) F0 or
F2, and -KW ~ a*(-Kv) - S, ( - KW)3 = 2g’ - 2, where g’ = g - 3. (We treat
the cases g  5.)

(1.8) THEOREM (Reid [10, §3]). (i) Under these assumptions and notations, the
linear system |- KW| is free and defines a generically finite morphism 9 -K,: W ~

~-KW(W) ~ Pg’+1.

(ii) Let n - ~ = 9 be the Stein factorization of 9 - K,:
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Then 9 is a small birational morphism (i.e., W has no divisor contracted by 9), W
is Gorenstein with ample anti-canonical sheaf -Kw, and ~*(-KW)=-KW. As
for the cohomology, we have H’«9w) = 0 for i = 1, 2 and 3.

(iii) Suppose in addition that the linear system 1 - Kyi has no reducible member.
Then for a curve X c W such that X t- S and X.( - Kw) = 0, we have

(A) f g  8 then Y = 03C3(X) is a conic through P;
(B) if g  7 then Y = u(X) is a line meeting C.

In cases g  7, we may also have a finite number of the following types of curves
XcW:

(A) g  7: X ~ pl with deg Y= 4,

(1.9) REMARK. Theorem 1.8 implies that S is (p-ample. Indeed 6 is a small
morphism and (S C) &#x3E; 0 for any curve C on W contracted by (p.

Section 2. Projections of V from a point or a conic

(2.0) In this section, let V = V2g-2 c Pg+1 be a Fano 3-fold of the first species
and index 1 and has genus g  8. We note that V is an intersection of quadrics.
We prove the following main theorem in this section:

(2.1) THEOREM. Let V = V2g-2 C Pg+1 be a Fano 3-fold of the first species
of the principal series with index 1 and genus g  8. Then the following assertions
hold.

(i) g K 12.
(ii) g ~ 11.
(iii) There are lines and smooth conics on V.
(iv) For each 8  g  12 (g 1= 11), there are (bi)rational maps from V on the list

(2.13).

Theorem 0.1 in Section 0 corresponds to the above (i) and (ii), Theorem 0.2 to
(iii). For the proof of the assertions (i), (ii), (iii) and (iv), the reader see (2.10),
(2.11), (2.9) and (2.12) respectively.

(2.2) To prove the above theorem, we fix again the assumptions and notations
as in (1.7); let a: W ~ V be the blow-up of V at a general point P (resp. along
a general conic C) and S its exceptional divisor on W.

g = 6: X ~ P1 with deg Y = 6,

(B) g  6: Y is a conic such that ~Y ~ C) = P3,
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It is important to understand that the conic blow-up (case (B)) is based on the
hypothesis that a smooth conic exists on V.

Therefore only the computations for the point blow-up (case (A)) are justified
right now, and the ones for the conic blow-up (case (B)) are justified only at (2.9)
based on the results from case (A). This however does not cause any trouble
because no results from case (B) are used before (2.9).

(2.2.1) If P is a general point, then there are only finitely many conics through
P. In fact, under the notation in (1.2), it follows from Proposition 1.5 that the
parametrizing space A of conics is a purely 2-dimensional scheme of finite type.
The natural morphism q: T ~ V is therefore generically finite, which shows the
finiteness. It is easy to see that there are only finitely many lines meeting a general
conic by a similar argument.

(2.2.2) Thus, under the notation of (1.8), 9: W ~ W is a resolution of W,
isomorphic in codimension 1, such that Kw = qJ*Kwand S is 9-ample. Then we
can apply ( - S)-flop (Kollàr [5]) to 9 to get a nonsingular projective 3-fold W’
and a birational morphism 9’: W’-+ W which is isomorphic in codimension
1. The idea is as follows: At each fundamental point q of W(q such that
dim ~-1 (q) &#x3E; 0), there is a neighbourhood U of q in W such that (U, q) has an
involution l:(U,q) ~ (U,q) and that the flop of ~U:~-1(U) ~ U is lo qJu:

~-1(U) ~ U. These l03BF~U are patched with W - ~-1(fundamental points) to get
W’ in the obvious way. It is shown that the proper transform S’ of S by W... - W’
is cp’ -negative, i.e. - S’ is ~’-ample. Thus the analytic space W’ constructed this
way is actually a nonsingular projective 3-fold.
Of course, we have to consider the case where ç is an isomorphism so that there

are no fundamental points. In such a case, we simply take W’ = W and qJ’ = cp.
Because of this involution construction, it is obvious that

where Eu(X) denotes the topological Euler number of a space X.
(2.2.3) We define a nontrivial morphism a: W’ ~ Y’ as follows.
If W = W’, then W’ is a Fano 3-fold with p(W’) = 2. Hence W’ has exactly two

extremal rays, one of which is associated to cp. We take as a the contraction of
the other extremal ray R.

