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0. Introduction

The present paper is a continuation of [1] from which we borrow our ideology,
terminology and conventions (with one harmless technical modification, cf. the
Remark 1 at the end of this introduction). The aim of [1] was to develop
a (nonabelian) cohomological approach to the existence problem of fields of
moduli for various algebraic structures such as:

(a) polarized finitely presented algebras
(b) complete local algebras
(c) rigidified algebraic groups

for which the method of Matsusaka and Shimura [6] does not seem to apply.
However, our method (as developed there) did not permit us to reobtain the
original results of Matsusaka and Shimura on polarized nonsingular projective
varieties nor to deal with more global objects (rather than with various kinds of
algebras).

In the present paper we fill this gap by further developing our cohomological
tool in order to deal with:

(d) polarized (possibly singular) projective varieties
(e) polarized function fields
(f) polarized (non necessary linear) algebraic groups.

Our concepts of polarizations in each of the cases above will be explained in
section 1 where we also state our main results. Note that in case (d) our
polarizations are "inhomogenous". In case (e) we get our results only for function
fields admitting minimal models in the sense of Mori’s program; so if the

"minimal model conjecture" [9] is true, we get a good picture for (e) in the case of
non-uniruled function fields. As for case (f) our polarizations are combinations of
the classically defined polarizations of abelian varieties and "rigidifications" of
linear algebraic groups as defined in [1].
We close our introduction by making two remarks on terminology.
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REMARK 1. In [1] we denoted by B the dual of the category of field extensions of
some field k. To avoid certain logical difHcultics it is convenient to slightly modify
this definition of B. We shall fix a field extension k c Q with Q algebraically
closed and tr. deg. 03A9/k uncountable. By an embedded field we will understand
any intermediate field K between k and Q such that tr. deg. S2/K is uncountable.
Now we denote by B the dual of the full subcategory of the category of fields
whose objects are the embedded fields. Everything which was said in [1] holds for
this new B instead of the old one. But here we have the advantage that for any
K E B we have a canonical way to associate an algebraic closure of it Ka E B
(namely Ka = algebraic closure of K in 03A9) and an embedding K c Ka . This will
make things easier at a certain point.

REMARK 2. By a "variety over field K" we will always understand a quasi-
projective geometrically integral scheme over K.

1. Polarizations. Main result

(1.1) It will be convenient to make an "abstract" preparation on polarizations. So
let C be a fibred category over B; recall that C is defined by categories CK(K E B),
covariant functors Cu: CI CK’ (for any field homomorphism u : K ~ K’) and
isomorphisms Cu,v: Cv ° Cu ~ Cvu. Recall also that the functor B - S( = category
of sets) defined by K - CK/iso will be still denoted by C; it is called the "moduli
functor".

By a polarization on C we will understand any "fibred functor" n : C - S i.e.
the giving of the following data: contravariant functors 03C0K : CK ~ S (for all K E B)
and morphisms 03C0u: 03C0K ~ 03C0K’ ° C. (for any field homomorphism u : K ~ K’ ) such
that whenever v : K’ ~ K" is another field homomorphism we have n,u =

03C0K"(Cu,v) ° 03C0v(Cu) ° 03C0u. For any A ~ CK, the elements of n(A) = nK (A) will be called
polarizations on A; note that the group G(A) = G(A, C) defined in [1] (2.13) acts
(on the left) on n(A).
Given C and n as above one can define a new fibred category C" as follows. For

any K E B the objects of CK are pairs (A, fi) with A ECK, fi e n(A) while morphisms
in CK, the functors C03C0u and the isomorphisms C n are defined in an obvious way.

(1.2) In [1] we implicitely used polarizations in the above sense. For instance
(the fibred groupoid structure of) PAL [1] (2.2) is obtained from the fibred

groupoid of finitely presented algebras and the fibred functor associating to any
such K-algebra A the set of finite dimensional linear subspaces P of A for which
the natural map KP&#x3E; ~ A is surjective and has a finitely generated kernel.

(1.3) Another example is provided by the fibred groupoid AHAT [1], (2.7)
which is obtained from the fibred groupoid AHA and the fibred functor which
takes any linear algebraic K-group L into the set of all its rigidifications [1] (2.7).
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(1.4) Assume C and 03C0 are as in (1.1). We say that n is discrete if nu is an
isomorphism for any field homomorphism u : K - K’ for which K and K’ are
algebraically closed. In example (1.2) n is not discrete while in example (1.3) it is.

(1.5) A functor C : B ~ S is said to have property (p) (minimality property) if for
any universal field K E B" and any 03BE E C(K) the set Da (03BE, C) of algebraically closed
members of D(03BE, C) (i.e. of algebraically closed fields of definition of 03BE) has
a smallest element (recall that D(03BE, C) does not have in general a smallest element
even for very nice C’s). Property (p) should be viewed as a "shadow" of the
modular properties discussed in [1]. The following (trivial) lemma indicates its
connection with property (d 1 ) from [1] and with polarizations.