If W ~ W’, then - Kw, is base point free and thus defines cp’. The cone of
curves of W’ has an edge (say R 1 ) which is generated by q’-exceptional curves.
We note that R 1 is not an extremal ray because

(9’-exceptional curve) · Kw, = 0.

Since Kw, is not nef, W’ has an extremal ray R and the cone of curves of W’ is
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generated by Ri and R, because 03C1(W’) = 2. Thus R is the one and only one
extremal ray of W’. We take as a the contraction of the extremal ray R. Thus we
have the following diagram.

(2.2.5) Let S’ be the strict transform of S by W... - W’. Then - Kw, and S’
generate Pic W’ by the following.

(2.2.6) REMARK. Since W ··· ~ W’ is an isomorphism in codimension 1, there
is a commutative diagram of isomorphisms induced by W - - - - W’:

Indeed, W and W’ have the same prime divisors and the same function field (Reid
[9, Proposition (6.2)]).

To know contR and V’, it is enough to determine the divisor L whose linear
system defines contR. We may assume that Lis one of generators of Pic W’ and is
linearly equivalent to x(-KW’ ) - yS’ for some integers x and y. We first reduce
the problem to the numerical conditions for x and y (2.3)-(2.6), next solve them
(2.7)-(2.8) and last judge the realizability in the geometrical view (2.10)-(2.12).
Now Mori’s theory says there are three types in the extremal rays: C-type (with

conic bundle structure), D-type (with del Pezzo fibering) and E-type (having an
exceptional divisor D). We will treat these types separately.

C, D-types: In these cases,

Indeed q(V’) = 0, since q(W’) = q(V) = 0 and contr is surjective. If R is of
D-type, then V’ = P1. We may assume that R is of C-type. From the general
theory of conic bundles, -4K,, is numerically equivalent to a*( - Kw,)2 + 0394,
where A is the discriminant locus of V’, and hence all the plurigenera Pm(Y’)
vanish. Therefore V’ is rational and we have V’ = P2 by 03C1(V’) = 1.

(2.3.2) L = 03B1*OV’(1) ~ x(- Kw,) - yS’ for some positive coprime integers x
and y.
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We remark that the positivity of x and y is not effëcted by replacing L with its
multiples. Suppose x were not positive, then the linear system I L = |x(-KW’) -
yS’ 1 c ~ yi. S’ | would have dimension  0. Thus x is positive. If y were not

positive, the linear system ILI :3 Ix( - KW’) |+| - yS’| would contain Ix( - KW’)|,
which contradicts the situation that the image of the morphism defind by I - K W. |
is of dimension three (cf. Theorem 1.8.i). We may assume that x and y are coprime,
taking L as one of generators of Pic W’.

Let W’v be a general fiber of a. Then W’v is a conic if R is of C-type and W’v is
a del Pezzo surface if R is of D-type. Restricting Pic W’ to a fiber, we have
Pic W’/ZL ~ Pic W’v and under this inclusion - KW’ corresponds to -KW’v.
Thus we have Z/yZ ~ Pic W’/(ZL + 71..( - Kw’)) c Pic W’v/Z(-KW’v), and hence
- KW’v must be divisible by y. Therefore y = 1 or 2 if W’v is a conic and y = 1, 2 or
3 if W’v is a del Pezzo surface.

(2.3.4) We have the following relations in each case.

C-type: L3

where à is a discriminant locus.

D-type:

Indeed, in the case of C-type we have

and in the case of D-type we have

The rest are obvious.

(2.4) E-type: In this case, we have an exceptional divisor D - z(-KW’) - uS’
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for some integers z and u.

(2.4.2) D - z(- Kw,) - uS’ for some positive coprime integers z and u.
If z  0, then D = S’ because D and S’ are effective and no multiple of them

move. So a positive multiple of - Kw, + aS’ with a = 2, 1, 1 2 defines the morphism
a (cf. (2.4.3)). However these define a rational mapping to V of W, which is a
contradiction. So z &#x3E; 0. If u  0, then dim|D|  1, which is a contradition.

Thus z, u &#x3E; 0.

In cases EI-E4, there is a rational curve C c D contracted by a such that
(C·D)=-1 (bydescription of contraction). In case E5, we have D·(-KW’)2 = 1.
Thus we see that z and u are coprime.

(2.4.3) In the cases of E2-E5-types, we have following relations:

(2.4.4) In the cases of E 1, E2-types, V’ is a Fano 3-fold of the first species
because Pic V’ ~ Z and -Ky, is positive. Moreover we have Pic W’ ~ a*(Pic V’)
Q9 ZD and

Therefore u is equal to the index of V’, and hence there are four possibilities:
u = 1, 2, 3 or 4.

(2.4.5) In the case of El-type, we have -KW’ ~ 03B1*(-KV’) - D and the
following relations:

where r = a(D) is the curve of the center of the blow-up a. We will use the
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following equalities instead of the first and third ones:

(2.5) As already mentioned in (2.2.5), Pic W’ is generated by -KW’ and S’.
Consider the intersection numbers on W’ of these generators. The intersection
numbers with canonical divisor -KW’ are the same as on W. On the other hand,
the self-intersection number S’3 of S’on W’ may be different from S3 on W, and

put e = S3 - S’3. Then we have the following multiplication table:

It can be shown that the number e is non-negative, and that e can be interpreted
as the number (counted with multiplicity) of conics through P if g  8 (resp. of
lines meeting C if g  7). However, we use here only the obvious fact that e E Z
and that if e ~ 0 then W ~ W’ so that conics exist if g  8 (resp. lines exist if
g  7).

(2.6) From (2.3.4), (2.4.3), (2.4.5) and (2.5), we obtain a system of Diophantine
equations for each case.
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(2.7) The above system of Diophantine equations (2.6.1)-(2.6.4) with condi-
tions (2.3.2), (2.3.3), (2.4.2) and (2.4.4) have the solutions (2.8.1) (resp. (2.8.2)) as
follows.

(2.7.1) Case of C-type.
We have y = 1 or 2 by (2.3.3). If y = 1 then (g’ - I)x’ - 4x - 2 = 0 from the

second equation in (2.6.1), hence x = 1 and g’ = 7. If y = 2 then (g’ - 1)x2 -
8x - 5 = 0, hence x = 1 and g’ = 14. But the latter is impossible because no
integer e satisfies the first equation in (2.6.1).

(2.7.2) Case of D-type.
From this case, we obtain x = 1, y = 1, g’ = 6 and e = 9 (resp. e = 8) similarly

as (2.7.1).

(2.7.3) Cases of E2-ES-types.
From the third equation in (2.6.3), Es-type does not occur and 2u = (g’ - 1)z -

2 (E2-type) or 2u = (g’ - 1)z - 1 (E3, E4-types). In the case of E2-type, we have
three solutions from the second equation in (2.6.3) and from the above. In the
cases E3, E4-types there is no solution.

(2.7.4) Case of E 1-t y pe.
Here we use the fact that (9s(- Kw) is generated by global sections and

|OS(-KW)| induces an embedding of S into P s as a quartic surface which is an
intersection of quadrics. This is easy to see by the construction of S(~ p2, F° or
F2),(OS(- KW)2) = 4, and h0(OS(-KW)) = 6. It is obvious that g(S) is the image
of a linear projection of the quartic surface above.

Since u is the index of V’ and

we may set z + 1 = u · t for some positive integer t. Then the first equation of
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(2.6.4) reduces to

where d = (-KV’/2)3 = 1,...,5 in case u = 2. Thus it is easy to figure out the
solutions as in the Table 2.8 if u  2.

Then we assume u = 1. Since cp(S) spans at most P5 in Pg’+1 as above, we have
g’  5. Because otherwise,

which is a contradiction. We treat two cases.

Case g’ = 5: We see similarly that dim 1 - Kw, - S’|  0. Thus z = 1, which is
in the Table 2.8.

Case g’ = 4: We claim that z = 1. Indeed if g(S) does not span P5, then
dim 1 -Kw’ - S’|  0 similarly, and z = 1 since dim|D| = 0. If g(S) spans p5
then g(S) ~ P5 is the embedding of S by 1(9s(- Kw)) | and hence g(S) is an
intersection of quadrics of p5 containing it. Thus dim|(2(-KW’)-S’| =
dimI2(-Kw) - S|  1, again z = 1 by dim 1 D = 0. Hence we have z = 1

anyway. This is in the Table 2.8.

(2.8) The list of solutions of the systems of equations.
In the following lists, the data in the row with symbol # can be realized in the

geometrical way. (See (2.10)-(2.12).) We write simply by H and S instead of - K w,
and S’ in the list.