(1.6) LEMMA. Let C : B ~ S be a functor. Then

(1) If C has property (d1) it also has property (03BC).
(2) If C is the "moduli functor" of some fibred category C and if there exists

a discrete polarization n on C such that C" has property (03BC) then C itself has
property (y). More precisely for any K E B" and (A, fi) E C’ we have Da«A, fi),
C03C0) = Da(A, C).

Next we introduce the three fibred categories we shall be dealing with in the
present paper. For any field K let

PROK = groupoid of projective K-varieties
FUFK = groupoid of function fields over K
AGRK = groupoid of algebraic groups over K,

and let PRO, FUF, AGR denote the corresponding fibred groupoids over B (and
also the corresponding moduli functors B ~ S).
Note that the objects of FUFK are the regular finitely generated field extensions

of K while base change in F UF is defined by the formula F H Q(F ~K K’ ) for any
field homomorphism K - K’ and any F E FUFK, where Q denotes "taking
quotient field".
We will also consider a remarkable fibred subcategory FUFm of FUF: for any

K E B, FUFK will be the full subcategory of FUFK whose objects are those
function fields F/K such that F ~K Ka/Ka has a Q-factorial (terminal) minimal
model in the sense of [9].

In what follows we shall define natural discrete polarizations 03C0 on PRO,
FUF’", AGR and prove

(1.7) THEOREM. If char k = 0, the functors PRO03C0, FUFm,03C0, AGR1t are coarsely
representable by birational sets of finitely generated type (i.e. have property (m) in
the terminology of [1] (1.4)). Moreover the funetors PRO, FUFm, AGR have the
minimality property (Jl).
To prove Theorem 1.7 we will prove that PRO", FUFm,1t, AGR1t satisfy the

properties (03C9)(s)(03B41)(03B42)(d3) from [1] (1.4) and apply Theorem 1.5 from [1] and
the Lemma 1.6 above. As in [1] the only non-trivial properties to be checked will
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be (03B41) and (03B42). Note that the assertion on PRO" is essentially due to Matsusaka
and Shimura [6].

Finally our assertion on FUFm having property (p) can also be deduced using
our theory in [2], Chapter 2, Section 1.
Now let’s consider coarse representability of certain (non-polarized) subfunctors

of FUF and AGR. Let FUFO be the subfunctor of FUF corresponding to function
fields of general type (i.e. for which the Kodaira dimension equals the

transcendence degree). Moreover let AGRP be the subfunctor of AGR correspond-
ing to "pure" algebraic groups; here an algebraic group r over K = Ka is called
pure if it is connected and both Aut(P)/Int(P) and Aut(A) are finite groups, where
P is the "reductive part" of the "linear part" L of r [1] (2.7) and A = r/L is the
"abelian part" of r; if K = Ka, 0393 is called pure if r ~ Ka is so.

(1.8) THEOREM. If char k = 0, the functors FUF" and AGRP are coarsely
representable by some birational sets of finitely generated type.

We now concentrate ourselves on defining polarizations. First we have an
abstract prolongation procedure; indeed one can easily prove the following.

(1.9) LEMMA. Let C be a fibred category over B, ca its "restriction" to B’ and
n : Ca --+ S a fibred functor. Then there is a unique fibred functor still denoted by
n : C ~ S (called the canonical prologation of n) such that for all K E B and A E CK
we have

where Aa is the image of A via the functor CK ~ CK..

(1.10) Let’s define a polarization on PRO as being the canonical prolongation
of 03C0: PRO03B1 ~ S defined by letting 03C0(X) be the set of ample elements in the
Neron-Severi group Pic(X) = Pic(X)/Pic°(X). Clearly our n is discrete.

(1.11) Let’s define a polarization on FUFm . First some terminology. Let K be
a field of characteristic zero and F a function field over K. By a model of F we
understand a pair (X, e) where X is a K-variety and 03B5: K(X) - F is a K-isomorphism;
when there is no danger of confusion we simply say that X is a model of F. For
K = Ka denote by m(F) the set of Q-factorial minimal models of F; recall that it is
conjectured that 03BC(F) ~ ~ whenever F is not uniruled [9]. Note also that in
order to avoid logical difHculties we work in a universe such that m(F) is really
a set. Now assume K = Ka, F E FUFj(; we shall define in what follows abelian

groups Cl(F), Cl° (F), Cl(F). We need several remarks.

REMARK 1. (essentially cf. [4]; same proof as in [4] p. 33). Let (Xi, Bi) E m(F),
i = 1, 2 and consider any diagram
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where a* = 03B5103B5-12, X3 is smooth and p, are projective birational with exceptional
loci Ei of pure condimension 1. Then E 1 = E2(call it E). In particular pi and p2
induce isomorphisms C1(X1) ~ Pic(X3BE) ~ Cl(X2).

REMARK 2. With the notations above pl and P2 induce isomorphisms
Pic°(X1) ~ Pic°(X3) ~ Pic°(X2).

Indeed we may assume (by making a base change) that K is uncountable.
Consider the diagram

Since a and y are injective so is pf. To prove that pt is also surjective it is sufficient
to prove that M = coker p* has countable rank (as an abelian group). But this
follows from the fact that a, 03B2, y, 5 all have kernels and cokernels of countable
rank.

Remarks 1 and 2 imply that we have isomorphisms

and

where Ei are the irreducible components of E.
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REMARK 3. The isomorphism C1(X1) ~ Cl(X2) from Remark 1 does not

depend on the choice of X3, p 1, p2 but only on (X1, 03B51), (X2, 03B52).
As a consequence of Remarks 1-3 we may define Cl(F) = lim CI(X), C1°(X) =

lim Pic° (X), CI(F) = lim C1(X)/Pic°(X) (where X E m(F)); note that in the limits

above all morphisms are isomorphisms.
An élément E Cl(F) will be called ample if there exists X E m(F) such that the

corresponding element Àx E C1(X)/Pic°(X) is in Pic(X)/Pic° (X) and is ample.
Now define a fibred functor n : FUFm,a ~ S (and finally take its canonical

extension to FUFm ) by letting 03C0(F) be the set of ample elements in Cl(F) . Clearly
our n above is discrete.

(1.12) Let’s define a polarization n on AGR as being the canonical extension of
n : AGRa ~ S defined below. For K = Ka and F E AGRK let L be the largest
connected closed linear subgroup of 0393 and A = r/L; then put n(F) = 03C0(L) x 03C0(A)
where

03C0(A) = set of ample elements in Pic(A)/Pic°(A)
03C0(L) = set of isomorphism classes of faithful representations of LIR.(L)

(where R.(L) is the unipotent radical of L). Since L/Ru(L) is reductive it turns out
that n defined above is discrete.

2. Cohomology of G-algebraic groups

For technical reasons it is convenient to introduce some elementary definitions
related to group actions on schemes.

If C is a category and G is a group, by a left (respectively right) G-object in C we
mean a pair consisting of an object A of C and a group homomorphism
G ~ Autc(A) (respectively a homomorphism from the opposite group G°p to
Autc(A)) which we denote by s H sA(s E G). A morphism f ~ Homc(A, B) between
two G-objects is called a G-morphism if sB°f = f°sA for all s E G.
So we will speak about left G-sets, left G-groups, left G-rings: these are simply

left G-objects in the category of sets, groups, rings.
We will also consider right G-schemes ( = right G-objects in SCH, the category

of schemes); if K is a left G-field then Spec K will be a right G-scheme. By a right
G-scheme X over a right G-scheme Y we will mean a G-morphism X ~ Y between
two right G-schemes. Furthermore by a right G-variety over a left G-field we
mean a right G-scheme X over Spec K such that X/K is a variety. Finally by
a right G-algebraic group over a left G-field K we meana right G-scheme r over
Spec K which is an algebraic K-group such that the multiplication 03BC: 0393  K0393 ~ r
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and the unit E : Spec K ~ r are G-morphisms (here note that if X and Y are right
G-schemes over right G-scheme Z then X x z Y has a natural structure of right
G-scheme; in particular our r x K 0393 has one).
Of course the main point with our G-varieties X (and G-algebraic groups) is

that for s E G the automorphisms Sx are not "over K", but only "over KG".
Note that if X is a right G-scheme over right G-scheme Z then for any right

G-scheme Y over Z the set X ( Y) = HomSCHz(Y’Z) has a natural structure of left
G-set defined as follows: for a E X( Y), s ~ G, put sX(y)a = si 1° a 0 sy. Moreover if

Z = Spec K and X = r is a right G-algebraic group over K then r( Y) is a left
G-group; in particular one can speak about H1(G, r(K)). Distinguished elements in
H1 will always be denoted by 1. Furthermore if G 1 is a subgroup of G and K1/K is
an extension of left G, -fields we have a natural map H1(G, 0393(K)) ~ H1(G1, r(K 1 ))
compatible with the natural exact sequences relating H° and H1.
From now on we shall omit the words "left" and "right" when we refer to

G-objects; it will be understood that "algebraic" objects (sets, groups, rings) are
"left" and "geometric" objects (schemes, varieties, algebraic groups) are "right".
Our main technical result is the following improvement of [1] (3.3) (see [1],

§3 for terminology):

(2.1) THEOREM. Let K be a G field, r a G-algebraic group over K and
1 c Hl (G, 0393(K)) a finite subset. Then:

(1) There exists a cofininite subgroup Gl of G and a constrained finitely generated
extension of G1-fields K1/K such that 03A3 maps to 1 via the map H1(G, 0393(K)) ~
Hl (Gl, r(K 1))’

(2) If 0393 is connected there exists a regular finitely generated extension of G-fields
K1/K such that Y- maps to 1 via the map H1(G, 0393(K)) ~ H1(G,0393(K1)).