(2.8.1) Case (A), i.e. starting with point-blow-up:
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(2.8.2) Case (B), i.e. starting with conic-blow-up:

In the above lists, Q is a quadric 3-fold in P4 and B3 is a cubic 3-fold in P4.

(2.9) THEOREM. There exist a line and a smooth conic in V2g-2 if g  8.

Since e &#x3E; 0 in all the possible cases in Table 2.8.1, there exists a smooth conic if
g a 8. Therefore we can blow up a general conic as proposed in (2.2) and we have
Table 2.8.2 as the result. Since e &#x3E; 0 in all the possible cases in (2.8.2), there exists
a line if g  8.

(2.10) Proof of (2.1.i). Non-existence of V2g-2 with g  13.
From (2.8.1), there is no 3-fold V2g-2 with g &#x3E; 13; in the cases g  13 there is

a conic C on V2g-2 with the normal sheaf OC ~ (9c or OC(-1) É9 OC(1), and hence
V2g-2 exists only in the cases g  12 from (2.8.2).

(2.11) Proof of (2.1.ii). Non-existence of V20.
By (2.8.1), W’ is a conic bundle over p 2 with discriminant locus à a degree

4 curve. Therefore Eu(W’) can be computed as

where F denotes the reducible reduced conic and 1 denotes the singular locus of
A. Thus

by (2.2.2). On the other hand, by conic-blow-up we get a different W’ in (2.8.2)
which is a blow up of P3 along a rational curve r.
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Thus

We thus get different values of Eu( V), which is a contradiction and the case g = 11
does not occur.

(2.12) Judgment of the geometrical realization of solutions (2.8.1)-(2.8.2).
Cases g  10 in case (A) and cases g  9 in case (B) are all settled.
To settle the remaining cases, we use the computed value of Eu(V16) and

Eu(Vl4): since we have settled the existence of lines, we can apply line-blow-up
and do similar computations which are done by Iskovskih [2] (or [6]). Thus one
obtains

From these it is easy to decide which case occurs. We put # in front of the cases

actually occurring.

(2.13) Illustration of (bi)rational maps.

(2.13.1) Cases of point-blow-up (A).



279

(2.13.2) Cases of conic-blow-up (B).

conic bundle

deg A = 4

del Pezzo

fibering
deg W v = 6

Section 3. Birational map of a cubic 3-fold to a Fano 3-fold of g = 8

(3.0) In this section, we prove the following (cf. Theorem 0.3 in Section 0):

(3.1) THEOREM. For every Fano 3-fold V= V14 c p9 of genus 8, there is a bi-
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rational map from a cubic 3-fold V’ = B3 c P4 to V:

Here r is a rational normal quartic curve on V’ and the rational map g is given by the
linear system |8L’ - 5FI for a hyperplane section L’of V’. The exceptional divisor
S of Q is the strict transform of the unique member of the linear system |3L’ - 20393|
on V’. (This unique member is an intersection of V’ and M which is a cubic

hypersurface with singularities along r swept by chords of r.)

(3.2) REMARK. Fano and Iskovskih [4] have another birational map between
Y’ = B3 and V = V14:

In this diagram, B and B’ are quintic elliptic curves on V and V’ respectively, the
map x is defined by the linear system 7L’ - 4B’l on V’, and R is the strict
transform of the unique member of SL’ - 3B’l.

(3.3) First we will recall the result [0], [12] for Fano surface of a cubic 3-fold.
Let V’ = B3 be a cubic 3-fold in P4, and D = 03A6(V’) the Fano surface

parametrizing lines in V’. Then (D is a nonsingular irreducible surface and there
is a diagram of natural morphisms:

where 03A8 is a universal family of lines in V’. In this diagram,

(3.3.1) The morphism 03C8 is a covering of degree 6.

Let R be the ramification divisor of 03C8 in ’Y, then

(3.3.2) R = n - 1(03A3) for some curve E on 03A6 such that Y- - 2K03A6, where K03A6 is

a canonical divisor of 03A6.

For each u E 03A6, let Lu = 03C8(03C0-1(u)) be a line in V’ corresponding to u and let
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C. = (x ~ 03A6|Lx intersects the fixed line Lu

be a curve in 03A6. Then

(3.3.3) the intersection number (C. - D) for any divisor D on 03A6 is independent of
u ~ 03A6, and (Cu·Cu) = 5.

For a canonical divisor,

(3.3.4) Ko - Cu + Vv + Cw for u, v, w ~ 03A6 such that three lines Lu, L", Lw are
coplanar.