The theorem above is better than its analogue in [1] for at least two reasons:

(1) r need not be defined over K’
(2) r need not be linear.

Both these features will be essential in what follows. On the other hand it is

reasonable to conjecture that if K = Ka then any r as in the theorem is defined
over (KG)a (for r linear, this was proved in [1] (6.4) while for r an abelian variety
this will be observed below, cf (5.2)) .
To prove (2.1) we need the following

(2.2) LEMMA. Let K be a G-field, X a G-scheme offinite type over K and X(G) the
set of (non-necessary closed) points p of X such that the group St(p) = {s E G;
sx(p) = p} contains a cofinite subgroup of G. Then for any maximal element pl of
X(G) the extension of St(pl)-fields K(p,)IK is constrained (here K(p l ) = residue
field at Pl)’
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Proof. Take a E K(p1)St(p1) as in [1], proof of Theorem 3.3; it is sufficient to
prove that a is algebraic over K. Let G 1 c St(p1), G 1 cofinite in G. Now suppose
a is transcendental over K, let Y denote the affine line Spec K[a] with its obvious
structure of G 1-scheme and let Z be the closure of pl in X, which has a naturally
induced structure of G 1-scheme of finite type over K. Moreover the element
a induces a rational map still denoted by a: Z ~ Y Let 2 c ZxK Y be its closed
graph. Clearly 2 is a G, -subscheme of ZxK Y and the projections ~:  ~ Z and
03C8:  ~ Y are G 1-morphisms. Exactly as in [1] loc. cit., Y possesses a closed point
m fixed by some cofinite subgroup G2 of G(G2 c G1 ) such that 03C8-1(m) ~ 0. Then
the scheme 03C8-1(m) has a natural structure of G2 -scheme. Letting G3 be the kernel
of the representation of G2 into the permutation group of the set of irreducible
components of 03C8-1 (m) we get that there is a point q ~ 03C8-1 (m) fixed by G3 hence so
will be 9(q). Since (p is birational, 9(q) is not the generic point of Z, this
contradicting the maximality of pl in X(G) and we are done.
Proof of (2.1). By induction it is sufficient to assume that E consists of one

element; let f : G - ï’(K) represent it. We first construct a G-scheme X over

K starting from r and f as follows. As a scheme, X will be r itself while the action
s H Sx of G is defined by the formula

where Rf(s): r - r is the right translation with f(s) E r(K) and sr comes from the
structure of G-algebraic group of r; to check that (st) X = txosx one is led to check
that Rs(f(t» = Sr 1 0 Rf(t) ° sr which follows from the commutative diagram

Now we claim that if 03B1X ~ X(Y), 03B1X: Y- X is any G 1-morphism of G 1-schemes
(with G1 c G) over K and if we denote by ar : Y - r its image in r( Y) and by f(s)y
the image of f(s) under the map r(K) - r( Y) then
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(equality holding in the group r( Y)) . Indeed the formula above is equivalent to

i.e. to sx 0 ax = ax - Sy which is simply the condition of f being a G, -morphism.
Now if take ax : Spec K(p 1 ) - X as above with pi a maximal element of X(G) as in
Lemma 2.2 we get statement (1) in our theorem. Finally if r is connected, taking
ax : Spec K(X) ~ X we get statement (2) in our theorem.

3. Splitting projective G-varieties and G-function fields

In this section we prove Theorem 1.7 for PRO" and FUFm,03C0 and we also prove
Theorem 1.8 for FUF". We start by providing Picard schemes of projective
G-varieties with G-actions:

(3.1) LEMMA. Let K = Ka be a G-field and X be a projective G-variety over K.
Then Pic°X/K is a G-algebraic groups in a natural way. Moreover Pic(X), Pic’(X),
Pic(X) are G-groups and n(X) is a G-set (n being the polarization defined in (1.10)).

Proof. For s E G let a = Spec SK be the corresponding automorphism of
Spec K, let Spec K« be Spec K itself viewed as a scheme over Spec K via 03C3 and let
X a = X Spec K Spec Ka. Then sx induces a K-isomorphism sx : X ~ Xa so we get
an induced isomorphism s X : 039303C3 = Pic°x03C3/K03C3 ~ Pic°X/K = r. Let sr : r - r be

defined as s0393 = 03C3x°(*X)-1 where ux: ra -+ r is the natural projection. One
checks that s H sr gives the desired structure of G-algebraic group on r. Same
construction in the remaining cases.

(3.2) LEMMA. Let K = Ka be a G-field of characteristic zero and F a G-function
field over K (i.e. a function field which is a G-field extension) with m(F) 1= 0. Then
for any X E m(F), Pic’x/K is a G-algebraic group in a natural way. Moreover Cl(F),
Cl° (F), Cl(F) are G-groups and n(F) is a G-set (n being defined as in (1.1)).

Proof. Same game as in (3.1) (use Remark 1 in (1.11)).

(3.3) LEMMA. Let K be a G-field of characteristic zero (non necessary algebraically
closed), F a G-functionfield over K and X a model of F such that X ~ Ka ~m(F ~ Ka).
Then Cl(X) has a natural structure of G-group. Moreover, if L E Pic(X) n (C1(X))G
then P = P(HO(X, L)) has a natural structure of G-variety over K.

Proof. The G-group structure may be defined by considering a diagram as in
Remark 1 from (1.11). If we view elements of Cl(X) as isomorphism classes of
reflective sheaves of rank 1 on X then the G-action on Cl(X) may be described as
follows. For s ~ G let a, Ka, Xa be as in (3.1); corresponding to sF we get a rational
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map X: X ~ X03C3 hence a diagram

where Xo, (X03C3)0 are nonsingular open subsets of X and X03C3 respectively, whose
complements have codimension  2 and p is the canonical projection. Then SCl(X)
is defined [L] ~ [i*(X)*j*p*L]. Now if L is invertible and G-invariant there are
isomorphisms is: L ~ i*(X)*j*p*L for all SE G (note that r, is unique up to
multiplication with some nonzero element of K). We get isomorphisms (natural
up to scalar multiplication)

These isomorphisms induce a structure of G-variety on P.
(3.4) The following definition will play a key role in what follows (as its

algebraic analogue played in [1]). A G-scheme Z (respectively a G-function field
F) over a G-field K will be called split if there is a K-isomorphism cp: Z ~ Zo 0 K
with Zo a KG -scheme (respectively a K-isomorphism 9: F ~ Q(Fo ~ K) with Fo
a function field over KG) such that we have cp 0 Sz 0 ~-1 = id 0 SK (respectively
cp 0 sF°~-1 = Q(id ~ SK» for all s E G. A 9 as above will be called a splitting of
X (respectively of F).

(3.5) LEMMA. Let K be a G-field.
(1) Let Xo and Yo be KG -schemes and let Xo ~ K and Yo 0 K be given the

natural structures of split G-schemes over K. Then any G-morphism between them
has the form go ~ K where go is morphism Xo - Yo.

(2) Let X be a G-scheme over K and assume we have a covering {Ui} of it with
open G-invariant subsets such that all intersections Uil n Ui2 ~ ··· n Uip(p  1)
are affine and split. Then X itself is split.

(3) Let X be a split G-scheme and Y a closed G-invariant subscheme X. Then
Y with its induced G-scheme structure is split.

Proof. First one proves (1) for Xo, Yo affine (by just noting that K[Xo ~ K]G =
KG[X0]). Then one proves (2) using the affine case of (1) to glue the different
splittings of the Ui’s. Next one proves (3) for X affine by noting that the ideal
I c K[X] which defines Yis a K[G]-submodule of the split K[G]-module K[X]
hence by [1] (3.4), I itself is split. Next one proves (1) and (3) in general by reducing
to the affine case via (2).

(3.6) LEMMA. Let K be a G-field and Z a projective G-scheme over K. Assume KG
is a field of definition for Z and that Autz/K is quasi-compact (equivalently of finite
type). Then there exists a cofinite subgroup G1 of G and a finitely generated
constrained extension K1/K of G1-fields such that Z ~ K1 is a split G1-variety.
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If in addition AUtZ/K is connected then the same conclusion holds with G1 = G and
KI j K "regular" instead of "constrained".

Proof. Let 9: Z ~ Zo ~ K be an isomorphism, with Zo a KG -variety. Then the
association

defines a class in H1(G, 0393(K)) where r = Autzo/KG. Now applying Theorem 2.1 to
this class we may assume (after replacing G and K by G1 and K1) that
f(s) = 03B1-1 ° (id ~ SK) 0 ex 0 (id (D s-1K) for some K-automorphsm a of Zo ~ K.
Then a ° will be a splitting for Z.
Now let’s pass to the proof of Theorem 1.7 for PRO and FUFm and their

"polarized" versions. With the terminology of [1] it is sufficient by [1] (1.5) to
prove that PRO", FUFm,03C0 have properties (ô 1) and (03B42). This immediately follows
from the statement below:

(3.7) THEOREM. Let K be an algebraically closed G-field. Assume X

is a projective G-variety and 03BB E n(X)G (respectively assume F is a G-function field
of characteristic zero over K with m(F) 1= l/J and 03BB ~ 03C0(F)G). Then there

exists a cofinite subgroup G 1 of G, a finitely generated constrained extension
K1/K of G1-fields, a splitting cp: X ~ K1 ~ Xo ~ K, (respectively a splitting
9: Q(F (D K1) ~ Q(Fo 0 K1)) and a polarization Ào En(Xo) (respectively Ào ~ 03C0(F0)
such that the images of Âo and À in n(X ~ K1) (respectively in n(Q(F ~ K1))) are the
same. Same statement holds with Gi = G and K 1 /K "regular" instead of
"constrained". Moreover one can take Ào above to be represented by some element in
Pic(X0).

Proof. We shall consider only the case of G-function fields (the case of
projective G-varieties being similar and easier). Assume À E 03C0(F)G is ample on
some X, and let  be the image of 03BB in H1(G, Pic°(X)). By Theorem 2.1 one can
find a cofinite subgroup G1 of G and a finitely generated constrained extension
K1/K of Gl -fields such that r1() = 1 in the diagram below:
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where we have put r° = Pic°X/K, r = Cl(X), r 1 = C1(X1), X1 = X (g) K 1.
Same statement holds with G 1 = G and K 1 / K "regular" instead of "constrained".
A diagram chase shows that (03BB) = p1(x1) for some xi E Cl(X1)G1. We claim

that x1 E Pic(X1) and it is ample; indeed we have a commuatative diagram and by

hypothesis = p(x) with xe Pic(X) ample so p1(x1) = p 1(r(x)) hence x1 - r(x) E
0393°(K1) which implies our claim. Note moreover that the image 03BB1 of 03BB in

n(Q(F 0 K1)) is well defined and is "represented" by x1. Let Li be a line bundle on
X 1 corresponding to x 1 and let n  1 be such that both L 0 n and L~(n+1)1 are very
ample. By Lemma 3.3 Z 1 = P(H°(X1, L~n1)) and Z’1 = P(H’(X 1, L 0 (n+1))) have
natural structures of G 1-varieties. Applying Lemma 3.6 we may assume (upon
modifying G 1 and K1) that both Z1 and Z’1 are split. Let Y1 and Vi be the images
of X1 into Z 1 and Zi respectively. By Lemma 3.5 Yl and Fi are split G 1-varieties
hence X1 is split. Now corresponding to YI and Y? we have two splittings
~: X1 ~ X01 ~ K1 and ~’:X1 ~ (X01)’ ~ K1 and ample line bundles LD on
X ° and (L0n+ 1)’ on (X01)’ whose inverse images via ~ and qJ’ are L~n1 and L~(n+1)1.
By Lemma (3.5) ~’ ° ~-1 = ~-1 = ~0 ~ K1 for some ~0:X01 ~ (X01)’. Put
L0n+1 = ~*0((L0n+1)’). Then Â, may be represented as the difference in C 1 (X1) of
the images of L0n+1 and L0n. Our theorem is proved.

In the next Section we shall use a slightly amplified version of (3.7) for
projective G-varieties (whose proof is the same), namely:

(3.8) AMPLIFICATION. Assume in (3.7) that K is not algebraically closed
anymore but assume instead that there exists an algebraically closed G-subfield
K’ of K such that X and are deduced via base change from some G-variety X’
over K’ and some À’ E n(X’). Then the conclusion of (3.7) still holds.

Finally note that to prove Theorem 1.8 it is sufficient to prove the following:

(3.9) THEOREM. Let K = Ka be a G-field of characteristic zero and F a G-
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function field of general type. Then there exists a cofinite subgroup G1 of G
and a finitely generated constrained extension of G1-fields K1/K such that

Q(F ~ K1)/K1 is a split G1-function field. Same statement with G1 = G and K1/K
"regular" instead of "constrained".

Proof. Let X be a smooth projective model of F/K and R = ~Rn, Rn =

H’(X, 03C9~nX/K) its canonical ring. One sees immediately that it has a structure of
G-ring. Choose n such that the n-canonical map qJn of X is birational onto its
image and let R* be the K-subalgebra of R generated by Rn. Then R* is

a polarized K[G]-algebra with polarization given by Rn. We conclude by [1],
Theorem 4.2.

4. Splitting G-algebraic groups

In this Section we prove Theorem 1.7 for AGR1t and Theorem 1.8 for AGRP.