(3.4) Now let r be a rational normal quartic curve in P4. Then the chords of
r are distinct. Indeed, if two chords of r coincide, this line is intersecting with r at
least at three points, which is a contradiction. Moreover each pair of chords is not
intersecting except on r. If two chords of r are intersecting, then these chords
determine a plane in p4, but the cut of r by the plane is at most three geometric
points. This means two chords intersect only at a point on r.

(3.5) LEMMA. The rational normal quartic curve r on a cubic 3-fold V’ in p4 has
exactly 16 chords in V’.

Proof. Let Y = 03C8-1(0393) and X = 03C0(Y). Then Y is a curve in 03A8 and 03C8| y: Y ~ r is
a covering of degree 6. First we will consider the case where Yis nonsingular. The
curve X is parametrizing lines intersecting with r, and its double points are
corresponding to chords of r in V’. By the argument in (3.4), r has only double
points as singularities. To compute the number of chords of r, we have only to
count the double points of X, i.e., Pa(X) - g(X), where Pa(X) is the arithmetic
genus of X and g(X) is the geometric genus. Because Y is a nonsingular model of
X, g(X) = g(Y) = (degKy/2) + 1. Using (3.3.1)-(3.3.4), we get g(X) = 55 and
pa(X) = 71, hence we obtain this lemma in this case. For the case where Y has
singularities, the same reason shows that the number of the chords of r is equal
to pa(X) - pa(Y), and this difference is equal to 16.

(3.6) LEMMA. Let a : W’ - V’ be a blow-up of a cubic 3-fold V’along a rational
normal quartic r. Then the anti-canonical divisor - Kw, of W’defines a morphism
ç ’ = ~-KW’: W’ - W c p5, and q’ contracts only strict transform of chords of r.

Proof. Let L’ be a hyperplane section of V’ and D = 03B1-1(0393) an exceptional
divisor for a. Then - Kv, - 2L’ and - KW’ ~ 2a*L’ - D. Let H’ be a hyperplane
in P4, then L’ = H’ n V’. We have the commutative diagram
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of the natural maps, where F = ~2H’-0393: P4·· ~ P5, f = ~2L’-0393: V’ ·· - ,f =
F|V’ and ~’ is a resolution of f.

It is obvious that the linear system |-KW’| is free, so we will prove the second
assertion.

Choosing a suitable coordinates [X0:X1:X2:X3:X4] of P4, we may assume
the curve r is defined by the following system of equations:

Then the member of |2H’ - FI is defined by the equation of linear combina-
tion 03A35i=003BBiFi = 0 and the rational map F is given by [X0:X1:X2:X3:X4] ~
[F0(X):F1(X):F2(X):F3(X):F4(X):F5(X)]. The image F(P4) is a hypersurface
in P5 defined by Y0Y5 - Y1Y4 + Y2Y3 = 0, where [Y0:Y1:Y2:Y3:Y4:Y5] are

coordinates of P5 with respect to the basis of the linear system |2H’ - ri. The
straightforward calculation shows that the fiber of F at a point of F(P4) is a point
or a line, and that these lines are chords of r in p4. Therefore the fiber of

f: V’ ·· ~ W is only a point or a chord in V’ of r. Q.E.D.

(3.7) Proof of (3.1). By Lemma 3.6, W’ is a small resolution of W, and W has
another small resolution 9: W- W. We have 03C1(W) = 03C1(W’) = 03C1(V’) + 1, and
Pic W is generated by L and D* or L and -KW where L and D* are strict
transforms of a*L’ and of D = a - 1 (F) respectively. Thus we can determine the
extremal ray of cone NE(W) of W using numerical way similar as in Section 2.

Let e be the number of chords of r in V’. Suppose that e is unknown, then we
obtain the following two possibilities.

(1) e = 16.

In this diagram, V is a Fano 3-fold V14 ~ P9 of index 1 of genus 8, and u is
a blow-up at a point P of V.

(2) e = 15.
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In this diagram, Vis a Fano 3-fold Yl 2 c p8 of index 1 of genus 7, and C is a conic
in F.

But Lemma 3.5 shows that the case (1) is realized and the case (2) is impossible.
Thus we construct the birational map g : B3 ·· ~ V14 which is defined by the linear
system |8L’ - 5F on B3 . This proves Theorem 3.1. Its inverse map h: V14.. ~ B3
is defined by the linear system 2H - 3P| for a hyperplane section H of V14 in p9.
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