First let s give a corresponding definition for "splittings" : a G-algebraic group
r will be called split if there exists a K-isomorphism of algebraic groups
~: r ~ ro 0 K (ro some KG-algebraic group) which is a splitting in the sense of
(3.4). Our main result is:

(4.1) THEOREM. Let r be a G-algebraic group over an algebraically closed
G-field K of characteristic zero and let L be the largest linear connected closed
subgroup of G and A = r/L (clearly L and A inherit natural structures of
G-algebraic groups). Assume there is a maximal reductive subgroup P of L which is
G-invariant and there exists a polarization (p, À) E 03C0(0393)G with p coming from a faith-
ful K[G]-representation W of L/Ru(L). Then there exists a cofinite subgroup
G1 of G and a constrained extension K1/K of G1-fields such that r ~ K1 is a split
G1-algebraic group over Kl. Moreover if r 0 K1 ~ ro 0 K, is a splitting there
exists a polarization (po, Ào) E 03C0(03930) such that ( po, Ào) and (p, À) have the same
image in n(F ~ K1 ). Same statement holds with G, = G and K1 /K "regular"
instead of "constrained".

Proof. We use an approach similar to that in [3]. For simplicity we shall
assume in what follows that r is connected.

Step 1 (skew equivariant Chevalley construction). By [1], Theorem 1.6 there
exists a cofinite subgroup G2 of G and a finitely generated constrained extension
K2/K of G2-fields (respectively G2 = G and K2/K regular) such that L 0 K2 is
a split G2-algebraic group and W 0 K2 is split K2 [G2 ]-module. We claim that
there exists a K-linear subspace V of K[L] having the following properties:

(1) V is G2 -invariant
(2) Vis L-invariant (L acting via right translations)
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Indeed one can find a space E with properties (2), (3), (4). Next note that for any
s E G, sE will still have properties (2), (3), (4) [for (2) use the diagram in the proof of
(2.1)]. Put V = sE where s runs in G2 ; clearly V satisfies properties (1), (2), (3). To
check it satisfies also (4) note that

But the latter number is finite because there exists a finite dimensional

KG22-subspace Eo of KG22[L0] (where L 0 K2 ~ Lo (D K2 ) such that E ~ K2 c
Eo 0 K2. Now let d = dim(Vm M), P = IP(AdV),po = P(039Bd(V n M)). There is
a naturally induced G2-actions on P letting po fixed. The action map L x P - P,
(b, p) H b p is then a G 2 -morphism.

Step 2 (skew equivariant version of [2] p. 96). Recall our construction in [2] p.
96: we start with actions i : L x (0393 x P) ~ r x P, 03C4(b,(g,p)) = (gb-1, bp) and
0 : r x (r x P) - r x P, 03B8(x,(g,p)) = (xg, p). Both i and 0 are G2 -morphisms. As
shown in loc. cit. there is a cartesian diagram

with w projective, u a principal bundle for (L, T) and 0 descending to an action
03B8: r x Z ~ Z such that the isotropy of zo = u(1, po) in r is the identity. One cheks
that Z inherits a structure of G2 -vartiety, u, w, 07are G2 -morphisms and zo is fixed
by G2. Consequently the immersion 9: 0393 ~ Z, x - xz, is a G2 -morphism. The
closure r of the image of this immersion in Z will be a G2 -subvariety of Z hence its
normalisation t will inherit a structure of G2 -variety. We have a diagram
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Let D = 0393B(0393); it has pure codimension 1 because v is affine so we view D as
a reduced effective Weil divisor. We agree to put X 2 = X ~ K2 for any K-scheme
X and U2 = u ~ K2 for any morphism u of K-schemes. So in particular we have
a diagram as above with r, v, A,... replaced by r2, v2, A2, .....

Step 3 (Splitting) First by applying (3.8) to (A2, 03BB2) there exist a cofinite
subgroup G1 of G2, a finitely generated constrained extension Kl/K2 of G1-fields
(respectively G, = G2 and K1/K2 regular), a splitting A1 ~ Ao ~ K1 and a line
bundle Lo E Pic(Ao ) such that Lo and L(where L ~ Pic(A) represents 03BB) have the
same image in 03C0(A1). Since the graph of the multiplication map is a G 1-subscheme
of Ai x Ai x A 1 it is the pull-back of a subscheme of A o x A o x A0 (by Lemma
3.5) so A o is seen to be an abelian Ko -variety, Ko = KG11 and the splitting of A 1 is
a splitting of Gi -algebraic groups (not only of G, -varieties). Now choose divisors
Ha,..., Hô in some very ample linear system |L~N0| such that Hô n ... nH’ = 4J
and let H i be their pull-backs on A 1; clearly H i are fixed by G 1. Now for any
multiindex I = (i1,..., ir ) put H 1 = Hi11 + ... + Hir1; then the open subsets of r 1
defined by

are G 1-invariant and affine. Consider the Cartier divisors E, = *1 (HI1) on r and
for any n  1 consider the subspaces of K1[0393I1] defined by
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Clearly Wn are finite dimensional K1[G1]-submodules of the function field
K1(1) and U WIn = K1[0393I1]. So there is an integer n  1 such that for all I,
K 1[0393I1] is generated as a K 1-algebra by WI. Applying several times [ 1 ] Theorem
4.2), we may assume (upon modifying G 1 and K1) that K1[0393I1] are split
K 1[G1 ]-algebras. By Lemma 3.5 we conclude that 03931 itself is a split G 1-variety.
This splitting is automatically a splitting as a G, -algebraic group (use same
reasoning as for A 1 ) . Our theorem is proved.

(4.2) Let’s explain how one can deduce Theorem 1.7 (for AGR" ) from our
Theorem 4.1 above. We must prove that AGR" has properties (03B41) and (03B42). Let
K E Ba, r E AGRK and 1 = (p, 03BB) E 03C0(0393) and denote as usual by L and A the linear
part of r respectively the complete part A = r/L. We claim that one can define
a group G acting on K and a structure of G-algebraic group on r such that the
following hold:

(1) lm(G - g(K» = g(I-’, ~)(cf[1] (1.3)),
(2) There exists a maximal reductive subgroup P of L which is G-invariant,
(3) p is represented by some K[G]-representation of L/Ru(L).

Our claim and Theorem 4.1 clearly imply (1.7). On the other hand the claim
follows by an argument similar to that in the proof of [1] (6.9).

(4.3) Proof of Theorem (1.8) for AGRP. It is sufficient to check that AGRP has
properties (d 1 ) and (d2). Take K eB".

CLAIM 1. If L e AGR§ is linear there is a polarization p En(L), p: L/Ru(L) ~
GLN (K) such that whenever 6 E g(K) and u03C3: L ~ La is a K-isomorphism we have
p - 03C3 ~ p’ as representations (i.e. the two terms are equal modulo an interior
automorphism of GLN(K); here ua: L/Ru(L) ~ (L/Ru(L»a is induced by Mj. This
was shown in [1] (6.10) (note that we tacitly assumed there that one can take
p such that pe - p for all 6 E g(K); this can be done by choosing our e there to be
such that 03B503C3 ~ e for all u E g(K); for instance one can take e to be the sum of
a system S of representatives for the set of isomorphism classes of conjugates of
a given faithful representation 80. Since e. is defined over an algebraic number
field, S will be finite).

CLAIM 2. If A ~ AGRI is an abelian variety there is a polarization 03BB E 03C0(A) such
that v*03C3(03BB03C3) = 03BB for all E g(K) and any isomorphism v03C3: A ~ Aa. Indeed by [7] p.
140, the degree map 9: n(A)/Aut(A) - Z, (~(03BB) = top intersection number of 03BB)
has finite fibers. So if Aut(A) is finite we choose d E Z such that ~-1 (d) ~ ~ and let
03BB E 03C0(A) be the sum in Pic(A) of all polarizations of degree d; this 03BB answers our

claim.

Now Claims 1 and 2 together with Theorem 1.7 clearly imply Theorem 1.8.
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5. Further comments and questions

It is reasonable to make the following

(5.1) CONJECTURE. AGR has property (bl) (hence by [1], Theorem 1.5 also
properties (d1), (g1)).

Indeed it follows from [1] that AGRlin( = subfunctor of AGR corresponding to
linear groups) has property (03B41) if char k = 0. Let’s also remark that we have:

(5.2) PROPOSITION. If char k = 0 the functor AGRab(= subfunctor of AGR
corresponding to abelian varieties) has property (ô,).

Proof. Let K E Ba, A E AGRKabK, G = G(A, AGRab) (cf [1], (2.13)). We want to
prove that A is defined over (K’)a. To see this we construct a subgroup H of
G such that Im(H ~ g(K)) contains a cofinite subgroup of Im(G -+ g(K)) and such
that there exists a polarization E 03C0(A)H. If this is done one can split the H-variety
A as in (3.7) and we are done. Let 03C0d(A) be the set of polarizations in 03C0(A of degree
d, pick a d  1 such that 03C0d(A) ~ ~, note that G acts on the set E = 03C0d(A)/Aut(A)
and put H 1 = ker(G ~ Aut(03A3)). Hence H 1 is normal of finite index in G(Z being
finite by [7] p. 140). Now pick any À E nd(A) and let H be the subgroup of
G consisting of those s E G which fix 03BB; then Im(H1 - g(K)) c Im(H ~ g(K)) and
we are done.

(5.3) Using [8] instead of [7] p. 140 one can check that the subfunctor FUFK3
of FUF corresponding to K3-surfaces has property (03B41) and hence properties (d1),
(gl ). It is reasonable to conjecture that the subfunctor FUF2 of FUF

corresponding to function fields of transcendence degree 2 has property (03B41). In
any case its analogue FUF 1 is even coarsely representable by results of

Matsusaka and Shimura.
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